A Service of

ECOMNZTOR pr

Make Your Publications Visible.

Leibniz-Informationszentrum
Wirtschaft

Leibniz Information Centre
for Economics

Unland, Rainer

Working Paper
TOPAZ: A tool kit for the assembly of transaction managers
for non-standard applications

Arbeitsberichte des Instituts fur Wirtschaftsinformatik, No. 34

Provided in Cooperation with:

University of Minster, Department of Information Systems

Suggested Citation: Unland, Rainer (1994) : TOPAZ: A tool kit for the assembly of transaction
managers for non-standard applications, Arbeitsberichte des Instituts fir Wirtschaftsinformatik, No.
34, Westfalische Wilhelms-Universitat Minster, Institut fur Wirtschaftsinformatik, Miinster

This Version is available at:
https://hdl.handle.net/10419/59343

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/59343
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Working Papers of the Institute of Business Informatics
Editors: Prof. Dr. J. Becker, Prof. Dr. H. L. Grob, Prof. Dr. K. Kurbel,
Prof. Dr. U. Muller-Funk, Prof. Dr. R. Unland, Prof. Dr. G. Vossen

Working Paper No. 34

TOPAZ:

A Tool Kit for the Assembly of Transaction Man-
agers for Non-Standard Applications

Rainer Unland

University of Munster, Institute of Business Informatics
Grevener Str. 91, D-48159 Munster, Germany, Tel. (0251) 83-9750, Fax (0251) 83-9754
November 1994

Contents

1 Introduction

2 Comparison of conventional and nested transactions

2.1
2.2
2.3
2.4

Conventional transaction management
The concept of nested transactions
ACIDity properties revisited

Fundamental rules of Moss' approach

3 Basic concepts and fundamental rules of the tool kit approach

3.1
3.2

Basic concepts of the tool kit approach

Fundamental rules of the tool kit approach

4 Characteristics of transaction types

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8

Concurrency control scheme

Object visibility (access view and release view)
Task

Concurrent execution of (child) transactions
Explicit cooperation (collaboration)
Serializability revisited

Recovery

Example of a heterogeneously structured transaction tree

5 Lock modes

5.1
5.2

Motivation of our approach

Transaction related locks

5.2.1 Basic lock modes of the tool kit approach
5.2.2 The two effects of a lock
5.2.3 The semantics of the lock modes

5.2.4 Upgrading a lock mode

13
13
15
19
22

23
23
26

30
30
33
36
38
39
40
42
44

47
47
50
52
53
56
57

5.3
5.4
5.5
5.6

-3-

5.2.5 A short discussion of consistency aspects

5.2.6 Dynamic assignment of an external effect

Transaction related locks in the context of nested transactions

Rules on Locks and Notification Services
Object related locks

Subject related lock

6 General rules of the tool kit approach

7 Constraints/rules/triggers

8 Brief

overview of the structure of the tool kit

9 A few comments on implementation issues

10 Overview of related work

10.1

10.2
10.3
10.4
10.5
10.6
10.7

Special purpose transaction models

10.1.1 Design applications, especially CAD/CAM/VLSI
10.1.2 Design applications, especially CASE

10.1.3 Other approaches

Transaction models for special types of database systems
Transaction models based on compensating transactions
Multi-level and open nested transactions

Multidatabase transaction models

Higher level approaches

Tabulated overview

11 Concluding remarks

Literature

Appendix: An example

60
60
60
62
66
70

72

74

76

82

84
84
84
86
88
90
01
93
94
95
98

100

102

109

Abstract

'‘Advanced database applicationsuch as CAD/CAM, CASE, large Applicdions orimage
and voice processing, place demands on transastaragerant which differ substantially
from those in trditional databasepplicdions. In particular, there is a need gopport'en-
riched' data modeléwhich includefor example, complex objects or version and configuration
manageent),'synergistic' cooperativevork, andapplication or user-supported consistency
Unfortunately, thedemandsare notonly sophisticeed butalso diversified, which meartbat
different application areasight even placeontradictorydemands on transactionamage-
ment. Thispaperdeals with these problems and offers a solution by introducflexible and
adaptablgool kit approach fotransaction managementhis tool kitenables alatdbase im-
plementor ompplications desiger toassemble apmation-specific transaction magexs. Each
such transactiomanaer ismeant to provide a number widividualized, application-specific
transaction types. Such transaction types can be constructstebiing ameaningfulsubset
from a"starter set" obasic constuents.Amongthebasiccomponents provided by the starter
set are those for conegencycontrol, recovery, and transaction processingrobnin afirst
step thesdasiccomponents arassembled anddapted to eacbther toform a kind of (non-
executable) "sketen" transaction. Skeleton transactia@ be customized to make them a
more meaingful basisfor the construction of executable transaction typeally, executable
transaction types can be constructedefuippingappropriate skeleton transaction with the
specific semantics of the transaction model of choice. To be able to emulate eaclakipld of
cation environmentthe different transaction types must be executablanyorder within a
nested transaction hierarctior this reason w@ropose &ind of "meta”(transaction) model.

It specifies the constraints and rules which need to be obeyed by each transaction type. Particu-
lar emphasis is placed on theeigtation offlexible and powerful concepts for@mprehensive

support of cooperative work.

1 Introduction

Conventional database systems have satisiiedequirements dapplications foiwhich they
were designedpamely, businesdataprocessing applications such as inventooyntrol, pay-

roll, accounts, and son. Howeverwith the success of databasgstems in these areas new
classes of applications have been identified wiaich also expected tbhenefit substantially
from adequate database suppdrhese application classes include: computer-auiesign
(CAD); engineering (CAE); software engineering (CASE), and manufacturing (Gstgems;
knowledge-based syster(expertsystems an@xpertsystem shells); multimedia systethst
manage images, graphics, voice, and textual documents; statisticediamific applications,
analysisprograms, and so oft. f., [Kim91]). However, thesapplications place demands on
database systems that far exceedctipabilities of conventional (relational) syste®gch ad-
vanced database applicatidmsffer from traditional database applications in a variety of ways.
Above all they require more powerful arféxible concepts for datanodeling;for example,
facilities are needed to model and manage complex nested entities, such as design and engineer:
ing objects or compound documents. Amauttpers,such an advancedata model should

provide:

= arichset of data typewhich, moreover, should be extensible as with user-defdsd
types, andvhich should allowthe application to model and manage specific 'shadings' of

data types such as library or standard objects (objects which cannot be modified);

= facilities to define type specific operations and to integrate them into the database;

= powerful semanticoncepts, such as generalization, association, or aggregation relation-
ships;

« concepts for adequate suppoftemporal evolution of data; for instance, concegtgh

permit the modeling of the temporal dimension of data and versioning of data.

However, thedemands of non-standard applicationsdatamanagemerdre not restricted to
more flexible and powerfuldata maleling concepts. There is also a need for powerful and
flexible storage structuremnd access methodsonder toensure thefficient execution of da-

tabase operations. Moreover, non-stand@gplications often need to interact immaich more

-6 -

sophisticated way witthe databassystem. This results in considerably extended demands on

transaction management.

With respect to the architecture of future datalmstemswo major trends can bieentified

(see alsdNeSt89]). Some groups favor tldevelopment of @ompleteDBMS comprising a
parser, query optimizestorage structures, access methods, transacteoragement, and so
on. On thebasis of thisapproach user extensions aagisfied withinthe context of dull-
function DBMS (see Figurel.1). Examples of thispproach are AIM-P ([DKAB86]), Con-
ceptBase ([JaJR88]), GemStone ([MSOP86]), OOPS ([UnSc89-2]), ORION ([WoKi87]),
POSTGRES ([StR087]), PROBE ([DaSm86]), and STARBURST ([SCFL86]).

Other groups favor database kernel systemTheunderlying assumption of thapproach is
that ageneralstoragesystem can serve #se universal basidor therealization ofall 'flavors'

of application-specific database systeffas;instance, there exists an application-independent

CAD Ki oIS Appli-
CAD Ki oIS AP:?’" AP:?’" Appli= | cations
cation cation cation ﬂ ﬂ ﬂ
Application
Specific
CAD K1 oIS Object
Model Model || Model | Managers
(Data
: e . 7 Models)
Full e —=
Eunction ComNpI)Iex Record
anager Database
DBMS S I I I I Kernel
Storage System
(Stable Memory)
Manager

Fig. 1.1: Full function database managementFig. 1.2: Database kernel system and tool kit

system approach

-7 -

kernel system oihe basis of whichthe variousapplication-specificdatamodels have to be
implemented(see Figurel.2). This approach is investigated, fa@xample, in DASDBS
([PSSW87]), OMS ([FrBo89]), and PRIMA ([HMMS87]).

A very similarapproach is théool kit approach where, in addition to a kernel, erector
set" of modulesis provided to allow a sophisticated applications designer or datmslse
mentor(DBI) to construct a customizesystem. Thisapproach ideingtaken, forexample, in
EXODUS ([CaDe87]), an@GENESIS ([BBGS88]). Advocates of the tool kit approach argue
that requirements frorthe variousapplication areasdiffer so muchthat asingle interface is
not appropriate for all of them. The consequence of this understanding is to proeidean
storagesystem (kernel) and, in addition, to offer a tool kittesbasisfor the development of
application-specifidront ends. Theassumption is that thigrchitecturenot only supports ap-
plications in a mor@ppropriateand natural waybut alsomakesthe specificallytailored data-

base systems more efficient.

However, it is nosufficient toprovide rich andlexible data modling facilitiestogetherwith

efficient and adaptabletorage structureand access methods. Neapplicationareas also

make sophiscated demands on transactionanagement(c. f., [ELLR90], [Katz84],
[KaWe83], [Kelt88], [KoKB88], [KSUWS85], [LoPI83], [NoZd90], [UnSc89-1], [UnSc91/2]).
Without question, the transactionodel realized in traditional database systems is powerful
when applied to conventional applicatiomowever, it is foundlacking in efficiency and
functionalitywhen used for new applicationdfigiency is of particular importance in view of

the throughputilemands placed ahe new generation of databasestems. In terms of func-
tionality, traditional transactionsere assumed to be of simgiguctureand short-lived. Fur-
thermore, they werargeted folcompetitive environments. Activities mon-standarapplica-

tion areas tend to accesmnyobjects,involve lengthycomputations, and are interactivieat

is, they pause for input fromhe user or the application. Although long-duration eoithbo-

rating activities are often found in these environments they cannot be represented by traditional
transactions owing to themability to meet the correctness requiremensefidizability. Even

in those cases where only some of the above characteristics are required and the corresponding
activities can be modelled as traditiofrainsactions, they degradgstem performancaue to
increased data contention, thus failing to ntegth throughputdemands ([ChRa90]). The need

for the next generation of databasstems taapture the reactivégng-lived, and interactive

-8-

activities found inmost new application areas demartde development of morsuitable
transaction models. These transaction models hageigportlong-duration, interactive ac-
tivities, application- or user-supported consistencynd synergistic cooperativewvork.
Whether a system is characterized as competitiv@operative depends on how interactions
among activities inhe systemareviewed: incompetitive environmentteractions are more

or less hindered whereas they are promotedaperative environments

In order tofulfill the needs for mor#lexible transaction models, various extensions to the
traditional model have begmoposed. Airst andratherpromisingapproach was an extgon

of the traditional cocept of transactions so that the otherviigetransaction model permitted
transactions to be executeathin other transactionshis is called anested transaction In

the commonly known(but not orighal) approach of Moss ([Moss81]) a nested transaction
(recusively) consists of @et ofchild transagbns that execute atooally with respect taheir
parent transactions and theiblings. Along-duration transactiomay exhibit arich and com-
plex internalstructurewhich can be exploited to distributiee workwithin the transaction, to

execute it in parallel, and to roll back unsuccessful parts without affecting others.

Brief overview of the approach and points of novelty

To the best obur knowledge the nested transactimodel isthe fundamental basis @l ad-
vanced transaction models which have been proposed in literaturdiff@rences between the
variousmodels consist ithe number andheaning otthe constraints and the rulesich they
place onthe way (nested) transactiorigve to be formed arftbw they have to interct with

each other.

Prominent examples of these constraints and rules are the following:

% Most approacheprovide different transaction typeldowever, these types camly be

nestedn aspecial, predefined ordeFor example,

L [KoKB85] present a model ivhich a desigriransaction consists of a number of
project transactions each wich consists of aet of cooperating transactions.
Each cooperating transaction, in turn, isierarchy ofclient-subcontractor transac-

tions, each of which is a set of designer's transactions.

-9-

L [KSUWS85] define adatabase transaction to be thesisfor a set of user transac-

tions. [UnSc89-1] add to this model group transactions.

& Some proposals requial transactions to run strict two-phase lock protocdlocks
cannot be released before end-of-transadii®T)), for example,Moss ([Moss81]) or
Katz ([Katz84]).

% Almostall proposals restriathild transactions t@ommit objectgor locks) to theirpar-
ent transactiononly, for example [H&R087-1+2], [KLMP84], [KoKB85], [KSUW85],
[Moss81], [UnSc89-1].

& Some approaches, fexample,[KLMP84], [KoKB85] or [UnSc89-1],only allow leaf
transactiongo perform operation®n dataNon-leaf transactionserveonly as a kind of

databasdor their child transactions.

Another observation is that a large number of approaches to advanced transactiiolg mode
concentrate first oéll on modularity, failure handling, andoncurrent execution of subtasks
while support of cooperative work is subordinated to seahllity. Mostly, the assumption is
still made thafsub)transactions are competitors rather thariners. Appropriate support of
cooperative work, howevecanonly be achieved ithe still predominant rigid concurrency
control measures (strict isolation) are weakened, for instanamplayng someresponsibility

for the integrity of the datafrom the datbasemanayement system tohe application. Of
course,this has to be done in a controlledy andthe databasenanagement system has to

offer as much help as possible.

Furthermore, advanced application araeshighly diverse. Aplications may differ substan-
tially in their demands and even in their understanding of consigpemations on datahis
has led to a number of different, sometimes es@mtradictorydemands on transactionana-
gement. Therefore, it IS0t surprising that most dhe above rules and constraints reflect the
individual views ofthe authorgoncerning theequirements and conditions thie application
areawhich theyclaim asthe targetlassfor their transaction model. However, irrespective of
how successful these extended transaction madelsn supporting theystems that they were

intended for, theynerelyrepresent pointaithin the range of interactions requiredgthin the

-10 -

spectrum from competitive to cooperative environments. Based on this observaiayhoiok
ratherpromising tochoose a more general transactioodel and try to extend it inwaay that

it covers (most of) theemaining points inhe spectrumwWhile it istempting to follow this ap-
proachanysuchwork will by necessity be adoc andnot general. It isour strongopinionthat

each 'hard-wired' transaction modell wnly capture a subset of theoadly diversifiedspec-

trum of demands to be found @@mplex information systems. This already follows from the

fact that competitive environmenisually placecontrary demands on concurreragyntrol and
transaction management than cooperative environments. Consequently, a hard-wired transac-
tion modelmay besuitablefor a number of applicatiomreas, whereas itilbe inappropriate

for others (see also [ChRa90], page 1, or [NeSt89], page 5).

At the time when westarted our project wiead several basic requirements iimanwhich we

wanted to be fulfilled by our approach. The most important are the following:

& Flexibility
Our approaclshouldnot besuited to a special applicatiamea but should bapplication

independent.

& Cooperative work

Our approach should be capable of intensively supporting synergistic cooperative work.

& Adaptability
Our approactshould permit an easydaptation of the transactionanager to changing

requirements of application areas.

& Extensibility
Our approach should be extensible in a way that special or new demandsanimohbe
meet yet can be satisfied after the integration/realization of new components, concepts, or

features.

However, as théiscussion athe beginning of thissectionclearly indicatesthere are serious
argumentsvhich strongly indicate thaine giventransaction manager camly be amore or
less satisfaory compromise. Fronour point of view it looks muchmore promising to follow

an approaclksimilar to the tool kit approach of ddiase systems: ol kit for transaction

- 11 -

managementWe want this tool kit to bpart of thegeneral tool kitor ere¢or set of mod-
ules) of thedatdase (kernel) systerfgr instance, it is meant to serve a sophisticajgalica-
tions designer odatdbase implemeawor (DBI) to model his application-specific transaction
manager in an appropriate and natural way. Therefioeetool kit isnot yet another transac-
tion modelbut isintended to provide a general framework fioe realization of application-

specific transaction managers.

For afirst discussiorthe tool kit can be seen as to providawmber of fundamental transac-
tion types at its interface. In fact, agl e shown later, the tool kit provides at kiasis a set
of basiccomponents. Thedeasiccomponents can be combined and suited to e#udr to
form a kind of "skeletontransaction. Skeleton transactions, in turn, serve lassiafor the

construction of the (core) transaction types which are provided at the interface of the tool Kit.

An application-specific transaction managérst of all has to supplythe application with a
comprehensiveset of application-specific transaction type®r instance, transaction types
which are especially tailored to tivividual requirements athe applicationThis mayrequire

an adaptation of some of tigeneral transaction types thfe tool kit to thendividual seman-

tics of an application, for example, by adapting concurrency control or recovery measures. This

corresponds to acal or intra-transaction adaptation.

In our model, transaction types may differ in treuctureas well as irtheir behavior Differ-

ent transaction types may use different compatibility matrioay, installdifferent concurrency
control measures, may rely on different recovery techniques, or may or may not support special
kinds of operations, like checkout/checkin, suspend-transaction/resume-transactgptit-or
transaction/joint-transaction ([PuKH88]), teention some othe characteristicarhich make

up different transaction typellote, that thesameoperation (=sameoperationname)may be
equipped with different semantics miay rely on aifferent implementation if it belongs to a
different transaction type or if it defined in a differenransaction managefor example, the
checkinoperation of ggiventransaction typenay beallowed to make use of an extended set

of lock modeswhile the checkinoperation of another transaction typen@ allowed to do so

(for a discussion of possible lock modes see later).

-12 -

Sincethe tool kit doeshot pree@termine an

order inwhich transaction types have to be T3

executed withimested transaction$ike de- / / AN
signtransaction consists of a number of proj-

ect transactionsach of which consists of.) TS e 7
each transaction type can be executed [as / \ //\
subtransaction ohny other transaction type. T10|| | T1 T12 T13

tured transaction treesan be constructed.

T14

By this all shades of heterogeneoustruc- /\\ /\ /\
T24]|T25

6| |T37

T18 | T19|| |T20 T21|T22 T23
This makes it possible to define different /]\ ‘ ﬁ
types of working environmentsvithin the \

31| [t32|| [T33] |T34|[T35| |13

same nested transaction hierardoy, exam-

ple, competitiveenvirorments which require

strict isolation of (sub)transactiongin the cooperative environment

sense of serializability) awell as diffeent

shades of cooperativenvironments (invhich Fig. 1.3: Competitiveandcooperativeenvi-

a non-serializable kind ofork is supported; ronments within a nested transaction
see Figurel.3). Of course, most other trans-

action model do alssupportthis feature However, they exactly dictathe type of working
environment (transaction typehich has to be installed at a giviemel of the nested transac-
tion hierarchy. Oftourse, tomake sure that an unrestricted nesting of transaction tiqes
not cause problems each transaction type must obsesmaléset offundamental rulesvhich
can be regarded as a kind of "meta" transaction model. Again, the generality of the tool kit may
require the determination of some restrictions orotiger inwhich transaction arallowed to
run with respect to apecific applicatiorenviromrment, forexample, by establishing some con-
straints on the type dafhild transactions a parent transactiorali®wed to run.This corre-

sponds to global orinter-transaction adaptation.

Structure of the paper

The remainder of thipaper is organized as follows. Sectiorstimmarizeghe basic termi-
nology used in thipaper. Thdundamentabet ofrules ofour approach is presentedsaction

3. The characteristicwhich make up differentransaction types are discussed in section 4.

-13 -

Section 5 concentrates on lock modes. First, a basic set of lock modes will be introduced. Then
it will be shown how asubdivision of alock into apart which describeshe effect for the
owner of the lock and anothpartwhich describeshe effect for competitors can offer a suf-
ficient fine granule for thedefinition of application-specifitocks. Thissubdivision of a lock
canespecially beexploited withinnested transactions tetensivelysupport cooperative work.
Furthermore, we W motivate and introduce lock modesich can be linked permanently to
objects or tempmaurily to subjects (istead of temporarily to transactions). By tdifferent
version models as well as different object types (for example standivchoy objects) can be
supported. Section Summarizeshe general rules obur transaction model. Sectionbriefly
discusses firghoughts on a constraints, rules, and triggeeshanism which we ant to inte-
grate into the tool kit. Section @ves a brief overview ofhe structure of the tool kit hile
section 9 makes a few remarks on implementation isS@esion 10 surveys relateebrk and
compares it with the tool kit approadfinally, section 11 concludes the paper gnes hints

for further investigations.

2 Comparison of conventional and nested transactions

2.1 Conventional transaction management

A transaction is a sequence of reads and writes against a common and stiaoédata - the
database. Transaction management is concernedgup#rvisinghe way in which application
programs and/or users share the database. A transactiorally ugwed asboth the unit of
concurrency and the unit of recovelore specifically,the notion of transaction @mmonly
associated with four properties ([Gray79], [HaRe8B8#melyatomicity, consistency, isolated
execution, andlurability (persistence), often referred to as &@ID principle (or ACIDity

properties ([Leu91])).

& Atomicity
The atomicity propertymeans thathe sequence of reads and writes in a transaction is
regarded as a single atomic action against the database. Conseaqtmmibyty defines a

transaction as the unit of recovery; a transaction either complatesssfully or it has no

-14 -

effect onthe database ail. Furthermore, theystem can alway®cover to the bounda-
ries of a transaction, such that resultpaitially completedransactions W not be visi-
ble.

Consistency
Consistencyassures that successfully committettansaction ahayspreserves the con-

sistency of the database.

Isolation

Isolated executionguarantees that the

steps ofseveral transactions can be indnterleaved execution of transactions

terleaved so that theyillvnot interfere T1
with each other; for instance, it ensures T3
that a transaction is completedizielded T2

from the effects of anyother concur-

rently executing transactions. The com

monly agreed criterion focorrectisola-

tion is theserializability property. It
_ (41616]
requires that theeffect of concurrent

execution of more than one transaction corresponds to

is the same as that of executing the saM@quential execution of transactions

set of transactions in serial order (see T1 T2 T3
Figure2.1). To guaranteserializability ‘ 5118 9] 5] ‘

a transaction mmager employs a con-L_ action

currency control scheme. The most_. o
Fig. 2.1: Serializability property
common scheme isvo-phase locking
It requires a transaction to beell-
formed and two-phase. A transactionvisll-formed if it always locks an entity in an ap-
propriate lock mode before it works with the entity. IfSenple) two-phaseif it consists
of a growing-phasein which objects caronly beacquired and a followinghrinking
phasein which objects can only be released ([Gray79]). If all objects are acquired at once

at begin-of-transaction (BOT) the logkotocol iscalledtwo-phase with predeclaring.

-15 -

Similarly, if all objects are released at once at end-of-transa@Oi) thelock protocol
is calledstrict two-phase Finally, the lock protocol igallednon two-phaseor conver-
sational if it is well-formedbut nottwo-phase; for instance, objects can be acquired and
released in arbitrargrder. This protocol isespeciallyymportant if cooperativevork is to

be supported

& Durability
Finally, durability guarantees that once a transaction was comnstiecessfully its re-

sults will survive any subsequent malfunction.

2.2 The concept of nested transactions

Traditional transaction management waginly developed forbusinessdata process-
ing/administrative applications. In such environments transacionsupposed to be rather
short(typically atmost afew seconds) ansimple.Due to thesimplicity of the application ar-
eas it issufficientfor efficienttransaction management to provide exaotig type of transac-
tion which is of flatstructureand worksdirectly onthe data of the database. Moreover, due to
the shortrun-time of transactions strict isolation is an acceptable featnce it usuallydoes
not slow down the execution of concurrent transactmgsificantly. However,this relatively
simple kind of transaction management has scatfeer undesirable consequencis long-
duration transactiond.ong-duration transactions are transactionsvhich usuallycover a
complextask.They lastfor much longelperiods of time than conventiontaansactions (hours
to days or even tweeks). To befficient, a large number of personmslually have tgartici-
pate in the process of solving the problem who, of course, must share or exchange information.
The conventional understanding of transactionda#lare recovery and serialization units
seems to be unacceptable in such situations. In particular, recoveringaiitoes by rolling
back to thebeginning of dong-duration transaction and starting again is raapfyropriate for
users who would thehave toredoall of their work. The serializability property would result

in the fact that if a long-duration transaction holds a lock on an objgobtherlong-duration
transaction that must access g@ne object in @onflicting mode is blocked untthe first
long-duration transaction completes; for instaratber transactions are kefpom executing

their task for dong period of time. Furthermorsincethe restrictive conditions of the seri-

-16 -

alizability criterion prevent thexchange otlata between transactioasy kind of ©operative

work is not within the scope of conventional transaction management.

The inability of traditional transaction managemensapport non-conveional application ar-
eas in an appropriatgay led to an extension tiie traditional concept of transactionsthiat
the originally flat transaction model is allowed tocludetransactionsvithin transactionsThis
kind of transaction is calledested transaction The idea of nested transactions seenisat@
originated with Davies ([Davi73]) some tinago. Hedescribes a nested transaction hierarchy
as acollection of nested spheres of contwdiere the outermost spherdasmed by theop-
level transactiorwhich incorporates thenterface tothe outside world (Figur2.3 summezes
the 'treeterminology’ that il be used in thigpaper). Reed ([Reed78]) presentedfirst com-
prehensive design of a nested transaction systam.design uses timestamfas synchroni-
zation. It wasnot before 1981 and theork of Moss ([Moss81]) that nesteédansaction at-
tracted greater attention in the databasenmunity. Moss defines anested transaction
structure to recwsively corsist of aset ofchild transactions that execué¢omically with re-
spect to their parent transaction and tiséfings. The nesting of transactions results either in
hierarchical buserial computationsimilar tothe ones that are achieved by procedatts or

in possibly concurrent executions the invocation of echild transaction doesot block the
execution of its parent transaction. The first type of processodgl is sometimes referred to
as synchronous invocation mechanisnwhile the second corresponds to asynchronous

invocation mechanism(c. f., [HaRo87-2]).

Moss' commonly known approach to nested transacfjMess81])requiresthe results a par-
ent transaction sedom its child transactions to be as though tteld transactions execute

serially. Main achievements of this basic approach are:

% Modularity and failure handling
The nesting allowthe user to structurand delgatehis work and to definenore grace-

ful units of recovery (namely subtransactions).

& Concurrent execution of work (subtasks)
Of course, the longer a transactisnthe greater thehance thaparts of the transaction

can be executed concurrently. Howevertake advantage dhis potential concurrency

-17 -

in the applicationsuitable lock modes and granules of concurrermytrol rave to be
offered. The nested transaction conceptbodies arappropriate control structure to
supportsupervised and, thereforgafe intra-transaction concurrency. €furse, intra-

transaction concurrency results in increased efficiency and decreased response time.

As long as one concentrates on thestufea

, . : . . operational inte-
the operational integrity (prevention of inte- objective glsity ensured by

grity violation which may result from the con- of nesting the application

current access of users to objects) sihbe
ensured entirely by the databaystem since |cogpera-
_ _ _ lve work
modularity and failuréhandling as well as a

concurrent execution of subtransactictd

concurrent operational inte-
permit transactions to be strictlisolated |work grity ensured by
. the database
from eachother (seeFigure 2.2). However, system

iallv i : : : f |modulariy
especially in design environments ttype 0 and failure

nesting is stiltoo restrictive. In suclapplica- |landling

tion areas the support of cooperative work 1,00 %
operational
within groups of users is mandatory. Conten- integrity

porary concepts for transactionanagement
assume that transactionare competitors Fig. 2.2: Motives for the nesting of trans-
rather thanpartners.Therefore, theyplace actions

constraints on the amner in whichtransac-

tions areallowed towork on the data that preveanmy kind ofcooperative work. In coopera-
tive environments, transactions ceogteby, for example, accessingeading) objectsvhich

are being modified byanother transaction, bgleasingobjects before end-of-transactions, by
exchanging or delegating objects, or by fyoig eachother oftheir behavior or state.This
listing strongly indicates that support of cooperative workanonly be achieved ithe rigid
measures of conventional transactinanagerant can be weakened; for instance, if some re-
sponsibilityfor theintegrity ofthe datacan be moved frorthe databassystem tathe applica-
tion environment (see Figu&2). Of coursethis has to be done in a controlledy and the

database system has to offer as much help adbfgossi

Our tool kit approaclenableghe DBI to assemble application-specifi@nsactionmanagers

18 -

which canindividually be suited to thevarying requirements of differergtpplicationareas.

Special emphasiwas placed on thsupport ofdifferent forms ofcooperative work. But, on

the otherhand, if these concepts aggtensivelyused some burden is placed on the DBI. He

has to ensure th#te application is 'safe’, which means that he hgzowide meansvhich al-

low the application to take on the responsibility for that part of the integrity preserwaticn

was removed from the database system.

Figure 2.3 summarizes the basic 'tree terminology' that will be used in the remainder:

root or top level transaction root of thetransac-

tion hierarchy; here: T5

superior, ancestor: each transaction on the path
a giventransction to the database (ancestg
including the given transaction itselfior ex-
ample, T19, T10, T5 form the set of superiors
T31 (ancestor: plus T31silf)

inferior, descendant: each transaction which is

part of the subtramstion hierarchy spanned b
a giventransction (descendant: including th
given transaction itselffpr example, 721, T22,
T34, and T35form the set ofinferiors of T12
(descendant: plus T12 itself)

parent transaction: immediatesuperior of arans-
action; for example, T5 ighe parent transaction
of T10 (T11, T12)

child transaction: immediate inferior of a transac

‘ Database
o
of v
T5
;
e / i \\
T1 ™

tion; for example,T10, T11, T12 are child
transactions of T5

T18

T1

0
9 T2

sibling: any other child transaction of thgarent
transaction of a givetransactionfor example,
T19, T20 are siblings of T18

leaf transaction: transaction which has no infg

!

0 T2

T
1

T31

rior; here: T11, T18, T20, T21, T31 - T35

non-leaf (or inner) transaction: transaction which has at least one inferior; here: T5, T10, T12, T19, T22
ancestor chain:the set ofall ancestors of a givetnansaction (including théatabase); for exampléhe ances-

T32

T33

T

2
T22
34| T3

5

tor chain of T34 consists of T34, T22, T12, T5 and thebdsa

descendant treg(sometimes also callesphere of a transaction)the set ofill descendants of a giveransac-

tion; for example, the descendant tree of T12 consists of T12, T21, T22, T34, and T35

Fig. 2.3: Basic tree termiriogy

-19 -

2.3 ACIDity properties revisited

The above discussiartearly indicates thahe ACID principle has to beterpreted in aliffer-

ent way in the context of nested transactions.

& Atomicity
One reason for the introduction of nested transactiassbeen that they provide an ap-
propriate control structure to achieve more graceful and flexible units of recoasgly
subtransactions. From the parent transaction's powiewf a childtransactiorachieves
the all-or-nothing type of execution; for instance, if subtransactibostthey must not
affectthe outcome of their parent transacti@n any other transaction)Child transac-
tions correspond to actions on the level of their parent transaction. Theobitor&ans-
actions are natural units af-transaction recovery ([HaRo87-1+2]). Thus, a parent

transactionrmay skip an (unsuccessful) (subtrans)action and replace itdifeeent one

Nested transaction

Conventional (flat) transaction

| | i
H—~—F+F+—++—F++FF+-++ transaction T

—=———tF+—++—+F—++H transaction T

|] action i i

|] action

Transaction is unit of recover , ,
lon ! y Actions (subtasks) are the unit of recovery

== static and inflexible execution: == flexible execution:

a precisely defined path to many possible paths to the

task - goal
the exactly predetermined goal

task |°

*| goal

not exactly predetermined goal

Fig. 2.4: Static course of flat transactions Fig. 2.5: Flexible course of nested transactions

-20 -

or it mayperform (subtrans)actions with a different (modifieahk. Altogether, wegain
the freedom to change the course of a transadijoamically(see Figure.5). Conven-
tional (flat) transactionare described by a static (predefinést) of actionsand, there-
fore, can only commit successfully if all of their acti@me executed correctly (sEeure
2.4). In contrast, the concept of nested transactiohenly allows a(sub)transaction to
dynamically determinBow its goal can be achieved lavien allows it to redefine its goal

(see Figure 2.5).

Consistency

Due to the nature of the task of subtransactions it wouldnbecessarily restrictive to
require global consistency to be preserved by a subtransa€bora subtransaction,
running at a particuldevel of the hierarchy, it is sufficient to onlgbserve thaormally
weaker consistency constrairgisecificfor thatlevel; for instance, subtransactiohave

to preservedvel-specific consistency instead of global consistefbg. respective con-
straints arausually specified byhe subtransactions' parent for the subtransaction and its

siblings.

Isolation

The interpretation of isolatiogives by farthe mostrise to controversial and heated de-
bates in the context of nested transactions. Some people argue thatissitatngn of
subtransactions is a mandatory feature eviémn nested transactions (prinig for rea-
sons ofnot provoking the danger of (unrestrictad)lback propagation). Othemut for-
ward the objection that the notion of cooperative transaction has been detisaty to
provide thesame intuition as conventional transactibns$ also tosupport therequire-
ments of cooperativevork. Cooperative work, howevemay mean thatransactions are
associated with usgroups, where the transactionghin agroupneed to employ a dif-
ferent concurrency contrgolicy among themselveban with respect to transactions in
other groupsThis results irthe necessity to relax concurrencgntrol measurewithin a
group; forexample, allowing simultaneougpdates to nitiple instances of anbject or
allowing reads to uncommitted updatésnong groups, however, a strictgolicy such

as serializability may still bavorthwhile. A compromise seems to be to at least require

=21 -

top leveltransactions to be strictly isolated and tegoly provide weaker properties for

subtransactions.

Altogether it can batated that stridsolation is still anmportant property in the context
of nested transactions bias to be supplied by weaker critetfowever, theproblem
with weaker criteria is that generallyacceptedequivalent tothe consistency levels of
traditional concurrency control ([Gray79]) et within sight. Asupport of cooperative
work mustinevitably remove some of theesponsibilityfor the correctand consistent
processing otlatafrom the databaseystem tothe user ompplication; for instance, the
system has to rely otine help ofthe user ompplication to ensure consistency. And, of
course, ithas always been a heated debate reliable users orapplicaions are and

whether a reliable system should depend on users' decisions at all.

With respect to the tool kit we dwot need to contribute to this discussion. The tool kit
provides a kind of frameworflor therealization of application-specific transactioana-
gers. Therefore, ihas to offer facilitieor the support of cooperative work (all as
for therealization of strict isolation). However, it lisft to the designers of thgpecific
transaction managers to make usespmdcial fetures and teequip thebasic components

with adequate semantics. In this sense, the tool kit is on a semantically lower level.

< Durability
Commit of a subtransaction and persistence of its resultsoaditional subject to the
fate of its superiors (see atomicity). Even if a subtransaction commaboanof one of
its superiors vl undo its effectsLike consistency durability is level-specifill updates
of a subtransaction become permanent at the latestthe enclosingtop level transac-

tion commits.

Theflexibility of a giventransaction model depends thre way these four properties anater-
preted (or realized). Thus, the tool kit has to offemashflexibility and generality as possible
and leave it to designers tife application-specific transaction managergéstrictthis gen-

erality to an adequate level.

-22 -

2.4 Fundamental rules of Moss' approach

According to Moss' modd€[Moss81]) a nested transaction consists olimber of sutrans-
actions. Every subtransaction agemay becomposed of a number of subtransactions and so
on. Subtransactions are the unit of recovery; for instance, they are the unit for an all-or-nothing
type of execution. Consequently theymut force the parent transaction to abothiéyabort.

An aborted child transaction does not leave any marks davbleofits parent transaction; for
instance, it leavethe parent transaction as if it had never existealla’ child transaction

must commit before itparent transaction commits. Commit oftald transaction and durabil-

ity of its results areconditionalsubject to the fate of its superiors. Even @held transaction
commits, aborting of its supers will undo its effectsAll updates of a subtransactibecome
permanenbnly whenthe enclosingtop level transaction commits. These rul® alsovalid in

our approach.

Mossdistinguishes betweenvo types of transactions, non-leaf transactions leatitransac-
tions. Qnly leaftransactions arallowed to perform operations on objewatsile non-leaftrans-
actionsonly serve as a kind of databa®e their inferiors. With this assumption in md con-

currency control for nested transactions has to obey the following rules:

1. Meaning of locking
For a transaction to perform an operation, the transaction must hold the lock correspond-

ing to that operation.

2. Strict two-phase locking
To avoid rollback propagation a transaction has to be strict two-phase; for instance, no

locks can be released until the transaction has either committed or aborted.

3. Exclusion
If a transaction requests a lock, the request can be gramited all holders of coftict-

ing locks (if any) are ancestors of the requesting transaction.

4. Release
When atransaction succeeds its locks are eitheinherited by itsparent transaction or

released in case the transactionoig level. When daransaction abortsll its locks are

-23-

discarded. If any of its superiors hold a lock on the same object, they continue to do so.

5. Uniformity

All transactions follow these rules.

3 Basic concepts and fundamental rules of the tool kit approach

Before we start to discuss our approach some simplifications are to be clarified first:

% The currentversion ofthe tool kit concentrates on locks as theans of concurrency
control.
% Thefollowing discussion focuses on long-duratimansactions. Other transactitypes

(for example, conventional (short) transactions) are not considered.

3.1 Basic concepts of the tool kit approach

A lot of approaches to nested transactions in literature concentrateodudarity, failure
handlingand concurrent execution of subtasgspport of cooperative work anly second-
rate. However, without questiothis feature is a substantial requirement of most non conven-
tional application areas. Orssential objective afur approach is to provide sufcilities. In

this senseour approach is, amongthers, arextension and generalization thie concept of

nested transactions in the direction of a support of cooperative work.

In this section we W explainthe basicterms and concepts olur approach. Moreover, we
will compareour approach with Moss' approach to nested transaction dindnew how we
extended and generalized the rules of Moss' modediar toprovide morefacilities for coop-

erative work.

The first general concepts obir approach are, that we treatransaction (type) as an abstract
data type, that we associate an ownih each long-duration transaction, and that we add a

unique transaction identifier to each long-duration transaction (type). Moreover, for the follow-

-24 -

ing discussion we assume that ebmig-duration transaction is equipped with an object pool
(see below). However, it has to blrified, that this i10t arequirement obur approach but

is simply assumed for reasons of simplicity.

Object pool

Since inour approach a long-duration parent transaction serveskaxl af datdase for its
child transactions we make this explicit&gsociating with each transaction an obpsxl. An
object pool is nothing elsédut a container for theollection ofobjectswhich are associated
with the transaction at gvenpoint of time. Howeverthis does notmean thathe object pool
has to contairach objecphysically. Instead, it may onlpanagdahe objectdentifiersand the

locks imposed on these objects.

The introduction of an object pool points to a substadifédrence between Mosapproach

andour approach(atleast on the conceptulavel). In Mossapproach the unit of transfer bet-

ween transactions is the lock (dggure3.1). If a transactioacquires a lock it gets thight

to performthe corresponding actions on the obj@ctthe database). If transactions want to
perform cofflicting actions on an object these actions have to be tectame after the other

in most approaches to nested transactions. In our approach, if a transaction T acquires a lock it
not only gets the lock but also a copy of the object; for instance, the copy of the calirggpon
object is insertedat leastlogically) into the object pool of T. Thenit of exchangebetween
transactions is the paiopy of the object/lock on the objec{see Figure.2). The reason for

this is twofold:

1. We want to support theoexistence of different g5 of thesame objectfor example,
during a design processifierentlevels within atransactiorhierarchyoften represent dif-
ferent states of a task. A copy of an object higher level ofthe hierarchy usally repre-
sents an older but, as such, "stalsiglte of the objeathile acopy at a loweftevel repre-

sents a younger but still "uncertain” state of the object.

2. In order to support cooperative work our apefohas to permit a controlled concurrent
execution of conflictingactions on different copies tiie same objecfwe will discuss this

topic later). Therefore, it can happen thdfierent copiesexist inthe object pools ofiiffe-

- 25 -

rent transactions. Of course, theliéerent copies need to be merged to a single, demsis

copy at a later time.

In the following, if we usethe term object or lockin connection withour approach) we al-

ways mean the pair copy of objgnoew) lock.

©©o©oomoODatabase OOOOo%@ooDatabase
i) n
T3 o X

I/

TS []\t+1 T5 ¢ . T6 @ T7 @
T10 ™, ﬁg T10(e e T11 T12(e e
O object ® locked object o lock . .
¢+ (successive) acquisition of a - object pool - (sub)transaction
lock on an object at time t O object @ pair copy of object / lock
_— (sub)transaction ——=> checkout path of "object”
Fig. 3.1: Transfer unitlpck) Fig. 3.2: Transfer unit ¢opy of object/ lock

Abstract data type

In ourapproach a transaction type is seen as an abdatatype; for instance, it is character-
ized bythe operationsvhich come with the type. Aaumber ofoperations areommon to all
types; forexample,operations to suspend and continue the transaction, to acquiekase
objects, or to commiit. However, these operatiomsay be implemented idifferent ways
(depending on thenderlyingtransaction type). Other operations ardy specific to some
transaction typesince they come witthe features byvhich atransaction typeliffers from

other transaction types.

- 26 -

Owner

Each transaction is associated with an owner who is nodtgadput a user or a user group.
Only members othe associated user gro(ip the following calledowners of a transaction)
areallowed to perform operations @he transaction. Moreoveeyery transaction T caonly
be active orbehalf ofone owner at a time. The own&ho has control of T can perform any
operation associated with dntil he explicitly suspends the transaction. An owmaay run
several transactions #te same time. This enablésm to work ondifferent subjectsimulta-
neously, and to use transactions alternatividtywever, as an active user U of a transaction
TA, U does nohave access to objects of a transactiBrwhich isnot an ancestor ofATeven

if U is an owner of ¥ (an exception to this rule is @xplicit cooperatiorwhich will be dis-
cussed later on). Fexample, let us considére transactiomierarchy of Figure 3.1. If U cur-
rently works with transaction T10 he is not allowed to acquire obfeckss function as a user
of T10) from anytransaction of the descenddrge of T7even if he is also aowner ofthis
transaction. User groups akowed todynamicallychange; for instance, newembers can be

added to or removed from the user group at any time.

Transaction identifier

Each transaction (type) is assigned a unique transaction (@gogfier bythe system. Addi-
tionally, usersmayestablish a unique transactifigpe) name by which they can uniquely refer

to the transaction (type).

3.2 Fundamental rules of the tool kit approach

In order to beable to exploithe fundamental semantics of advanced database applications the
serializability-basedransaction models need to be replaced by madeish make it possible

to express semantics beyosetializabilty. Moreover,especially incase of a support of coop-
erative work, a transaction manager should be able to carefully deal with human or applications
involvements inorder toensure correctness of tisgstem as a whole. Wittespect to the

locking approach there are several ways to achieve these goals, among them the following:

- 27 -

1. Weaker lock protocols
By the use of weaker lock protocols transactiomay beallowed to exchangdata or to

release data before end-of-transaction (EOT).

2. Weaker lock modes
By providing lock modes which explicitly facilitate a higher degree of concurrent work on
data theconcurrency control componentay be able texploit application-specific se-

mantics.

The second alternativeilivbe discussed in the secti@bout lock modes. lthis section we
will concentrate on alternative 1. Wdlvgtartwith an example which indicates that early

release of data has to be handled with care.

To avoid rollback propagation most approaches to nested transactions require (sub)trans-
actions toact drictly two-phase Alternative 1 wants an application, in certain situations, to

run (sub)transactionshich employ veaker lock protocols, like simple two-phase locking, es-
pecially if the application is able to avoid or drasticalBstrict rollback propagation. However,

an early release aibjects has to be handled wihresince it can violatéhe two-phase prin-

ciple as the following discussion will show.

With respect to thecquisition of objectshe usual proceeding withinested transactions is

that a subtransactionSTan only acquire objects from itancestors. To noéndanger seri-
alizability anobject release igeated moreestrictively. Thecommonly appliedbbject (lock)
release rulerequires P to upwardnheritall its objects (locks) to its parent transacti@hile

the more restrictive object release rule avaidg consistency problentise moreliberal object
acquisition rulenaylead to consistency problems if subtransactions of a nested transaction are
allowed to runother lock protocols than the strict two-phase lock protocstiauld bemen-

tioned that some approaches in literature do not treat this problem adequately).

In the given scenario (see Figure 3.3) several subtransactions of a nested tramedctione
after the other, on th&ame object O. First, transaction a&jures O from T3 in itgrowing
phase (1)modifies O,and releasethe modified object O'.This implies that T5 isiow in its

shrinkingphase. According to the object release rule O musthezited bythe parent trans-

-28 -

action of T5, here T3 (2). Next, transaction

T6 acquies (3) (this results in the depen-
dency T5--> T6) and modifies O', and re-
leaseshe modified object O" (4). Again, T3
inherits O". Fnally, T12 acquresO" from T3
and modifies it (result: O™). Sincerl2 is a
child transaction of T8™ will be upward in-
herited to T5 (6). However, T5 aready in

its shrinking phase and, therefore, no longefock(0) unlock(0) | lock(0) unlock(O)
| /
in a position to acquiranyobject.This situa- [/ growing phase
. L @,’ //@ \ shrinking phase
tion does notonly tompedo theprinciple of P/
. / //
two-phase but it, moreover, vitds theprin- ¥
ciple of strict isolationsince T5 gains an in- T12
: : PP : lock(0”) unlock(O”)
sight into themodifications carriesdut by T6 modify(0”) transaction hierarchy

(which corresponds to the dependency T6 -->
T5 which, of course,conflicts with the de- F19- 3.3:Example scenario

pendency T5 --> T6)).

Stepwise transfer

If we take a closer look d&igure 3.3 it becomes clear that th@oblem only arises because
T12 acquires an object from a superior (different fronpésent transaction) withogbnside-

ring the status of its parent transaction (Which is already in its shrinkinghase). Busince

T5 inheritsall objects from itchild transactions it has to be ensured that such a situation can-
not occur.The problem can be solved in several ways. One solution is to forceclatth
transaction to consider the statusathtransactions in itshain of ancestors up to thisansac-

tion from which itwants to acquire an objectnl if the status oeach of these transactions
permits the acquisition of the object the object can be granted. A more restrictive solution is to
only allow a childtransaction to acquire objects from jitarent transaction. We chose a solu-
tion in betweerwhich combineghe advantages of both approaches. G&eeral principle of

our approach is that a transaction T @ty acquire objects from ifgarent transaction. How-

ever, if T needs an object O from soother ancestor Athis is realized by a stepwise check-

-29-

out of Ofrom the object pool of ¥ via the transactions on the path to T (se&sions of
downward check-outs). If, foexample,T12 wants toacquire an object O frorthe parent
transaction of T3 such a wand is satisfied by a stepwisbeck-out of O from the parent
transaction of T3 to T3 to T5 to T12. @achlevel the concurrency carol scheme othat
level (transaction) i€mployed to safelyransfer O to its destination. Tiset of objectsvhich

is accessible to a transaction is defined by its access view which will be discussed dietaibre

later on.

In a similar way we definéhe stepwiseheck-in of an object O. This means, that we do not
require a transaction T to passoBtoits parent transaction. maytransmit O to somether
superior F if the status (lock protocol) efach transaction on the path t& germits such a
proceeding (mor@recisely, if ® belongs tathe releaseview of T. The releaseview will be

discussed later on).

The installation of the concept of stepwise transfer has the consequence that our approach real-
izesdownwardinheritancewhile most other proposal®alizeupward inheritancgfor exam-

ple, [HaAR087-1+2], [KLMP84], [KoKB85], [Moss81]). Let umssume that a transaction T
wants to acquire an object O from a superiarWith downward inheritance, O is inserted

into the object pool of each transaction on the fatm TS to T when it movesiownward

With upward inheritance the parent transactianheritsthe lock on Oonly after thechild
transaction has committed; for instanaenthe object (lock) movagwards In bothcases

O will be added to every objegibol on the patfirom the database to the deepest transaction
which hasacquired O, with upwarthheritance, however, at a later point of time. Downward
inheritance has eather advantageous feature. It guarantees that the object pool of a parent
transaction containall objects of its descendatnee (though, noinevitably the newest status

of the object) with the exception tiose objectsvhich were newly created by annferior.
Therefore, if a transaction T searches f@pacial object O it cadefinitely beconcludedthat

no inferior of the parent transaction of T possesses O if the parent transactiomatoes
Moreover, if we need to check a lock wely need to consider the ancestbrain up to the

first transaction whose objepbol contains the object. If, here, the objeataslocked in an

incompatible mode the lock request can be granted.

-30 -

Besidesthe stepwise transfer anothiendamentalkconcept of oumpproach is the two-stage

control-sphere.

Two-stage control-sphere

The underlying principle othe two-stage control-sphere U N

is that a parent transactionasly resporsible for the cor-

rect coordinatiorand execution of thevork (task) onits

level. It may definesubtasks andtartchild transactions to /

deal with these swisks. Eaclchild transaction, again, is

by itself resporsible for the correcttoodinationand exe-
cution of its task and, thereforean decideautonomously, |
how this task can be exedad best. In other words, the

characteristics whiclhwvere established onhe level of the

parent transaction amnly valid for its child transactions.

The child transactions, in turnmay estalish a diffeent

environnent for theirchild transactions (see Figue4). Fi9- 3.4: Two-stagecontrol-

The two-stage control-sphegstablisheshe foundation sphere

for the possibility of executing transactions of different types within one transactiorchyerar

4 Characteristics of transaction types

The various characteristieghich make up #&ansaction can bgubdivided intawo parts (see
also [Unla91]): characteristiashich describéheinternal representation of a type and charac-
teristics which describe its behavior. In this section we will concentrate on the second part. The

structure of transaction types will be outlined in section 8.

4.1 Concurrency control scheme

Thetwo stage control-sphere stands for gussbility that each transaction type T can estab-

lish its own concurrency contrgchemedor its object poolThis means, that each T can inde-

-31 -

pendently determine@ccoding to which

rules descendants of T can acquire objects T3 U
from T. Such a free choice of concurrency
| S 2pLP, 2p15!
control scheme is possible sintlkee step-
wise transfer of objects guataes that

each transactiowhich is involved in the [T5 [occ |16 [2PL J T7£ 2pPL }
stepwise transfer needs to uiee concur- / / . X\
rency controlscheme which is requd by occ! occ3

its parent transactionFor example, in
P P occ?

Fi 5 if ion T locks I F
igure 3.5, if transaction T3 wants loc T10 Tﬂ@ -|-12
sy

to be used to synchronize access to if 7N\ JT N
object pool itschild transactionsI5, T6, |—— (sub)transaction

and T7 need to run a lock protocotlity [~ acauisition of object via CC scheme x
OCC ”: optimistic CC scheme x

want to acquire objects fronT3. How- (2PL: two-phase locking [] obiect pool
)) 2PL" : 2PL with predeclaring s/
ever, each of thehild transactions may (op; ST, girict 2PL 2P simple 2PL

employ itsown type of lock protocol, for

example, T5may run two-phasdocking Fig. 3.5: Use ofdifferentconcurrency control

with predeclaring, T6 siple two-phase schemes within a nested transaction
locking, and T7 strict two-phadecking
(for adiscussion of different types of logkotocols see lateor, for example [BeHG87]). On
the otherhand, eaclthild transactiormay run adifferent concurrency contrachemefor its
own object pool.T5, for instance,may run optimistic concurrency control (OCQg. f.
[UnPS86]) with the consequence that the child transactions 0FI% T11, T12have to run
an optmistic concurrency control scheme if thegnw to acquire objects from5. For exam-
ple, if T12 wants taacquire an object O from TiBe stewvise transfer ensures that Ofirst
transferred fronthe object pool of T3 to the object pool of T5 Uming a lock prtmcol and

then from the object pool of T5 to the object pool of T12 by using OCC.

To summaize, each transaction T needs to leigh two concurrency control schemes. The
first schemdaysdown accaoding to which rules T can acquiobjects from itgarent transac-
tion. This scheme must be accordwith the concurrency contr@cheme whichthe parent

transaction runs on its object pool. The secsciteme layslown which concurrency control

-32-

measures are to lapplied to T'sown object pool. Here, T igiven free hand to install any

scheme which is syorted by the tool kit.

In this paper, however, we will only concentrate on lock protocols. Currentlyyupmort

the following (well-known) types of lock protocols:

& two-phase

The two-phasdocking protocol is the mostommonprotocol inconventional database

systems. It defines ansaction to consist ¢#vo phases, a growing phase anfblow-

ing shrinking phase. One cafentify severatypes of growing phases a&ll as shrinking

phases. Each type of growing phase can be combined with each type of shrinking phase.

& growing phase

>

simple
The growing phase starts with tbeginning ofthe transaction and ends as

soon as the first object is released.

predeclaring (preclaiming)
All objectswhich atransaction needs are acquired at lleginning of the
transaction. Wh it the growing phase ends. No further objects can be ac-

quired. Predeclaring prevents deadlock to occur.

extended predeclaring

As before, butadditional objects can bequested as long as no lock was re-
leased bythe transaction (the transactionnist yet in its shrinkingphase). If

the objects ar@ot locked in an incompatible mode thaye granted. Other-

wise, the lock request is rejected (a corresponding message is sent to the trans-

action) but the transaction is not blocked (no waiting for locked objects).

& shrinking phase

>

simple
Objects can be released one by @ing theshrinking phase néurther ob-

jects can be acquired from the parent.

-33-

» strict
All objects are released at once at the end of the transaction. Avstrict

phase locking protocol prevents rollback propagation to occur.

& non two-phase
This protocol allows objects to be acquired and released in arbitvestgr. Nontwo-

phase is especially important if some kind of cooperative work is to be supported.

As already mentioned, wieeat atransaction as an abstract data type. Thereforegdipasi-
tion of an object of the parent is realized bghack-out operationwhile the transfer of an ob-

ject from a child's object pool to the parent's object pool is realizeahgck-in operation

Conceptuallypur approach requires a separate lock manager for each transaction. In practice,
it is undesirable to install multipleck managers, because of excessive performance overhead.
Therefore, wemplemented a mechanism similartte hierarchical transactioraming scheme

(see [KoKB88]) which allows a single lock manager to simulaelockmanagers required by

our approach.

The two-stage control-spherequires that thacquisition of an object from a super{@ther
than the parent) ialized by a stepwisgheck-out. However, whether an objecacsessible
to a transaction depends on the states of the transautiods are affected by a stepwise
check-out. In general, the objeethich areaccessible to a transactiare described by the ac-

cess view of a transaction.

4.2 Object visibility (access view and release view)

An access viewdefinesthe collection of objecta/hich are, in principalaccessible to &rans-
action T. "In principal” means that an object may not be accessible to T at a given fioiet of

due to the fact that it is being locked by another transaction in an incompatible lock mode.

In the context othis paper we associate with the notiorvaw the defaultview provided by
the system. No attention is paid tbe fact thathis viewmay berestricted by access control

mechanisms.

-34 -

Depending on its position e transactiomierarchy each transaction T hasi@gividual ac-
cess view It consists ofll objects of the object pools of tiskain ofancestors up to thigst
object poolwhich ischeck-out blockedexcluding this objecpool) or, if there is none, up to
the public databasdincluding the public database). The object pool of the parent transaction
TP of a transaction A'is check-out blockedif at least one of théollowing two restrictions is

valid:

1. implicit restriction
TA runs a two-phase lock protocol and is already in its shrinking phase; for instange, T

no longer in a position to acquire objects from T

2. explicit restriction
TP explicitly prohibits its inferiors to acquire objects from its objgabl oranyother ob-
ject pool of the ancestarhain of T; for instance, ¥ is allowed toexplicitly install a
check-out blockade with the consequence that the ag@@ss of its inferiorsare re-
stricted. If, nevertheless, child transaction ¥ of TP needs some object O of an object
pool of the ancestor chain of This can only be achieved i Explicitly transfers O to its

own object pool, therefore, making O directly accessibl€to T

The implicit version ofthe accessiew has to be considered poevent consistencyiolations
as they were shown in Figuge3 from occurring. Theexplicit restriction allows a superior to
restrict its subtransactions' effects on objectdirhifing the number of objects accessible to

them (at least for the time the explicit checkout blockade is valid).

The accessiew of atransaction T changeiynamicallyduring thelifetime of T since, at any
point of time, an ancestor of fhay startits shrinking phase oinstallremove a check-out

blockade.

In Figure4.4 theaccess view o1 38 consists of the objects of the object poold88, T26,
T15, T8, T4, T1and the database if neither mdr T1 are irtheir shrinking phaseor an an-
cestor hagstablished an expliatheck-out blockad€T8 cannot be iits shrinking phassince
it runs the strict two-phase lock protoc@b)ease dmnly concetrate onsuch features of Fig-

ure 4.4which are relevant tahis examplepther features il be explainedater on). As soon

-35-

as T4 starts its shrinking phase object pool of T1 and the database are no lcegmsssible
to T38. If T15 insts an explicitcheck-out blockade the accessw of T38 is restricted to
the objects of the object pools of T38 and T26.

If a transaction T acquires an object O from an olpeci of its accessiew, O is(at least
logically) added toall object pools on the pafinom the original object pool of O to TThis
implies thatthe accessiew of T maycontain differentstates of an obje¢since higher object
pools may contain "older" versions of an objec8t usagain consler transaction T38 of Fig-
ure 4.4. If T38 wants tacquire object O from transactidl5, O isalsopart of theobject
pools of T8, Tdand T1 (unless O wagewly created by some descendanff@b). Since, for
example, T8nayhave modified Cbefore it was transferred L5, differentstates of Gexist
within the accessiew of T38. This leads tahe prdlem of a"lost update” if T38cquires O
from the object pool o 4. Therefore, bydefinition, the accessiew of T38 only contains one
instance of Opamelytheinstance othe first ancestor off38 whose object poaontains O.
In our example this ishe instance othe object pool of T15 if @urrentlydoes notbelong to

the object pool of T26.

The notion of accesgew is similar tothe notion ofview setin [ChRa90]. However, theiew
set of a nested transaction in [ChRa9@]efined as always containing eambjectwhich was
acquired by some ancestor adobjects of the database. No attentiopa&l tothe fact that

the view set must decrease in case an ancestor of a given transaction starts its shrinking phase.

Similar tothe notion of accesgew we definethe notion ofrelease view A release view de-
termines the object pool up wehich anobject of agiventransaction T can be released at most
(if no other lock on the object prevents this). Thkease view consists afl object pools of
the ancestochain up tothe first ancestorwhich is check-in blocked (excluding this object
pool) or, if there is none, up to thaublic databas€including the public database). An object
pool of the parent transactior? ®f a transaction fis check-in blocked if at least one of the

following two restrictions is valid:

1. implicit restriction
TB runs a two-phase lock protocd isstill in its growing phase, for instance? & not

allowed to insert objects into the object pool 6f T

-36 -

2. explicit restriction
TB explicitly prohibits theinsertion of objects intéhe object pool of its parent transac-
tion; for instance, ¥ is allowed toexplicitly install a check-irblockade. may install a
check-in blockade to prevent its inferiors from releasing objects to a superior of it. Due to
the nature otheck-in anctcheck-out, a check-out blockade works onléwel it was de-
fined while a check-itlockadeonly becomewalid onthe level ofthe parent transaction
(since, otherwise, ahild transaction wouldhot beable to releasany object atall); for
instance, in caseBlinstalls an explicit check-in blockade a child transactionfoanstill

insert an object into the object pool ¢f But not in the object pool of any superior & T

In Figure 4.4 the object pool of T1 is check-in blocked for T4amdinferior of T4 asong as
T4 is in its growing phase. The object pool of T8heck-in blocked for itsferiors since T8
runs the strict two-phase lock protocol.daneral, an object pool of a transactiowfiich

obeys awo-phase lock protocol is either check-tdcked(if T is in its shrinkingphase) or

check-in blocked (if T is in its growing phase).

A transaction can changey timeits parameter valutr check-in orcheck-out blocked; for

instance, an explicit check-in or check-out blockade can dynamically be established or released.

The implicit version ofcheck-outblocking alwayspropagates fronhmigher levels othe trans-
action hierarchy tdower levels (an accessiew can never increasenly decreasejvhile the
implicit version of check-in blocking alwaysopagates in reverse ordsmce amancestor can
only startits shrinkingphase, never a new growing phadé)is feature makes it possible to
determine, aany point of time, up towhich levelincorrect objectsnay havepropagated at
most; for instance, if aalready released object needs tacbgected it igdefinitely determin-
able up to whichobject poolthis objectmay havepropagated at most (up to thest object

pool which is implicitly check-in blocked (not check-in blocked by an explicit restriction).

4.3 Task

Some approaches to nested transactions regairie on objects to beexclusivelyperformed
in the leaf transactions of the transactitnree. Non-leaf transactionsnly serve as a kind of
database for thethild transactions. However, manyapplications it is desirable that a non-

leaf transactions T can also perform operations on its objects. Of course, in such a case the

-37-

work of T onits objects has to be synchronized wiitte work of T's child transactions on

these objects. In literature, at least two solutions for this problem are proposed:

1. In[KLMP84], [UnSc89-1] the object pool of a transaction T is subdivided into a part
which is only accessible to T (callpdvate databasg and a part which is accessible to
inferiors (called'semi-)public databas¢ When T acquires an object it is, by definition,
copied into the private object pool. Objects can be made accessible to inferigo-by ex

citly moving them from the private to the semi-public object pool (see Figure 4.1).

2. Harder and Rothermeropose a concepthich is based on a releasing (weakening) of
lock modes for descendants (they catlatvngrading a lock) ([HAR087-1]). A transac-
tion T, holding a lock in mode M, catowngrade the lock to a mode M'. By this, de-
scendants arallowed to access the objects in a madech is compatible td'. Trans-
actionswhich donot belong tothe descendaritee of Tstill see the more restrictive lock
mode M. Downgrading of locks makes it possitde T to putobjects at the disposal of
its descendartteewhile still protecting them from incompatibéecess byther transac-

tions (see Figure 4.2).

Although these approachekearly indicate aolution to theproblem we decided to do it in a
way which makes it possible to soltlee problem by means afonceptsalready introduced
(instead of integrating new concepts). #eeady mentionedyur approachrelies onthe con-
cept of abstract data type. Therefore, a transaction tyjedired by its behavior. Witrespect

to access operations we strictigparate betwedwo groups of operations. Checkout/-in real-
ize the (only) connection to superiosnce they allow &ransaction T t@cquire objects from

or to release objects ta superior. If T wants to manipulate objects it has to use operations
like read, modify, delete, insert. Since Tordy allowed to manipulatebjects of itsown object
pool these operations apaly defined onT's object pool. lrour terminologythe termservice
transaction denotes a transactiamhich only serves as a database foradtsld transactions.

Therefore, it only provides the checkout/-in operations.

Operational transactions allow their users to furthermooperateon the objects of their ob-
ject pools. Therefore, theadditionally providethe set of operations for objettanipulations.

However, the tool kit doesot realize thes@perations on thkevel ofthe operational transac-

-38 -

tion T itself. Insead, theyare associated with gpecial, implicitsubtransaction T' of T (see
Figure 4.3). Since T'is treated as a child transaction of T operational integrity is ensured by the
usual mechanisrtconcurrency controhlgorithm ofT). If T runs a lock protocol, T', by de-
fault, obeysthe non two-phase lock protocol. Therefore, a loak be acquired or released

any time. In case of a service transaction the implicit subtransaction is simply not installed.

private data- semi-public i pool i
base database object | object pool
\ObiGCtpOO’/ e oo ® 00 ‘T } ooo oooi‘T
o o o> <O [ele] 7‘ T ’
Tl
1 n
cT! cT"

e "downgraded’ lock mode o objects
> objects o usual lock mode CT: child transaction

CT: child transaction T’: implicit subtransaction

CT: child transaction

Fig. 4.1: Private'semi-public Fig. 4.2: Downgrading of Fig. 4.3: Implicit subtrans-

datdase locks action T'
Whenever auser of an operational transaction T wantslir@ctly apply anoperation to an
object of the object pool of T this request is directed to T' (of course, transparent to the user or
the application). T', per default,ilivtry to locked the requested objects and perform the ma-
nipulations. Afterwardsthe objects are releasedmediately. This, otourse,givesthe user

the perfect illusion that he directly performs his operations on the object pool of T.

4.4 Concurrent execution of (child) transactions

The decomposition of a unit @fork (complextask) into subtasks and tipessibility to exe-
cute subtasks as subtransactigt®ngly suggest to execute (sub)transactions concurrently
whenever possible. Wittespect to a parent transaction anctht#d transactionswo kinds of
intra-transactiorparallelismcan be identified, parent/chiloarallelismand sibling parallelism.
With parent/child parallelism a parent transaction is allowed to runparallel to itschild

transactionsvhile in case ofsibling parallelism siblingsire allowed to run concurrently. The

-39 -

combination of thesbothkinds of parallelism leads tour levels ofintra-transaction arallel-

ism (see also [HaRo087-1]):

1. nointra-transaction parallelism at all
If neither parent/chilgparallelismnor sibling parallelism isallowed then, atny time, at
most one transaction can be active. This corresporstsitd computatios similar to the

ones that are achieved by procedure calls.

2. only sibling parallelism
Such a situation igiven if the parent transaction issarvice transaction, therefooaly

provides its child transactions with data.

3. only parent/child parallelism
This combinatiordoes notmake much sensand, therefore, ignlikely to occur in prac-

tice.

4. unrestricted intra-transaction parallelism
This combination providethe highest degree of concurrewbrk since it permits arbi-
trary intra-transactioparallelism. It means th#tie parent transaction all as(at least

some) child transactions are operational transactions.

While combinations 2 to 4 can be modelled witthie current framework ajur toolkit com-
bination 1cannot. However, it represents an importgpecialcase. If both parent/child paral-
lelism andsibling parallelismare prohibited no concurrency control measures need to be estab-
lished onthe level ofthe object pool of the parent transact{simce no concurrency [®0ssi-

ble). This, ofcourse frees transaction processing from some burden and makeglit more
efficient. To be able to exploit this increaseefficiency, weadded a new characteristitich
laysdown whether a transaction prohibeisy kind ofintra-transactiorparallelism. Again, this
characteristic i®nly valid onthe level of the parent transaction and dkild transactions. A

child transaction may stipulate that its child transactions can execute concurrently.

- 40 -

4.5 Explicit cooperation (collaboration)

Our approach supports the possibility of explicitly installindjract cooperation between two
or more transactions from different branchestref transaction tree. Morgpecifically, we
want to support a controlle@énding, transfer, or exchange of objectsdifect cooperation
canonly bepermitted if some conditions afelfilled. Let usassume thatA and B are two
transactionsvhich want to cooperatdirectly. Let TR be that transaction of the transaction hi-
erarchy whictconstitutes theoot ofthe smallest subtraghich comprises T as well as . A
cooperation betweem*Tand B can only be established if the paths fromtd TR and from P

to TR are neither check-ourtor check-in blocked. This means tHadth transactions,Tand
TB, areallowed to stepwise check-in objectstle object pool of ¥ and, moreover, to step-
wise check-out objectfrom the object pool of ¥ to their own object pools (for instance, the
object pool of Ris part of the access and release views*aslwell as ¥). This situation can
only occur ifall transactions on the patfrem T8 to TR and T to T8 (TR excluded)support
the non two-phase lock protocol. Only in case of a transfer of objecexdople, from F to
TB, can this requirement minished to the requirement that the pmtm TA to TR is not
check-in blocked anthe pathfrom TR to TB is not check-oublocked. As long as eoopera-
tion exists none ofhe involved transactions is allowed to establisicl@eck-out orcheck-in

blockade.

For example, in Figuré.4 a cooperationan be installed betwedi89 andT42 since alltrans-
actions on the paths from89 to T17and fromT17 to T42 run the non two-phase |qzioto-
col. On the othehand, a generalooperation betweeany ofthe descendants of T8 and T9
cannot banstalled since T8 as well as TAn a (different type ofjwo-phase lock protocol.
However,since T9 is always in its shrinking phase (sinceuits the simple two-phase lock
protocolwith predeclaringwhile T8 is always ints growing phase (since it rurise strict
two-phase lock protocol) a transfer of objects,dwample, fromr42 to T38 ispossible(all
other transactions on the path from T42 to T4 famth T4 toT38 run the non two-phaseck

protocol).

- 41 -

4.6 Serializability revisited

The common criterion forcorrect synchronization of flat transactions is serafiility. In
nested transactions at least the transactions along an aretestomayshare some objects.
This, of course, raises the question whether the criterisar@izabilitycan also be applied to
nested transactions. For tf@lowing discussion we W assume, that each (sub)transaction
obeysthe ACID principle. However, to be honest, it shouldclzeified here that the tool kit,

in order to support cooperative wogkpovides weaker lock protocofske non-two phase) as
well as weaker lock modes (see later). Therefore follewing discussion is only applicable to
our tool kit if the respectiveapplication-specific transaction managkres notexploit these

weaker features of the tool kit.

Let us startwith a relatively simplescenario.Given aparent transaction PTof type service
transaction and a bunch offild transactions ¥ to TS (nested transaction of dep2). This
situation corresponds to a conventional datagstems where a number of transactiorf (T
to T¢) work on acommon database)T (remember thathe feature of stepwise transfer re-
quires each transaction tmly acquire objects from or to release objects teatsent transac-
tion). Since Fi to TC obey the ACIDprinciple their execution iserializablefor instancethey
appear on théevel of T° as isolated, atomic actionSor example, ifall transactions run the
strict two-phase lock protoctheyareserializable at least in comnatder. Now that wéave
defined a serializationrder for thechild transaction we have to insert into this schedule.
Since F is a service transaction it hast accesse@ny object (neither reafin the sense¢hat
some information was releasedtte outside world) nomodified anydata). Therefore, it is
legal to place T at the end of theerial schedule gained so far. This resulth&following le-

gal serial schedule:

S [(TC, ..., TO)TA] (if TC to TS is the commit order of the child transactions).

Moreover,since F shielded itschild transactions fronany other transaction, therefore, guar-
anteeing that nother transaction waable to accesany ofthe objects used by ithild trans-
actions in an incompatible way it can be assumaithout restrictinggenerality, that n@ther
transaction T must be placed somewheitiin the transactions of,3n order toensure seri-

alizability (or,the othemway round: if thereexists a serial schedule in which T is placed some-

-42 -

wherewithin S, then there also existsserial schedule in which T is either pladsefore or
after §). This, of course,means that we can simply replate schedule Sby T°. This, in
turn, means that we can reduce our problem to find a serial schedule for a nested transaction to
the problem of stepwis&entifying the serial scheduldéor a parent transaction aradl of its

child transactions. Or, more specifically, the following algorithm works perfectly:

Start at the level of the top-level transactidh. TTompute theerial schedule spanned by
TTL's child transactions and add-Tat the end of this schedule (as explained above). Now
(recursively)takeeach of thechild transactions and consider themtlastop ofthe next
(two-stage) nested transactid®esume until each innapnde of the nested transaction is
expanded in thevay describedAll in all this corresponds to a (breadth first or depth

first) expansion of the top-level transaction.

Of course, it is alspossible to derivéhe serial schedule inpposite direction (bottom-up in-

stead of top-down).

Now let us consider the mogeneral case, thalhe parent transaction can be an operational
transactionWhile the child transactions represent transactions ondtel on whichthey are
performed theyorrespond to actions on thevel of their parent transactionPTfor instance,

TP is allowed to read amodify any ofits objectsany time(before an actiochild transaction)
was performed asell asafterwards). What does thatean? Orthe level of the child transac-
tions we areable to identify a serial schedulas was demonstrated above). However, on the
level of TP we cannot simply expand this schedule by addihgtThe end othis schedule. In
reality the set of actionw/hich were performed bghild transactions enriched Iblge set of ac-
tions which were not executed by child transactions altogether consfifute hstance, Tis
represented by this extendselt and, therefore, cannot placed somewhere withithe serial
schedule othe child transactions. However, the argumentation of dinepler case above is
still valid. TP is an isolated unit whicborresponds to an action on tlegel ofits parent trans-
action. Therefore, we caidentify for eachinner transaction aserial scheduldor its child
transactions. But the next level is a higlesel of abstraction and cannot be described in terms
of the lowerlevels.Or, in other words, wean describe for eadivel of anested transaction
the serial schedule(s) of thisvel but we cannotdentify one global schedule. Thidoes not

mean that anested transaction isot serializable. It just means that edekel of the nested

-43 -

transactions represents an oleuel of abstraction. Therefore, it is, in generahpossible to

identify a view which comprises all levels of abstraction.

4.7 Recovery

To exploit the advantages of nested transactions, recovery has to be refined and adjusted to the
demands othe control structure of nested transons. Moreover, it must be adapted to the
requirements ofhe variousapplicdions. In application concurren@pntrol semantic informa-

tion about the objectand their operations is used designing specific concurren@pntrol
measures to enhance concurrency witbiojects. Application-specific recovery can be de-
signed alonghe same lines t@xploit thesemantics othe application inorder tominimize the

effects of transaction failures. Application-specific recovegy reduce the cost akcovery,

for example, by tolerating partial failures or by supportingamby backward recovery buatiso

forward recovery(c. f., [ChRa90], [ReWa91]). In thevent offailure of transaction compo-

nents, the failed portions can be isolated, allovtfregrest of the transaction to procekdiled
portions of transaction can be retried, compensated by attempting another alternatves, or
ignored (as is indicated in Figure 2.5). Nested transactions natup|hprt user-controlled in-
transaction checkpointingincethe boundaries athild transactionsnay act as restart points.

Even morédflexibility for partial rollback of in-progress transaction can be gaineeplycitly
establishing savepoin{fGMBL81], [KSUW85]). Savepointallow the transaction talecide

which restart point is the beshoice in a giversituation. Howeveregspecially onlindransac-

tion processing requires a more sophisticated interpretation of savepoints. Users often do not
want the complete amount of "newbrk to berolled back to an earlier point tie but only
"useless", "faulty”, or "unpleasanpbrtions.Especially, theyoften want their actual working
environment to be left intact if some of th&mwork is to berolled back.For example, let us
consider a travgblanning activity Let usassume that we already did a reservatoyra flight

and a hotel and just have loadi@ informationabout car rentatompanies. It happernbat

one of the car rental companies offers a special discount in case a a@dneinsused.Unfor-
tunately, webooked the wrong one and now wantod backthe reservation. Ithis case we

just want the reservation for tifieght to be rolledback butnot thereservation of the hotel or

the loading of the information about the car rental companies. Of course, in this simple case the

rollback can esily be done by a compensating action. However, in noa@plex situations

- 44 -

compensatiomay be aad idea because ittiso complicated, foexample, iftoo many com-

pensating actions have to be performed till the desired state is recovered.

Another problem is, thahe system has to clearly advidee user about the state tw$ appli-
cation after a rollback was performed so ttieg user ieexactly informed which of hisvork

was undone. For example, if the user is editing a document he ndeasvwhich of his cor-
rections were undondhis requireghe recovery component, amoathers, to beble to sup-

port the notion of context and context description.

As a supply to traditional recovery techniques (like beforeadis images([Gray79])) com-
pensating transactiorwill) play a majorrole in thefield of advanced transaction models. The
intention of semantics-based concurrency control isajgture moreapplication-specific se-
mantics. Compensating (trans)actiomsre designed alonipe same lines. Thegre aflexible
and powerful means to expldite semantics othe application inorder tominimize the effects

of transaction failures. They especially relax the all-or-nothing principle giragompensation
of an action must not necessarily result in an unddl af the action's effects but may result in
an application or even situation-specific repair actionjnstance, a compensating transaction
undoes, according to tleemantic®f theapplication theeffects ofthe transaction it compen-
sates for. Quite gew advanced transaction models alreagly on thistechnique, likeSagas
([GaSa87]),ConTracts([WaRe91]),multi-levelandopen nested transactiorifNeSc91]), or

a bunch of transaction modef®or multidatabase systems, likElexible transactions
([ELLR90]), Polytransactiong[RuSh91]) orS-transactiong[VeEI91]).

Without doubt,compensating (trans)actions are a poweffexkible, and indispensableecov-
ery concept and, thereforbave to be integrated our toolkit, too. Since they allowfor ex-
ample, childtransactions to commit argkenerally release thelocks on data (no upward in-
heritance of locksjlatacan be released much earliertie public than by theusualprocedure
applied withinnested transactiongspecially, compensatirigansactions seem to baranda-
tory feature for theelaxation of the nesteftierarchical) transaction model to more general
models. On thetherhand, compensating transactions introduce adisgnsion of complex-
ity. Especially, their inherent complex ahdrd toidentify influence onother recovery tech-

niques (than compensation), concurrenogtrol measures, and transaction processing control

- 45 -

substantially impede amooth integration of this technique into a more generata@ment
like the tool Kit.

Since in our projeatvork onrecovery aspects &ill underway we have to reféheinterested

reader to forthcoming results [MeUn9x].

4.8 Example of a heterogeneously structured transaction tree

Figure 4.4 gives asimplified example of aheter@eneouslystructured transaction tree
(especially, we focus otwo characteristics of transaction types ontgmely coourrency
control scheme andask). It isassumed that each transaction provifidisintra transaction
parallelism(see section 4.49nd that each transaction runs a Ipc&tocol onits object pool

(no OCC or other concurrency control scheme is considered in this example).

As was explained in section 4.1 each children transaction can install its own type fatmsk
col which regulates access to the data of the object podkdather transaction (omice
versa, the father transaction can restrictli#d transactions to use a predefined type of lock

protocol (or to use a lock protocol from a predefigetbf lock protocols)).

In the example,the higher levels ofthe transactiorhierarchy employstricter types of lock
protocols(since they ruriwo-phase lock protocolsyhile onlower levelstransactions partly
join together to constitute a cooperativerimnment (since theyun the non two-phase lock
protocol as, foexample, T17, T28, T30, T39, T40andT41). This allowsthe installation of

each kind of working environment.

For example, let us assume that the task of T1 is the design of a new vatatjenThistask

is subdivided intadhe design ofthe infrastructurgT3) and thedesign ofthe buildings (T4).

The task of T4can be further subdivided intbe design ofthe administration building¢T8)

and thedesign ofthe vacatiorbuildings(T9). Now let us assume, that thask of T17 is to
design different types of (vacation) lodges and a central ir@onmingpool. Thedesign of

the indoor swimming pool is a relatively isolated task. Therefore it is delegated to a transaction
which is strongly isolated from its environmgii29). Thedesign ofthe different shapes of
lodges needs much communication and exchandatatind is, therefore, performeudthin a

cooperative environment (T17, T28, T30, ...).

- 46 -

In the Figure, the boxes indite different tasks Especially on higher levetransactions (for
example, T1, T3) often only serve as service transactibiis the leaftransactions, of course,

are always of type operational.

Database

/\}{\
%’ s

T2

T
S)

10| T (T12 ?J \T15\ \T16\ [T17
T18| (T19) T20 \T2@4 T24 25\ \T26\ \T27\ \T28\ \T29\
|

¥

4;

V y
T31[T32 133 rr34HT35\ \T36HT37\ T38 [T39[T40 [T41T42

The arcs represent different types of lock protocols:

two-phase with extended two-phase with simple
predeclaring (1) predeclaring (2)
l strict two-phase (3) @ non two-phase (4)

The boxes indicate different tasks:

D service transaction E operational transaction

- 47 -

Fig. 4.4: Heterogeneouslgtructured traretion hierarchy

5 Lock modes

5.1 Motivation of our approach

The data radeling facilities ofmost non-standard databasestems allovthe programmer to
define complex objects and a rich set of operations on those ol§jgexts.these operations are
typically on a semantically higher levwlanreadsandwrites concurrency contrainechanisms
are needed which allow the programmer to exploiirtherent (application-specific) semantics
of such operations. A common approachttie integration ofpplication-specific semantics
into concurrency control ig/pe-specific or semantics-based concurrecagtrol (c. f., [Ba-
Ra90], [BaKa9l], [ChRR91], [HeWe88], [SkZd89], [SpSc84], [Weih88])is kind of con-
currency controhims atdatabases modelled in terms of objeftisjnstance, objects ateea-
ted agnstances of abstradata types. An abstract data type is characterized by a setof
fied operationswhich describeghe only way in which auser is allowed to access amanipu-
late theinstances of that type. Since these operatawestreated as part of tidatabase their
semaitics can be exploited to achiegesater concurrency or fgermit non-serializable behav-
ior in specificenvirorments. With semantics-based concurreoogtrol transactions caonly
invoke operationsvhich are explicitly defined onthe objects. Therefore, controlling the con-
current execution of the transactiangolvesthe control of execution of the operations invo-
ked on the objects. Wheth&vo operations, invoked bgifferent transactions, can be allowed
to execute concurrently depends oneffect of one operation oine otherand theeffect of
the operations on the object [ChRR91his stands irtontrast to conventional database sys-
tems. Theydefineread and write operations as tlegel of abstraction atvhich application
programs can interact with the database. As a consequence, $ditalireeory hagproduced
algorithms thatre cast in terms of thr@emantics of reading and writiiskZd89]). In other
words, whatever theemantics of operations of application programs on objects iathens
far as concurrency control is concerned, mapped on a corbasignamelyread and write
accesses to the databasemoregenerally, orthe set of lock modes provided by the concur-

rencycontrol. Of coursethis mapping entails that sometb& sematics of operationgnay be

-48 -

lost. A common example is a bank account. If two concurrent transactions each add an amount
to thesameaccountthis can be done in an inkeaved way sincéhese operations abemmu-
tative. Nevertheless, the conventional locking schefthenat permit such an interleavirgince
it decides compatibility othe level of datdbase operations ambt on thelevel of application

operations and a write operation conflicts with another write operation on the same object.

Semantics-based concurrency controbr type-specific concurrency controltakesadvan-
tage of the operatiorsemantics, which means that concurrencytrobrnis performed on the
level of applicationoperations.Since application operatioreze typically on a semardally
higher level than reading and writing semantics-based concurrency @dotngthe definition

of new weaker notions of conflicts among operatinaspossible withthe informationavail-
able onlyabout object@and their typesFor instance, operations invoked hyo transactions
can be interleaved as if they commutedhd semantics othe application allowghe depend-
encies betweethe transactions to be ignored. The incorporatiogeokeral or state-dependent
commutativity inthe conflict definitionbetween operations is an obvious solution. A more so-
phisticated approach is to substitaanmutativity bythe moregeneralconcept of comatibil-

ity ([Garc83], [Skzd89]) Compatibility allowstwo operations to be treated esmpatible if
their executiororder isinsignificant fromthe application's point ofiew (even if theyare not
commutative). Clearly, semantics-based concurreoncyrol will, in generalnot guarantee se-
rializability. However, it nevertheless preserves consistency. Atgliasice this seems to be an

attractive means for increasing the performance in a complex information system.

Note, however, that the applicability of commutativity and compatibility depentseovay in
which concurrencgontrol measures wemnplemented. Itwo update operations asdlowed

to run concurrently (or, as a weaker and nreadistic criterion, inconcurrent transactions) it
has to be guaranteed thithe modificationsare performed on theame physicalnot logical)
piece ofdata. Forexample, assum@gvo transactions running concurrently in a publication en-
vironment. One transaction applies a spelling checker to a docwhémanother transactions
inserts a new, bulready checkedhapter into thsamedocumentCompatibility allowsboth
actions to be executed concurrently in different transactidosever, if each transaction

worksinternally on acopy of the document (faxzxamplecreated by a checkout operation) a

- 49 -

lost update il inevitably take place although, on a more abstréestel, both operations are

compatible.

Let usassume that semantics-based concurrenayrol can, in the averagmcrease concur-
rency. However, there are some drawbacks associatedhwgitpproach. The most important

is that it eliminates theeommon and neutral basis of conventional concurrecmytrol
schemes. If, for instance, a new operation is to be irtestyndnich displays altransactions on

an account which took place in a given period of time, this operation cannot just be mapped on
the read operation of the database. Instead, all other operations on tAedypetneed to be
considered to decide whkind of concurrencycontrol measures are to beplementedsee
Figure5.1). In other wordsgonventional concurrency control provides a common and static
basis (a nutoer of lock modes) owhich each operation of an application need to be mapped

(see Figure 5.2).

In semantics-based concurrency control such a common basis is no longer existent. Instead, the

compatibility of operations has to be defined on a sewalythigher levelnamely orthelevel

set of operations

o

inser
new
operation
set of
lock modes
. — mappingd: operation -->
correlation between mapping
old and new operation lock mode
Fig. 5.1: Semantics-basedoncurrency Fig. 5.2: Traditional Concurrency Con-

Control trol

-50 -

of the operations. This level is neither static (it may increase or decreasetdeasertion or
deletion of new operations) nor is its semantics directly visitlee@ragrammer. Istead, it is
hidden inthe implementation of the operations of tiieentype. Therefore, an insertion of a
new operation idighly sophisticated anérror-prone. An operation like HPOSIT of trans-
action T; will not conflict with aWITHDRAW operation of a concurrent transaction & long
as both operations are tely operations of Tand T,.. But, if T, also wants to perform a
WITHDRAW operation this operatiomay berejectedsince itmayviolate a constraint (for ex-
ample,the balance mushot benegative) whichwould not have been violated hatle WTH-
DRAW operation of T not been permitted to execute the meantime. The ifficulty here
comes fronthe fact that more than one operation is performigitin one transaction (instead
of treating an operation as aquivalent to a transaction)ithout any doubt,semantics-based
concurrency control igseful, however, it is hard to design anghlement.For thetime being,
semantics-based concurrency contrizly be applicable ispecial environmentdyut it is not

sufficiently understood to be applied as a general approach to concurrency control.

The tool kit approach for concurrency control provides another solution fondusion of
application-specific semantics into concurrenontrol (see also [Unla90]). It provides a num-
ber of elementary concepts from which the relevant can be choseutaiodiether tgroperly
meet thedemands of an application-specific concurreaoptrol mechanism. Fdhis reason
the tool kit provides aich set ofbasic lock modes ahe common basis o#éll operations.
These lock modes aret only finer grainedout they can alsondividually beadapted to the
requirements ofhe operations. Wkave in common witthe concept ofematics-based con-
currency control that wehink of an application layer as a layer which leangh@nconcept of
abstract data type. Therefore, werdi want the user texplicitly handlelocks. Instead, we
assume thathe handling oflocks is hidden withinthe implementation ofthe operations.

Moreover, operations on objects of the database can only be performed within transactions.

Barghouti and Kaiser ([BaKa91gjive a nice and comprehensive overviewvofk onconcur-

rency control in advanced database applications.

-51 -

5.2 Transaction related locks

Conventional database systems provige lock modesnamelythe exclusive or X- and the
shared or S- lock mode (hierarchical locksraweconsidered herepince transactions in these
environmentsare usually short-lived, thewo modes aresufficient. Advanced databasgpli-
cations, however, behavempletely different. Transactiorege typically interactive and of
long-durationwhich means thatbjects need to be locked forsabstantially longeperiod of
time. Therefore, it iessential that a lock mode fits as exactly as possibteetmperations

which will be executed on the object.

Example 5.1:

Let usconsider a CASE environment in which a numbesaitware engineensork on
the development of some software package. fifiewing situationsmay occur. A pro-
grammer wants to implement a module frarmich heknows that asimilar one was al-
ready implemented some tinago. He wants to ugéis module as a modédiloreover,
he needs the currentiialid specification ofinother modulsince hewvants to use it in his
program. In both cases the objéeis to beead, howeverwith different semantics. In
thefirst case it is of minor relevander the programmer whether theodule is currently
being modified by a&oncurrent transaction. In the second case, however, theeedd

to be a consistent read.

Another situatiormay be agroup of prgrammers thaivork cooperatively on the iple-

mentation of a program. Here it is ratltsirable that a programmertbe group is al-
lowed to read each of temmmonlyused modules even if this modulestsl under de-
velopment. On thetherhand, people who deot belong tothe groupshouldnot be in a

position to read modules which are still under development.

As the above example clearly indicatepraper locktechnique needs to consider the intention
(semantics) of an operation as well as the environment in which the operation is supposed to be
executed. In the next sections wdl wdiscuss in whatvay our approach can consider the vari-
ousdemands of different applicatiareas. The first sectionslconcentrate on lockshich

can be linked temporarily taransactions (as in theonventional case) These lockdl we

calledtransaction related locks in thefollowing. First, we will identify a set ofuseful lock

-52 -

modes. Thereatfter, itilvbe shown how these lock modes can be provided pritipereffects

on concurrent transactions.

However, the tool kit doesot only provide lockswhich can be linked temporarily toansac-
tions but also locksvhich can be temporarilpound to subjects (applications, user)léch
subject relatedlocks) or permanently to objects (callethject related locks). The necessity

of these concepts will be motivated later.

5.2.1 Basic lock modes of the tool kit approach

In this section we W introduce an extended setlmdsic lock modewhich can beegarded as
inevitable in the context of most non-standard applications. We assunupdad¢s are not di-

rectly performed on the data of the database but that some form of shadowing is realized.

Of course, the sharg®-) and exclusivéX-) lock will remain usefulfor all kinds of datdbase

applications.

shared lock (S-lock): only permits reading of the object

exclusive lock (X-lock): permits reading, modification, and deletion of the object.

Sometimes an application or user is just interestédeexistence of an objetiut not in its
concreterealizdion. Forexample, if a programmer wants to integrate an alreagying pro-
cedure intohis' software package hmay only beinterested in thexistence othe procedure
but not inits actual implementatiorTherefore, fronthe user's point ofiew it is irrelevant
whether the procedureililbe modified concurrentlyfat least as long as thodification stays
within some linits (for example, no modification dhe interface ofthe procedure)). Such a
demand can be satisfied if a lock mode is providkith permitghe modification of an object

but not its deletion. This leads to an update lock (U-lock):

update lock (U-lock): permits reading and mdiiation of the object.

Another often mentioned requirement is a dirty read éseenple2.1) or browsevhich allows

the user to read an object irrespective of any lock currently granted for that object:

browse lock (B-lock): permits browsing of the object (dirty read)

-53-

Especially design applicatiomdten want tchandle severadtates of an objeatstead of one; i.

e., insuch environments an object is represented by its version graph. In [KSUW85] it was
shown that theonventionalS-/X-lock scheme isiot sufficient in such arenvironment since

the derivation of a new versi@orresponds nainly to aninsert operation (of the newersion

of the object) but also to an update operation {&rsion graph othe object ismodified).

Thus, it is desirale to enable &ransaction to excludethersfrom simultaneously deriving a
new version from a given versianother transactionsay onlyreadv. Therefore, wenclude

a further lock mode:

derivation lock (D-lock): permits reading of the object and the derivation of a version

of the object.

Although this extendedet of lock modeslearly allowsthe applications designer to dape
more semantics it istill on arather coarsdevel. Especiallycooperative environments can

hardly be supported. The next section presents a more flexible and convenient solution.

5.2.2 The two effects of a lock

Since lock protocolsrely on conflict avoidance they
: . - competitors
regulate access to data irreatively rigid way. As a
matter of principle, atransaction, first ofall, has no
rights atall on data of the datase Such privileges can
only beacquiredvia an explicitrequest for andssign-
ment of locks. Inthe remairder, we vill distinguish

between arowner of a lock (owner for short)and a

: . restri|ctions
competitor for a lock (competitor for short). An (external | effect)
owner already possesses some lock on an object C‘ rights
whereas a competitor is each concurrent transaction, i (internal

effect) °Plect

particular each transaction that competes for a lock @wner
O.

Fig. 5.3: Two effects of a lock

If we analyzethe semantics of a lock, it becometgar mode

-54 -

that a lock on an object O has always two effects (see Figure 5.3):

1. it allows the owner to perform certain operations on O and

2. it restricts competitors in their possibilities to work on O.

This decomposition ofhe semantics of a lock makes it possibledifierertiate between the
rights whichare assigned tahe owner of a lock and the restrictiowkich are imposed on
competitors. From now on, No. 1. will be called thgernal effect of a lock request while No.

2. will be called theexternal effect

Example 5.2:

An X-lock hasthe internal effect in that it allowthe owner to readnodify, and delete
the locked object. The externaffect ensures that competitors cannot ek object in

whatever mode.

An S-lock haghe same internal and external effect since it alltivesowner(internal ef-

fect) as well as competitors (external effect) to just read the object.

This distinction betweethe internal andhe externakffect of a lock makes it possible to es-
tablishthe rights of an owner withoimultaneously and automatically stipulatifg limita-
tions imposed on concurrent applications. We gain the freedom to determine thal ettect

of a lock individually.

The lock modesvhich were discussed in the previous section come witliolleving internal

effects:

exclusive lock (X-lock) permits reading, derivation of a new version, modification, and

deldion of the object.

update lock (U-lock) permits reading, derivation of a new version, and modification of

the object (not its deletion).

-55-

derivation lock (D-lock): permits reading and derivation of a new versionth® object
(not its deletion or modification). This lock modeoidy useful if

the data model supports a version memn.

shared lock (S-lock) permits reading of the object (neither its deletiomadification

nor the derivation of a new version).

browse lock (B-lock) permits reading of the object ind&rty mode (neithethe consis-
tent readingmodification, or deletion of the objecior the deri-

vation of a new version).

The examination afhe externaéffect leaves some leewéy further discussion. Cerentional
database systems enfotbe operationaintegrity to be entirely ensured liye dathase man-
agement system. To be ablestgpport theneeds of advanced databaggplicdions, however,
it is inevitable to weaken this rigid view; i.e., to transmit some responsibility faoitect and
consistent processing datafrom the databassystem tahe applicationEspecially, in design
envirorments users want twwork on data in a wawhich does notautomatically guarantee se-
rializability (cooperative work). But, of course, tdatabase system has to ensure tost
current work on dataan preserve consistency as longhasapplicationstake care otheir
part inconsistencycontrol. Inthis sense, anpdate and a read operation on $iaene object
may be corpatible as long athe reader is aware of the concurrent updatesiniultaneous
modification ofthe same object by different transactionsissially prdnibited, atleast as long
as the data ieandled bythe system as an atomic unidlowever, if concurrenapplication are
capable of merginghe different states of an object before it is checked in on the Inigkier

level, concurrent updates can also be permitted.

-56 -

In order to beable to precisely describel@ck mode in the

_ o o external effect
remainder it is necessary to spedihe internal effect as
B S/ DU X
well asthe external effect. Therefor¥/Y denotes dock i PSR
which combineshe internal effect X withthe external ef- |} AEININEEE
fect Y. AIIINEEE
%{? ul® o dds
X |&
A general mechanisnfior the definition of lock modes RARAR AL,
should make it possible tadividually combine a given in- |& permitted
ternal effect with eactmeaningful'external effect. Table |® possible
5.1 lays down which internal effect can be combined with |$ prohibited
which external effect. A (%) indicates thathe given in- ¢ should be used with cae

ternal effect can always (never) be combined With cor- o _
Tab. 5.1: Compatibility matrix

responding external effect. ® signifies thatthe permis- _
internal/external ef-

sion of such a combination dependstio& needs andbili-

ties of theapplicdion. If the application is able t@ccept fects

some responsibilitjor the consistent procgiag ofdata a© may bereplaced by & (for ex-

ample, incooperative environments). However, the sequence infa rowmust be continu-
ous; for example, if an S/U lock is perteit this implies that ars/D is permitted too. A cor-

responds to &, butindicaes thathis combination should be used withAresince arnuncon-

trolled use Wi inevitably lead to inconsisterdata.Sincethe rows for X and B daot contain

a®, these internal effects can only be combined with one external @fféotm the X/B- and

B/X-lock).

5.2.3 The semantics of the lock modes

Sincetheinternal effectB does noimpose any rgtrictions on comgéors, it is not aock in
the literal sense of the word. It neither requires an entry in the locknabketesivhether the
object is locked. Since we assume that tgslare nodirectly performed orthe original ob-
ject (but on a copy), a B-lock guarantees thatstage of the object to be read is eitbtlf

valid orwasvalid atsome period in the pastglidity interva). However, if an application ac-

-57 -

quires several B-locks fatifferent objects there is no guarantee thatvlelity intervals of

these objects do overlap.

Note, however, that theninimal demand on evergperation on data is that the pure read or

write process is realized as an atomic unit (short lock on page level).

As an external effect, th&-lock is the strongest choice, since it does not allow any concurrent
applicdion to access the locked object in any form. However, the B-lock still allows concur-

rent applications to browse the object. By that, applications can be supported, which require
objects to be generally "browsable" (dirty read), regardless of whether they are locked. If a dir-
ty read is to be prohibited this can also be modeled. Since we consider our approach as to pro-
vide the basis for the definition of semantically richer operations (for example, in the sense of
object-oriented methods), the browsing of objects can be prevented by simply not offering such

a method.

An internal effectS requires a compatibility check and an entryhie lock tablesince it pre-

vents competitors from acquiring at least an X-lock. Since an S/U-lock is compatible with a
U/S-lock, it may also realize some kind of dirty read. However, in contrast to the B-lock a read
is only possible if the updater a®ll asthe reader agree to it. Therefore, the S/U (U/S) lock is

supposed to be used especially in cooperative environments.

An internal effectU permits themodification ofthe object. A concurrent S-lock can be prohi-
bited. An X-lock,additionally,grants the owner the right to delete the obj8eice this is the
only differencebetween thesevo lock modes, the X-lock is meant to be usaty in case the
object wil be deleted. Vith this interpretation in ind it becomes clear why ax-lock prohi-
bits a concurrent S-lockSincethe object Wi most prdably bedeleted, a read operation

makes no sense.

5.2.4 Upgrading a lock mode

In order to be able to decide whethegiwenlock is stronger than another one fivet need to

define whether a given (internal/external) effect is stronger than another one.

-58 -

Definition 5.1:

An internal effect istronger (weaker)than another one if it concedes

& more (fewe) rights on the locked object to the owner.

According to this definitionthe internal effectB is theweakestonewhile X is the strongest
one; i.e., theinternal effects increase from B to X. The external effectyever,lays down

which lock modes can still be granted to competitors.

Definition 5.2:

Therefore, amxternal effectis stronger (weaker)than another one if it concedes

& fewer(more rights to a competitor.

Sincethe externakffect X still allows acompetitor to acquire eadhternal effect, it is the
weakestonewhile B is thestrongestone (itonly allowscompetitors to read the object in a

dirty mode); i.e., the external effects increase from X to B.

Of coursesincethe externakffect defines \wat lock mode can be granted at most, a competi-
tor can also acquirany weaker lock; forexample, if ar5/U lock is granted for an objettten

competitors may not only request a U/S lock but also weaker locks, for example, a D/S lock.

In the previous section it wasid that & in a row ofTable5.1indicatesthat the appropriate
external effect can generally Ipermitted. An external effect, on tlmher hand, describes
which operations can be granted to a competitor at best. In other woeddearal effect of a
lock describeghe strongesinternal effect of a lockvhich can begranted to a competitor.
Nothing is saidabout theexternal effect which can be combined witie internal effect of a
lock of anindividual competitor. Unfortunately, it is ngoodidea to allowthe competitor to
combine a possible internal effect weiny possibleexternal effect ashe following example

shows.

Example 5.3:

A D/D-lock allows competitors to concurrently create their own wexgion ofthe given

object. However, a@onflict will arise if a competitor wants to acquird# lock. Since

-59 -

this lock would excludethersfrom concurrently deriving a new versiorDéS lock can-

not be granted in case a D/D was already granted.

Example 5.3 shows, that a competitor cannot cho@sy external effect which can
(theoretically) be combined with the given internal effect. Instead, competitors can only acquire
locks with an external effeethich arecompatible taheinternal effects othe already granted

locks; for instance, the new lock must be compatible to already granted locks.

Definition 5.3:

Two locks arecompatible,
1. if the owner's external effect permits the internal effect of the competitor

2. if the competitor's external effect permits the internal effect of the owner.

Example 5.4:

Let usassume that an S/U-lock is alreagignted to a user P. If a competitor C wants to
acquire a D/S-lock, such a request can be grasitextthe externakffect of P's lock
permits the internal effect of C's lock (since D is weaker than U) and the external effect of
C's lockdoes nopronhibit theinternal effect of P's lock (sindeoth effectsare thesame).

Since the internal effect D iseaker than thenternal effect U anthe externaéffects are

the same the D/S lock is weaker than the U/S lock.

In order to support the upgrade of a lock mode we neddfteeunderwhich circumstances a

lock is stronger (weaker) than another one.

Definition 5.4:

Alock L1 isstronger (weaker) than a lock L2, if
1. theinternal effect of L1 is at leasa{ mos} as strong asheinternal effect of L2,
2. theexternaleffect of L1 is at leastaf mosj} as strong asheexternaleffect of L2,

3. L1 is different from L2.

- 60 -

For thefollowing discussion we iV assume that eachin Table5.1 isreplaced by & since
most applications iV not beable toguarantee consistency in case of concumardifications
on thesame objectThis assumption is no real restrictisimcethe following discussion can

easily be transferred to the extended compatibility matrix.

On thebasis ofthe abovealefinition, the different lock modeswhich can be inferred from the
(restricted)compatibility matrix (Tables.1), can be arranged in a linearder (according to

their strength)

SIS

(BIX) ~ (SIU) ~ (S/D) ~ (g,

) (DIS) - (UIS) - (U/B) - (X/B)

Exceptions are thexclusiveread lock (S/S-lock) and the shared derivation lock (D/D-lock).
The S/S-lock has stronger externadffect tharthe D/D-lock (S is stronger than $ince com-
petitors areonly allowed toread the object) but a weakieternal effect (S is waker than D
since D additionally permitdhe derivation of a new version). If an owner ofSd8 lock wants
to change the lock mode to a D/D lo@lr vice versa) he needs to acquire the weakest

stronger lock (D/S-lock).
5.2.5 A short discussion of consistency aspects

The main motive forthe introduction obur approach is that we want to providéasisfor a
skillful applications designer which allowsm to satisfy the demands of an application in a
proper vay. This requirement caonly be met if the tool kitenables a designer to transfer
some of thaesponsibilityfor consistency fronthe system tothe application. @ly by such a
transfer, forexample, non-serializaboperative worlcan besupported. On the othéand,
our toolkit also supportgonsistency level GLPT76]) if all © (and¢) are replaced by &

and, additionally, the B-lock is not used.

5.2.6 Dynamic assignment of an external effect

In addition to thepossibility of fixing the externakffect whenthe lock is acquired, it ialso
possible to leave bpen for themoment andix it at alater time. In this casehe system as-

sumesthe strongest external effect, as a default. If, however, #iatarises which can be

-61 -

solved by a weaker external effélse owner is asked whether he accéipits weaker external

effect. This allowsthe owner to decidendividually whether he wants to accept concurrent
work on the object. Such a decision may depend on the competitor's profile or the current state
of the object. A lock with a fixed external effect is calfe@d lock, while a lock with an unde-

cided external effect is callegpen lock

5.3 Transaction related locks in the context of nested transactions

In this section it Wl be shown how the decompition of a lock mode can be exploited by the
concurrency controscheme irorder to support a more cooperatstgle of work. Consider
the transaction/applicatiomerarchy of Figure 5.4.et usassume that transaction T5 has ac-
quired some object O in lock mode U/B from jiarent (notvisible in the Figure).Now it
wants someavork on O be done bys child T10. To do so, Thas to transmithe object/lock

pair O/(U/B) to transaction T10. This leads to the following situation:

1. O is locked on the level of T5 in lock mode U/B.

2. O is available to the descendant tree of T10 in lock mode U/B.

Feature 1 is aecessary restrictiosjnce itprevents othechild transactions of T5 (asell as
T5 itself) from modiying O. Feature 2, however, is amnecessary obstacle ttee task of T10

for the following reason:

T5 is onlyinterested in the results of tleork of T10 on O, but not in hothese resultsvill

be achieed. T10needs O and the permsign towork on O in away whichcorresponds to its
task. However, ishould be left tar10 to decide how thevork on Ocan be performed best.
For example, if T10 decides to develop several alternativesoh@taneouslyfor example in

T18 and T20, and to select afterwards the best alternative, such a proceeding shouti-be per
ted. In the scenario aboveis is prohibited, sincéhe U/B lock on O prevents Tlghd T20

from concurrently acquiring the necessary locks on O. lfake a closer look at tleemantics

of the subtask which T5saighed toT10 it becomes clear that thiask issufficiently described

by the object O and the internal effect of the lock on O.

-62 -

However, the downward inheritance of the ex#éreffect ofthe lock is a udessobstacle,
since itdoes notesult inany advatage for T5. Instead, it unnesesily restricts T10 in per-
forming its task. Consequently we decided to transdy the intenal effect tothe child trans-
action. Therefore, if T1@cquires an object O from T5 in modéB, this lock is setonly on
the level of T5 (see Figure 5.4). T10 simply inhdties internakeffect ofthe lock. Theexternal
effect is left undecled (this results in U/*@)). T10 may allow its children to acquire every
lock on O with an interal effect equal to or @aker than U and every extat efect which
T10 wants to concede fts children. In Figure 5.4T10 decdes to allow itschildren to ac-
quire concurrently O in D/D mode, therefore dierive concurrently new versions from @)
(a D/D lockallowsthe owner toderive a new version dhe object; competitorsay derive
(concurrently) new versiongpo). While this proceeding allow$10 to executéts work on O
autonomously, itoes nogllow T10, forexample, to transmit several alternatives of O to T5,
since O is locked on the level of T5 in mode Which does nopermit the derivation of sev-

eral alternatives).

To summarize, in a nested environmechdd transaction ¥ mayacquire an object O in lock
mode X/Y from its parent transaction. On thevel of the parent transaction Ollbe locked

in mode X/Y. On thdevel of TS this mode Wi be weakened to the mode X/*STnhayreplace

* with any permissiblexternal effect. Of course, 131 wants taacquire an object O in mode
U/B from transaction T5 (see Figute5) therule of stepwise transfer requires that the ob-

ject/lock pair O (U/B) is taken over by each transaction on the path from T5 to T31.

A more detailed discussion tie semantics of lock modes ahdw they can be upgraded or

downgraded is given in [Unla89].

-63 -

O(U/B) TS
lo]{ L\J/ *)
\, T10
O(Dy
@/// /- T~ @
o(D/*) | T18 T19 T20 Oo(D/+) T18
O(U/B) == Object O is locked in lock mode U/B
U/B == corresponds to an exclusive lock
D/D =- allows the owner to derive a new version O(U/B) == Object O is locked in lock mode U/B
competitors may derive a new version too U/B == corresponds to an exclusive lock
* == undecided external effect * == undecided external effect

Fig. 5.4: Acquisition of an object from the Fig. 5.5: Acquisition of an object from supe-

parent transaction rior (% parent)

5.4 Rules on Locks and Notification Services

Synergistic cooperativevork canonly be suppded adequately if applications can actively
control the preservation of theonsistency oflata.This, however, requirethe concurrency
control component to provide asuchsupport toapplicdions as posble. For example, our
approach penits update operations to lmempatible just by aggningthe appropriate lock to

them. However, if concurrency control relied on pure locks, it would be too inflexible (U/U).

Example: 5.5
Let us consider an abstract data tiRRICE-PRODUCTon whichthe following four op-

erations are defined (see Figure 5.6):

INCREASEVAT (0p,): needs internal effect U

INCREASEPRICE (0P,): needs internal effect U

-64 -

CoMPUTEPRICEINCLUSIVELY VAT (0p;): needs internal effect S

COMPUTEPRICEEXCLUSIVELY VAT (op,): needs internal effect S

The compatibility of these operations (as shown i
Figure 5.6) cannot becompletely modeled yet. The
problem is that we can define thgp, andop, should

acquire a U/U lockwhich means thatoth update op-

erations can be performed concurrently (which, g
course, isdesiralte)). op,, however, should be com-
))] lock mode required
patible toop, which means that weust assign an S/U by operation

lock to op,. This, howeverimplies thatop, is compa- |+—— compatible

tible toop,, too (which, of course, is not correct). ff— incompatible

The problem is that locks as sudéfine compatibilitystill Fig. 5.6: Relationship between
on a tooglobal level. AnS/U lock is corpatible with a U/U operations

lock regardless of whether the second lock is acquired by an

operationop, orop,. If we really want to exploit thesemantics of applit@ns, theall-or-none
principle (a lock allows eitheall concurrent transactions to access the objecinen mode
or none) must be replaced by a more expresgeeif principle i.e., concurrent transactions
are allowed to access the object if certain conditions Hileetl For this reasonpur approach
supports thebinding of rules to locks. The rule @shanism is similar t&CA rules (event -

condition - action rules, cf. [DaBM88]).

on event {[casecondition]do [actionl] [action2]}*

An Eventcan be an action which is triggered when an operation is performed on a(n):

lock: request / release / up- / downgrade / transmission (lending, transfer, return)
object: modification / transfer / deletion

transaction: begin / end / suspend / resume / (partial) rollback

Conditionscan be

special usersa certain user / application / transaction has triggered the event

special operations:a certain operation has triggered the event

- 65 -

object states:the object is in a certain state (for example, compiled/tested/ etc.)

The condition specification is optionavhich means that aeventmay directly trigger an ac-

tion.

Theaction section can comprise two parts:

% In actionl an exception can be expressed regardingutfierlyinglock. An exception
can bepositiveor negative With positive (negative) excepn, a lock mode can be wea-
kened (tightened) bgxplicitly declaring whichevent can caus&hich kind of weakening

(tightening) and under which circumstances.

& Action2 allowsthe system toreact on events bfadditionally) sending messages. To be
able to do so the rule mechanism is accompaniednloyification serviceby which appli-
cations/users/agents can be infornadxbut certain facts ozan be asked to do certain

things.

The system W reactdifferently on arevent if different conditions and actions apecified in

thecase dopart.

Example: 5.6

a. negative exception
Given is an S/U lock on object O. The following negative exception tightens the lock:

on lock-request
{[case<predicate P>] do [prohibit (U/*);] [notify-Request<t_>]}*

This condition specifies that if @ncurrentapplication wants to acquire some logith
internal effect U on object with OID O (would allow the requesting procespdate O),
the request will be rejected if predicate iB true.The notify-Requeging process)lause

specifies that the messaggewill be sent to the requesting process.

b. positive exception

Given is an S/S lock on object O. The following positive exception weakens the lock:

- 66 -

on lock-request

{[case<predicate pP>] do [permit (U/<B);] [notify-Self <t _>]}

This condition specifies that if @ncurrentapplication wants to acquire some logith
internal effect Uthe request can be granted if the exteefi@ct ofthe requested lock is
weaker than B (<B; foexample, S or U) and predicatg B true.The notify-Self clause

specifies that the messaggwill be sent to the owner of the S/S lock.

c. Solution for example 5.5

The scenario of Figur.6 can be modeled as follows (it is assumed twth opz and
op, will acquire an S/S lock on instancesRRRICE-PRODUCT:

Whenop, is executed it must bind the following rule to its lock on the object dealt with:
1. on lock-request

case op; do prohibit (U/>B); notify-Request"VAT is being modified"

Whenop, is executed it must bind the following rule to its lock on the object dealt with:
2. on lock-request

caseop, do permit (S/U)

Rule 1 assures thap, cannot acquire a lock on object O as long@sholds its lock on
O. However, ifop, is thefirst operation tarequest a lock on O, thap, cannot concur-
rently acquire its lock on O, sin¢lke necessary/U lock is not compatible withthe al-
ready granted®/S lock (of operatiop,). Finally, if op, wants to acquire a lock on O,

the lock can be granted since rule 2 permits this exception.

Similar rules must be installed fop, andop,.

Anothergood examplefor the usefulness of rules the open lock An open lock waslefined
as a lock whose external effect is left undecided. Comiigtiith other requests idecided
individually each time a request is submitted. The decisiay dgend on therofile of the re-
guesting process and the currstdte of the objectespectively. One podgsiity is that the
owner of the lockhimself makesthe decision. A better solution would be to kb system
automatically decide otie basis of predefinetules. This freethe ownerfrom being (frgue-

ntly) disturbed in his work by concurrent processes.

- 67 -

The extended lock concept can be used as a solid basis to implement higher-level diblcepts,
sematics-based concurrency control (cf. [ChRR91], [HeWe88], [SpSc84], [Weih88]).

5.5 Object related locks

Usually, locks are bound to transactionsctoperativeenvironments, however, seems to be
reasonable to think about an extension of this rule in a direction that locks can also be bound to
objects.Similar to the life of a human beingvho is born single and whoay, atsome later

time, acquire marriagstatus(which rulesout areturn to the statusinmarried"), objets may

also go througlseveralstates in theififetime. Theymay be'born’ without any restrictions on

the way in which they can b&eated. Howeverduring theirlifetime, some restrictions may

come into force (see example 5.7).

Example: 5.7

1. Version graph
In the context ofversion graphs it is commonly required that a non-teade (inner
node) cannot benodified toprevent the successors of that node fimimginvalidated
(sincethe predecessor is no longer thegsion from which theyvere created). Here an
object is born without any restrictions (leaf) and, later, changes to an object which can no

longer be modified (non-leaf node).

2. Time versions
Time versions only permadne version of an object to balid at a given time. ithe cur-
rently valid(latest) state of an object is to imedified, a new version isreated This re-
sults in a linear sequence of versions. In this case the object is born with the restriction to
be notchangeableLater on, it vl change to an objeethich can neher bemodified

nor used as a basis for the derivation of a new version (non-leaf node).

3. Standard or library objects

- 68 -

Many application classes, especially design enwremis,put standard otibrary objects
at the users' disposal. Such objects @aly beread.Theyare born with the restriction:

modification prohibited

The common feature of these theeamples is that they defimestrictions on the access to
data (forexample, updating is prohibited). In principal, these restrictions can be ensured by

three mechanisms:;
1. access control
2. integrity constraints

3. concurrency control

Of course, none of thaternatives is exactly destinéal the desired purpose. Howevaell, of
them could be extended in a way that they nieetrequirements. Wedecded toassign the
task to the concurrency control component. One reasahifodecision is that it isot only
elegant but alsefficient sincethe concurrency control @shanismcan exploit theadditional
knowledge about restrictions on thandling ofdata toincreaseefficiencyand performance. A

more detailed argumentation is given in [Unla89].

Our idea is to link locks permanently to objects. This kind of loitikoe calledobject-related

lock (OR-lock for short). An OR-lock, oncemposed on an object, can neither be weakened
nor released, itanonly beupgraded. The lockemains valid atong as the object exists. OR-
locks behave like conventional locks (lodksed to transactionscalledtransaction-related

locks or TR-locks for short in the following, which only have an internal effect). If an OR-lock
is granted, theommunity of all(potential) transactions can be seen as the owner of the lock.
All rights of theinternal effect carstill be acquiredwhile all other rights are no longer
"grantable”. Since an OR-lock is persistent wk distinguish it from atransaction lock by

placing a P in front of the signature.

The following OR-locks can directly be adopted from the set of conventional locks:
PU-Lock: prohibits deletion of the object. All other operations are permitted.

PD-Lock: prohibits deletion and modification tife objectAll other operations angermit-
ted.

- 69 -

PS-Lock: rohibits deletion, modification, and deri- .
P transaction lock
vation of a new version ahe object. It
. . B/ S DU
only permits the read operation. o
p PX|+ + + + +
It is particularly worthwhile taking a closéwok at the é PUIL+ + + + -
. . L ()
PD-lock. This lock permitghe derivation of a new ver- t PMDI+ + + - -
. . . it ot lai
sion ofthe object locked. However, it it laid down |, PspDl+ | + o - -
whetheronly one derivation can be pduced or more. g PS
+ | + - - -
But such a distinction isxtremely useful, since it makes{k
; ; ; + = permitted
it possible to automaticallgontrol the observance of|” _ prohibited
the rules ofdifferent version models (time versions andP_=_Single derivation only

version graphs). Due tihe greasignificance of version

o Tab. 5.2: Compatibility marix ob-
models, a distinction seems to be reasondlierefore,

. . ject/transaction related
the PD-lock is split into two lock modes:

locks
PSD-lock: only permits derivation of exactlyne new

version; i.e., after the first derivation of a new version the lock mode is converted

to a PS-lock (forms a sequence of versions).

PMD-lock: permits derivation of any number of new versions (forms a version graph).

Finally, a PX-lock is introduced as the lock with which every object is 'born':

PX-lock: is a pseudo lockvhich does noimpose any rgtrictions on the object (needs not

to be considered by the concurrency control component).

The introduction of a PB-lock do@®t make anysense, since it hdlse same effect athe PS-
lock (if a modification or deletion of aabject is prohibited evergead isautomatically a con-

sistent read).

Table 5.2 describes the contipdity between an OR-lock and (the internal effe€ta corven-

tional lock:

Similar tothe externakffect of conventionalocks, OR-locksincrease from PX to PS since

each step on this way concedes fewer rights on the object.

-70 -

As already mentioned, witthe help of OR-locks concurrenogontrol overhead can be re-
duced. Foiinstance, with a PS-lock the objéws no longer to be consideredthg concur-
rencycontrol componentincethe only applicableoperation is the read operation. A PS-lock

is especially favorable if stdard objects need to be handled.

Let usconsider Figure 5.7, in whidhe standard object O2 is a shared subcomponent of sev-
eral complex objecteCO1, CO2, CO3). If, foexample, somapplication T locks CO1 in an
exclusive mode (U/B-lock), this lock prevents each competitor C from loekingfthe other
complex objectsvhich also include OZhere CO2 and CO3). However, if a PS-lockmpo-

sed on O2, the lockhanger no longehas to conside®2. Therefore, the concurreatcess

can be granted. Situations like this are rather frequentgiakpen design environments.

In [Kelt87] prevention locks were introduced fimilar reasonsBut theselocks were espe-

cially designed for CAD databases and versions.

In the appendix aexample ispresentedvhich demon-

strates the different facets of our approach.

5.6 Subject related lock

Non-standard applicationare usually extremelycom-

plex in comparison with traditionadpplicdions. One

frequently finds complexaskswhich need to besplit

into several units ofvork, each of which, nevertheless, |— subcomponent of

may still becomplex and of longluration.Since these

units of work represenbne complextask, they often Fig. 5.7: Standard object O2 as
have a complexontrol flow; i.e., some units can be subcomponent of several
executed concurrenthyhile others need to be executed complex objects

in succession. Each unit work accesses a (large) number of objects. Some of #neonly
usedwithin one givenunit. However, the more central objects with respect tdasble are of-
ten used irfnearly)all sudasks. Consequently, we mustdige to safelyransfer objectérom

one unit of work to the next. Kinits of work correspond tdqsub)transactions, we need a

- 71 -

mechanism whicfallows an object to beafelytransferred fromone transaction to the next

(see also [WaRe92]). Consider, fotample, an administratiaepartment. If someormakes

an application forsomething(for example, a businessip), he has tofill in the application

form. Then theapplicationform usually has to pasthroughseveral stages; it has to be coun-
tersigned by a manager, registered and checked for correctness, some computations have to be
performed, etc. Often each subtask is performed by a different persamident.This means

that we need to control the cectflow of the application form; i.e., a safe transfer from one

subtask (transaction) to the next has to be ensured.

Moreover, asalready mentioned, a compléask often consist ofeveral subtasks each of
which works with a few common objects and a number of objextly specific for that
subtask. If a task corresponds to a transactiopltage-specific objects need to be locked for
an unnecessary long period of time, thereforessity blockingconcurrent transactions. To
avoid such unfavorable situationspecific transaction types, likefor example, split-
transactions were introduced ([PuKH88]). A split-transaction is a long-duration transaction
which is split intotwo or more parts in order to kable to release sonwbjects,which were
requested by a concurrent transactiére@rlier. Again, tesafelytransfer the objects tocTwe

need some shelter whi@nsures that the released objects cannot be locked by another com-
petitor beforehey can be acquired byrTTo support aafe transfer of objects betweteans-
actions the tool kit provides subject related locksuBject-relatedlock (SR-lock for short)

again is defined by an internal/external effect pair. Hosnd to a subject for some time. Dur-

ing thisperiod, the subject is the owner of the lock and camdeautonomouslyiow to use

the locked object (foexample, in which application). Bubject can be anything that can be
identified bythe concurrency control component as such, fangte, an application, a user

(group), an agent, a named sequence of actions (transactions), etc.

A subject-related lock corresponds to a transaction-related lock (TR-lock) in thdefined

by an internal/external effect pair. It is bouednporarily, however, to aubjectandnot to a
transaction. Since an SR-lock functions as a place holder, it reserves an object O for (later) use
by its owner in one or more (consecutive) (trans)actions. Every subject can ask for an SR-lock
at any timeThe SR-lock can be granted if i&k-, OR-, or SR-lock ig¢currently) assigned to

some competitor in anncompatible mode. Here, acompetior is either a trans-

-72-

action/application (ircase of a TR-lock) or a subjeg@d case of a concurrent SR-lock) or an
object (in case of an OR-lock). The owner of an SR-lock can hold the lock as long as he
wants; i.e., an SR-lock is released byeaplicit command of its omer. This can bedone at

any time.

An SR-lock imposes restrictions d¢ime way in whichcompetitors arallowed towork on the
locked object. Consequently, the exteretiect of an SR-lockorresponds to the external ef-
fect of a TR-lock. Thenternal effect determines whidfR-lock on the object can be granted
to a transaction at mosthis means, that 88R-lock doesiot assign any directly usable rights
to its owner. Instead, rights camly becomevalid if they are supplemented by a TR-lock
within a concrete transaction. Howeveaincethe SR-lock is glace holder it is guaranteed
that the corresponding TR-lock cannmadiately begranted, preided thatthe requested TR-
lock isnot strongethan the SR-lock. If it is stronger, of course, the TR-Ibak to compete
with all alreadygranted locks on that object. Eaakernal effect/external effect-pair which is a

valid TR-lock represents also a valid SR-lock.

The additional acquisition dhe TR-lock isnecessary to ensure thitae locked object O can

only be manipulated within &ansaction. Moreover, it guarantees that the owner of the SR-
lock cannotimproperly exploithis rights, for example, by using O in an incompatible way
within differenttransactions. The TR-lock ensures that O @aly beused in one transaction

at a time. Q@ly after the TR-lock on O was released, O is cag&input at the digosal of the

owner of the SR-lock and can, therefore ebgloyed inanother transaction. Of coursince

O canonly beused if a proper TR-lock is granted, an SR-loak be released aty time. Ei-

ther O iscurrentlynot used by some transaction or itstll protected by the adtnal TR-

lock. However, the use of O in a transactiosubstantiallyrestricts O's furtheemployment

since it causes a dependency from locality. More specifically, the use of O in T1 corresponds to
an explicitcheck-out of Grom the databasgor some object podiom the ancestor @in) by

T1,; for instance, O is added &l object pools on the pafinrom the database t®1. Conse-
guently, O can only be used in some other transaction T2 if O can be transferred from T1 to T2

according to the object transfer rule (see the chapter about explicit cooperations).

To differentiate a TR-lock from an SR-lothe latter vill be written initalic letters in the fol-

lowing.

-73-

Example 5.8:

Let usassume that a user P has acquinedSR-lockU/S on O. Sinceghe externakffect
of the lock isS, O can at most be read by concurrent transactions. If P wawtsrkoon
O in transaction T he (the transaction) cénectly redeenthe SR-lock byany TR-lock
which is not stronger than U/S (fekample S/S or U/S). If Fhas acquired some lock on
O in T, forexample, &J/S-lock, he cannot acquire arcompatible lock mode on O, for
example, again &/S-lock, inany other transactionThis is prevented by the TR-lock

which was acquired by T.

6 General rules of the tool kit approach

This section summarizes the "meta" rules which have to be obeyed by each transaction (type):

1. Dependency
Each transaction strictly depends on a unigaeent transaction. The parent transaction
can either be thdatdbase or another transaction. In finst casethe transaction is either
thetop level transaction of a nested transaction or a flat transactiahelsecond case
the transaction is ahild transaction of another transaction, the parent transaction. De-

pendency on a parent transaction entails the following effects:

& A child transaction must commit before its parent transaction commits.

% Commit of a childransaction andlurability of itsresults areconditional subject to
the fate of its superiors. Even if a child transaction commits, aborting of its superiors

will undo its effects.

% A child transaction canly acquire objects from itparent transaction. If ieeds

an object from another superior the rule of stepwise transfer must be observed.

% A child transaction has to obsertree relevant rules and constraimisich were de-
fined byits parent transaction with respect to théd transaction (according to the

two-stage control-sphere).

- 74 -

Object acquisition and release

Each transaction camnly acquire objectsvhich belong to it@ccess viewMoreover, it
canonly insert objects into an object pool of its releamsv. Only in case of arexplicit
cooperation may a transaction additionally acquire objects from or release objects into the
object pool of another transactionh@h atransaction ¥ acquires an object from an an-
cestor P the object is duplicated and the copy is inserted into the object poel IbfTR

is not the parerniransaction of ¥ the object/lock pairs, at leastogically, inseted into
the object pool of each transaction on the fiatin T to T (stepwise transfer). In any
case F gets the objeatith an undecided external effect; for instance,sTallowed to
grantanylock which is compatible withhe acquirednternal effectAll work of a trans-
action has to be performed ¢ime objects of its own object pool. If a transactidch T
modifies anobject and wants thesaodifications to becomealid T¢ has to insert the
modified object into the object pool of a superior bef&®T (end of transaction). By
this, the objectersion ofthe superior is replaced by the "nevérsion of F. If the su-
perior isnot the parentransaction the object is remov&dm the object pools of all

transactions on the path to the superior (of course, excluding the superior itself).

Concurrency control

If child transactions arallowed to concurrently acquire objects fréine object pool of
their parent transaction the parent transaction needs to run a concurrencyscbetra
for its object poolFor an operational transaction Tgerform an operation on an object
of its own object pool, T must observe the concurrency costtedme installed on its

object pool.

Exclusion
If a transaction requests an object, the requesbofnbegranted if the object is not
locked in an incompatible mod@n general, ifthe appropriate concurrency control

scheme agrees to such a request).

-75-

5. Transaction abort or commit
When atransactiorfails (aborts),its objects are discarded. However, the obyecsions
of its ancestors areft intact. In either case, when a transacttommits oraborts, its

locks on the objects in the object-pool of the parent transaction are released.

6. Uniformity

All transactions follow these rules.

7 Constraints/rules/triggers

Constraints, rules, and triggers are rather powerful concepts to supervise, contooamd
ize the dynamic behavio(activities) of a computer system. Therefore, it is no surphiae
thesemechanismslso have a long tradition as integrarts of databaseystems(c. f.,
[ChCh82], [DaBM88], [DeZo81], [Eswa76], [KoDM88])Ihey are used tanake database
systems activéfor example,[DaHL90]), to ensurdntegrity (for example,[KoDM88]), to
control and supervise the execution of (sub)transactiongxtomple [ChRa90], [ELLR90],
[W&Re91]), or to support theadeling ofcooperative environmen¢for example[NoZd90]).
The inherenpower of these concepasd their generapplicabilityare anexcellentreason to
also integrate such a mechanism into the tool kit. However, on thehathey their integration
into database systems (amoit only into database systemsjvolves some tricky problems, es-
pecially with respect to consistency preservation (c. f., [StRH90], [StHP89]). The need to real-
ize them orthe basis of asoundformal foundation seems to be mandatdrigerefore,since
our work onthis subject isnot yet finished, wejust want to discusbriefly the intention we

follow up with the integration of these mechanisms into the tool kit.

Our objectives are two-stage. First, we wantaiow the programmer tdefineconstraints on
the use of the concepts of the tool kit and second we want to furtherveone of themain
goals of the tool kit - aextensivesupport of cooperative worRhe management and super-
vision of control flow and executicorder of (sub)transactions, onthe otherand, at least at

the moment no hot topic within our project.

-76 -

Constraints and rules as a means to specialize concepts

Sincethe intention okvery tool kit must be, to provide (basic) componentthermost gen-
eral level we need mechanisms to restrict this generality if considenaldyspecializedppli-
cation-specific transaction managerge to bemplemented. Some of such restrictioecha-
nismsare already built-in.For example,the tool kit providedacilities to restrict the access
view as well ashe releas@iew, to prohibitthe use of operations, or to restrict the catiyl-

ity of lock modes (the lagtvo facilities are briefly discussed withirsection8). Other aspects,
however, arenot yet coveredFor examplethe tool kit permits the construction afbitrarily
structured (heterogeneous) transaction trees. Howsueh a liberalness is sometimes not
wanted by an applicatiorEspecially in design environmenggoups ofdesigners require a
comprehensivesupport of cooperative suppawithin their group, however, wartheir to be
shielded fronoutside world. Fothis reason most advanced transactiwdelsfor design en-
vironments provide enclose a cooperative environment by more restrictive (ACID) transac-
tions. To meet such demands we want to prothdgorogrammer constrainsghich allow him

to define how subtransactions of a given parent transaction type have tikdptik instance,
we want togive the programmer the opportunity predefinethe structure of a transaction
tree. In addition to such a static predefinition we want to provide rulesiop a programmer

can lay down under which circumstances which restrictions should come into effect.

Constraints and rules as a means to further support cooperative work

As was already mentioned before, cooperatwek canonly intensively besupported if the

user or thepplication is involved ithe preservation of theonsistency othe databaselhis,

however means thathe tool kithas to provide as mudupport to user gsossible. To do so

it has to be ensured thtite degrees of freedowhich are offered by the tool kit cannobly

be used but also controlledmong others, the tool kiallows lock modes to be compatible

which are per se notompatible.For example, aJ/S lock allows the owner of the lock to

modify the locked objecivhile other transactions astill allowed toread the object. ¥d-

ing on the application it could essential that an access to the object by other transactions can be
controlled; for instance, thather transactions amnly allowed toaccess the object of certain
conditions ardulfilled. For this reason we want permit that rules can be bound to locks. In

section 5.2.6 walready discussedpen locks. Open locks are locks whose exteeffatt is

-77 -

left undecided. Compatibility witbther requests isach timandividually bedecided and may
depend on therofile of the requesting process or the currstiate of the objectVhile one
possibility is thathe owner of locksnakesthe decision byhimselfthe otherpossibility isthat

the decision is automatically made by the system on the basis of predefined rules. This frees the
ownerfrom being (frequently) disturbed mswork by other processes. &aldition to theule
mechanism we ant to offer anotification mechanisnby whichthe owner or the requesting
process can baformedabout certain facts aran be asked to do something. Tmelerlying

rule mechanism is similar tBCA rules (event - condition - action rules, c. f., [DaHL90]). The

basics of this concept were already presented in more detail in section 5.4.

8 Brief overview of the structure of the tool kit

The tool kit is meant to provide a wide range of different transaction typessédtmeeds to
include conventiona{short duration) transactions a&ll as differenttypes of long-duration
transactionsThis requires that transaction typegmade up oflifferent components. For ex-
ample, while a basic long-duration transaction type may hold its own object pool and lock table
a morespecifictransaction type ay, additiondy, hold its own compatibty matrix for its ob-

ject pool. By this, access to objects of the object pool candoedually adapted to the re-
quirements of a specific envingrent. For example, in a moreooperative environment, the
compatiblity matrix may definelock modes to be compatibkghich shouldnot becompatible

in @ more competitive environment.

In this section we will concisely outline how different transaction types can be constructed.

The tool kit can be regarded akiad of object-oriented transaction manager development

facility for the following reasons:

% Each component of the tool lelongs to alass each classepresents a different type

of component.

& Components areealized asabstract data types This means in particular thatans-

action types are characterized by the operatinsh come with them. A number of op-

-78 -

erations areommon toall (long-duration) transaction types; fexample,operations to

suspend, continue and commit the transaction and to acquire or release objects. However,

these operationsay be implemented differentfpr different transaction types (with dif-
ferent semantics or with different implementatpart (data structure)). Other operations
are only specific tosome transaction typesnce they come witthe features byvhich
these transaction typelifer from other transaction typeslote, that the concept of ab-
stract data typenakes it possible toasily react tochanging requirements. fior exam-
ple, in a workstation/server @wronmentthe maintenance of an objegbool is to be
moved fromthe server to the workstatidhis can esily berealizeddue to thdocality of
such changes. Moreovehjs concept leaves sonkeewayfor theimplementation of logi-
cal structures; foexample, whilghe logical structure of a transaction typeay require a
local objectpool the actual implementationay lean on global objectpool (acommon

pool for all transactions).

% The assemblyand refinement of transaction types is, amastfers, realized via

(multiple) inheritance.

A transaction type is developed in ttelowing way: First, thebasicconstituents are chosen
from the set obasic componentf the tool kit. These constituents are tamed and suited
to eachother (eithewia multiple inheritance or viaggregation) to form kind of skeleton of

a first basictransaction type. Foexample, in Figure8.1 the skeleton for NG-DURATION
TRANSACTION (2) isassembled fronthe basic components EDJECT PooL and TRANSACTION
(1). At this basic level RANSACTION is nothing more than a frame within which opienas can
be executed; for instance, no rules or constrairgtaid down, no concuencycontrol or re-
covery mechanismare estalshed, etc. A sketen transaction(or skel¢on for short)can be
specialized tamore specific skeletons by adding more components andpeacializing (refi-

ning/extending) existing components.

-79 -

In Figure 8.1, NG

DURATION TRANSACTION : ihili

Object Lock Compatll?lllty Transaction 0CG
. - Pool Table Matrix
iSs specialized to GNG- T 0

X

DURATION PESSIMISTIC Tset Oft
basic com-

ponents

/1)
O uaen(2)
@ @ V

Optimistic
Transaction

TRANSACTION (transac-

tion which runs a lock ST

Transaction

protocol; (4)) byadding

Long-Duration

the constituents QvPA-

Pessimisfcic @
TIBILITY MATRIX and Transaction
fundamen-
Lock TABLE (3). A ske- | tal layer @
leton corresponds to a N
fundamental transaction \4 \ 4 \ v
. . Transaction|| |Transaction Transactlon Transaction
type which isnot yet exe- Type A Type B Type C Type D
cutable since idoes not /\
obey the specific seman- Transactlon Transaction @
_ _ model layer Type E Type F
tics of some underlying
transaction model. For aggregation
— . : — non executable
example, a sketen may or inheritance transaction type
already provide acheck- |~ > Specialization —— (skeleton’)
. basic com- executable
out operation. However, ponent transaction type

the rule that objects can
only be acquied from an Fig. 8.1: Structureof the tool kit

ancestor is notyet laid

down; for instance, an instance TLENG-DURATION PESSIMISTIC TRANSACTION cantheore-
tically acquire an object frorany other transactiomnd any other transactiowan acquire on
object from T (onlytheaetically since askeleton transaction @efined to benot executable at
all; see above). The rules and constraints of a fipéeinsaction model need to be added in a
subsequent phase (this is domghin the model layer). Skeletonghich are equippedvith
specific sematics (5) constituteexecutable transaction typeg6). Of course, bydding fur-
therrules or constraints executable transaction types can be fapbeanlized7); for exam-

ple, a transaction typehich laysdown that its instances need to run apsatwo-phase lock

-80 -

protocolmay bespecialized to a transaction typich requires its instances to rdme strict

two-phase lock protocol with predeclaring.

Altogether the tool kit provides three sets, a sdiasic compoents, a set adkeléonsand a
set of executable transaction types. Roughly speattiafpasic componentsregeneral objec-
ts which donot provide any specific semadits, skeldons are constructed by resively put-
ting things (basic compents, skeletongpgetherwhile executable transaction types dedfi-
ned by specializing operations and adding constraints and rules, etzasibeomponents and
the skeletonsnake upthe fundamental layer of the tool kitwhile the executable transaction

types constitute themodel layer.

In Figure 8.2 thereate-transaction-clascommand creates a new executable transaction type
TTrew with name fransaction-class-name> as subclass of an already existing transaction type
specified insubclass-of: T™ewinherits all properties of the superclass. These properties can be
strengthened; for instance, a stronger Ipctocol can be defined or sonmaore operations

can be prohibited in theonstraints clause, etckor example, ithe inherited lockprotocol re-

lies on a simplgrowing phase these logkotocolcan be increased to a lopkotocolwhich

requires preclaiming.

The prohibit-operation clausedetermines whicloperations arapplicable tathe object pool
of TTrew, |f the all option is chosen Tew represents a service transactsomce Tcannot oper-
ate on its object pool. The othsay round, if the no option is chosen amly some operations

are defined as to be prohibite@¥ represents an operational transaction.

Theprohibit-lock-mode: clauseallowsthe programmer tepecifywhether the status gbme
internal/external effect pai@re to be changeftlom permittedto prohibited Consider Table

5.1. A® (and4) indicates that the compatibility of the respective internal/external effect pair is
conditional subject tdhe fate of the respective transaction type. Each transaction type main-
tains its own compatibility matrix. In this matrix &l's and¢‘s must have been replaced either

by a® or a< (according to the rules for replacement, see se&ipr2). Trew inherits the
compatibility matrix of its superclashpwever, can strengthen this matrix dgfining some

further pairs to be incompatible.

-81 -

The prohibit-object-related-lock-mode: (prohibit-subject-related-lock-mode:) clause ser-
ves the samepurpose as the second, however, with regard to object (subject) related lock

modes.

Besides the constraints mentioned above the constraints section allows the programmer to defi-

ne other constraints, like constraints on the type of subtransactions (as discussed in section 8).

In the operation: clausenew operations can be added or old operations can be replaced by
new ones. For example, if we wantrealize split transaction$PuKH88]) we lave toadd the

join-, accept-join-, split-, and split-commit-transactioperations.

Finally, in therecovery-mechanismsclause the necessary recovery techniques can be chosen.

create-transaction-class
transaction-class-name:
transaction-class-id:
subclass-of

lock-protocol: [
non-two-phase/
two-phase (growing-phase [simple/ extended preclaiming
preclaiming,
shrinking-phase [simple/ strict])]

constraints

prohibit-operation: [no/all / {[read/ update/ derive-version
insert/ deletd}]

prohibit-lock-mode:

prohibit-object-related-lock-mode:

prohibit-subject-related-lock-mode:

operations:

recovery-mechanisms:

Fig. 8.2: Construction of aexecutabldransaction type

Figure 8.2 only shows theprincipal way ofhow transaction types can be constructed. The
original interface of the tool kit is window oriented. Therefore, each opergkerthe create-
transaction-classoperation) provides its onabmmand menu biased tioe individual content

of the window; for instance, options which cannot be chosen are not presented to the user.

-82-

create-transaction-instance
transaction-name:
transaction-id:
as-instance-of-transaction-clasg/transaction-class-if
parent-transaction: [database / transaction-jd
user-list:

constraints

Fig. 8.3: Generation of aeal transaction

While the create-transaction-classoperationallowsthe programmer tdefine a newtransac-
tion type thecreate-transaction-instanceoperation (see Figui&3) creates eeal transaction
Trew The type of Tw js specified inthe as-instance-of-transaction-classclause. Thepar-

ent-transaction: clause specifiethe parent transaction of€F in a giventransactiorhierar-
chy. If the parent transaction is the databas® & a toplevel transaction. Theuser-list:

clause specifiethe owner of the transactiawhile the constraints: clause allowghe user to
specify transaction-specificonstraints (whickare only valid for this transactiorbut not for

other transactions of this type).

Finally, the transaction can be started bylibgin-transaction: [transaction-ig.

An application-specific transaction manager is defined by choosingthe relevant
(application-specific) transaction types from #et ofexecutable transaction types. At best, all
transaction types of interest amready existent and needly to beselected. In some cases,
however, the tool kit may not provide all of them. In sastieer cases, knd of generatrans-
action typemay already exisbut need to be augmented by saspecial semanticg:.or exam-
ple, if the tool-kit does natlready providesplit-transactions([PuKH88]) the corresponding
transaction types need to tefined(for example, by addinghe corresponding operations) if
this type of transaction is to Iseipported. Situations likdis make it necessary to extend the
tool kit by themissingtransaction types. Dependent on the requirements an extenayoaf-
fect several layers. Ithe simplest case an already existent executablesaction type need
only to be supplemented Ispme additional semantics. In cake model layerdoes not pro-
vide an executablansaction typevhich can baused as théasisfor a furtherspecialization

the missing type must be constructed from a skeleton. If the fundamental layer does not already

-83-

provide an appropriate skeleton it must be derived famother skeleton or it must be con-
structed fronmthe basicset of components. In theorst case, the set basiccomponents has

to be augmented (fazxample, by a new concurrencgntrol scheme)Finally, if a different
global transaction model is to lmestalled (for example, a model which allowstensaction
"hierarchy" to be netlike instead of treelike) a new model layer must be devetopeak;
stance, the transaction types of thedel layer must be equipped with different semantics. Of

course, such a task is rather ambitious and should, therefore, only be performed by a specialist.

9 A few comments on implementation issues

In a certain senseur approach is conceptualxery similar tothe databaskernel system ap-
proach respective tool kit approach for databmsgems(see Figurel.4) which especially
means thathe tool kit can be seen as to stay onsiduime level athe core datanodel of a da-
tabase kernel system. The interface of a database kernel system prosgtesiata model
only (or noteven adatamodelbut only the basisfor the design adatamodel). Such an inter-
face has to offer amany basic buildindplocks as necessary pot the DBI in gposition to de-
sign and realizénis application-specifidatamodel. Thisimplies thatthe coremodel should
'hard-wire' as few restrictions as possiblentit endanger or even prevetiite definition of
adequateapplication-specifiadatamodelsor, the otherway round, each concept should be
realized as general as possibleheg corelevel. Application-specificdatamodelsare obtained
by choosing the appropriate concepts of¢bee model and equipping them with specific se-
mantics byadding constraints and rulgamong others)This corresponds to specialization.
Applied to the tool kit thisneans thathe "meta” transactiomodel has to lean on as few rules
and constraints as possible. Thisme of the reasonghy the tool kit permits, foexample, an
arbitrary nesting of transactions of different types, whereas "full-function” transactioag-
ersusually laydown someorder. The tool kiprovides acore set ofjeneral transaction types
togetherwith a small set offundamental rules ("meta" transaction model) and it is left to the
DBI or applications designer to enrithe fundamentalkset ofrules and theore transaction
types by further constraints and rules (inter- and intra-transaction constraictg)ttwe the

specific semantics of a given application (see also the discussion in chapter 2.3).

-84 -

As indicated in Figur®.1 the tool kitcan be regarded as to logically subdivided into four
parts, a tool kit fortransaction typesfor concurrency contrgl for recovery and forcon-
straints, rules, and triggeréasalready mentioned, up to nowanly the first two parts are en-

tirely designed and implemtsd).

While the first prototype of the tool kit is simplynplemented oriop of arelational database
management system vearrently work on aleepintegration of the tool kit into a non-stan-
dard databasmangement systen(iNDBMS) (see Figur®.1). All functiondity of the inter-
face ofthe tool kit wil be mapped on lowelevel operations of the databasgstem which es-
pecially means that all downward functionalipperationsvhich arerealized in terms of lower
level oper#éions) is hard-wired wherever usefihile this, of coursemakes extesibility on
lower levels ofthe system moreomplicated it, hopefullymakesour tool kit muchmore effi-

cient.

Within the databaseystem we want to

rely on multi-level concurrency control

([Weik87]) which means thathe transac- application || application || application
tions ofour toolkit will internally be real- specific specific specific

. . . _ transaction | | transaction | | transaction
ized as multi-leveltransactions. Multi- manager manager manager
level or layered transactionsare aspecial i j

case of nested transactions. Each transac- —~--_ \

tion (tree) has theame nestingepth. The

_ . concurrency
nodes of ajiven level of aransaction tree |0bject manager control
. (data system)
alwayscorrespond to operations at a paf-
recovery

ticular level of abstraction in alayered
system. The edges in a transactinee

express the fact that the operations of

complex record
manager

(access system)

constraints,
rules, trigger

particularlevel arerealized by a sequence

of operations at the next lower lev8ince

eachlevel of atransaction tree represents

storage system

transaction
types

tool kit

OHSWOZ

its own level of abstraction each transac-

tion on this levehas to release its objectd=ig. 9.1: Deep integration of the tool kit into the

NDBMS

-85 -

after commit. In case of a transactiaiure at a higher levebliback has to be carriealit by
compensating transactions. The key ideasidfi-level concurrency control are iacrease ef-
ficiency by releasinglatamuch earliefat least on lowefevels ofthe system) and to make use
of semantics-based concurrency control; for instance, to expémemantics of operations in
level-specific conflict relations that reflettte commutativity or compatibility ofoperations
([WeSc91l)).

Concurrency control for a layered architecture camiptemented on several levels.dase of
the tool kit we arehinking about aquasi thredevel architecture where the lowdstel is the
pagelevel, the medium levelthe complexrecord (storage objeckgvel, andthe top level the
objectlevel (quasibecause the objelgvel is a kind of logical level). Opage andomplex re-
cord level we want toimplement a combination of semantics-basedcurrency control and
locking which means that weant torealize semantics-based concurreaeoytrol bymeans of

the extended set of lock modes provided by the tool kit.

10 Overview of related work

Especially inthe recent past aumber of transaction modeiisr advanced databasgplica-
tions were proposed in literature. Ageady mentionednost of these approaches are either
geared tospecial applicatiorareas or concentrate on the supporsmécial conditionglike
distribution ofdata) or are adapted special types of database systdfit®e active database

systems).

10.1 Special purpose transaction models

10.1.1 Design applications, especially CAD/CAM/VLSI

Design applications, especially CAdhd VLSI applications, were among tiirst areaswhich
strongly insisted orthe development of more powerful transaction models. Therefore, most
earlier proposalsoncentrate on the support of themgplication areas; c. f[HalLo81],
[LoPI83], [KLMP84], [KoKB85], [KSUWS85], [H&R087-1]Basically,these approaches con-

-86 -

centrate first ofall on modularity, failure handling, ancbncurrent execution of subtasks. Co-
operative work isisually onlysupported on a lowevel sincethese approachdmsically insist
on strictserializability orweaken stricserializability only in speciaituations, forexample, to

facilitate a controlled lending, transfer, or exchange of objects.

[HaRo087-1]discuss various issues of concurrenowntrol for nested transactions.ndodel of
nested transactions is introduadlbwing for synchronous and asynchronous transaction invo-
cation aswell as single caland conversational interfaces. Their approach is amondrshe
which enablesiot only parallelismamongsiblingsbut also among parent aectildren;for in-
stance, they permit non-leaf transactions to perform operatiordatan Their concept of
downwardinheritance of locksnakesdatamanipulated by @arentavailablefor its children.
Moreover, the authorsefined their originalconcept tocontrolled downward nheritanceto
enable dransaction to supervise and restrict the access modeinferisrsfor an object (see

also sectior.3Task.

Sincethe above approaches concentrateraaularity, failure handling, andoncurrent exe-
cution of subtasks (even thoughdifferent ways) we strongly assume tlia currentersion
of our toolkit is able to emulatéandimplement)these approaches moreless directly. Ap-

propriate investigations to substantiate this assertion are under way.

The Cooperative Transaction Hierarchy or Transaction Groups concept ([SkZd89],
[Nozd90]) defines anested framework for cooperating transactions design environment.
Traditional approaches to transaction processing reqairgélicting operations to be executed
in a strictly sequential way. The Transact®roupsmodel tries to overcome this problem by
structuring a cooperative application as a rodtedcalled acooperative transaction hierar-
chy. The leaves othe hierarchyrepresent the transactions associated withnligidual de-
signers, calledooperative transactions The internal nodes are thransaction groups Each
transaction groupontains aset ofmembers thatooperate to execute a single taskadtively
controls the interaction of its cooperatingembersCooperative transactions needt to be
serializable; insteathe transaction group of the cooperative transactiefises aset ofrules
that regulate the way the cooperative transactions should interact with each othetahoe,
within atransaction group, medrertransactions and subgroups ayachronized according to

some semanticorrectness criteria appropriate for the application. The criterigpafied by

-87-

a set ofactive patternsandconflicts Conflicts are like locks in the sense thaey specify
when certain operations cannot ocdRatterns specify operation sequences that must occur in
a history for it to becorrect. Patternand conflicts in a transactiogroup arespecified by
LR(0) grammars. The observance of the rules is enforced by a recognizer and detgttdr,
which must be constructed for eaapplication. The implementation of transactgmoups is
supported byreplacing classicaibcks with non-restrictivdock mode, communication mode
pairs. The lock mode indicates whethige transactiomtends to read or writthe object and
whether it permits readinghile another transaction writes, writinghile other transactions
reads and nitiple writers of thesame object. The communication magecifieswhether the
transaction wants to be notified if another transaction needs the object or if another transaction
hasupdated the object. Transaction groups and the assodtetadg mechanisnprovide

suitable low-level primitives for implementing a variety of extended transaction models.

Like the tool kit approach thenodel of cooperative transactitmerarchies places particular
emphasis onthe support of cooperative work. However, the tkiblapproach provides sub-
stantiallymoreflexibility in the composition of transactidnierarchies since it permits an arbi-
trary nesting of transaction typagile the model of cooperative transactidmerarchies just
provides one predefined, statieerarchy. Orthe otherhand, themodel of cooperativérans-
action hierarchiesupports thepecification of sequences @berations, a concepthich is not
volunteered by the tool kit approach. The llewel lock modes are a subset of the lockdes
provided by the tool kivhile the concept o€ommunication mode isovered by the rules and

constraints concept.

10.1.2 Design applications, especially CASE

Recently, some papers wagrablished which deal wittransaction models for software en-

gineering.

The Split Transaction Model ([PuKH88]) provides somédacilities for restructuring in-
progress transaction, such as the split-transaction and join-transaction operatiosglit-The
transaction operation allovese on-going transaction to bplit intotwo or more transactions

as if they had always been independent, separ#tiglataitems accessed e original

- 88 -

transaction among the new transactionsseralizable mannemhe join-transaction operation
allowstwo or more on-going transaction to p@ned intoone,combiningthe dataitems ac-
cessed byhe originally separate transactions as if they had aM@gspart of thesametrans-
actions, so that the changes are reletsgether. In either case, thew operations anmeans

to sustain theserializability criterion, even in environments like thighich require some sup-

port of cooperative work. The main contribution of this approach is that it permits transactions
to be split or joined. The tool kitoes noprovide such operations directly. Howewe con-

cept ofsubject related locks providesasis on whichthese operationseem to be realizable.

In fact, this model awell asits successor (see beloggem to be an excellent measure of the
applicability of the tool kitsince it requirestandard transaction types to be equippti

further application-specific semantics. Again, investigations are under way.

[Kais90] extends the aboweork by adding and integratinthe concept of programmaentter-
action. The novelty of thiapproach is the support of groupsiradividualswho are cooperat-
ing to achieve commogoals in the context afesign environments based on objeenage-

ment systems.

Cooperative transactions have been designetipport cooperatioamong themembers of a
group wihist groups must be isolatddbm other groups omdividuals. Asthe author states,
nearly all proposeaooperative transactioachemes have a particular shortcomingmely
they donot permit overlappinggroups. Forexample, they usually doot allow a manager to
see up-to-the-minutevork of his developer groups. The proposed participant transaction
model, however, introduces a ndarmalism, called participation domaifgr relaxing the
classical intent of seriability. It allows certain users to be designated as participants in a
specific set of transactions. These transactioeednot appear tchave been performed in
some seriabrderwith respect to these participants; for instance, participaats view un-

committed updates. All other users, however, must observe a serial order.

The primary incentive behind participation domainstlasbasisfor the Participant Transac-
tion Model is that serialization conflicts can arisely acrossdomains, never within domains,
by definition. The intent is thahostconflicts wouldnormally arisebetween transactions asso-
ciated with thesame domain provided that domaare carefully designed toepresent appro-

priate softwaredesign activities. The users controlling these transaciomsooperating on

-89 -

the samegroup taskand thusvery likely need to share objects. Users working on unrelated
tasks are assumed to very rarely share objects, and in these few cases the cost of creating paral-
lel versions, with the latanerging problem is acceptable. In thespecthis approach isery

close toour assumption that competitive and cooperative environmeifitcoexistwithin a

nested transaction (see Figur8&). Our concept of owner gmilar tothe concept of groups

since itdoes not restrict theomposition of agroup. Thereforegverlappinggroupscan be es-
tablished. Thesupport of cooperation in theense of the pposed participant transaction

model exactly meethe intention of the tool kit approach and, therefore, mustddezable by

the tool kit.

In a succeeding article ([KaPe91]) thaethors report that isome situations their proposal is
still unacceptable since it is symmetii@r example, it allows developers to inspect whatever

the manager is doing. Therefore, the article presents a more general solution to this problem.

10.1.3 Other approaches

The Nested Transaction Model with Predicates and/ersions NT/PV Model for short
([KoSp88]), enhanceshe nested transactianodel by explicitpredicates and nitiple ver-

sions. Each subtransaction has a precondition and a postcondition. The precondition describes
the database statehich isrequired for the transaction to execute corredtllgile the post-
condition describethe state of the database after the transactommits. The concurrency
control component ensures that interleaved executions of transactior dolate any of

these conditions. As is demonstrated in [KoSp@&plicit predicates are another concept to

implement cooperating transactions.

With multiple versions aew version of alataitem iscreatedcontainingthe newvalue each
time the datatem isupdated. The oldalue is saved and can be exploitedtysy concurrency
control component tallow greater concurrency. The tool kiffers several alternatives to ex-
ploit the existence of versions to increase concurrency efficiency (object-related locks,

special lock modes).

-90 -

[LeMS91] propose thénteractive Transaction (ITX) Model to address requirements for
transaction processing inmultimedia telecommunication environmenhe authors propose

a feedbacknechanism to makilne model interactive. This providehe ability to build appli-
cations as a set of cooperative tasks. They define an interactive tranddctiéor short) as a
feedback control process that interacts with the environment iteratively to satisfy (passibly
defined) objectives. Cooperative objectieesdefined interms of the observations on the ob-
jects shared by the cooperating ITXs. Bystem appears to be in a stadtigte to ITXwhen

its observations reain unchanged.#h stablestates are characterized by the correctness cri-

terion of fixed point.

To achieve the cooperative objectives, multiple ITXs indirectly interact with each other by issu-
ing transactions (TXs). TXs are atomic, but need beserializable. ANTX remains active

until some predefined termination conditiormet. While anITX is active, it monitors and re-

acts to the change in the states of the shared objects, possibly by repeated execution of its TXs.
The execution of the TXs is controlled by the correctness criteria of theBdtk.the termi-

nation condition and the correctness criteriasecified bythe application logic andhe us-

ers.

The contributions of the ITX model are:

% a high level feedback control framework supporting several correctness criteria

% a new correctness criterion for tdefinition, monitoring, anatontrol of the distributed

cooperative tasks

& an execution control criterion supporting active database features such as triggers, con-

straints, active views, and snapshot

The last approaches, like some succeeding propasdison rules, constraints, or triggers.
Since we havaot finishedwork onthis subject we W not compare these facets of the re-

spective approaches with the abilities of the tool kit approach.

-91 -

10.2 Transaction models for special types of database systems

Dayal, Hsu, and Ladin ([DaHL90], ([DaHL91]) proposgeneralized transaction model for
long-running activities and active databasesTheir model is based odifferent types of
nested transactionsiamelyconcurrent subtransactions, deferred subtransactions, and decou-
pled (causallydependent and independent) transactions,triéggers Concurrent subtrans-
actions are subtransactions of a nested transaction ioriganal sense. Ithe execution of a
subtransaction isxplicitly delayed untilthe parent transactiomasfinishedits task the sub-
transaction iscalled deferred. Like a regular subtransactiotihe commit of a deferred sub-
transaction is conditional subject to the fate of its superiodeddupled transactionconsists
of a set of actiong/hichwere brokeroff from amore general transaction and execuwatiin
the decoupled transactioecoupling some actions permits transactionsfingsh more
quickly, thereby releasing systamsources earlier, anthproving transaction response times.
A decoupled transaction can execute concurrently with the transactionwinazh it was
spawned. If it has to be ensured tha decoupled transaction must de¥ializedafter the
transaction fronwhich it was spanned, the decoupled transactiaralied to becausally de-
pendent it can commitonly if the initiating transaction commits anohly after theinitiating
transaction has committed. If no such dependencies teeisiecoupled transaction galled
causally independent In contrast to regular concurrent subtransactionsbant of a decou-
pled transaction does not effect thiiating transaction (foexamplethe initiating transaction

need not to be informed about the failure of the decoupled transaction).

The proposed transaction model is especially tailored to the needs of an active dytibase

in which event-condition-action (ECA) rulese used as general formalisnfor modelling the
functionality (the activity) of the database. In such an environment a transactiapeikecute

an operation thagignalsevent E for rule Rwhich has condition C anaction A. If the E-C
coupling mode is immediate, then C is evaluatedaas as E is detectddithin the corre-
sponding subtransaction). If the mode is deferred, then C is evalitttédthe shelter of T,

but after the last operation in T (again, within the corresponding subtransaction). If the mode is
decoupled, then C is evaluated in a separate transactiosaftseptions areavailablefor the

C-A coupling.All in all, the model shows a mor#exible way for expressingontrol flow for
long-running activities irthe context of an active databasestem. The use ahe ECArules

allows the control flow to be dynamically modified based on the database state or the history of

-92.-

events that have occurred. Exception handlemelisascompensating actions (see below) can
be associated with each activithese are invokedutomatically bythe system using dixed

policy as in the Saga model (see later) or they can be dynamically invoked by rules.

10.3 Transaction models based on compensating transactions

The use of compensating transaction providashmoreflexibility with respect to theelease
of data. Inthis section we W discuss some approacheiich substantially rely on compensa-

tion.

[GGKK91] introduceNested Sagass a means to allofer composition of long-running ac-
tivities into Sagas. ASagawasdefined as a collection of atomi@nsactions ([GaSa87]). By
grouping transactions into a Saga,agplication gainshe ability to not only abort anindivid-

ual transactiorbut acollection of transactionslamely aSaga. Arollback process of a Saga

relies on the following two rules:

& Active transactions of the Saga are simply aborted and rolled back.

& Committed transactions of the Saga are compensatagghgation programs (compen-

sating transactions) that were coded and supplied when the Saga was created.

One shortcoming of theriginal concept of Sagas is that it limitesting totwo levels.Nested
Sagas remove this defieicy by generalizinghe two-stagemodel to an arbitrarily nested

model. Nested Sagas can recursively be defined as follows:

& A single, atomic transaction igpaimitive Saga.
% A collection of Sagas is@mposite Saga

& A Saga is composed of an arbitramymber of primitiveSagas (transactions) and com-

posite Sagas.

A Saga can be requestedatioort atany time. PrimitiveéSagas are aborted bylling back their
effects, since thegre atomic transactions. Aort of a composite Sagaapplied to each of

its component Sagas. Those thave committedare compensated fowhile those that are

-93-

running are recursivelgborted. Theompensating actions usedabort a Sagaust be speci-

fied when a Saga is defined.

As nested transactions nested Sagas suppodettenposition of a long-running activity into
a collection of relatedsimplersteps. The iain achievement of thigpproach is itability to
abort orcommit activities (subtransactions) independently by explottiegconcept of com-
pensating transactions. Transactions, howesidirhave toobserve théACIDity property; for

instance, a support of cooperative work is not within the scope of this approach.

[VeEI91] recommendhe S(emantic)-Transaction Modelwhich can be seen as adaptation

of the Sagamodel to ahighly autonomous multidatabassvironment;for instance, the S-
transaction protocol supports the distributed and autonomous executomg-ti’ed, dynami-

cally generated, tree structured transactions. The model was introduced to support cooperation
of theinternational banking system. Since autonomy and confidentiality is a cwajoern of

this approach, a componesystem issuing a-transaction cannot dictate to ottsgstems
which further system should participate time execution of the S-transaction. A component
system is entitled to execute a subtransaction of an S-transacéioy way it wishes. lrcase

of a failure, a component can issue an equivatsqiest to an alternatigystem. Consequent-

ly, the exact execution tree of an S-transaction cannot predefimedy Vary fromone execu-

tion to another. For reasons of recovery, S-transactionsampensating transactiorfSince
subtransactions alys commit when theyomplete their task thisolation of S-transactions is
only supported at théevel of subtransactions. Therefore, no concurrency control or commit-
ment control is required athe level of S-transactions. The successfaiture of a subtransac-
tion depends on the succesdalures of its children, and is described as an algebraic expres-
sion called a semantmonstraint. S-transactions are meant to preserve lbcah andglobal

consistency but, of course, only if the involved component systems can guarantee consistency.

[MRKN91] present d@ransaction model for anopen distributed publication environment

The main properties of theimodelare that thesystem carguarantee (global) ACIDity under
certain conditions, that a highgegree of concurrency can be achieved (compared to conven-
tional transaction management), and that partial transaction urslgperted by aborting
subtransaction (as is usweithin nested transactions). The transaction model is based on open

nested transactions ([BeBG89], [WeScAd]ich are ageneralization of multi-leveiransac-

-94 -

tions (see below). The am achievement obpen nested transactions is that the changes of a
subtransaction can already be matsble atthe end of the subtransaction, howevet to
every other transaction. In order @void inconsistent use of the results of committed sub-
transaction®nly those (sub)transactionghich commute witithe committed one arlowed

to use the results. Theg, the result of the execution obmmuting transactions must be inde-
pendent of their executiaorder.Early release oflata requires thexistence of inversepera-
tions; for instance, the transactiamdel relies on compensatitigainsactions and semantics-

based concurrency control.

The concepts of semantics-based concurrency control and compensating transactions are
closelyrelated to each o#n. Semantics-based concurrency conaibbws the system to ex-

ploit commutativity or even compatibility ajperations (for aefinition, see sectioh.1). Both
commutativity as well as compatibility means that fritva transactions' point @few the or-

der in which compatibleoperations are performed is irrelevant. Consequentlypttier in

which two compatible operations pand op will be performed is accidental, either dpefore

op, or viceversa. And oftourse, such an open situatioasgreatinfluence onrecovery. Tra-

ditional techniques, like before-images, can no longer be applied sinse itgouldmeanthat

rollback propagation may occur (or, even worse, that durability can no longer be ensured). The
only serious alternative is to combine semantics-based concurcenty! andcompensating

transactions.

The currentversion ofthe tool kit neitheisupportssemantics-based concurrency control nor
compensating transactions. However,beeve thabur concept ofock distinction incombi-

nation with the rule/constraints/triggerechanism othe tool kit can serve assalid basis for

an integration and implementation of various facets of semantics-based concurrency control

(see section 5.4).

10.4 Multi-level and open nested transactions

Multi-Level or Layered Transactions(c. f., [BeSW88][Weik91]) and their generalization,
the Open-Nested Transactiong[BeBG89], [WeSc91]) are a variant of nested transactions.

Nested transactions adbstinguishable from layerettansactions first in that theinternal

- 95 -

structure ieexplicit andprovided as a uséacility, and second in that their component transac-
tions arenot necessarilyatomic.Multi-level transactions have amplicit hierarchical internal
structurewhich is aresult of transactionsvoking operations orcomplex objectsThus, the
operations are decomposable into sub-operatiBogh operationsand sub-operations are
considered atomic. That is the user sepsibli-level transaction as a set afomic operations
similar to a traditional transaction. The nesting is provided as a sfestéity and isnot visible

to the userThis means that layergéchnsaction arérst of all designed to provide a higher de-
gree of concurrencgby finer grainedock granules) anefficiency (by exploitingoperations'
semantics on different levels thfe system). As waaready mentioned in sectionti® internal

levels of the tool kit rely on multi-level transactions.

10.5 Multidatabase transaction models

Multidatabase transaction models extéimel concept of nested transactions t@pelicable in
multidatabase environments.multidatabase systemprovidefacilities to access datatored

in multiple autonomousnd possiblheterogeneoudatabase systems.

Polytransactions ([RuSh91]) concentrate on tineaintenance of interdependefata inmulti-
database environmentsiterdependent datais defined to beéwo or more datatemsstored

in different databases thate related to eaabther through amtegrity constraint. Thénteg-
rity constraintspecifiesthe datadependency anthe consistency requirements between the
dataitems.For agiventransaction the polytransactiomodeldoes notrequireall of the sub-
transaction dependencies and execution dependencies between them to be known in advance.
Instead, it is assumed that there exists an interdatalepsedency schen{iDS) which con-
tains aset of datadependency descriptors {Dthat specifythe interdatabasdependencies.
The DPs contain information indicatinthe conditionsvhenthe datadependency is to be con-
sidered violated, and the repair action to recoved#tadependency. A polytransactiori &

the transitive closure of a transaction T with respect tdQ&e Thatis, when a transaction T
is executed, the 38 are checked to see if actions need to be takeratatainthe consistency

of the database. The appropriate actions are takech may inturn cause other actions to be
taken, and son. Ineffect, the transaction T is considered thet transaction of polytransac-

tion T+ and the actions generated by T are considered to be the subtransactions of T. The ac-

- 96 -

tions generated by actions are considered to be the subtransactions of subtransactions. The
mainachievement ofthe polytransactiomodel is that it freethe programmefrom having to

worry about maintaining global data dependencies.

The nain intention of theFlex Transaction Model ([ELLR90], [Leu91], [RELL9Q]) is to
provide moreflexibility in transaction processinggspecially in multidatabase systems. As
usual, they assume a long-duration transaction to be decomposablsettof aubtasks. The
Flex Transaction model allows the usespecifyfor each subtask set offunctionally equiva-

lent subtransactions, eachwafiich whencompleted Wi accomplishthe task. The execution of

a FlexTransaction succeedsall of its subtasks araccomplishedfor instance, for each sub-
task one of thepecified functionally equivalesubtransactions must commit. The approach is
resilient to failures ithe sense that mhay proceed angommit even if some of its subtransac-
tions fail. An important contribution of the model is that it allows to define dependencies - real-
ized by predicates - othe subtransactions of Flex Transaction, like failure-dependencies,
success-dependencies, and external-dependencies. Failure-dependencies and success-depende
cies definethe executiororder on thesubtransactions/hile the external-dependencidsfine

the dependencies dhe subtransaction execution on events thatatdelong tothe transac-

tion. Moreover Flex transactions allovthe user to control thisolation granularity of darans-
action through the use of compensating transactions. Regarding to Efguhe approach al-
lows thedefinition of manypossiblepaths toachieve a (predefinedjoal. In contrast to the

tool kit this approach has placed his main emphaspgetefiningpossible paths.

The tool kit, in its current version, doast consider aspects of multidatabase environments.

An extension of the tool kit in this direction is subject to future work.

10.6 Higher level approaches

ACTA ([ChRa90]) is a common transaction framewarthin which one carspecifyand rea-
son about the nature ofteractions between transactions in a particular model. It can be used
to formally specify atomic transactions, Sagas, and a number of variations to the oragiehl
of Sagas, each variatimomingout of changes to théormal characterization ddagas. More

specifically, ACTA allowsthe user tespecifythe effects of transactions asther transactions,

-97 -

via the definition ofinter-transaction dependenciesnd theeffects on objectsjia the specifi-
cation of theview of a transaction, theonflict setof a transaction anda the concept oflele-
gation The inter-transaction dependencaessimilar tothe onesvhich can be definedithin
the Flex Transaction model (commit, aliptermination, exclusion, begin, serial dependencies,
etc.). The notion o¥iew is similar tothe notion of accesgew in the tool kit approach (it de-
fines the state of objectsisible to atransaction at given moment).The conflict set of a
transaction contains those in-progregerationswith respect tavhich conflicts have to be
determined; for instance, @lows the user taspecify that conflictingoperations in theisual
sense ar@ot beconsidered as conflicting in a given environmdiiite conflict relatiorallows
ACTA to capturedifferent types of semantics-based concurretmytrol, and to tailothem
for cooperative environments. Therefaifeg intention ottonflict set issimilar tothe intention
of the morerelaxed interpretation of lock modestbg tool kit approach. Both approaches al-
low the user tamplement differenfacets of semantics-based concurrency cofftoola dis-
cussion of thigopic with respect to the tool kit see above) anthstall different kinds of co-
operative environments. Howevemcethe tool kit doesiot require the user tdefine com-
patibility onthe level of operations it can be regardedlssng a little bitmoreflexible. If re-
quired, it allowsthe user tadefine anoperation to be compatible Bnother one in given
situation whilst being incompatible amother situatiorfby acquiring differentock modes, for
example, U/U in the first case and U/S in dtker).Finally, delegationallows a transaction to
delegate theesponsibilityfor committing or aborting amperation on an object to another
transactionThis concept issimilar tothe concept o&xplicit cooperation (see section 4.5) of
the tool kit approach. However, in the tool kit approachgtamularity of delegation is the
object andnot the operation on thebject. Moreover, in order taot underminethe con-
straints of the lock protocol 'astuty’ the tool kit permits delegatiamnly if special conditions
are satisfied. To summarizéhe ACTA framework allowsthe user to control ansupervise
(sub)transaction executiomhich isnot anintention of the tool kit approach. it respect to
the maleling of specifidransaction managel®oth approachelsavethe same intention. How-
ever, we assume thete tool kit provides a superset of tlaeilities ofthe ACTA framework.

A more precise statement to this assumption is subjentasfsive studieg/hich arecurrently

performed at our department.

-08 -

The ConTract model ([Reut89], [W&aRe91]) concentrates on thedinition and controlling of
long-lived computations inon-standard applications. @onTract is defined as aet of pre-
defined actions (callestepg with an explicit specification atontrolflow among them. Astep
mustnot necessarilycorrespond to a (sub)transaction. It can also bet @f actionsot per-
formed under the shelter of a transaction. Theretbre,approach is on semantically higher

level than the other approaches presented in this section (and, of course, as the tool kit).

The main emphasis of the ConTract model is that the execution of a ConTract must be forward
recoverable. This means when an execution@bm@Tract is interrupted biailures, it must be
re-instantiated and continued from where it was interrupted after the system has recovered. For
this reasonall stateinformation includingdatabase state, prograsariables of eacktep, con-

text information, and thglobal state of the ConTrachust be made recoverable. As Sagas, a
ConTract isallowed to externalize partial results beftine wholeConTracthas committed.
Compensating transactions are used to obliterate the results of committedvistgpare
identified as to be useless or integrity violatingatrospectSimilar tothe NT/PVmodel, the
ConTractmodel allows to define invarian{§or example, preconditions, postconditions) on
(data of) the database to suppanid relax concurrencgontrol. As most other approaches
which cover the aspect dupervising and controlling transaction executitims ConTract

model allows the user to resolve conflicts in a more flexible way by specifying what to do when

conflicts occur.

The main purpose of the tool kit is to provide concepts for the construction of transaction
types and application-specific transaction manage@ontrol and supersion of
(sub)transaction executions predefining possible executiarders of (sub)transactions are
not within the scope of the curremersion ofthe tool kit; for instance, the tool kit can be re-
garded as to offer services onsamanticallylower level than, forexample,the ConTract
model. Nevertheless, to be accordwith its intention the tool kihas to provide somieasic
conceptswvhich can begaken as a framework tealize higher levetoncepts. Fothis reason,

the tool kit providesngredients likesubject related locka/hich, amongthers,can be used to
realize a controlled transfer of objects frame transaction to another, oonstraints and
rules,which can be exploited by higher levetsncepts, foexample, to realizeontrol flow. In

fact, within alarge, nationwide research prograf@ifject bases for Exgots, sponsored by the

-99 -

German Research Commun{FG)) we intend to integratthe tool kit approach and the

ConTract model in order to bring together this two levels of abstraction.

10.7 Tabulated overview

Figure 10.1 summarizeghe features of the most relevanbdelscovered in this survey in

terms of whether the respective transaction model

&

&

providesdifferenttransaction types,
allows anarbitrary nesting of transactions,

supportsACIDity or user-defined correctness criterfaowever, ACIDity must be

considered as discussed in section 2.3),
offers arule, constraint or trigger mechanism
supportcompensatiof actions, and

allows the user toontrol or supervise the executioh(sub)transactions.

- 100 -

Model Transaction Subtrans. Correctness Rules Compen- Control

Types Hierarchy Criteria sation Flow
Traditional no no ACID no no no
Nested no yes ACID no no no
[Moss81]
CAD/CAM few yes ACID? no no no
[KLMP84], [KoKB85]
[KSUwS5]
Cooperative trans. 2 yes user-defined yes no limited
[Nozd90]
Split no no, dynamic ACID no no no
[PuKH88] restructuring
Participant trans. 2 yes user-defined no no no
[Kais90]
Active DBS 3 yes ACID yes yes no
[DaHL90]
Sagas no no ACID no yes no
[GaSa87]
Nested Sagas no yes acitH no yes no
[GGKK91]
S-transaction no yes acitt no yes no
[VeEl91]
Multi-Level no yes, balanced, ACID no yes no
[WeSc91] static level
Open-Nested trans. no yes acitH no yes no
[MRKN91]
Polytransaction no yes user-defined yes o no
[RuSh91]
Flex transaction no yes user-defined yes yes yes
[ELLR90]
ACTA numerous, can yes ACID - yes yes yes
[ChRa90] be constructed user-defined
ConTract limited? no Acip! yes yes yes
[W&aRe91]
Tool Kit numerous, canyes,hete- ACID not yet not yet no

be constructed rogeneous user-defined
1. depends on the involved component systems
2. [KSUWS85] allow a restricted cooperation within group transactions (isolation is weakened)
3. by the concept gfatterns(allows to specify operation sequences that must occur in a history
4. however, they provideonsistency restoration proceduresich restore consistency wh#re modifica-

tion of some data makes other data inconsistent

Fig. 10.1:Characteristics of advanced transaction models

- 101 -

11 Concluding remarks

We have presentedflexible and adaptable tool kit approach for transacti@magenent. The
tool kit allows a sophisticated applications designer or database immertedevelop indi-
vidual, application-specific transaction managers. Matbbntion wagpaid to a comprehensive

support of different facets of cooperative work.
The main characteristics of the tool kit are:

1. It supports theefinition of a large number of differetrtansaction typesThese transaction
types are meant to reflect the requirements of different application areas. We have presented
a basicset ofcharacteristics by whictransaction typesay differfrom each otkr. How-
ever,sincethe tool kit is extensibléhis setcan be augmented if additional demands need to

be met.

2. The different transaction types can be combined with @hen inany hierarchicabrder to
form a heterogeneously structured transaction hieraratlyich is capable oSupporting
such differentoncepts as strict isolation of (sub)transacti@mshe sense doferializability)
and (non-serializable) cooperatiwerk in onehierarchy.For this reason a generaét of

rules was proposed which has to be obeyed by each transaction type.

3. With respect to concurrency contridsuesthe tool kit provides concepts on two
(orthogonal)levels. First, the tool kit provides a set of lock modes in the waigsense.
However, to beble toreact to the needs of cooperativerisnments locks can b&uch
finer grained. Each lock mode is described byiraarnal effect/external effect paiiThis
subdivision permits aaxact adaptation of locks to the requirementditéérent application
area; for instancegpplication-specific semanticain be exploited for reasons of concurren-
cy control. Moreover, it was shown that thebdivision oflock modes can bexploited to
comprehensivelgupport cooperative wonkithin a nested transaction. Second, in addition
to '‘conventional' transaction related lodigect relatedandsubject related locksvere in-
troduced.Object related locks are bound to objects and can betaséat example, deal

with different types of version models (time versions, version graphg)rary (standard)

- 102 -

objects. Subject related locks are bound to subjects (user, appliestipand can be used

to, for example, supervise or direct the transfer of objects between transactions.

A first prototype of the tool kit wasnplemented in Smalltalk otop of the relational DBMS
ORACLE and is currently in iteestphase. It serves as a testbed for ékamination of the
weakness and strong pointsair approach. Wentend, as a secorstep, to integrate a re-

vised version into the database kernel system QM8¢89).

Further investigations

An urgent task is thdefinition of a formalnotion of consistency ithe context ofadvanced
database applications. Furthgork has to be invested to integrate concepléch allow a

child transaction to become even more independent gfaitsnt transaction, for instance, to
support the concept of open nested transactigie3c91). Moreover, the need that a trans-
action hierarchy has to form a tree might be too restrictive in same cases (although cooperation

makes it possible to evade this principle). We want to support transaction graphs as well.

Another crucial point ishe development of an appropriatéelligent interfacdor the tool kit.
Even the currentersion ofour toolkit is rathercomplex and requiredeep knowledge about
the characteristics and concepts of transactianagement. Therefore, we wém tool kit to
provide an intelligent interfacerhich supports a DBI irhis task to choose the riglsbmpo-

nents and to combine them in an appropriate way.

At some latetime we vant to extend the tool kit inveay that it also permitthe construction
of transaction managers for homogeneous/heterogeneous distributed deyatesssgfor ex-
ample, multidatabase systems as describgele9Q and[ELLR9Q]).

Acknowledgement

I wish tothank Prof. Dr. GunteBchlageter fohis supportand his much(not many, because
uncountable) constructive amelpful commentgnot only on thistopic), andHarm Knolle,
and Erhard Welker for thelrelpful commentsind valuablesuggestions on a former version of

this paper.

- 103 -

Literature

[BaKa9]1 Barghouti, N.; KaiserG.: Concurrency Control in Advanced Database Applica-
tions ACM Computing Surveys; to appear 1991

[BaRa90] Badrinath, B. R.; Ramamrithan, Rerformance Evaluation of Semantics-Based
Multilevel Concurrency Control Protocql$’roc. ACM-SIGMOD Int. Conf. on Man-
agement of Data; Atlantic City, NJ; May 1990

[BBGS8§ Batory, D.;et.al.: GENESIS: An Extensible Database Management Syttt
Transactions on Software Engineering; Vol. 14, No. 11; Nov. 1988

[BeBG89 Beeri, C.; Bernstein, P.; Goodman, N.Model forConcurrency Control in Nested
Transaction System3ournal of the ACM; Vol. 36, No. 2; 1989

[BeHG87 Bernstein, P.; Hadzilacos, V.; Goodmah; Concurrency Control and Recovery in
Database Systemaddison-Wesley Publishing Company; 1987

[BeSW88] Beeri, C.; Schek, H.-Weikum,G.: Multi-Level Transaction Management: Theo-
retical Art or Practical Need Proc.Intl. Conference Extending dda BaseTechnology
(EDBT); Lecture Notes in Comput&cience303, J. W.Schmidt, S. Ceri, MMissikoff
(eds.); Springer Publishing Company; 1988

[BOHG92] Buchmann, A.QOzsu, T.; Hornick, M.; Georgakopoulos, Manola, F.:A Trans-
action Model for Active Distributed Object SystemgEIma92]

[CaDe8T Carey, M.J.; DeWitt, D.JAn Overview othe EXODUS ProjectlEEE Database
Engineering; Vol. 10, No. 2; June 1987

[ChCh82 Chang, J.-M.; Chang, S. KDatabase Alerting Techniques for Office Activities
ManagementlEEE Transactions on Communications; Vol. COM-30, No. 1; Jan. 1982

[ChRa9(Q Chrysanthis, PRamamrithan, KACTA: AFrameworkfor Specifying and Reason-
ing about Transaction Structure and Behayi@®roc. ACM-SIGMOD Int. Conf. on
Management of Data; Atlantic City, NJ; May 1990

[ChRR91] ChrysanthisP.; Raghuram, SRamamithan, K.: Extracting Concurrency from
Objects: A MethodologyProc. ACM-SIGMOD Int. Conf. on Management of Data;
Denver, Colorado; May 1991

[DaBM88] Dayal, U.; Buchmann, A.; McCarthyD.: Rules are Objects too: A Knielge
Model for an Active, Object-Oriented Database ManagenSsistem Proc. 2nd Int.
Workshop on Object-Oriented Database Systems; Bad Munster, Germany; Sept. 1988

[DaHL9] Dayal, U.; Hsu, M.; Ladin, RA Generalized Transaction Model for Long-Running
Activities and Active Databasdextended abstract)EEE DataEngineering Bulletin;
Vol. 14, No. 1; Special Issue on "Unconventional Transaction Management"; March
1991

[DaSm86 Dayal, U.; Smith, JPROBE: A Knowledge-Oriented Database Management Sys-
tem in: 'On Knowledge Bse Management Systems';, M. Brodie, J. Mylopoulos
(Editors);, Springer Publishing Company; 1986

- 104 -

[Davi73 Davies,C.: Recovery Semantics for a DB/[BystemProc.ACM National Confer-
ence 28; 1973

[DeZo81 De Antonellis, V.; Zonta, B.: Supporting Semantic Rules by a Generalized
Event/Trigger Mechanisjroc. 6th Int. Conf. on Very Large Data Bases (VLDB); 1981

[DKAB86] Dadam, P.; Kuespert, KAndersen, F.; Blanken, HErbe, R.; Guenauer, 1Lum,
V.; Pistor, P.;Walch,G.: A DBMS Prototype to Support RfRelations: An Integrated
View on Flat Tables and HierarchieBroc. ACMSIGMOD Int. Conf. on Management
of Data; Washington, D. C.; 1986

[EIma92] Elmargarmid, A(ed.): Databas@ransaction Modeldor Advanced Applications"
Morgan Kaufmann Publishers; 1992

[EIDe9Q Elmagarmid, A.; Du W.A Paradigm forConcurrency Control in Heterogeneous
Distributed Database Systentroc. IEEE 6th IntConf. on DateéEngineeringlLos An-
geles, California; Feb. 1990

[ELLROQ] EImagarmid, A.; Leu Y.; Litwin, W.Rusinkiewicz,M.: A Multidatabase Transac-
tion Model for InterBaseProc. 15th Int.Conf. on Very Large Bta Bases (VLDB);
Brisbane, Australia; Aug. 1990

[Eswa76 Eswaran, K. P.Specifications, Implementations, and Interactions of a Trigger Sub-
system in an Integrated Data Base Sysi@&#l Research Report RJ1820; Aug. 1976

[FrBo89 Freitag, J.; BodeT.: A General Manager for Storage Objects as the Basis for the
Implementation of Complex Objects in an Object Management Sy@te@erman);
Proc. GIConference on Database SystemsQ&ice Automation, Engineering, and Sci-
entific Applications; Zurich, Switzerland; March 1989

[GaSa8Y Garcia-Molina, H.; Salem, KSagas Proc. ACMSIGMOD Int. Conf. on Manage-
ment of Data; San Francisco, California; 1987

[Garc83] Garcia-Molina,H.: Using Semantidknowledgefor TransactionProcessing in a
Distributed DatabaseACM Transactions on Database Systdif®DS); Vol. 8,No. 2;
June 1983

[GGKK9]] Garcia-Molina, H.; Gawlick, D.Klein, J.; Kleissner, K.; SalemK.: Modeling
Long-Running Activities as Nested Sagestended abstract)EEE DataEngineering
Bulletin; Vol. 14, No. 1; Special Issue on "Unconventional Transaction Management";
March 1991

[GLPT76] Gray, J.; Lorie, R.; Putzolu, F.; Traigér, Granularity of Locks and Degrees of
Consistency in a Shared Data Bage;'Modelling in Data BaseManagement Systems';
G. M. Nijssen (editor); North Holland Publishing Company; 1976

[GMBLS81] Gray, J.; McJones, P.; Blasgen, Mindsay,B.; Lorie, R.; Price, T.; Putzolu, F.;
Traiger, I.:The Recovery Manager of the System R Database Managét; Comput-
ing Surveys; Vol. 13, No. 2; 1981

[Gray79] Gray, J.Notes on Data Base Operating Sytenms;Operating Systems - An Ad-
vanced Course; Bayer, R.; Graham, R. M.; Seegmdiller, G. (edit@sire Notes in
Compuetr Science 60; Springer Publishing Company; 1979

- 105 -

[HaLo81] Haskin, R. L.; Lorie, R. A.:On Extending the Functions of a Relational Database
Systerty IBM Research Report RJ3182; 1981

[HaRe83] Harder, T.; Reuter, ARrinciples of Transaction Oriented Database Recavery
ACM Computing Surveys, Vol. 15, No. 2; June 1983

[HaRo87-1] Harder, Th.; Rothermel, KConcurrency Control Issues in Nested Transactions
IBM Almaden Research Report RJ5803, San Jose; Aug. 1987

[HaRo87-2 Harder, Th.; Rothermel, KConcepts for Transaction Recovery in Nested Trans-
actions Proc. ACMSIGMOD Int. Conf. on Management of Data; San Francisco, Cali-
fornia; 1987

[HeWe88] Herlihy, M.; Weihl, W.: Hybrid Concurrency Controfor Abstract DataTypes
Proc. ACM Symposium on Principles of Database Systems, 1988

[HMMS87] Harder, T.; Meyer-WegeneK.; Mitschang, B.; Sikeler, A PRIMA - a DBMS
Prototype Supporting Engineering Applicatipiiaroc. 12th Int.Conf. on Very Large
Data Bases (VLDB); Brighton, England; 1987

[JaJR88Jarke, M.; Jeusfeld, M.; RosE,. A Global KBMS for Databas8oftware Evolution:
Documentation of first ConceptBase PrototyResearciReport MIP-8819University
of Passau, O. Box 2540, D-8390 Passau, Germany; 1988

[Kais9Q Kaiser,G.: A Flexible Transaction Model fdsoftware Engineeringroc. IEEE 6th
Int. Conf. on Data Engineering; Los Angeles, California; Feb. 1990

[KaPe9] Kaiser, G.; Perry,D.: Making Progress in Cooperative Transaction Models
(extended abstract)EEE DataEngineering BulletinVol. 14, No. 1; Special Issue on
"Unconventional Transaction Management"; March 1991

[Katz84 Katz, R.H.:Transaction Management in the Design EnvironmientNew Applica-
tions of Data Bases'; G. Gardarin, E. Gelenbe (Editors); Academic Press; 1984

[KaWe83 Katz, R. H.;Weiss,S.: "Transaction Management for Desifgratabase§ Com-
puter Sciences Technical Report #496, University of Wisconsin Madison; February 1983

[Kelt87) Kelter, U.:Concurrency Controfor Design Objectswith Versions inCAD Data-
basesInformation Systems; Pergamon Journals Ltd.; Vol. 12, No. 2; 1987

[Kelt88] Kelter, U.:Concepts for Transactions in Non Standard Databaste®s (in Ger-
man); Informationstechnik it; R. Oldenbourg Verlag; Vol. 30, No. 1; 1988

[Kim91] Kim, W.: Object-Oriented Database Systems: Strengths and Weaknéssesl of
Object-Oriented Programming; SIGS Publications, New York; Vol. 4, No. 4; July/August
1991

[KLMP84] Kim, W.; Lorie, R.; McNabb, D.; Plouffe, WA Transaction Mechanism for En-
gineering Design DatabaseRroc. 9th Int.Conf. on Very Large Bta Bases (VLDB);
Singapore; Aug. 1984

[KoDM88] Kotz, A.; Dittrich, K.; Mueller, J.: Supporting Semantic Rules by a Generalized
Event/Trigger MechanispProc. @nf on Extending Bta BaseTechnology (EDBT);
Venice, Italy; 1988

- 106 -

[KoKB85] Korth, H.F.; Kim, W.; BancilhonF.: A Model of CAD Transaction$roc. 10th
Int. Conf. on Very Large Data Bases (VLDB); Stockholm, Sweden; Aug. 1985

[KoKB88] Korth, H.F.; Kim,W.; Bancilhon,F.: On Long-duration CAD Transactionifor-
mation Sciences 46, pp 73 - 107; 1988

[KoSp8§ Korth, H.F.; Speegle, GEormal model of correctness without serializabjliBroc.
ACM-SIGMOD Int. Conf. on Management of Data; Chicago, lllinois; June 1988

[KoSp9Q Korth, H.F.; Speegle, GLong-Duration Transactions in Software Design Projects;
Proc. IEEE 6th Int. Conf. on Data Engineering; Los Angeles, California; Feb. 1990

[KSUWS85] Klahold, P.; Schlageter, Glnland, R.;Wilkes, W.: A Transaction Model Sup-
porting Complex Applications in Integrated Information SystéPngc. ACM-SIGMOD
Int. Conf. on Management of Data; Austin, Texas; 1985

[KUSW92] Knolle, H.; Unland, R; Schlageter, G.; Welr, E.: TOPAZ: A Tool Kit for the
Construction of Application-Specific Transaction Managens;'Objektbanken fur Ex-
perten’; R. Bayer, T. Harder, Pockemann (eds.); Springer Verlag; Informadiktuell;
1992

[LeMS9] Lee, M.; Marsfield, W.; Sheth, A.:An Interactive Transaction Model fd@istrib-
uted Cooperative TaskKgxtended abstract)eEE DataEngineering Bulletin)Vol. 14,
No. 1; Special Issue on "Unconventional Transaction Management"; March 1991

[Leu9] Leu, Y.. Composing Multidatabase Applications using Flexible Transctions
(extended abstract)EEE DataEngineering BulletinVVol. 14, No. 1; Special Issue on
"Unconventional Transaction Management"; March 1991

[LoPI83] Lorie, R.; Plouffe, W..Complex Objects and Their Use in Design Transactions
Proc. Databases for Engineering Applications; ACM Database Week, San Jose, CA; 1983

[MeUn9x Meckenstock, A.; UnlandR.: Recovery Concepts for Non-Standard Database
SystemsResearch-Report (in preparation); University of Minster; 199x

[Moss81] Moss, J.E.BNested Transactions: An Approach to Reliable Computtid Re-
port MIT-LCS-TR-260, Massachusetts Institute of Technology, Laboratory of Computer
Science;1981 and\ested Transactions: An Approach to Reliable Distributed Comput-
ing; The MIT Press; Research RepatglNotes,Information Systems Series; M. Lesk
(Ed.); 1985

[MRKN91] Muth, P.; Rakow, T.Klas, W.; Neuhold, E.A Transaction Model for an Open
Publication Environmenfextended abstract)feEE DataEngineering BulletinVol. 14,
No. 1; Special Issue on "Unconventional Transaction Management"; March 1991

[MSOP86 Maier, D.; Stein, J; Otis, A.; Purdy, ADevelopment of an Object-Oriented
DBMS Proc.ACM 1st Int.Conf. on Object-Oriented Programming Languages, Systems
and Applications (OOPSLA); Portland, Oregon; Sept. 1986

[NeSt89 Neuhold, E.; Stonebraker, MFuture Directions in DBMS ResearctACM
SIGMOD Record; Vol. 18: No. 2; July 1989

[NoRZ92] Nodine, M.;RamaswamysS.; Zdonik,S.: A Cooperative Transaction Model for
Design Databasesn [EIma92]

-107 -

[Nozd90] Nodine, M.; Zdonik,S.: Cooperative Transaction Hierarchies: A Transaction
Model to Support Design ApplicatignBroc. 15th IntConf. on Very Large BtaBases
(VLDB); Brisbane, Australia; Aug. 1990

[PSSW8TY Paul, H.-B.; Schek, H.J.; Scholl, M/eikum,G.: Architecture and Implementation
of the Darmstadt Database Kernel Systétmoc. ACMSIGMOD Int. Conf. on Man-
agement of Data; San Francisco, California; 1987

[PUKH8§ Pu, C. ;Kaiser, G.; Hutchinson\.: Split-Transactions for Open-Ended Activities
Proc. 14th Int. Conf. on Very Large Data Bases (VLDB); Los Angeles, CA; Aug. 1988

[Reed78Reed, D.Naming and Synchronization in a Decentralized Computer SySter.
Thesis; M.I.T. Dept. of Elec. Eng. and Comp. Sci.; Technical Report 205; Sept. 1978

[Reut89 Reuter, A.: ConTracts: A Means for Extending Control Beyond Transaction
Boundaries Proc.2nd Int. Workshop on igh Performance Transaction Systesijo-
mar; Sept. 1989

[ReWagl Reuter A.; Wachter,H.: The ConTract Modelextended abstracthfeEE Data En-
gineering Bulletin;Vol. 14, No. 1; Special Issue on "Unconventional Transaction Man-
agement"; March 1991

[RELL9Q] Rusinkiewicz, M.; EImagarmid, A.; Le\.; Litwin, W.: Extending the Transaction
Model to Capture more MeaningCM SIGMOD Record; Vol. 19, No. 1; March 1990

[RuSh91 Rusinkiewicz, M.; Sheth, APolytransactions for Managing Interdependent Data
(extended abstract)EEE DataEngineering BulletinVol. 14, No. 1; Special Issue on
"Unconventional Transaction Management"; March 1991

[SCFL8G Schwarz, P.; Chang, W.; Freytag, J.; Lohman, G.; McPherson, J.; Mohan, C.; Pira-
hesh, H.:Extensibility in the Starburst Database SystEnoc. of the ACM-IEEE Inter-
national Workshop on Object-Oriented Database Syst&asific Grove, California,;
IEEE Computer Society Press No. 734; 1986

[Skar93] Skarra, A.Concurrency Control and Object-Oriented Databasesoc. 9th Int.
Conf. on Data Engineering; Vienna, Austria; Apr. 1993

[Skzd89] SkarraA.; Zdonik, S.: Concurrency Control and Object-Oriented Databasas
'‘Object-Oriented Concepts, Databases, #&mplications’; Kim, W., Lochovsky, F.
(Editors); Addison-Wesley Publishing Company; 1989

[SpSc84] Schwarz, P.; Spector, 3ynchronizing Shared Abstract TypAE€M Transactions
on Computer Systems; Vol. 2, No. 3; August 1984

[StHP89 Stonebraker, M.; Hearst, M.; Potamian8s, A Commentary on the POSTGRES
Rules SystensIGMOD Record, Vol. 18, Nr. 3; September 1989

[StRHIQ Stonebraker, M.: Rowd,A.; Hirohama,M.: The Implementation of POSTGRES
IEEE Transactions on Data and Knowledege Engineering; Vol. 2, No. 1; March 1990

[StR08T Stonebraker, M.; Rowe, L:AT.he POSTGRES Papef$he Design of POSTGRES;
The POSTGRES Data Model; A Rule Manager for Relational Database Systems; The
Design of the POSTGRES Storage System; A Shared Object Higr&fieunyronics Re-
search Laboratory; College of Engineeribgjversity of California Berkeley, Memoran-

- 108 -

dum No. UCB/ERL M86/85; June 1987dditionally Proc. ACM-SIGMOD; Washing-
ton, D.C.;May 1986;Proc. ACM SIGMOD; San Franciscd;alifornia; May1987, Proc.
13th Int. Conf. on Very Large Bta Bases (VLDB); BrightonEngland; 1987;Proc.
IEEE 3th Int.Conf. on DataEngineering;Los Angeles, California; Feb1987; Proc.
ACM-IEEE Int. Workshop orObject-Oriented Database SysterRscific Gove, Cali-
fornia; Sept. 1986

[Unla89 Unland,R.: A General Model for Locking in Non-Standard Databaseefys(in
German); Research-Repottiniversity of Hagen, Department of Comput&cience;
1988; and (extended abstratpc. Gl 3rdConf. on Database Systems fffice Auto-
mation, Engineering, and Scientific Applications; Zurich, Switzerland; 1989

[Unla90] Unland,R.: A Flexible and Adaptable Tool Kit Approach fGoncurrency Control
in Non Standard Database Systermsoc. 3rd Int.Conf. on Database Theory (ICDT);
Paris, France; Dec. 1990

[Unla91] UnlandR.: TOPAZ: A Tool Kit for the Catruction of Application Specific Trans-
action Managers Research-Report MIP-9113; Uniggy of PassaupDepartment of
Computer Science; Oct. 1991

[UnPS86 Unland, R.; PradelJ., Schlageter, G.Redesign of optimistic methods: improving
performance and applicabilifyfProc. IEEE2nd Int.Conf. on DateEngineeringlLos An-
geles, California; Feb. 1986

[UnSc89-1Unland, R.; SchlageteG.: A Multi-Level Transaction Model for Engineering
Applications Proc. 1st IntSymposium orDatabase Systems for Advanc&gplications;
Seoul, South-Korea; April 1989

[UnSc89-2 Unland, R.; Schlagetef.: An Object-Oriented Programming Environment for
Advanced Database Applicatigniurnal of Object-Oriented Programmii®GS Publi-
cations, New York; Vol. 2, No. 3; May/June 1989

[UnSc91] Unland, R.; Schlageter, @.Flexible and Adaptable Tool Kit Approach for Trans-
action Management in Non Standard Database Systextsnded abstractlfeEE Data
Engineering Bulletin;Vol. 14, No. 1; Special Issue on "Unconventional Transaction
Management"; March 1991

[UnSc92] UnlandR., Schlageter, GA Transaction Manager Development Facility for Non-
Standard Database Systenms [EIma92]

[VeEI9]] Veijalainen, J.; Eliassen, H-he S-transaction Modééxtended abstract); IEEE Data
Engineering Bulletin;Vol. 14, No. 1; Special Issue on "Unconventional Transaction
Management"; March 1991

[WaRe92] Wachter, H.; Reuter, Alhe ConTract Modein: [EIma92]

[Weih88] Weihl, W.: Commutativity-Based Concurrency Contfol Abstract DataTypes
Proc. IEEE 21thAnnual Hawaiilnt. Conf. on System Sciences E8S); Hawaii; Jan.
1988

- 109 -

[Weik87] Weikum, G.: Enhancing Concurrency in Layered Syste@rsd Int. Workshop on
High Performance Transaction SysterRsgcific Gove, California; Lecture Notes in
Computer Science 359; D. Gawlick, Maynie, A.Reuter (Editors); Springdtublishing
Company; 1987

[Weik91] Weikum, G.: Principles and Realization Strategies of Multilevel Transaction Man-
agementACM Transactions on Database Systems (TODS); Vol. 16, No. 1; March 1991

[WeSc91 Weikum, G.; Schek, H.-IMulti-Level Transactions and Open Nested Transactions
(extended abstract)EEE DataEngineering BulletinVol. 14, No. 1; Special Issue on
"Unconventional Transaction Management”; March 1991

[WoKi87] Woelk, D.; Kim, W.:Multimedia Information Management in an Object-Oriented
Database Systenroc. 12th IntConf. on Very Large Bta Bases (VLDB); Brighton,
England; Aug. 1987.

- 110 -

Appendix: An example

As already mentionedhe tool kit isdesigned to offer a basis which allows a sophisticated
applications designer @Bl to model his application layer in appropriate and naturalay.

To do so he must be in a position to consider operations' semantics in his design. In this section
we will demonstrate such an approach bydeling someoperations of aimplified software
development application. Since \aee only interested in concurrency control aspectswilk

only describe the lock-specific part of the operations in more detail.

Let usassume thabur application environment consists ofilarary which includesstandard
procedures as well as individual software modules. Standard procedures can be included "as is"
in software modules. Software modules consist of stanplackedures asvell as individual
code. Anumber ofsoftware modules can m®mbined in asoftware packagehich, in fact,

corresponds to a product, for example, a word processing system.
Standard procedures
For standard procedures the following rules are valid:

1. Since standardrocedures caonly beused as is, a programmemist allowed tomodify

them.
2. If a standard procedures is torhedified this is only possible by derivingh@w version of
it.
3. Standard proceduresay be implemented idifferent programming languages. Therefore,

different representations of a procedure may exist.

4. Sincesoftware ewironmentsmay slightly differ, variants of astandard procedure can be

defined which, for example, differ in the type of their parameters.

2., 3.and 4. mean thatstandard procedure is represented bgraion graplwhich may con-

tain different representations as well as different variants.

The following (informal) operations are defined on standard procedures:

- 111 -

a. browse_standproc (...Read the completeersion graph of a standaptocedure(in a
dirty mode).This operation needs to acquire a B/X-lock (browse
lock).

b. read_standproc (...) Read aspecificrepresentation (variant) of a proceduFais op-
eration needs to acquire an Jt&rivation possible) or S/S-lock

(derivation not possible).

c. insert_standproc (.:.) Insert a new standard procedur&is operation needs timpose
an (object related) PMD-lock (exclusive derivation) on the object

which is to be inserted.

d. derive_standproc (.:.) Derive a new version (representation, variant) of adstahpro-
cedure.This operation needs to acquire a D/S lockdaclusive
derivation or a D/D lock for shared derivation. Moreoveneied

to establish a PMD-lock on the new version of the object.

The concurrency control component will react as follows:

Every standargbrocedure is protected by a PMD lock. A PNtg2k is only compatible
with a B/*, S/* and D/* lock (* can be replaced bgny possibleexternal effect). Other
locks are prohibited. Therefore, an S/D lock doeshave to be considered kiye con-
currency control componersincethe PMD lockalready excludes every incompatible
lock mode. A B/X lock either hasot to beconsidered since it is no lock the literal
sense of thevord. Only an S/S, &/S, and a D/D lock require the concurrency control

mechanism to consider them.

Scenario 1: Software packages cannot be modified

If software packages cannot imadified every modification defines a new versionhe& pack-
age.All versionsare arranged in ankearorder,since at any time onlgne (unique) version of
the software package can Valid, for instance, dime version mechanismeeds to bémple-

mented.

- 112 -

In thefollowing we only want to take a closer look atich operationg/hich demonstrate new

aspects with regard to concurrency control.

Since at any time onlgne new version of a software package can be deri®$Dalockneed
to be imposed on each packdbg everyoperationwhich inserts a new version ofpackage
or a completely neywackage). A PSD locknly permitsthe acquisition of &éB/*, S/*, or D/S
lock fromwhich only anS/Sand a D/S lock need to be considered by the concurrency control

component. This reduces the overhead for concurrency control substantially.

Let usconsidertwo exemplaryoperations, a check-out_softpack (...) operatdnich checks

out aspecialsoftware package fronie database andcaeck-in_softpack (..which inserts a
new version. Theheck-out_softpactgperation needs to request a D/S lock (concurrent trans-
actions arenot allowed tomodify the package or tderive a new version of iut theyare al-
lowed to read the package in S/D mode). Theck-in_softpackperation has testablish a
PSD lock on the new v&ion. Moreover, imayrelease th®/S lock on the old wsion. Note,
however, that the concurrency control compomeay delaythe release of the lock, for ex-

ample, in case the strict two-phase lock protocol is realized till the end of the transaction.

Scenario 2: Software packages can be modified

If we assume that software packages canpuated object related locks newsat to be estab-
lished. In this case we need different check-out operations, one for a checldetvéca new
version and one for aheck-out to update. Thirst check-out operation isimilar to the
check-out operation of scenario 1. Ttieeck-out_softpack for_updal@s to acquire a U/S
lock for the software packagehich is to beupdated. The U/S locktill allows concurrent
transactions to read the packdmeS/U mode). Nowet us assume that a packagach is to
be updated contains some standard procedtré&iree usually these standgmdceduresvill
also be locked in U/S mod#her transactions are excluded frtmoking someother software
package Rvhich also contains at leashe P. Thisreduces concurrenaynnecessarily. Since
our tool kit supports object related locksich an unfortunate situation can be avoisiede
the PMD lock preserves eaclk ffom beinglocked in U/S mode. Instead, the comeucy

control mechanism needs not to consider any lock Grea .

- 113 -

Arbeitsberichte des Instituts fur Wirtschaftsinformatik

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

1 Bolte, Ch., Kurbel,K., Moazzami,M., Pietsch, W.: Erfahrungen bei déntwicklung eines In-
formationssystems auf RDBMS- und 4GL-Basis; Februar 1991.

2 Kurbel, K.: Dagechnologische Umfelder Informationsverarbeitung - Ein subjektiv@tate of
the Art'-Report Uber Hardware, Software und Paradigmen; Mé&rz 1991.

3 Kurbel, K.: CA-Techniken und CIM; Mai 1991.

4 Nietsch, M., Nietsch, T., RautenstrauchC., Rinschede M., Siedentopf,J.: Anforderungen
mittelst&ndischer Industriebetriebe €inen elektronischeleitstand - Ergebnisse einer Untersu-
chung bei zwdlf Unternehmen; Juli 1991.

5 Becker,J., Prischmann, M.Konnektionistische Modelle - Grundlagen und Konzepte; Septem-
ber 1991.

6 Grob, H.L.:Ein produktivitatsorientierter Ansatz zur Evaluieruran Beratungserfolgen; Sep-
tember 1991.

7 Becker, J.: CIM und Logistik; Oktober 1991.

8 Burgholz, M., Kurbel, K., Nietsch,Th., Rautenstrauch, CErfahrungen bei der Entwicklung
und Portierung eines elektronischen Leitstands; Januar 1992.

9 Becker, J., Prischmann, M.: Anwendung konnektionistischer Systeme; Februar 1992.

10 Becker,J.: Computeintegrated ManufacturingusSicht der Betriebswirtschaftslehre und der
Wirtschaftsinformatik; April 1992.

11 Kurbel,K., Dornhoff, P.: A System for Case-Based Effort Estimation Swftware-Develop-
ment Projects; Juli 1992.

12 Dornhoff, P.: Aufwandsplanung zur Unterstitzung des Managemeoits Softwareentwick-
lungsprojekten; August 1992.

13 Eicker, S., Schnieder, T.: Reengineering; August 1992.

14 Erkelenz,F.: KVD2 - Ein integriertes wissensbasiertes Modul zur BemessongKranken-
hausverweildauern - Problemstellung, Konzeption und Realisierung; Dezember 1992.

15 Horster, B.SchneiderB., Siedentopf,).: Kriterien zur Auswahl konnektionistischer Verfahren
fur betriebliche Probleme; Méarz 1993.

16 Jung, R.Wirtschaftlichkeitsfaktorerbeim integrationsorientierten Reengineering: Verteilungs-
architektur und Integrationsschritte aus 6konomischer Sicht; Juli 1993.

17 Miller, C., Weiland,R.: Der Ubergang vorproprietaren zwffenen Systemeaus Sicht der
Transaktionskostentheorie; Juli 1993.

18 Becker,J., RosemannM.: Designfor Logistics - EinBeispiel fur die logistikgerecht&sestal-
tung des Computer Integrated Manufacturing; Juli 1993.

19 Becker,J., RosemannM.: Informationswirtschaftliche Integrationsschwerpunkte innerhalb der
logistischen Subsysteme - Ein Beitrag einem produktionstibergreifenden Verstandnis von
CIM; Juli 1993.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

- 114 -

20 Becker,J.: Neue Verfahren der entwurfs- und konstruktionsbegleitenden Kalkulatiohtend
Grenzen in der praktischen Anwendung; Juli 1993.

21 Becker, K., Prischmann, M.: VESKONN - Prototypistimsetzung eines modularen Konzepts
zur Konstruktionsunterstiitzung mit konnektionistischen Methoden; November 1993

22 Schneider, B.: Neuronale Netfi#r betriebliche Anwendungen: Anwendungspotentiale und ex-
istierende Systeme; November 1993.

23 Nietsch, T., RautenstrauchC., Rehfeldt,M., RosemannM., Turowski, K.: Ansatzeir die
Verbesserung von PPS-Systemen durch Fuzzy-Logik; Dezember 1993.

24 Nietsch,M., RinschedeM., Rautenstrauch, CWerkzeuggestltzte Individualisierung des ob-
jektorientierten Leitstands ooL, Dezember 1993.

25 MeckenstockA., Unland,R., Zimmer, D.: Flexible Unterstiitzung kooperativer Entwurfsumge-
bungen durch einen Transaktions-Baukasten, Dezember 1993.

26 Grob, H. L.: Computer Assisted Learning (CAL) durch Berechnungsexperimente, Januar 1994.

27 Kirn, St., Unland, R. (Hrsg.): Tagungsband zum Workshop "Unterstiitzung Organisatorischer
Prozesse durcBSCW". InKooperation mit Gl-Fachaussch&®3® "Betriebliche Kommunika-
tions- und Informationssysteme" und Arbeitskr8i$.1 "Computer Supported Cooperative
Work", Westfélische Wilhelms-Universitat Minster, 4.-5. November 1993

28 Kirn, St., Unland,R.: Zur Verbundintelligenz integrierter Mensch-Computer-Teams: Ein orga-
nisationstheoretischer Ansatz, Marz 1994.

29 Kirn, St., Unland,R.: Workflow Management mit kooperativen Softwaresystenstate of the
Art und Problemabrif3, Mérz 1994.

30 Unland, R.: Optimistic Concurrency Control Revisited, Marz 1994.
31 Unland, R.: Semantics-Based Locking: From Isolation to Cooperation, M&rz 1994.

32 MeckenstockA., Unland, R., Zimmer, D.: Controlling Cooperation and Recovery in Nested
Transactions, Marz 1994,

33 Kurbel,K., Schnieder.: Integration Issues of Information Engering Based-CASE Tools,
September 1994,

34 Unland,R.: TOPAZ: A Tool Kit for the Assembly offransaction Managers for Non-Standard
Applications, November 1994.

