A Service of

[) [J
(] [)
J ﬂ Leibniz-Informationszentrum
° Wirtschaft
o Leibniz Information Centre
h for Economics

Make Your Publications Visible.

Unland, Rainer

Working Paper

Optimistic concurrency control revisited

Arbeitsberichte des Instituts fur Wirtschaftsinformatik, No. 30

Provided in Cooperation with:

University of Minster, Department of Information Systems

Suggested Citation: Unland, Rainer (1994) : Optimistic concurrency control revisited, Arbeitsberichte
des Instituts fur Wirtschaftsinformatik, No. 30, Westfalische Wilhelms-Universitat Miinster, Institut

fir Wirtschaftsinformatik, Miinster

This Version is available at:
https://hdl.handle.net/10419/59331

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dirfen die Dokumente nicht fiir 6ffentliche oder kommerzielle
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewahrten Nutzungsrechte.

WWW.ECONSTOR.EU

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

Mitglied der

Leibniz-Gemeinschaft ;

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/59331
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Arbeitsberichte des Instituts fur Wirtschaftsinformatik
Herausgeber: Prof. Dr. J. Becker, Prof. Dr. H. L. Grob, Prof. Dr. K. Kurbel,
Prof. Dr. U. Muller-Funk, Prof. Dr. R. Unland, Prof. Dr. G. Vossen

Arbeitsbericht Nr. 31

Optimistic Concurrency Control Revisited

Rainer Unland

Institut fur Wirtschaftsinformatik der Westfalischen Wilhelms-Universitat Munster,
Grevener Str. 91, 48159 Munster, Tel. (0251) 83-9750, Fax (0251) 83-9754
Marz 1994

Contents

1 Introduction 3

2 Original approach to optimistic concurrency control 4

3 Shortcomings of the original approach 5

4 Improvement of validation 8
4.1 Solution 1: EOT marker 8
4.2 Solution 2: Snapshot validation 8
4.3 Snapshot validation with critical section 10
4.4 Snapshot validation without critical section 12

5 A validation scheme for read transactions 16

6 Multiversion optimistic concurrency control 20

7 Substitute transactions: a general solution for the starvation problem 22

8 Conclusion 25

Literature 26

Abstract

Several yearsago optimistic concurrencycontrol gained muchattention in the database
community. However, two-phasdocking was alreadywell established, especially in the
relational database market. Concerning traditional datadystemsmost developergelt that
pessimistic concurrenayontrol might not be thebest solution for concurrency control, but, a
well-known and accepteohe. Wth the work onnew generation database systems, however,
there haseen a revival of optimistic concurrencgntrol (atleast a partiabne). This paper
will reconsider optimistic concurrencgntrol. It will lay bare the shortcomings of tleeginal
approach and present some major improvemevitsreover, several techniques il be
presentedvhich especiallysupport read transactiomsth the consequence that thember of
backups can be decreased substantfihally, ageneral solution fothe starvatiomproblem is
presented. The solution is perfectly consistent with the underlying optimistic approach.

1 Introduction

Several yearsago optimistic concurrencycontrol gained muchattention in the database
community. However, two-phasdocking was alreadywell established, especially in the
relational database market. Concerning traditional datadystemsmost developergelt that
pessimistic concurrenayontrol might not be thebest solution for concurrency control, but a
well-known and accepteohe. Wth the work onnew generation database systems, however,
there haseen a revival of optimistic concurrencgntrol (atleast a partiabne). This can be
seen by the fact thaiptimistic concurrencgontrol found itsway in at leasbne commercial
(object-oriented) database system, namely GemsStone ([Maie89]). Thesvaral application
areas for which optimistic concurrency control may be of interest. Among them are:

& Real-time transaction processing (high data contention)
Real-time Applications require a fast response ahigladegree of concurrencgince
optimistic concurrency control hashe properties ofnon-blocking and deadlock
freedom, theyare especially attractive to real-time transaction processing (cf.
[HSRT91], [HaCL90],). Let us, foexample, consider aarline reservation system. In
such a system high degree of concurrency is essential. In case of a conflict, the
conflict mustnot necessarily beserious. Forexample, a typicalransactionchecking
the availability of seats on a particuldlight, needsonly to know whether the current
value of availableseats is non-zero. As long as therestiteseatsavailable available, a
possible conflict between two transactions can be neglected (cf. [JaSh92]).

& Cooperative environments
Cooperative environmentssually require a concurrenvork on objects. However,
nevertheless a possible conflict mustdet¢ected and brought to the knowledge of the
corresponding users or application. They can decide ondeirhow to react, e.g.
either by initiating a compensatirggtion or by starting user or applicatioefined
repair actions.

Both examples have in common that they requireoacurrent, oftereven non-serializable
work on data. However, icase of a conflict this conflict must loetected. Herepptimistic
methods seem to be quite appropriate since they allow non-serializaklen datahowever,
discover every conflict. Ofourse, in situation like the aboweptimistic concurrency control
should not automatally rollback transactiorbut leave it tothe application to trigger the
appropriate reaction.

-4 -

This paper will reconsideroptimistic concurrencgontrol from a general point ofiew; i.e., it

will not discuss the use and adaptation of optimistic concurmemayol forspecial application
areas. Instead, itillvpresent major improvements and solutions for most weak points of the
original approach to optimistic concurrency control.

The remainder othe paper is organized as follows. In section 2 dhginal approach to
optimistic concurrencyontrol wll be introducedbriefly. Section 3 Wl analysethe original
approach tday bare its shortcomings. As a consequence of ahaysis several improved
validation schemesilvbe presented in section 4. These solutionl mot only eliminate the
weakness of theriginal approach butadditionally, Wil reduce theverall cost forvalidation.

In section 5, we W propose avalidation scheme, which especiadlypports read transactions.
With this scheme every read transaction will survive if there is a chance to do so. In section 6 it
will be discussed how read transaction can run wittent consideration of concurrency
control atall. This wll be achiewed by the integration of aversion approach. Section 7
concentrates on the starvatiproblem and presents several solutiasmich are entirely based
on the optimistic approach. Finally, section 8 will conclude this paper.

2 Original approach to optimistic concurrency control

We give a brieflescription of théasic optimistic concurrenayontrol scheme as pposed in
[KuR079]. A transaction consists of three phasesead phase, a validation phasad a

write phaseln the read phase the required objects are read from the database, write operations
are perfomed on local copies dhe database objects. In thalidation phase a check for
serializability is pefiormed. If validation is successfuhe objectanodified bythe transaction

are written into the dabase (write phase), otherwise the transactiaessartedValidation

and write form a critical section.

Validation is performed as follows: For each transactioth@system keepgack of the set of
objects readrom the database (RSand of theset of objects written (WP If validation is

successfulthe transaction iassigned a unique transaction number TNFr this purpose a
global transactiomounter TNC isnaintainedLet TNRg;4, be thehighest transactionumber

at the start of transaction, Bnd let TNRpjsh be thehighest transaction numbertae start of
validation. Then fperforms the following check:

(VAL) <valid :=true;
for TNR from TNRgart+1 10 TNRsinish do

if R§n WS#D then valid :=false

if valid then
begin

(write);

TN&:zTNC;

TNC :=TNC+1
end>

if not valid then (backup);

<> marks the critical section

Algorithm 1: Validation as in [KUR079]

This schemeaguarantees a serialization tine order of the transactiavumbers (equal to the

order of commit).

In the next chapter it will be shown that this approach is too pessimistic.

3 Shortcomings of the original approach

There are somsimulation studiegsee, e.g., [Agra83], [AgCL85], [AgCL87], [AuPS84],
[Bhar82], [Bhar80], [Care83], [FrRo85], [HSRT91], [HuSt90], [KeTe84], [MeNa82],
[PeRe83], [TaGS84Which are quite positive formimistic methods, though there is otear
advantage over locking. Greater acceptance can only be achieved if some serious drawbacks of

the original approach of Kung and Robinson [KuRo79] can be overcome.

The following issues are essential:

1. The degree of potentiphrallelism of optimistianethods is highHowever, thesame is
true for therisk of beingrestartedunnecessarily. ltvould be desirable to avoréstart in

all cases where detected conflict actually does not endanger serializability.

A

-6 -

Since long transaction run for a longer time than transactions of average size they have an
increased risk of being subjectraflstart. Howevernpng transactions should hasinilar
chances of committing than short ones.

Since optimistic concurrenagontrol relies onrollback asthe means of synchronization
transactionsnight berestarted repeatedly. In worse casesstmae transactiomight be
the victim of rollback againand again. This phenomenon is knowntlas starvation
problem and, of course, must be prevented.

Optimistic concurrencycontrol is considered to bespecially favorablefor query
intensive applicationsTherefore, validation for read transactions should Hlexible
enough to allow each transaction a normal termination whetieer is a chance to do
So.

A mainweakness of theriginal validation scheme is itdumsy definition ofconflict. As
a consequence transactions may be restarted unnecessarily, as figure 1 shows:

Transaction J writes during the read phases gfahd T and thus has to be considered
in their validation phases. Usirtge validation scheme ofkKuRo79], both transactions
have to be restarted. If we take a closer look at the above scenddlbothimmg becomes
clear:

@ T, reads an object thatilivlater be written by {[. Serialization in commibrder is
not possible. Hence this conflict is "serious":signals a non-serializabgtuation.
Note thatserialization inthe reverse order @ommit isnot possible in general, see
[Prsus2].

However, theconflict between Tand T, is not"serious”, sincghe conflict due toy
simply expresses the serialization constrajpt-T'T;. Restart of Jis unnecessary.

READ VAL. WRITE T
write | h
X,y
) READ . VAL. WRITE T
read x : . '
READ _ . VAL. WRITE
: ready . o
: ' ' time
t1 t2 t3

Figure 1: Validation as in [KuR079]

The outlined situation isspecially unfavorable, sint&nsactionsnay berestarted because of
conflict with T,, even if their first access the database was after the write gf Or, tocome
back toour example applications ithe introduction, a non-existeoonflict is signalled to the
user or application as a serious one.

Observation:

Every conflict between anpdate-transactionpTand a concurrent transaction i§
serious for serialization in commit-order ifhe conflict occurs before the end of the
write-phase of J. It is non-seriousif it occurs afterwards. Asilvbe shown later, a
serious conflict mushot in each case lead to a rollbad¢kowever, it musiead to a
rollback if serialization in commit-order is assum@&dherefore, we vl call such a
conflict commit-serious(or c-seriousfor short).

In the following we proposeseveral improved validation schemes whose common feature is
that they distinguish between "c-serious" and "non-c-serious” conflictshaadubstantially
reduce the risk of restart.

4 Improvement of validation
4.1 Solution 1: EOT marker

The following idea is a simpléut effective solutionfor recognizing certain "non-c-serious”
conflicts: At each EOT of an update-transactigrevery paralletransaction Ttakes a note of
the termination of [Tin its read-set. Provided that the read-set;aé Brdered in theequence
of its actions on objects, tHellowing holds: During validation against T; has to consider
only the part from the beginning of the read-set up to the point where the EQIE afidrked.
All actions done after theommit of T; can producenly "non-c-serious” conflicts (sefegure
1).

Example 1:

EOT, denotes the EOMmarker of T in a read-setAssume T hasthe following read-
set:

(EOT,, x, y, EOTy, z, EOT,, v, w, EOTy)
In its validation T has to perform the following tests:

no test against; T
WSy 0 (X, Y)

W§, n (X, Y, 2)

WG n (X, y,2,v, W)

2\

On thebasis ofthe original validation schemell validationtests wouldhave been performed
against the read-set of test 4. of above.

This proposal is théasisfor themodified validation schemir read-transactions (see chapter
5).

4.2 Solution 2: Snapshot validation

The following validation scheme is calleshapshot validation, because validatidwes not
consider terminated transactions but a snapshot of the atabalofall transactions; i.e. it
considers all concurrent transactions that are in their read-pHasescheme makaesse of the
fact that a c-serious conflict of arpdate-transactionpTwith a concurrent transactior) ¢an

-9-

only occur before thend of the write-phase of,T(as was shown in chapt8j. Hence, any
transaction can check its safety with respectt@ad soon asylhas committed.

Consider Figure 2. After theommit of T, time §, each concurrent transactiog, Tm = i, j,
k) performs the check R®t1) nWS;,, where R{|(t) is the read set dime t;. If a conflict is
detected, it is a c-serious one with the consequence jhaiList be restarted.

In the original approachvalidation is performed againgiie write set ofall transactions that
have committed durinthe run-time of J,, whereas now, at each commit of a transactign T
all concurrent transactions validate their current read set aggiastrite-set.

There is no longer one singlalidation phasdor a given transaction. Insteadalidation is
performed constantly during,B run-time. Nevertheless, tlmverall number of validation
points is usually lesthan in theoriginal approach (each write-transaction causesvamée a
read-transaction causes none).

READ VAL WRITE T
T T ' I
READ ' VAL., WRITE
, |] y Tj
READ, ' VAL.,WRITE .
® o—+—i 1 Tj
' READ , ' VAL, WRITE
® * o+ T
. : : ! time
] to t3 ts
@ validation test validation points

Figure 2: Snapshot validation

There are several remarkable advantages of the snapshot validation:
& Only c-serious conflicts cause a back up of a transaction.

& The read-sets to be considered in Wadidation phasere considerably smaller in the
average.

-10 -

& Conflictsare detecte@arlier. A transaction no longer runs to its endiétect that it has
to be restarted.

& The write set of a transaction must no Kept until all concurrent transactions are
terminated; it can be releasathmediately after the validation of all concurrent
transactions. Because this validation is eitheme during thevalidation phase of {J or
just after the termination of,,I(see below), write setsave to bestored forconsiderably
shorter periods.

We can distinguish betweetwo types of snapshot validation schemaamely snapshot
validation with orwithout critical section. Inthe scheme with critical section, validation of
concurrent transactions is done during tladidation phase othe terminating transaction.
Therefore, in case of eonflict there is a choice as tohich of the conflicting transactions
should be backedp. So,this alternative includes a solutidar the starvation problem. A
drawback of this proposal the use of a longritical sectionwhich startwith the validation
phase of a terminating transaction and end withE@T. During this sectionthe whole
database is locked for all concurrent transactions.

Snapshotvalidation without critical section avoids long critical sections siralke validation

tests of concurrent transactions are performadediatelyafter the EOT of théerminating
transaction. Clearly, now there is no freedom to choose the transaction that is to be backed up.
Thus, starvationmay again be a problentherefore, we propose, thiis solution should be

used in combination with the (starvation avoiding) algorithm presented in section 7.

4.3 Snapshot validation with critical section

The following scheme assumes that validation ande form one continuoscritical section
during which ndransaction is allowed to accebe database. Therefore, the read s&t®in
unchanged. In this case, it is possible to perfim@snapshot-validation before the wptease
of the terminating transaction.

Consider figure 3. Transactiong, Tj and Ty arevalidated againstJin theinterval § to t.
Conflicts are detected before,Twrites its updates to the databaSence the validating
transaction | validates againsall running transactions a transactioaunter is nolonger
necessary; i.e., we no longer nebd transaction counter identify the transactionagainst
which Ty, has to validate.

- 11 -

This validation schemepens up newpossibilities to resolve conflicts: the original approach
a conflict is always resolved hstarting thevalidating transactionnow each of the two
conflicting transactions can beestarted. As a result thiellowing strategies forconflict
resolution can be implemented:

1.

In case of conflicting update transactionsdaeision of whom teestartcan be based on
explicit priorities of transactions or on other criteria such as processing time used so far.

Note thatstrategies of this typmaysolvethe problem of long transactions a&ll as the
starvation problem: one simply has to use as a critén@mccumulated processitigne
of a transaction(including all restarts). This automatically gives priority to long
transactions and to transactiombiich have beemrestarted. Asimilar effect can be
reached byassigning a special priority to teansactionwhich has tocome to its end
safely.

If a read transactiooonflicts with a write transactiomne candelaythe commit of the
writer until the readehas terminated. Read transactions wawddhave to do validation
at all (see also [Schi81]). Howevethis approach camply serious disadvantages for
writers.

In addition to the advantagafeady mentionethe outlinedvalidation scheme includesmple

and efficient solutions for theproblems of long transactions and starvation. The price to be
paid is a long critical sectiomvhich may result in substantial blocking ofoncurrent
transactions (see algorithrB). The schemepresented in the next section avoitlss
disadvantages.

-12 -

READ iVAL]:WRITI:E Th
READ é ® é é | VAL.!WRITFT T,
READé ° é é é ® é é iVAL.IWRITE Tj

READ E Py E E é ° é é é IVAL{ WRITE Tk

time

ty t, t3ty, tg tg ty; tg ty

@ validation test

Figure 3: Snapshot validatiowith critical section

(VAL) <valid :=true;
for all (transactions jTwhich are still running and have not yet started
validation)

if R§n WS=#0O then valid :=false;

if valid then (write);>
if not valid then (rollback one of the conflicting transactions);

<> marks the critical section
Tj validating transaction

Algorithm 2: Snapshot validatiowith critical section

4.4 Snapshot validation without critical section

Two transactions jTand T are correctlysynchronized ithe serializationorder T — Tj, if the
following holds:

(SR) (1) Tjdoes not read or write objects written hy T
(2) T;terminates its read phase befoj¢efminates its read phase

-13 -

We assume thaiipdates of transactions are done local copies ofthe database objects.
Furthermore, we require an object to be r&adh the database before it can medified.
Therefore, for all transactions WEBRS holds. As a consequence, tiggt R$n WS includes
the test Wpn WS;. Thetest Rgn WS has to be executed at a pointiofe wherethe read
set of T containsall objectswhich could produce a c-seriogsnflict to T; (remember that the
write phase of {[is not a critical section). The earliest point for this test is

“ either the begin of validation of,Tif T; starts validation before the end gETwrite
or the end of ifs write phase, if jlis still in its read phase at this time.

Condition (2) is satisfied if transaction numbarsassigned athe beginning of validation, and
if TNR; < TNR.

An update transaction; iow has the structure given in figure 4.

During the read phase Validates againsdll transactions terminating in this interval. At the

start of validation Tis assigned its transaction number TNFhus,all concurrent transactions

that validate later W have to validate against;. TT; has to check whether there are
transactions with transaction numbamallerthan TNR that havenot yet terminated. No
validation has been done against these transactions, so a check has to be performed now. After
these stepsiTcan commit itsupdates provided the checks were positive. Aftercthramit
concurrent transactions validate againsfigure 5 gives an example:

After the termination of | transactions T T; and Ty validate against ({ Later, at the
beginning of Ts final validation, T hasnot yet terminated. As TNR< TNR;, T; has to
validate againstjThow.

READ VALIDATION WRITE = 1
1) 2 3)

time

(1) validation against transactions terminated in this phase

(2) assignment of transaction number, validation against transactions with smaller trans-
action number which have not yet terminated

(3) T;'s termination is made public

Figure 4: Structure of an update transactions

-14 -

This validation scheme ikighly flexible and allowsmaximal parallelism ashe necessary
critical section igeduced to the access of the transaction counter. There is no restriction as to
the sequence of theommits. Somesimulations[PeRe83], [AuPS84] show, that snapshot
validation behaves considerably better tttae original approach and that it is good
candidate for replacing locking schemes in a variety of applications.

In [AgCL85] the original approach of optimistic concurren@ontrol is compared to the
locking scheme. As ithe abovementioned simulationghe original approach ignferior to
locking in some applicationsdowever, thedifferences betweehoth methods aremall, so
that it is very likely that snapshot validation will be superior to locking in most applications.

READ VAL, WRITE
T] 1 TI‘
READ : VAL. WRITE
® —@— . T
READ | . VAL. ,\NRIT\validaﬂon .
o 1 | '+ againstT Tj
READ L
o > o VAL WRITE T
: ! L, time
@ validation test validation points/

Figure 5: Snapshot validatiowithoutcritical section

-15 -

(VAL) valid :=true;
<TNR; := TNC,

TNC =TNC+1>

for all (transactions jlwith smaller TNR which have not yet terminated)
if R§n W§#0D then valid :=false;

if not valid then (backup 7);

(write);

for all (transactions jlwhich are still running and have not yet started
validation)
if WS n RSeUrentz [then backup (7);

termination of Tis made public;

<> marks the critical section (only modification of transaction counter

Tj validating transaction
chu”em current read-set of transactior} T

Algorithm 2: Snapshot validatiowithoutcritical section

A drawback of this solution is thahe simplicity of the solution for thesupport oflong
transactions and of the starvatiproblem islost. However, in section 6 weillvdiscuss a
general solution for the starvation problem.

Another possibility to approach these problems is @ombinethe two versions of snapshot
validation. As a rule, transactions behave accordintpewalidation schemevithout critical
section. However, a long transaction or a transadtibich has beemestartedseveral times
may be givenpriority: each terminating transaction; Thust validate against concurrent
transactions with priority. In case of conflict i§ restarted. The transactiamth priority must
be preempted during this validation. If conflict is possible betwiagn transactionswith
priority, then either priority levels or other standard decision mechanisms are required.

-16 -

5 A validation scheme for read transactions

In this chapter we introduce \alidation algorithm that especially improvése validation
scheme for read transactions.

Usually concurrency control tries to place a transactiorthat end of theserial schedule
existing so far. If this isot possiblethe transaction is backegp. In contrast tdhis usual

approach the newlgorithmdoes notback up a transaction in this cdsé tries toplace it at

someother point in theserial schedulehus making backup unnecessary many cases (see
figure 6).

READ VAL WRITE T
| |
' READ | VAL.IWRITE‘ T
! READ
® o ® o TR
READ ' VAL.,WRITE!' : '
1 | i M . | TJ
: READ . ' VAL, WRITE .
! 1 | | | 1 T
: f f time
ty th tg t,
@ validation test

Figure 6: Validation scheme for read transactions

In the above scenarioglis a read transactiowhile all other transactions are update
transactions. If all transactions read their validation number in the sequence of their termination
snapshot validation would try to produce the following serial schedule:

Assume there is a conflict betweepdnd Tg. This means thatdread an object beforg that
was written by | (note: T has not read theersion written by | sincewrite takesonly place
at time g). Snapshovalidation(or anyotheroptimistic validation scheme) would back up, T
because theerial scheduleSS is no longer possiblédowever, although theonflict prevents
the serial scheduleSS), thisdoes notmean thathe serialization criterion is violated.gThas

-17 -

executed validation againsy &nd T at time § and b, respectively, and no conflict was
detected. Therefore it would lpessible to place g between Tand T in theserial schedule,
if the following holds:

% Tgr does not readnyobject written by | or anyother transaction located aftey ifi the
serial schedule.

Let T be a read transaction ang, & concurrent update-transaction. TherPR$dicates
that part of |'s read-sefrom the beginning of & up to the point where J starts its write-
phase. Analogously, RS indicates the part of the read-set gfSarting with the write-phase
of Ty and ending with the end of the read-phasegofske figure 7):

The terminatingread transaction g can be placed at a point x in teerial schedule if the
following is true:

read-phase of |

RS BU RS AU

time

Figure 7: Read-set of &, divided by T

(@ WS;n RPU=0 forall concurrent update transactiong $tanding before x in the
serial schedule.

(b) WSy n R®U =0 for all concurrent update transactiong, Etanding after x in the
serial schedule.

Condition(a) issatisfied bythe usualtest exected by snapshot validation becawsdidation
of a running transactionglagainst a terminatingpdate transaction fis doneimmediately
after the EOT of ; with the read-set of g existing so far. Thisest is theusualtest for the
new validation scheme, too. The first time a confioturs this validation scheme is no longer
usable. Condition (b) has to be checked from this time.

To fulfil condition (b) a method similar to the proposal of chapter 4.1 is introduced:

Every read transactionglrecords thebegin ofthe write phase oévery terminatingupdate
transaction J; in its read-set (say, BOymarker). Of course, the sequence of activass to

-18 -

be preserved in the read-set. Because the complete read-gas oot available as long ag T
is in its read phaskom now onvalidation againsall update transactiortgas to be done at the
end of the read phase ok.TTherefore the write-sets all terminatingupdate transactions
have to be preserved. In its validation phagehds to considesnly the part from the BOWY
marker up to the end of the read-set (see condition (b)).

In general the method works as follows:

As long as no conflict isletected,every read transaction g works as usual, foexample
according to thevalidation scheme afhe snapshotalidation. Additionally,the begin of the
write phase of every terminatingpdate transaction (BOW marker) is recorded in the read-set
of Tg. If the first conflict occurs & changes its validation technique, such that:

1. the read-seexisting so far can be deleted up ttte BOW entry of the conflicting
transaction.

2. in contrast to theules of the snapshafalidation fromnow on Tz does notvalidate
immediatelyafter the EOT of a concurrent updaétansaction T, but at its endFor this
reason, the write-set ofylis stored.

3. Before terminating g performs thdollowing testagainstall transactions recorded in its
read-set:

WS, n RV =0

If no conflict occurs, | can successfullyerminate. In theserial schedule g is placed just
before the transaction causing the change of validation technique.

Example 2:

The basis of this example is the scenario of figure 6.

Assume R has the following read-set:

EOT, EOT, EOT, EOT

/ / / /

(BOW;, a, b, ¢, d,BOW e, f, BOW, g, h, BOW)

-19 -
As Ty is the conflicting transaction the following tests will be performed:

usual validation:
against T: none, because the read-set is empty
against T:R&R n (a, b, ¢, d)
against T, : R&K n (a, b, c, d, e, f), a conflict occurs,

therefore:
change of validation policy (validation tests are done after the read phage of T
against T: RSy n (g, h)
against T: none, becauseglhasnot read arbject after théegin ofthe write
phase of T

The considered algorithm allowsad transactions tsurvive if there is a chance. We do not
know any otheralgorithm whichtakes a look at theerial schedule existing so farander to
place a conflicting transaction at a possible point in this schedule. In comparikerofiginal
approach validation is quite short.

6 Multiversion optimistic concurrency control

Optimistic methodsare supposed to bespecially favorable in query-intensive applications.
Therefore, it would beiseful toseparate the concurrency control for readers and writers in a
way thatreaders run withowdny risk ofrestart. Apossible solution has been indicated earlier:
in case of conflict betweereader and updater the write phase of the updatdelayed.
However, it is obvious thahis schemenay produceintolerably long delay$or updaters, and
alsomayincreaseherisk of restart for the updatesjnce, while itwaits, other updaters may
terminate.

A solution that avoids conflict betweerad- and write-transactions in the contextved-

phase locking is extendwo-phaselocking with versioning (cf.[CFLN82], [DuBo82],
[PaKa84]). Undemultiversiontwo-phase locking, prior versions of objeei® retained to
allow queries to run againgiast transaction-consistent database states. The presence of
versions allows queries to serialize bafalleconcurrent update transactions, and thuesries

and update transactions dot conflict. Zhis schemean be adapted tptimistic concurrency
control. By the use ofersions a reader ays canget aconsistentview of the database. In

our proposal, a reader works on tbhatabase version that existed the start of the

-20 -

transaction. In this scheme there is no overhead for concurrency control for readers. Moreover,
update transactions do not need to consider concurrent readers any longer.

To implement a versioooncept, itseems to be advantageous to use pagéseassic means
of concurrency control (there are alsthier reasons tbase optimistic concurrencpntrol on

pages,which we cannot discuss here. Some interesting arguments concernirigstiesare
given in [Hard84]).

The versiorconcept can be outlined as follows: Update transactiamnk oncopies of pages.
At commit timethe modified pages are marked with the transactmmberTNR. The old
versions ofthe modified pages are kept. Update transactiamsk on the currenversions,
whereas readersork onversions whictwere current at their starfodifications whichoccur
during a reader'fe are notconsidered. To accomplish this behaviouread transaction g
reads at itdbeginningthe value TNCR, of a counter TNCR; TNCHRhdicatesthe transaction
number ofthe latest terminated update transaction. At each access to agptessTiwhether
the stamp of the page is less or equal to TNGRthis caseéhe page wasot modified since
the start of k. If the stamp is greater than TNgRhis page washodified inthe meantime
and Tz would get aninconsistent view othe database. To avottis T then accesses the
older version of thipage. Note that isome cases more than one old page versayexist:
Tr then has to accesise page with théighest stamp less than TNgROId versions must
exist as long as a read transaction is adie TNCRg of which is smaller or equal to the
stamp of the page.

In the case of snapshot-validation wdhtical sectionthe TNCR corresponds to the TNC,
which means that aeparate counter for the TNCR is metuired. Morecomplicated is the
case of snapshot validatiomithout critical section.There, the sequence of termination of
transactions doesot necessarilycorrespond to the sequence of transaatiombers, sdhat
theremay begaps in thdist of terminatedransactions. Fanstance, the transactions with the
numbers100, 102 and 10&ay beterminatedwhile T1g; and Tyg4 arestill running. Aread
transaction starting at thisime mustnot work with TNCR 103, since this canmply that
possible conflicts with Jy1 remain undetected. There are two solutions for this problem:

1. Enforce termination of update transactions in the sequence of their transaction numbers.

2. Use the last TNCRralue beforewhich there is no gap in thdéist of terminated
transactions. In the abowxample this valuevould be 100. Thalisadvantage of this
approach is that updates of terminated update transactiapstay invisible even for
read transactions that started after the termination of the update transaction.

Summary

Table 1 summarizes the different validation techniques:

=21 -

starvation problem | critical section read transactions
VALCs solved long no special treatment
VAL™Cs - solved extremely short no special treatment
VAL Jead solved long will survive whenever there is a char|ce
VAL Jead -solved extremely short will survive whenever there is a chgnce
VAL ersion solved long will survive in any case
VAL _ cersion - solved extremely short will survive in any case
VAL Cs : snapshot validation with critical section
VAL ~Cs : snapshot validation without critical section
VAL .J€ad : snapshot validation for read transactions with critical section for uptiates.
VAL _.J€ad : snapshot validation for read transactions without critical section for update trans.

VAL .version . multiversion snapshot validation with critical section

VAL _, Version: multiversion snapshot validation without critical section

Table 1: Characteristics of the different validation schemes

7 Substitute transactions: a general solution for the starvation problem

Since in the optimistic approach concurrency control is based on backing up transactions which
cannot be placed at the end of the serial schedule existing so far, a tramsaygtimestarted

again and again. This problemusually calledstarvation. The risk of starvationtise greater

the longer the transactios, long transactionsmay especially be killed bghort ones. Arery
restrictive solution for the starvation problem is suggest@duRo79]: after a transaction has
beenrestarted a certainumber of times, in principlthe whole database is locked for it. It is

=22 .

obvious that such a solution m®t acceptable for databases withhigh degree ofparallel
usage.

The solution

We present a solution for the starvatiproblem which is entirely based dhe optimistic
approach.

Starvation occurd, during validation, a@ransaction T repeatedly finds a stuch that RS
WS # L. After a certain number of trials of We have to maksure that Tis notbacked up
again. We propose the following solution:

After a certain number of triafer transaction Ta substitute transactionSTis created. %
possesses the read- and write-sets;joTfie purpose of § is to prevent other transaction}s T
from validating positively if theyare inconflict with Tj, as long as Tis running.For Tj the
substitute transactionST anticipates the (future) write of, T Tj is protected byts substitute
transaction so that eithej @oes notave to validate again afl or atleast theprobability of
positive validation is increased.

Substitute transaction

After a certain number akstarts of Tthe substitute transactior’Tis established sudat
RSS5=RS and WS;=WS;. After establishing itsubstitute Tis restarted. ¥ exists as long as
Tj is active. In contrary tother transactions thigst action of a substitute transaction is to
read its transaction number. Frdiis momentthe status of % is that of a validating
transaction and thereforny other validating transaction J must validate againstSy (for
validation see below). The am point about substitute transactions is thizy are not
transactionsvhich havewritten at a certain point in timéut which have to be&onsidered in
every validation as long as they exist.

Validation

A transaction J must applythe following test inits validation phase against an existing
substitute transactionSE

WSj n RS =0

To see thisnote that T recognizes the substitute transaction, Quitself onlywrites after the
termination of T (TS, is deleted at the end of!Y. Of course, if T has written before the

-23-

validation of T, then T appliesthe standardvalidation test against T. Validation of a
transaction]I'is performed in the way known from snapshot validation:

< During the read-phase of,Tit validates against every terminatingdate transactionl
with the usual test Wpn RS = 1.

< In the validation phase jThas to validate against every transactidmnch hasnot yet
ended, butvhich hasread its transactionumber before jT(see chapter 3)his class of
transactionsincludes all substitute transactions. Wherewaalidation against regular
transactions is done with thesualtest, T has to perfornthe test Wgn RS against
substitute transactions.

Fixed or variable read- and write-sets of transactions

If the read and write sets of a transaction arestmaefor eachrestart,then theoutlined

schemeayuarantees that a transaction with a substitilteevminate without furtherestart. In

fact, the transaction needst to perform a validation at its endince itssubstitute gave it
perfect shelter from interferences with other transactions.

If the read- and write-sets are time-dependent andnlaydiffer fromone restart to the next,
then, obviously,the substitute transaction doest give this perfect shelter, however it
considerably increasdbe chance of successful termination. must validate in this caseST
makes it probable that validationliwsucceed. If T must nevertheless bestarted, a new
substitute transaction TSmay beinstalled with RS’ = R§ 0 RSS, WSS = WS O WSS,
where R§ WS are the read- and write-sets of the last executionj.offiis again increases
the probability for Tto terminate. As can easily be seen, this schyaeantees termination of
T with theonly exception that there is a continuadding of database objeatdich must be
included in the read set of. T

Maintenance of substitute transactions

Concurrency control must guarantee sdioven of fairness forthe installation of substitute
transactions, because otherwise a transaatight neversucceed in getting its substitute, thus
again being blocked permanentiyhe simplest solution to this problem is to alleawmly one
substitute transaction at a time. Installatiorthe substitute transaction is pooblem atall,
since asubstitute doesiot have aread phase. To guarantésrness, concurrencgontrol
serves requests for substitute transactions on a first-come first-sbaggsl A more
complicated scheme is to allow several substitutes to exist in parallel. In thiceasdstitute

-24 -

transactions mustot conflict one with each o#r. Let S be the set @xisting substitute
transactions. Then, a new substitute transactirednonly be installed, if idoes notonflict
with some T out of S:

RS n WS ORS n WS OWS nWS=0

To ensure fairness, again first-come first-sengethciple might be applied. Since each
transactionwhich has asubstitute transactionilvterminate with certainty, each transaction
waiting to get a substitute W get it in finite time. In a slightly modified form this
argumentation also holds in the case of variable read sets.

The presented concept is a simple and smooth solution for the stapratitem in optimistic
approaches. The solution only makes use of optinmgsticeptsartificial concepts likdocking
neednot to beintroduced. The necessary extensionsthie basic optimistic concurrency
control are very easily implementedDepending onthe maintenance ofthe substitute
transactions there is either noanly very smallrun-time overhead for the @posed solution.
We have been informeabout result§rom simulationsnot yet publishedwhich confirm the
efficiency of the substitute concept.

8 Conclusion

The basic optimistic concurrencgontrol scheme as pposed in [KuRo79Jexhibits some
serious shortcomings with respect tovédidation technique and long transactionsthiefirst

part of this paper design alternativesvere presentedvhich are superior to theriginal
approach in several aspects. Thairmadvantage of the proposed solution is that it
distinguishes between serious and non-serious conflict®m@lgdrolls back a transaction in
case of a serious conflict. No additional overheadtber restrictions are introduced. On the
contrary, overhead is reduced. In the next part of the paper a special validation scheme for read
transactions was introduced. Under controthoé proposal aead transaction isnly backed

up if a conflict isdetectedwnhich definitely violateghe serialization criterion. Inhe nextpart

of the paper the integration wérsions intathe optimistic approachvere discussedriefly. A
concept was presentedhich allowsread transactions to run withoahy consideration of
concurrency control. Update transactions @aoé hampered by thisupport for readers. Of
course, as imanyversion based approaches, theradditional overhead fahe maintenance

of versions, and it remains to be showhich circumstancethese additionatosts are worth
paying. The laspart of this paper presented a solution for the starvation problem. The

- 25 -

proposed algorithm is easy ittegrate because it @y based on optimisticoncepts, so that
artificial concepts like timestamps or locking need not to be introduced.

Literature

[Agra83] Agraval, R.:Concurrency Control and Recovery in MultiprocesBatabaseMachines:
Design and Performance EvaluationP; Ph.D. thesis; University of Wisconsin, Madison; 1983

[AgCL85] Agraval,R., Carey,M., Livny M.: Modelsfor Studying Concurrency Control Performance:
Alternatives and Implicationd®roc. ACM-Sigmod, International Conference on Management of
Data; Austin, Texas; 1985

[AgCL87] Agraval, R., Carey, M., Livny M.: Concurrency ControlPerformance Modeling:
Alternatives and Implications; ACM Transactions on Database Systems; Vol. 12, No. 4; Dec. 1987

[AuPS84] Augustin,R., Pradel, U.,Scholten, H.: Performance Analysis of Concurrency Control
Algorithm in DatabaseSystems: a Survey (in German); Research-ReportLR;, Department of
Computer Science, University of Dortmund, Germany; 1984

[Bada81] Badal, D.: Concurrency Cont©Olerhead or Closer Look dlocking vs. Non-Blocking
Concurrency Control Mechanism; Proc. of the 5th Berkeley Workshop; 1981

[Bhar80] Bhargava, B.: An Optimistic Concurrency Congigorithm andits Performance Evaluation
against Locking Algorithms; Report of the Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA 15260 USA; 1980

[Bhar82] Bhargava, B.: Performance Evaluatiorthe Optimistic Approach to Distributddatabase
Systems and its Comparison to Locking; Report of the Department of Computer Science, University
of Pittsburgh, Pittsburgh, PA 15260 USA, 1982

[BoCa92] BoberP.; Carey, M.:Multiversion Query LockingProc. 18th Int. Conf. oVery Large
Databases (VLDB); Vancouver, Canada; Aug. 1992

[Care83] Carey, M.Modeling andEvaluation of Database Concurrency Contgorithms; Ph.D.
thesis; University of California, Berkeley; 1983

[CFLN82] Chan, A.; Fox, S.; Lin, W.; Nori, A.; Ries, D.: The Integration of an Integrated Concurrency
Control and Recovery Schenf&roc. ACM-SIGMOD International Conference on Management of
Data; 1982

[DuBo082] DuBourdieu, D.Implementation of Distributed@iransactions; Proc. 6tBerkeley Workshop
on Distributed Data Management and Computer Networks; 1982

[FrRo85] Franaszek, P; RobinsonTJ. Limitations of Concurrency in Transaction Processing; ACM
Transactions on Database Systems; Vol. 10, No. 1; Mar. 1985

[GaRa92] Gafni, A.; Rao, B: Aime-Based Distributed Optimistic Recovery and Concurrency Control
Mechanism; Proc. 8th Int. Conf. on Data Engineering; Tempe, Arizona; 1992

- 26 -

[HaCL90] Haritsa, J.; Carey, MLivny, M.: Dynamic Real-Time Optimistic Concurrency Control;
Proc. 11th Real-Time Systems Symposium; Dec. 1992

[Hard84] Harder, T.Observations on Optimistic Concurrency Control Schemes; Information Systems,
Vol. 9, No. 2; 1984

[HSRT91] Huang,J.; Stankovic,J.; RamamrithanK.; Towsley, D.: Experimental Evaluation of Real-
Time Optimistic Concurrency Control Schem®@spc. 17th Int. Conf. oVery Large Databases
(VLDB); Barcelona, Spain; 1991

[HuSt90] Huang,.; Stankovic, J.: Concurrency Control Real-TimeDatabaseSystems: Optimistic
Scheme vefwo-Phase Locking; Technic&eport, COINS 90-121tniversity of Massachusetts;
Nov. 1990

[JaSh92] Jagadish, Hshmueli,O.: A Proclamation-Basellodel for Cooperating Transactions; Proc.
18th Int. Conf. on Very Large Databases (VLDB); Vancouver, Canada; Aug. 1992

[KeTe84] KerstenM., Tebra,H.: Application of an Optimistic Concurrency Conthéthod; SOFT-
WARE-Practice and experience, Vol. 14, Feb 1984

[KuR0o79] Kung, H.T., Robinson, JT.: On Optimistic Methods for Concurrency Contrélroc. 5th
Int. Conf. on Very Large Databases (VLDB); Rio de Janeiro, Brazil; 1979

[Maie89] Maier, D.: MakingDatabaseSystemsFast enoughfor CAD Applications;in: Kim, W.;
Lochovsky, F. (Editors): Object-Oriented Concetatabases, anépplications;Addison-Wesley
Publishing Company; 1989

[MeNa82] Menasce,D., Nakanishi, T.: Optimistic Versus Pessimistic Concurrency Control
Mechanisms in Database Management Systems; Information Systems, Vol. 7, No. 1, 1982

[PaKa84] PapadimitriouC.; Kanellakis, P.: On Concurrency Control by Multiple Versions; ACM
Transactions on Database Systems; Vol. 9, No. 1; March 1984

[PeRe83] PeinlP., Reuter, A.: Empirical Comparison of Database Concurrency CoBttoémes;
Proc. of the 9th Int. Conf. on Very Large Data Bases (VLDB); Florence, Italy; 1983

[PrSU82] Pradel, U., SchlageteG., Unland, R.: Ideas on Optimistic Concurrency Control I;
Informatik-Berichte No. 26, University of Hagen, Germany, 1982

[Schi81] Schlageter, G.: OptimistMethods for Concurrency Control in DistributBétabases;
Proc. of the 7th Int. Conf. on Very Large Data Bases(VLDB); Cannes, France; 1981

[TaGS84] Tay, Y.;Goodman,N.; Suri, R.: Performance Evaluation of Locking in Rabses: A
Survey; Rechnical Report; TR-17-84, Harvard Aikon Lab.; Cambridge, Mass.; 1984

[Unla85] Unland,R.: Optimistic Concurrency Control and iificiency in Comparison to Locking (in
German); Ph.D. thesis, University of Hagen, Germany; 1985

[UnPS83] UnlandR., Pradel, U., Schlageter, GDesign Alternativesor Optimistic Concurrency
Control Schemes; Proc. ICOD, Cambridge and Research-Report, University of Hagen, 1983

[UnPS86] UnlandR., Pradel, U., Schlageter, QRedesign of Optimistic Methods: Improvifgrfor-
mance and Applicability; Proc. 2nd Int. Conf. on Data Engineering, Los Angeles, 1986

- 27 -

[UnSc88] Unland,R., Schlageter, G.improved Optimistic Cuncurrency Control arid Use in
Distributed Database Systems; Proc. 21th Hawaii Int. ConByatem Sciences, Kona, Hawaii,
1988

[WaSL86] Wang,S., Singhal, M., Liu, M.: An Optimistic Concurrency Controhlgorithm for
Database Systems; Proc. Int. Computer Symposium Taiwan, Dec., 1986

-28 -

Arbeitsberichte des Instituts fur Wirtschaftsinformatik

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

1 Bolte, Ch., Kurbel,K., Moazzami,M., Pietsch, W.: Erfahrungen bei déntwicklung eines In-
formationssystems auf RDBMS- und 4GL-Basis; Februar 1991.

2 Kurbel, K.: Dagechnologische Umfelder Informationsverarbeitung - Ein subjektiv@tate of
the Art'-Report Uber Hardware, Software und Paradigmen; Méarz 1991.

3 Kurbel, K.: CA-Techniken und CIM; Mai 1991.

4 Nietsch, M., Nietsch, T., RautenstrauchC., Rinschede M., Siedentopf,J.: Anforderungen
mittelst&ndischer Industriebetriebe €inen elektronischeleitstand - Ergebnisse einer Untersu-
chung bei zwdlf Untenehmen; Juli 1991.

5 Becker,J., Prischmann, M.Konnektionistische Modelle - Grundlagen und Konzepte; Septem-
ber 1991.

6 Grob, H.L.:Ein produktivitatsorientierter Ansatz zur Evaluieruran Beratungserfolgen; Sep-
tember 1991.

7 Becker, J.: CIM und Logistik; Oktober 1991.

8 Burgholz, M., Kurbel, K., Nietsch,Th., Rautenstrauch, CErfahrungen bei der Entwicklung
und Portierung eines elektronischen Leitstands; Januar 1992.

9 Becker, J., Prischmann, M.: Anwendung konnektionistischer Systeme; Februar 1992.

10 Becker,J.: Computeintegrated ManufacturingusSicht der Betriebswirtschaftslehre und der
Wirtschaftsinformatik; April 1992.

11 Kurbel,K., Dornhoff, P.: A System for Case-Based Effort Estimation 8woftware-Develop-
ment Projects; Juli 1992.

12 Dornhoff, P.: Aufwandsplanung zur Unterstitzung des Managemeoits Softwareentwick-
lungsprojekten; August 1992.

13 Eicker, S., Schnieder, T.: Reengineering; August 1992.

14 Erkelenz,F.: KVD2 - Ein integriertes wissensbasiertes Modul zur BemessongKranken-
hausverweildauern - Problemstellung, Konzeption und Realisierung; Dezember 1992.

15 Horster, B.SchneiderB., Siedentopf,).: Kriterien zur Auswahl konnektionistischer Verfahren
fur betriebliche Probleme; Méarz 1993.

16 Jung, R.Wirtschaftlichkeitsfaktorerbeim integrationsorientierten Reengineering: Verteilungs-
architektur und Integrationsschritte aus 6konomischer Sicht; Juli 1993.

17 Miller, C., Weiland,R.: Der Ubergang vorproprietaren zwffenen Systemeaus Sicht der
Transaktionskostentheorie; Juli 1993.

18 Becker,J., RosemannM.: Designfor Logistics - EinBeispiel fir die logistikgerecht&sestal-
tung des Computer Integrated Manufacturing; Juli 1993.

19 Becker,J., RosemannM.: Informationswirtschaftliche Integrationsschwerpunkte innerhalb der
logistischen Subsysteme - Ein Beitrag einem produktionstibergreifenden Verstandnis von
CIM; Juli 1993.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

Nr.

-29-
20 Becker,J.: Neue Verfahren der entwurfs- und konstruktionsbegleitenden Kalkulatiohtend
Grenzen in der praktischen Anwendung; Juli 1993.

21 Becker, K., Prischmann, M.: VESKONN - Prototypistimsetzung eines modularen Konzepts
zur Konstruktionsunterstiitzung mit konnektionistischen Methoden; November 1993

22 Schneider, B.: Neonale Netzefur betriebliche Anwendungen: Anwendungspotentiale und
existierende Systeme; November 1993.

23 Nietsch, T., RautenstrauchC., Rehfeldt,M., RosemannM., Turowski, K.: Ansatzeir die
Verbesserung von PPS-Systemen durch Fuzzy-Logik; Dezember 1993.

24 Nietsch, M., Rinschede,M., Rautenstrauch, C.Werkzeuggestitzte Individualisierung des
objektorientierten Leitstands ooL, Dezember 1993.

25 Unland,R., MeckenstockA., Zimmer, D.: Flexible Unterstiitzung kooperativer Entwurfsumge-
bungen durch einen Transaktions-Baukasten, Dezember 1993.

26 Grob, H. L.: Computer Assisted Learning (CAL) durch Berechnungsexperimente, Januar 1994.
27 Unland, R., Kirn, St.: Unterstiitzung Organisatorischer Prozesse durch CSCW, Mérz 1994.

28 Unland,R., Kirn, St.: ZurVerbundintelligenz integrierter Mensch-Computer-Teams:iga-
nisationstheoretischer Ansatz, Marz 1994.

29 Unland,R., Kirn, St., Wanka, U..Workflow Management mit Kooperativen Softwaresystemen:
State for the Art und Problemabrif3, Mérz 1994.

30 Unland, R.: Optimistic Concurrency Control Revisited, Marz 1994.

31 Unland, R.: Sematics-Based Locking: From Isolation To Cooperation, Marz 1994.

-30 -

