
Unland, Rainer

Working Paper

Optimistic concurrency control revisited

Arbeitsberichte des Instituts für Wirtschaftsinformatik, No. 30

Provided in Cooperation with:
University of Münster, Department of Information Systems

Suggested Citation: Unland, Rainer (1994) : Optimistic concurrency control revisited, Arbeitsberichte
des Instituts für Wirtschaftsinformatik, No. 30, Westfälische Wilhelms-Universität Münster, Institut
für Wirtschaftsinformatik, Münster

This Version is available at:
https://hdl.handle.net/10419/59331

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/59331
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

Institut für Wirtschaftsinformatik der Westfälischen Wilhelms-Universität Münster,

Grevener Str. 91, 48159 Münster, Tel. (0251) 83-9750, Fax (0251) 83-9754

März 1994

Arbeitsberichte des Instituts für Wirtschaftsinformatik

Herausgeber: Prof. Dr. J. Becker, Prof. Dr. H. L. Grob, Prof. Dr. K. Kurbel,

Prof. Dr. U. Müller-Funk, Prof. Dr. R. Unland, Prof. Dr. G. Vossen

Arbeitsbericht Nr. 31

Optimistic Concurrency Control Revisited

Rainer Unland

- 2 -

Contents

1 Introduction 3

2 Original approach to optimistic concurrency control 4

3 Shortcomings of the original approach 5

4 Improvement of validation 8

4.1 Solution 1: EOT marker 8

4.2 Solution 2: Snapshot validation 8

4.3 Snapshot validation with critical section 10

4.4 Snapshot validation without critical section 12

5 A validation scheme for read transactions 16

6 Multiversion optimistic concurrency control 20

7 Substitute transactions: a general solution for the starvation problem 22

8 Conclusion 25

Literature 26

Abstract

Several years ago optimistic concurrency control gained much attention in the database

community. However, two-phase locking was already well established, especially in the

relational database market. Concerning traditional database systems most developers felt that

pessimistic concurrency control might not be the best solution for concurrency control, but, a

well-known and accepted one. With the work on new generation database systems, however,

there has been a revival of optimistic concurrency control (at least a partial one). This paper

will reconsider optimistic concurrency control. It will lay bare the shortcomings of the original

approach and present some major improvements. Moreover, several techniques will be

presented which especially support read transactions with the consequence that the number of

backups can be decreased substantially. Finally, a general solution for the starvation problem is

presented. The solution is perfectly consistent with the underlying optimistic approach.

- 3 -

1 Introduction

Several years ago optimistic concurrency control gained much attention in the database

community. However, two-phase locking was already well established, especially in the

relational database market. Concerning traditional database systems most developers felt that

pessimistic concurrency control might not be the best solution for concurrency control, but a

well-known and accepted one. With the work on new generation database systems, however,

there has been a revival of optimistic concurrency control (at least a partial one). This can be

seen by the fact that optimistic concurrency control found its way in at least one commercial

(object-oriented) database system, namely GemStone ([Maie89]). There are several application

areas for which optimistic concurrency control may be of interest. Among them are:

FF Real-time transaction processing (high data contention)

Real-time Applications require a fast response and a high degree of concurrency. Since

optimistic concurrency control has the properties of non-blocking and deadlock

freedom, they are especially attractive to real-time transaction processing (cf.

[HSRT91], [HaCL90],). Let us, for example, consider an airline reservation system. In

such a system a high degree of concurrency is essential. In case of a conflict, the

conflict must not necessarily be serious. For example, a typical transaction, checking

the availability of seats on a particular flight, needs only to know whether the current

value of available seats is non-zero. As long as there are still seats available available, a

possible conflict between two transactions can be neglected (cf. [JaSh92]).

FF Cooperative environments

Cooperative environments usually require a concurrent work on objects. However,

nevertheless a possible conflict must be detected and brought to the knowledge of the

corresponding users or application. They can decide on their own how to react, e.g.

either by initiating a compensating action or by starting user or application defined

repair actions.

Both examples have in common that they require a concurrent, often even non-serializable

work on data. However, in case of a conflict this conflict must be detected. Here, optimistic

methods seem to be quite appropriate since they allow non-serializable work on data, however,

discover every conflict. Of course, in situation like the above, optimistic concurrency control

should not automatically rollback transaction but leave it to the application to trigger the

appropriate reaction.

- 4 -

This paper will reconsider optimistic concurrency control from a general point of view; i.e., it

will not discuss the use and adaptation of optimistic concurrency control for special application

areas. Instead, it will present major improvements and solutions for most weak points of the

original approach to optimistic concurrency control.

The remainder of the paper is organized as follows. In section 2 the original approach to

optimistic concurrency control will be introduced briefly. Section 3 will analyse the original

approach to lay bare its shortcomings. As a consequence of this analysis several improved

validation schemes will be presented in section 4. These solutions will not only eliminate the

weakness of the original approach but, additionally, will reduce the overall cost for validation.

In section 5, we will propose a validation scheme, which especially supports read transactions.

With this scheme every read transaction will survive if there is a chance to do so. In section 6 it

will be discussed how read transaction can run without any consideration of concurrency

control at all. This will be achieved by the integration of a version approach. Section 7

concentrates on the starvation problem and presents several solutions which are entirely based

on the optimistic approach. Finally, section 8 will conclude this paper.

2 Original approach to optimistic concurrency control

We give a brief description of the basic optimistic concurrency control scheme as proposed in

[KuRo79]. A transaction consists of three phases: a read phase, a validation phase and a

write phase. In the read phase the required objects are read from the database, write operations

are performed on local copies of the database objects. In the validation phase a check for

serializability is performed. If validation is successful, the objects modified by the transaction

are written into the database (write phase), otherwise the transaction is restarted. Validation

and write form a critical section.

Validation is performed as follows: For each transaction Ti the system keeps track of the set of

objects read from the database (RSi) and of the set of objects written (WSi). If validation is

successful, the transaction is assigned a unique transaction number TNRi. For this purpose a

global transaction counter TNC is maintained. Let TNRstart be the highest transaction number

at the start of transaction Tj, and let TNRfinish be the highest transaction number at the start of

validation. Then Tj performs the following check:

- 5 -

(VAL) <valid := true;
 for TNR from TNRstart+1 to TNRfinish do

if RSj ∩ WSi ≠ ∅ then valid := false;

 if valid then
 begin

(write);
TNRj := TNC;
TNC := TNC+1

 end>

if not valid then (backup);

<> marks the critical section

Algorithm 1: Validation as in [KuRo79]

This scheme guarantees a serialization in the order of the transaction numbers (equal to the

order of commit).

In the next chapter it will be shown that this approach is too pessimistic.

3 Shortcomings of the original approach

There are some simulation studies (see, e.g., [Agra83], [AgCL85], [AgCL87], [AuPS84],

[Bhar82], [Bhar80], [Care83], [FrRo85], [HSRT91], [HuSt90], [KeTe84], [MeNa82],

[PeRe83], [TaGS84]) which are quite positive for optimistic methods, though there is no clear

advantage over locking. Greater acceptance can only be achieved if some serious drawbacks of

the original approach of Kung and Robinson [KuRo79] can be overcome.

The following issues are essential:

1. The degree of potential parallelism of optimistic methods is high. However, the same is

true for the risk of being restarted unnecessarily. It would be desirable to avoid restart in

all cases where detected conflict actually does not endanger serializability.

- 6 -

2. Since long transaction run for a longer time than transactions of average size they have an

increased risk of being subject of restart. However, long transactions should have similar

chances of committing than short ones.

3. Since optimistic concurrency control relies on rollback as the means of synchronization

transactions might be restarted repeatedly. In worse cases the same transaction might be

the victim of rollback again and again. This phenomenon is known as the starvation

problem and, of course, must be prevented.

4. Optimistic concurrency control is considered to be especially favorable for query

intensive applications. Therefore, validation for read transactions should be flexible

enough to allow each transaction a normal termination whenever there is a chance to do

so.

5. A main weakness of the original validation scheme is its clumsy definition of conflict. As

a consequence transactions may be restarted unnecessarily, as figure 1 shows:

Transaction Th writes during the read phases of Ti and Tj and thus has to be considered

in their validation phases. Using the validation scheme of [KuRo79], both transactions

have to be restarted. If we take a closer look at the above scenario the following becomes

clear:

F Ti reads an object that will later be written by Th. Serialization in commit order is

not possible. Hence this conflict is "serious": It signals a non-serializable situation.

Note that serialization in the reverse order of commit is not possible in general, see

[PrSU82].

F However, the conflict between Tj and Th is not "serious", since the conflict due to y

simply expresses the serialization constraint Th → Tj. Restart of Tj is unnecessary.

- 7 -

time

write
 x, y

read x

read y

t 1 t 2 t 3

hT

iT

jT

READ

READ

READ

VAL.

VAL.

VAL.

WRITE

WRITE

WRITE

Figure 1: Validation as in [KuRo79]

The outlined situation is especially unfavorable, since transactions may be restarted because of

conflict with Th even if their first access to the database was after the write of Th. Or, to come

back to our example applications in the introduction, a non-existent conflict is signalled to the

user or application as a serious one.

Observation:

Every conflict between an update-transaction Th and a concurrent transaction Tj is

serious for serialization in commit-order if the conflict occurs before the end of the

write-phase of Th. It is non-serious if it occurs afterwards. As will be shown later, a

serious conflict must not in each case lead to a rollback. However, it must lead to a

rollback if serialization in commit-order is assumed. Therefore, we will call such a

conflict commit-serious (or c-serious for short).

In the following we propose several improved validation schemes whose common feature is

that they distinguish between "c-serious" and "non-c-serious" conflicts, and thus substantially

reduce the risk of restart.

- 8 -

4 Improvement of validation

4.1 Solution 1: EOT marker

The following idea is a simple but effective solution for recognizing certain "non-c-serious"

conflicts: At each EOT of an update-transaction Tj every parallel transaction Ti takes a note of

the termination of Tj in its read-set. Provided that the read-set of Ti is ordered in the sequence

of its actions on objects, the following holds: During validation against Tj Ti has to consider

only the part from the beginning of the read-set up to the point where the EOT of Tj is marked.

All actions done after the commit of Tj can produce only "non-c-serious" conflicts (see figure

1).

Example 1:

EOTl denotes the EOT marker of Tl in a read-set. Assume Ti has the following read-

set:

(EOTl, x, y, EOTm, z, EOTn, v, w, EOTp)

In its validation Ti has to perform the following tests:

1. no test against Tl
2. WSm ∩ (x, y)

3. WSn ∩ (x, y, z)

4. WSp ∩ (x, y, z, v, w)

On the basis of the original validation scheme all validation tests would have been performed

against the read-set of test 4. of above.

This proposal is the basis for the modified validation scheme for read-transactions (see chapter

5).

4.2 Solution 2: Snapshot validation

The following validation scheme is called snapshot validation, because validation does not

consider terminated transactions but a snapshot of the actual state of all transactions; i.e. it

considers all concurrent transactions that are in their read-phase. This scheme makes use of the

fact that a c-serious conflict of an update-transaction Th with a concurrent transaction Tj can

- 9 -

only occur before the end of the write-phase of Th (as was shown in chapter 3). Hence, any

transaction can check its safety with respect to Th as soon as Th has committed.

Consider Figure 2. After the commit of Th, time t1, each concurrent transaction Tm (m = i, j,

k) performs the check RSm(t1) ∩WSh, where RSm(t1) is the read set at time t1. If a conflict is

detected, it is a c-serious one with the consequence that Tm must be restarted.

In the original approach validation is performed against the write set of all transactions that

have committed during the run-time of Th, whereas now, at each commit of a transaction Th,

all concurrent transactions validate their current read set against Th's write-set.

There is no longer one single validation phase for a given transaction. Instead validation is

performed constantly during Th's run-time. Nevertheless, the overall number of validation

points is usually less than in the original approach (each write-transaction causes one while a

read-transaction causes none).

time

Th

Ti

Tj

Tk

validation test validation points

t1 t2 t3 t 4

VAL.WRITEREAD

READ

READ

READ

VAL.

VAL.

VAL.

WRITE

WRITE

WRITE

Figure 2: Snapshot validation

There are several remarkable advantages of the snapshot validation:

C Only c-serious conflicts cause a back up of a transaction.

C The read-sets to be considered in the validation phase are considerably smaller in the

average.

- 10 -

C Conflicts are detected earlier. A transaction no longer runs to its end to detect that it has

to be restarted.

C The write set of a transaction must no be kept until all concurrent transactions are

terminated; it can be released immediately after the validation of all concurrent

transactions. Because this validation is either done during the validation phase of Th or

just after the termination of Th (see below), write sets have to be stored for considerably

shorter periods.

We can distinguish between two types of snapshot validation schemes, namely snapshot

validation with or without critical section. In the scheme with critical section, validation of

concurrent transactions is done during the validation phase of the terminating transaction.

Therefore, in case of a conflict there is a choice as to which of the conflicting transactions

should be backed up. So, this alternative includes a solution for the starvation problem. A

drawback of this proposal is the use of a long critical section, which start with the validation

phase of a terminating transaction and end with its EOT. During this section the whole

database is locked for all concurrent transactions.

Snapshot validation without critical section avoids long critical sections since all validation

tests of concurrent transactions are performed immediately after the EOT of the terminating

transaction. Clearly, now there is no freedom to choose the transaction that is to be backed up.

Thus, starvation may again be a problem. Therefore, we propose, that this solution should be

used in combination with the (starvation avoiding) algorithm presented in section 7.

4.3 Snapshot validation with critical section

The following scheme assumes that validation and write form one continuos critical section

during which no transaction is allowed to access the database. Therefore, the read sets remain

unchanged. In this case, it is possible to perform the snapshot-validation before the write phase

of the terminating transaction.

Consider figure 3. Transactions Ti, Tj and Tk are validated against Th in the interval t1 to t2.

Conflicts are detected before Th writes its updates to the database. Since the validating

transaction Th validates against all running transactions a transaction counter is no longer

necessary; i.e., we no longer need the transaction counter to identify the transactions against

which Th has to validate.

- 11 -

This validation scheme opens up new possibilities to resolve conflicts: in the original approach

a conflict is always resolved by restarting the validating transaction; now each of the two

conflicting transactions can be restarted. As a result the following strategies for conflict

resolution can be implemented:

1. In case of conflicting update transactions the decision of whom to restart can be based on

explicit priorities of transactions or on other criteria such as processing time used so far.

Note that strategies of this type may solve the problem of long transactions as well as the

starvation problem: one simply has to use as a criterion the accumulated processing time

of a transaction (including all restarts). This automatically gives priority to long

transactions and to transactions which have been restarted. A similar effect can be

reached by assigning a special priority to a transaction which has to come to its end

safely.

2. If a read transaction conflicts with a write transaction, one can delay the commit of the

writer until the reader has terminated. Read transactions would not have to do validation

at all (see also [Schl81]). However, this approach can imply serious disadvantages for

writers.

In addition to the advantages already mentioned the outlined validation scheme includes simple

and efficient solutions for the problems of long transactions and starvation. The price to be

paid is a long critical section which may result in substantial blocking of concurrent

transactions (see algorithm 2). The scheme presented in the next section avoids this

disadvantages.

- 12 -

time

Th

Ti

Tj

Tk

validation test

t 1 t2 t 3 t 4

VAL.WRITEREAD

READ

READ

READ

VAL.

VAL.

VAL.

WRITE

WRITE

WRITE

t 5 t 6 t 7 t 8 t 9

Figure 3: Snapshot validation with critical section

(VAL) <valid := true;

 for all (transactions Ti which are still running and have not yet started

validation)

if RSj ∩ WSi ≠ ∅ then valid := false;

 if valid then (write);>

if not valid then (rollback one of the conflicting transactions);

<> marks the critical section

Tj validating transaction

Algorithm 2: Snapshot validation with critical section

4.4 Snapshot validation without critical section

Two transactions Ti and Tj are correctly synchronized in the serialization order Ti → Tj, if the

following holds:

(SR) (1) Tj does not read or write objects written by Ti

(2) Ti terminates its read phase before Tj terminates its read phase

- 13 -

We assume that updates of transactions are done on local copies of the database objects.

Furthermore, we require an object to be read from the database before it can be modified.

Therefore, for all transactions WS ⊆ RS holds. As a consequence, the test RSj ∩ WSi includes

the test WSj ∩ WSi. The test RSj ∩ WSi has to be executed at a point of time where the read

set of Tj contains all objects which could produce a c-serious conflict to Ti (remember that the

write phase of Ti is not a critical section). The earliest point for this test is

F either the begin of validation of Tj, if Tj starts validation before the end of Ti's write

F or the end of Ti's write phase, if Tj is still in its read phase at this time.

Condition (2) is satisfied if transaction numbers are assigned at the beginning of validation, and

if TNRi < TNRj.

An update transaction Ti now has the structure given in figure 4.

During the read phase Ti validates against all transactions terminating in this interval. At the

start of validation Ti is assigned its transaction number TNRi. Thus, all concurrent transactions

that validate later will have to validate against Ti. Ti has to check whether there are

transactions with transaction number smaller than TNRi that have not yet terminated. No

validation has been done against these transactions, so a check has to be performed now. After

these steps Ti can commit its updates provided the checks were positive. After the commit

concurrent transactions validate against Ti. Figure 5 gives an example:

After the termination of Th transactions Ti, Tj and Tk validate against Th. Later, at the

beginning of Ti's final validation, Tj has not yet terminated. As TNRj < TNRi, Ti has to

validate against Tj now.

time

READ VALIDATION WRITE TU
(1) (2) (3)

(1) validation against transactions terminated in this phase

(2) assignment of transaction number, validation against transactions with smaller trans-
action number which have not yet terminated

(3) Ti's termination is made public

Figure 4: Structure of an update transactions

- 14 -

This validation scheme is highly flexible and allows maximal parallelism as the necessary

critical section is reduced to the access of the transaction counter. There is no restriction as to

the sequence of the commits. Some simulations [PeRe83], [AuPS84] show, that snapshot

validation behaves considerably better than the original approach and that it is a good

candidate for replacing locking schemes in a variety of applications.

In [AgCL85] the original approach of optimistic concurrency control is compared to the

locking scheme. As in the above mentioned simulations, the original approach is inferior to

locking in some applications. However, the differences between both methods are small, so

that it is very likely that snapshot validation will be superior to locking in most applications.

time

Th

Ti

Tj

Tk

validation
against Tj

validation test validation points

t 1 t2 t 3 t 4

VAL. WRITEREAD

READ

READ

READ

VAL.

VAL.

VAL.

WRITE

WRITE

WRITE

Figure 5: Snapshot validation without critical section

- 15 -

(VAL) valid := true;
<TNRj := TNC;

 TNC := TNC+1>

for all (transactions Tj with smaller TNR which have not yet terminated)

if RSi ∩ WSj ≠ ∅ then valid := false;

if not valid then (backup Ti);

(write);
for all (transactions Tj which are still running and have not yet started

validation)

if WSi ∩ RSj
current ≠ ∅ then backup (Tj);

termination of Tj is made public;

<> marks the critical section (only modification of transaction counter)
Tj validating transaction
RSj

current current read-set of transaction Tj

Algorithm 2: Snapshot validation without critical section

A drawback of this solution is that the simplicity of the solution for the support of long

transactions and of the starvation problem is lost. However, in section 6 we will discuss a

general solution for the starvation problem.

Another possibility to approach these problems is to combine the two versions of snapshot

validation. As a rule, transactions behave according to the validation scheme without critical

section. However, a long transaction or a transaction which has been restarted several times

may be given priority: each terminating transaction Ti must validate against concurrent

transactions with priority. In case of conflict Ti is restarted. The transaction with priority must

be preempted during this validation. If conflict is possible between two transactions with

priority, then either priority levels or other standard decision mechanisms are required.

- 16 -

5 A validation scheme for read transactions

In this chapter we introduce a validation algorithm that especially improves the validation

scheme for read transactions.

Usually concurrency control tries to place a transaction at the end of the serial schedule

existing so far. If this is not possible, the transaction is backed up. In contrast to this usual

approach the new algorithm does not back up a transaction in this case but tries to place it at

some other point in the serial schedule, thus making backup unnecessary in many cases (see

figure 6).

time

Ti

Tk

Tj

validation test
t 1 t2 t 3 t 4

VAL. WRITEREAD

READ VAL. WRITE

READ VAL. WRITE

READ VAL. WRITE

TR

Tl

READ

Figure 6: Validation scheme for read transactions

In the above scenario TR is a read transaction while all other transactions are update

transactions. If all transactions read their validation number in the sequence of their termination

snapshot validation would try to produce the following serial schedule:

(SS) Ti → Tj → Tk → Tl → TR

Assume there is a conflict between Tk and TR. This means that TR read an object before t3 that

was written by Tk (note: TR has not read the version written by Tk since write takes only place

at time t3). Snapshot validation (or any other optimistic validation scheme) would back up TR,

because the serial schedule (SS) is no longer possible. However, although the conflict prevents

the serial schedule (SS), this does not mean that the serialization criterion is violated. TR has

- 17 -

executed validation against Ti and Tj at time t1 and t2, respectively, and no conflict was

detected. Therefore it would be possible to place TR between Tj and Tk in the serial schedule,

if the following holds:

F TR does not read any object written by Tk or any other transaction located after Ti in the

serial schedule.

Let TR be a read transaction and TU a concurrent update-transaction. Then RSBU indicates

that part of TR's read-set from the beginning of TR up to the point where TU starts its write-

phase. Analogously, RSAU indicates the part of the read-set of TR starting with the write-phase

of TU and ending with the end of the read-phase of TR (see figure 7):

The terminating read transaction TR can be placed at a point x in the serial schedule if the

following is true:

time

Rread-phase of T

RSRS BU AU

Figure 7: Read-set of TR, divided by TU

(a) WSU ∩ RSBU = ∅ for all concurrent update transactions TU standing before x in the

serial schedule.

(b) WSU ∩ RSAU = ∅ for all concurrent update transactions TU standing after x in the

serial schedule.

Condition (a) is satisfied by the usual test executed by snapshot validation because validation

of a running transaction TR against a terminating update transaction TU is done immediately

after the EOT of TU with the read-set of TR existing so far. This test is the usual test for the

new validation scheme, too. The first time a conflict occurs, this validation scheme is no longer

usable. Condition (b) has to be checked from this time.

To fulfil condition (b) a method similar to the proposal of chapter 4.1 is introduced:

Every read transaction TR records the begin of the write phase of every terminating update

transaction TU in its read-set (say, BOWU marker). Of course, the sequence of actions has to

- 18 -

be preserved in the read-set. Because the complete read-set of TR is not available as long as TR

is in its read phase from now on validation against all update transactions has to be done at the

end of the read phase of TR. Therefore the write-sets of all terminating update transactions

have to be preserved. In its validation phase TR has to consider only the part from the BOWU
marker up to the end of the read-set (see condition (b)).

In general the method works as follows:

As long as no conflict is detected, every read transaction TR works as usual, for example

according to the validation scheme of the snapshot validation. Additionally, the begin of the

write phase of every terminating update transaction (BOW marker) is recorded in the read-set

of TR. If the first conflict occurs TR changes its validation technique, such that:

1. the read-set existing so far can be deleted up to the BOW entry of the conflicting

transaction.

2. in contrast to the rules of the snapshot validation from now on TR does not validate

immediately after the EOT of a concurrent update transaction TU but at its end. For this

reason, the write-set of TU is stored.

3. Before terminating TR performs the following test against all transactions recorded in its

read-set:

WSU ∩ RSAU = ∅

If no conflict occurs, TR can successfully terminate. In the serial schedule TR is placed just

before the transaction causing the change of validation technique.

Example 2:

The basis of this example is the scenario of figure 6.

Assume TR has the following read-set:

EOTj EOTi EOTk EOTl
 / / / /

(BOWi, a, b, c, d,BOWj, e, f, BOWk, g, h, BOWl)

- 19 -

As Tk is the conflicting transaction the following tests will be performed:

usual validation:

against Ti : none, because the read-set is empty

against Tj : RSR ∩ (a, b, c, d)

against Tk : RSR ∩ (a, b, c, d, e, f), a conflict occurs,

therefore:

change of validation policy (validation tests are done after the read phase of TR)

against Tk: RSR ∩ (g, h)

against Tl : none, because TR has not read an object after the begin of the write

phase of Tl.

The considered algorithm allows read transactions to survive if there is a chance. We do not

know any other algorithm which takes a look at the serial schedule existing so far in order to

place a conflicting transaction at a possible point in this schedule. In comparison to the original

approach validation is quite short.

6 Multiversion optimistic concurrency control

Optimistic methods are supposed to be especially favorable in query-intensive applications.

Therefore, it would be useful to separate the concurrency control for readers and writers in a

way that readers run without any risk of restart. A possible solution has been indicated earlier:

in case of conflict between reader and updater the write phase of the updater is delayed.

However, it is obvious that this scheme may produce intolerably long delays for updaters, and

also may increase the risk of restart for the updater, since, while it waits, other updaters may

terminate.

A solution that avoids conflict between read- and write-transactions in the context of two-

phase locking is extend two-phase locking with versioning (cf. [CFLN82], [DuBo82],

[PaKa84]). Under multiversion two-phase locking, prior versions of objects are retained to

allow queries to run against past transaction-consistent database states. The presence of

versions allows queries to serialize bafore all concurrent update transactions, and thus queries

and update transactions do not conflict. Zhis scheme can be adapted to optimistic concurrency

control. By the use of versions a reader always can get a consistent view of the database. In

our proposal, a reader works on the database version that existed at the start of the

- 20 -

transaction. In this scheme there is no overhead for concurrency control for readers. Moreover,

update transactions do not need to consider concurrent readers any longer.

To implement a version concept, it seems to be advantageous to use pages as the basic means

of concurrency control (there are also other reasons to base optimistic concurrency control on

pages, which we cannot discuss here. Some interesting arguments concerning this issue are

given in [Härd84]).

The version concept can be outlined as follows: Update transactions work on copies of pages.

At commit time the modified pages are marked with the transaction number TNR. The old

versions of the modified pages are kept. Update transactions work on the current versions,

whereas readers work on versions which were current at their start; modifications which occur

during a reader's life are not considered. To accomplish this behaviour, a read transaction TR
reads at its beginning the value TNCRR of a counter TNCR; TNCR indicates the transaction

number of the latest terminated update transaction. At each access to a page TR tests whether

the stamp of the page is less or equal to TNCRR; in this case the page was not modified since

the start of TR. If the stamp is greater than TNCRR, this page was modified in the meantime

and TR would get an inconsistent view of the database. To avoid this TR then accesses the

older version of this page. Note that in some cases more than one old page version may exist:

TR then has to access the page with the highest stamp less than TNCRR. Old versions must

exist as long as a read transaction is active the TNCRR of which is smaller or equal to the

stamp of the page.

In the case of snapshot-validation with critical section the TNCR corresponds to the TNC,

which means that a separate counter for the TNCR is not required. More complicated is the

case of snapshot validation without critical section. There, the sequence of termination of

transactions does not necessarily correspond to the sequence of transaction numbers, so that

there may be gaps in the list of terminated transactions. For instance, the transactions with the

numbers 100, 102 and 103 may be terminated while T101 and T104 are still running. A read

transaction starting at this time must not work with TNCR 103, since this can imply that

possible conflicts with T101 remain undetected. There are two solutions for this problem:

1. Enforce termination of update transactions in the sequence of their transaction numbers.

2. Use the last TNCR value before which there is no gap in the list of terminated

transactions. In the above example this value would be 100. The disadvantage of this

approach is that updates of terminated update transactions may stay invisible even for

read transactions that started after the termination of the update transaction.

- 21 -

Summary

Table 1 summarizes the different validation techniques:

starvation problem critical section read transactions

VALcs solved long no special treatment

VAL¬¬cs ¬solved extremely short no special treatment

VALcs
read solved long will survive whenever there is a chance

VAL¬¬cs
read ¬solved extremely short will survive whenever there is a chance

VALcs
version solved long will survive in any case

VAL¬¬cs
version ¬solved extremely short will survive in any case

VAL cs : snapshot validation with critical section

VAL ¬¬cs : snapshot validation without critical section

VAL cs
read : snapshot validation for read transactions with critical section for update trans.

VAL ¬¬cs
read : snapshot validation for read transactions without critical section for update trans.

VAL cs
version : multiversion snapshot validation with critical section

VAL ¬¬cs
version: multiversion snapshot validation without critical section

Table 1: Characteristics of the different validation schemes

7 Substitute transactions: a general solution for the starvation problem

Since in the optimistic approach concurrency control is based on backing up transactions which

cannot be placed at the end of the serial schedule existing so far, a transaction may be restarted

again and again. This problem is usually called starvation. The risk of starvation is the greater

the longer the transaction is, long transactions may especially be killed by short ones. A very

restrictive solution for the starvation problem is suggested in [KuRo79]: after a transaction has

been restarted a certain number of times, in principle the whole database is locked for it. It is

- 22 -

obvious that such a solution is not acceptable for databases with a high degree of parallel

usage.

The solution

We present a solution for the starvation problem which is entirely based on the optimistic

approach.

Starvation occurs if, during validation, a transaction Ti repeatedly finds a Tj such that RSi ∩
 WSj ≠ ∅. After a certain number of trials of Ti we have to make sure that Ti is not backed up

again. We propose the following solution:

After a certain number of trials for transaction Ti a substitute transaction TSi is created. TSi
possesses the read- and write-sets of Ti. The purpose of TSi is to prevent other transactions Tj
from validating positively if they are in conflict with Ti, as long as Ti is running. For Tj the

substitute transaction TSi anticipates the (future) write of Ti . Ti is protected by its substitute

transaction so that either Ti does not have to validate again at all or at least the probability of

positive validation is increased.

Substitute transaction

After a certain number of restarts of Ti the substitute transaction TSi is established such that

RSSi=RSi and WSSi=WSi. After establishing its substitute Ti is restarted. TSi exists as long as

Ti is active. In contrary to other transactions the first action of a substitute transaction is to

read its transaction number. From this moment, the status of TSi is that of a validating

transaction and therefore any other validating transaction Tj must validate against TSi (for

validation see below). The main point about substitute transactions is that they are not

transactions which have written at a certain point in time, but which have to be considered in

every validation as long as they exist.

Validation

A transaction Tj must apply the following test in its validation phase against an existing

substitute transaction TSi:

WSj ∩ RSSi = ∅

To see this, note that Tj recognizes the substitute transaction, but Ti itself only writes after the

termination of Tj (TSi is deleted at the end of Ti!). Of course, if Ti has written before the

- 23 -

validation of Tj, then Tj applies the standard validation test against Ti. Validation of a

transaction Tj is performed in the way known from snapshot validation:

F During the read-phase of Ti, it validates against every terminating update transaction TU
with the usual test WSU ∩ RSi = ∅.

F In the validation phase Ti has to validate against every transaction which has not yet

ended, but which has read its transaction number before Tj (see chapter 3). This class of

transactions includes all substitute transactions. Whereas validation against regular

transactions is done with the usual test, Tj has to perform the test WSj ∩ RSSi against

substitute transactions.

Fixed or variable read- and write-sets of transactions

If the read and write sets of a transaction are the same for each restart, then the outlined

scheme guarantees that a transaction with a substitute will terminate without further restart. In

fact, the transaction needs not to perform a validation at its end, since its substitute gave it

perfect shelter from interferences with other transactions.

If the read- and write-sets are time-dependent and thus may differ from one restart to the next,

then, obviously, the substitute transaction does not give this perfect shelter, however it

considerably increases the chance of successful termination. Ti must validate in this case, TSi
makes it probable that validation will succeed. If Ti must nevertheless be restarted, a new

substitute transaction TSi' may be installed with RSSi' = RSi ∪ RSSi, WSSi' = WSi ∪ WSSi,

where RSi, WSi are the read- and write-sets of the last execution of Ti. This again increases

the probability for Ti to terminate. As can easily be seen, this scheme guarantees termination of

Ti with the only exception that there is a continuous adding of database objects which must be

included in the read set of Ti.

Maintenance of substitute transactions

Concurrency control must guarantee some form of fairness for the installation of substitute

transactions, because otherwise a transaction might never succeed in getting its substitute, thus

again being blocked permanently. The simplest solution to this problem is to allow only one

substitute transaction at a time. Installation of the substitute transaction is no problem at all,

since a substitute does not have a read phase. To guarantee fairness, concurrency control

serves requests for substitute transactions on a first-come first-served basis. A more

complicated scheme is to allow several substitutes to exist in parallel. In this case the substitute

- 24 -

transactions must not conflict one with each other. Let S be the set of existing substitute

transactions. Then, a new substitute transaction TSi can only be installed, if it does not conflict

with some TSj out of S:

RSi ∩ WSj ∪ RSj ∩ WSi ∪ WSi ∩ WSj = ∅

To ensure fairness, again first-come first-served principle might be applied. Since each

transaction which has a substitute transaction will terminate with certainty, each transaction

waiting to get a substitute will get it in finite time. In a slightly modified form this

argumentation also holds in the case of variable read sets.

The presented concept is a simple and smooth solution for the starvation problem in optimistic

approaches. The solution only makes use of optimistic concepts, artificial concepts like locking

need not to be introduced. The necessary extensions to the basic optimistic concurrency

control are very easily implemented. Depending on the maintenance of the substitute

transactions there is either no or only very small run-time overhead for the proposed solution.

We have been informed about results from simulations, not yet published, which confirm the

efficiency of the substitute concept.

8 Conclusion

The basic optimistic concurrency control scheme as proposed in [KuRo79] exhibits some

serious shortcomings with respect to its validation technique and long transactions. In the first

part of this paper design alternatives were presented which are superior to the original

approach in several aspects. The main advantage of the proposed solution is that it

distinguishes between serious and non-serious conflicts and only rolls back a transaction in

case of a serious conflict. No additional overhead or other restrictions are introduced. On the

contrary, overhead is reduced. In the next part of the paper a special validation scheme for read

transactions was introduced. Under control of this proposal a read transaction is only backed

up if a conflict is detected which definitely violates the serialization criterion. In the next part

of the paper the integration of versions into the optimistic approach were discussed briefly. A

concept was presented which allows read transactions to run without any consideration of

concurrency control. Update transactions are not hampered by this support for readers. Of

course, as in many version based approaches, there is additional overhead for the maintenance

of versions, and it remains to be shown which circumstances these additional costs are worth

paying. The last part of this paper presented a solution for the starvation problem. The

- 25 -

proposed algorithm is easy to integrate because it is only based on optimistic concepts, so that

artificial concepts like timestamps or locking need not to be introduced.

Literature

[Agra83] Agraval, R.: Concurrency Control and Recovery in Multiprocessor Database Machines:
Design and Performance EvaluationP; Ph.D. thesis; University of Wisconsin, Madison; 1983

[AgCL85] Agraval, R., Carey, M., Livny M.: Models for Studying Concurrency Control Performance:
Alternatives and Implications; Proc. ACM-Sigmod, International Conference on Management of
Data; Austin, Texas; 1985

[AgCL87] Agraval, R., Carey, M., Livny M.: Concurrency Control Performance Modeling:
Alternatives and Implications; ACM Transactions on Database Systems; Vol. 12, No. 4; Dec. 1987

[AuPS84] Augustin, R., Prädel, U., Scholten, H.: Performance Analysis of Concurrency Control
Algorithm in Database Systems: a Survey (in German); Research-Report No. 174; Department of
Computer Science, University of Dortmund, Germany; 1984

[Bada81] Badal, D.: Concurrency Control Overhead or Closer Look at Blocking vs. Non-Blocking
Concurrency Control Mechanism; Proc. of the 5th Berkeley Workshop; 1981

[Bhar80] Bhargava, B.: An Optimistic Concurrency Control Algorithm and its Performance Evaluation
against Locking Algorithms; Report of the Department of Computer Science, University of
Pittsburgh, Pittsburgh, PA 15260 USA; 1980

[Bhar82] Bhargava, B.: Performance Evaluation of the Optimistic Approach to Distributed Database
Systems and its Comparison to Locking; Report of the Department of Computer Science, University
of Pittsburgh, Pittsburgh, PA 15260 USA, 1982

[BoCa92] Bober, P.; Carey, M.: Multiversion Query Locking; Proc. 18th Int. Conf. on Very Large
Databases (VLDB); Vancouver, Canada; Aug. 1992

[Care83] Carey, M.: Modeling and Evaluation of Database Concurrency Control Algorithms; Ph.D.
thesis; University of California, Berkeley; 1983

[CFLN82] Chan, A.; Fox, S.; Lin, W.; Nori, A.; Ries, D.: The Integration of an Integrated Concurrency
Control and Recovery Scheme; Proc. ACM-SIGMOD, International Conference on Management of
Data; 1982

[DuBo82] DuBourdieu, D.: Implementation of Distributed Transactions; Proc. 6th Berkeley Workshop
on Distributed Data Management and Computer Networks; 1982

[FrRo85] Franaszek, P; Robinson, J. T.: Limitations of Concurrency in Transaction Processing; ACM
Transactions on Database Systems; Vol. 10, No. 1; Mar. 1985

[GaRa92] Gafni, A.; Rao, B: A Time-Based Distributed Optimistic Recovery and Concurrency Control
Mechanism; Proc. 8th Int. Conf. on Data Engineering; Tempe, Arizona; 1992

- 26 -

[HaCL90] Haritsa, J.; Carey, M.; Livny, M.: Dynamic Real-Time Optimistic Concurrency Control;
Proc. 11th Real-Time Systems Symposium; Dec. 1992

[Härd84] Härder, T.: Observations on Optimistic Concurrency Control Schemes; Information Systems,
Vol. 9, No. 2; 1984

[HSRT91] Huang, J.; Stankovic, J.; Ramamrithan, K.; Towsley, D.: Experimental Evaluation of Real-
Time Optimistic Concurrency Control Schemes; Proc. 17th Int. Conf. on Very Large Databases
(VLDB); Barcelona, Spain; 1991

[HuSt90] Huang, J.; Stankovic, J.: Concurrency Control in Real-Time Database Systems: Optimistic
Scheme vs Two-Phase Locking; Technical Report, COINS 90-121; University of Massachusetts;
Nov. 1990

[JaSh92] Jagadish, H.; Shmueli, O.: A Proclamation-Based Model for Cooperating Transactions; Proc.
18th Int. Conf. on Very Large Databases (VLDB); Vancouver, Canada; Aug. 1992

[KeTe84] Kersten, M., Tebra, H.: Application of an Optimistic Concurrency Control Method; SOFT-
WARE-Practice and experience, Vol. 14, Feb 1984

[KuRo79] Kung, H. T., Robinson, J. T.: On Optimistic Methods for Concurrency Control; Proc. 5th
Int. Conf. on Very Large Databases (VLDB); Rio de Janeiro, Brazil; 1979

[Maie89] Maier, D.: Making Database Systems Fast enough for CAD Applications; in: Kim, W.;
Lochovsky, F. (Editors): Object-Oriented Concepts, Databases, and Applications; Addison-Wesley
Publishing Company; 1989

[MeNa82] Menasce, D., Nakanishi, T.: Optimistic Versus Pessimistic Concurrency Control
Mechanisms in Database Management Systems; Information Systems, Vol. 7, No. 1, 1982

[PaKa84] Papadimitriou, C.; Kanellakis, P.: On Concurrency Control by Multiple Versions; ACM
Transactions on Database Systems; Vol. 9, No. 1; March 1984

[PeRe83] Peinl, P., Reuter, A.: Empirical Comparison of Database Concurrency Control Schemes;
Proc. of the 9th Int. Conf. on Very Large Data Bases (VLDB); Florence, Italy; 1983

[PrSU82] Prädel, U., Schlageter, G., Unland, R.: Ideas on Optimistic Concurrency Control I;
Informatik-Berichte No. 26, University of Hagen, Germany, 1982

[Schl81] Schlageter, G.: Optimistic Methods for Concurrency Control in Distributed Databases;
Proc. of the 7th Int. Conf. on Very Large Data Bases(VLDB); Cannes, France; 1981

[TaGS84] Tay, Y.; Goodman, N.; Suri, R.: Performance Evaluation of Locking in Databases: A
Survey; Rechnical Report; TR-17-84, Harvard Aikon Lab.; Cambridge, Mass.; 1984

[Unla85] Unland, R.: Optimistic Concurrency Control and its Efficiency in Comparison to Locking (in
German); Ph.D. thesis, University of Hagen, Germany; 1985

[UnPS83] Unland, R., Prädel, U., Schlageter, G.: Design Alternatives for Optimistic Concurrency
Control Schemes; Proc. ICOD, Cambridge and Research-Report, University of Hagen, 1983

[UnPS86] Unland, R., Prädel, U., Schlageter, G.: Redesign of Optimistic Methods: Improving Perfor-
mance and Applicability; Proc. 2nd Int. Conf. on Data Engineering, Los Angeles, 1986

- 27 -

[UnSc88] Unland, R., Schlageter, G.: Improved Optimistic Cuncurrency Control and its Use in
Distributed Database Systems; Proc. 21th Hawaii Int. Conf. on System Sciences, Kona, Hawaii,
1988

[WaSL86] Wang, S., Singhal, M., Liu, M.: An Optimistic Concurrency Control Algorithm for
Database Systems; Proc. Int. Computer Symposium Taiwan, Dec., 1986

- 28 -

Arbeitsberichte des Instituts für Wirtschaftsinformatik

Nr. 1 Bolte, Ch., Kurbel, K., Moazzami, M., Pietsch, W.: Erfahrungen bei der Entwicklung eines In-
formationssystems auf RDBMS- und 4GL-Basis; Februar 1991.

Nr. 2 Kurbel, K.: Das technologische Umfeld der Informationsverarbeitung - Ein subjektiver 'State of
the Art'-Report über Hardware, Software und Paradigmen; März 1991.

Nr. 3 Kurbel, K.: CA-Techniken und CIM; Mai 1991.

Nr. 4 Nietsch, M., Nietsch, T., Rautenstrauch, C., Rinschede, M., Siedentopf, J.: Anforderungen
mittelständischer Industriebetriebe an einen elektronischen Leitstand - Ergebnisse einer Untersu-
chung bei zwölf Untenehmen; Juli 1991.

Nr. 5 Becker, J., Prischmann, M.: Konnektionistische Modelle - Grundlagen und Konzepte; Septem-
ber 1991.

Nr. 6 Grob, H.L.: Ein produktivitätsorientierter Ansatz zur Evaluierung von Beratungserfolgen; Sep-
tember 1991.

Nr. 7 Becker, J.: CIM und Logistik; Oktober 1991.

Nr. 8 Burgholz, M., Kurbel, K., Nietsch, Th., Rautenstrauch, C.: Erfahrungen bei der Entwicklung
und Portierung eines elektronischen Leitstands; Januar 1992.

Nr. 9 Becker, J., Prischmann, M.: Anwendung konnektionistischer Systeme; Februar 1992.

Nr. 10 Becker, J.: Computer Integrated Manufacturing aus Sicht der Betriebswirtschaftslehre und der
Wirtschaftsinformatik; April 1992.

Nr. 11 Kurbel, K., Dornhoff, P.: A System for Case-Based Effort Estimation for Software-Develop-
ment Projects; Juli 1992.

Nr. 12 Dornhoff, P.: Aufwandsplanung zur Unterstützung des Managements von Softwareentwick-
lungsprojekten; August 1992.

Nr. 13 Eicker, S., Schnieder, T.: Reengineering; August 1992.

Nr. 14 Erkelenz, F.: KVD2 - Ein integriertes wissensbasiertes Modul zur Bemessung von Kranken-
hausverweildauern - Problemstellung, Konzeption und Realisierung; Dezember 1992.

Nr. 15 Horster, B., Schneider, B., Siedentopf, J.: Kriterien zur Auswahl konnektionistischer Verfahren
für betriebliche Probleme; März 1993.

Nr. 16 Jung, R.: Wirtschaftlichkeitsfaktoren beim integrationsorientierten Reengineering: Verteilungs-
architektur und Integrationsschritte aus ökonomischer Sicht; Juli 1993.

Nr. 17 Miller, C., Weiland, R.: Der Übergang von proprietären zu offenen Systemen aus Sicht der
Transaktionskostentheorie; Juli 1993.

Nr. 18 Becker, J., Rosemann, M.: Design for Logistics - Ein Beispiel für die logistikgerechte Gestal-
tung des Computer Integrated Manufacturing; Juli 1993.

Nr. 19 Becker, J., Rosemann, M.: Informationswirtschaftliche Integrationsschwerpunkte innerhalb der
logistischen Subsysteme - Ein Beitrag zu einem produktionsübergreifenden Verständnis von
CIM; Juli 1993.

- 29 -

Nr. 20 Becker, J.: Neue Verfahren der entwurfs- und konstruktionsbegleitenden Kalkulation und ihre
Grenzen in der praktischen Anwendung; Juli 1993.

Nr. 21 Becker, K., Prischmann, M.: VESKONN - Prototypische Umsetzung eines modularen Konzepts
zur Konstruktionsunterstützung mit konnektionistischen Methoden; November 1993

Nr. 22 Schneider, B.: Neuronale Netze für betriebliche Anwendungen: Anwendungspotentiale und
existierende Systeme; November 1993.

Nr. 23 Nietsch, T., Rautenstrauch, C., Rehfeldt, M., Rosemann, M., Turowski, K.: Ansätze für die
Verbesserung von PPS-Systemen durch Fuzzy-Logik; Dezember 1993.

Nr. 24 Nietsch, M., Rinschede, M., Rautenstrauch, C.: Werkzeuggestützte Individualisierung des
objektorientierten Leitstands ooL, Dezember 1993.

Nr. 25 Unland, R., Meckenstock, A., Zimmer, D.: Flexible Unterstützung kooperativer Entwurfsumge-
bungen durch einen Transaktions-Baukasten, Dezember 1993.

Nr. 26 Grob, H. L.: Computer Assisted Learning (CAL) durch Berechnungsexperimente, Januar 1994.

Nr. 27 Unland, R., Kirn, St.: Unterstützung Organisatorischer Prozesse durch CSCW, März 1994.

Nr. 28 Unland, R., Kirn, St.: Zur Verbundintelligenz integrierter Mensch-Computer-Teams: Ein Orga-
nisationstheoretischer Ansatz, März 1994.

Nr. 29 Unland, R., Kirn, St., Wanka, U.: Workflow Management mit Kooperativen Softwaresystemen:
State for the Art und Problemabriß, März 1994.

Nr. 30 Unland, R.: Optimistic Concurrency Control Revisited, März 1994.

Nr. 31 Unland, R.: Sematics-Based Locking: From Isolation To Cooperation, März 1994.

- 30 -

