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Abstract

Recovery is a hard problem in environments where transactions peréwknn a cooperative
style (e.g., design environments). Waropose concepts to control cooperatand recovery
within nested transaction hierarchies. &iowing differentnodes to run differenprotocols,
we canbuild so-calledrecovery spheresvith well-definedproperties. We characterize those
properties and illustrate them by examples from design environments.



1 Introduction

Researchwork on recoveryhas emerged from techniques for glentransactions [HR83,
BHG87] to techniquewhich can be applied withinested transactions [Mos85,HR87,WS92].
Most proposedilgorithms for nested transactioase based on th&CID-properties [HR83]
(ACID stands foAtomicity, Consistencylsolation andDurability).

However, non-standardpplications like desigrfe.g., CAD, CASE orCACEL) strongly
require a relaxation of th&CID-paradigm. These applications often needperatiorninstead
of isolation and partial recovery instead of atomicity. Conventipratiocols like strictwo-

phase locking cannly beused inspecial caseddere, wehave a typicatrade-off: the more
cooperation we allow, the more difficult is recovery.

To supportadvanced applications, weopose a nested transactimodel which is based on a
heterogeneous transactibrerarchy. Within this hierarchy, wean supportdifferent protocols

for concurrency control and recovewyhich allows us tadapt thehierarchy tothe individual
needs of applicationsdore specifically, wecanbuild so calledecovery sphereswvhichare a
means tacontrol cooperation and tionit propagation in case of cascading rollback. We can
identify different kinds of recovery spheres depending on how a transaction has to withract
its environment.

In section 2 we present an application scenariaésign environments whichilibe used as
an example scenario ithe rest of the paper. Then vaescribetwo nested transaction
paradigms, theconventional paradigm as qposed by Moss [Mos85] and the transaction
toolkit approach [US92]. In section 4, wlescribe recoverynechanismbased on the toolkit
approach, sketch agorithm forhandlingcooperation and recovery and introdutierent
kinds of recovery spheres. Section 5 focuses on relatmtk while section 6 gives a
conclusion.

2 Application Scenario

In this section, we consider an application scenarialésign transaction§n the following
called DTs). We choose a software design environment, but wethi@nlesults can bepplied
to other areas as well.

1) computer-aided desigsoftware engineeringr concurrent engineering
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Typically, design environmentze structuredhierarchically. If weregard the whole project as
a DT, wecan modelall the activities and subprojects as child-[3¥svhich possibly have
further children.Thus, we get a nested Dhierarchy wherghe DTs can be regarded as
workspaces.

Project
"Text Processing"

-

Development Test Customer Support
Automatic Interactive
User Interface Kernel Spell Checker Testsoftware Testing
/\ /\ /\ /\ /\ Support Engineers
Development Engineers Test Engineers

Figure 1: Example Project Hierarchy

As an example, considéne development of &ext Processingystem (Figl). First we can
divide the project into Developmentestand CustomeBupport.The Development consists
of the subprojects User Interfackernel Text System and Spell Cheek Each of these
subprojects is realized by several developére perform theiwork by executingtools (e.g.,
compiler ordebugger) on objectaithin a DT. The Test isdivided into asubproject for
implementing Automatic Testsoftware and a subproject for Interactive Testing.

From this scenario, we can induce some requirements for handling DTs:

- Some DTs are of long duratioe,g., thedevelopment of th&pell Checker. Atomicity is
not adequatsince a complete rollback of such a Wbuld causeéoo muchwork to be
lost.

- Some DTshave to interact with eaabther; forexample, it is necessary to integrate the
Spell Checkr, the Kernel, andthe User Interface. Traditional concurrency control
protocols like strict two-phadecking aretoo restrictive since they prohibibhe exchange
of objects (e.g.module interfaces) befoleOT. Sich an interactiomay cause cascading
rollback since uncommitted information is spread between transactions.

2) Our terminology uses the words child, parent, sibling, ancestor and descendant in the obvious meaning.
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- At some places ithe hierarchy, we havstrongrequirements with respect tmnsistency.
For example, it is important to releasaly tested software to the Customer Support.
Moreover, acascading rollback ahe Customer Support Diould be intolerable. On the
otherhand, there arplaces with lower consistency requiremefist example, within the
User Interface subproject it should pessible to exchange objects between developers
without major restrictions.

We can deal with those contradicting requirements by supporting diffsn@ieicolswithin the
DT hierarchy. Thus weget a configurable hierarchy whiclyuarantees differenievels of
consistency and recovery support.

3 Nested Transaction Concepts

Thenested transaction paradigmhas itsrootswith the spheres of control &favies [Dav78]
and became well-known by Mosgproach [Mos85]. The maidea is to givearansactions a
tree-like structure byallowing them tostart child transactions. To the outside, a nested
transaction looks like a conventionéét transaction,but its inner structure offers some
advantages. First, nested transactions suppormhodular design. Second, thgyermit
parallelism within atransaction (e.g.parallel execution ogibling transactions). Thirdihey
provide finer recovery units by abortingonly child transactions instead of complete
transactions.

: acquire
lock
|
|
|
|
I ™ .
| \ parentinherits lock
/\ \ | \
\
B

Figure 2: Nested Transactions with Upward Inheritance

The classical model for nested transactictssed nested transactio(Sig. 2), isbased on the
notion of upward inheritanceof locks?). A transaction can acquire a lock on an object if all

3) We do not consider other concurrency control techniques like timestamping here.
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conflicting locks(if any) are held byancestors of the transaction. If a non-ré@nsaction
commits, its locks W be upwardinherited by itsparent. If theroot transaction commits, the
locks will be released. In Moss' originabnceptonly leaftransactions arallowed to perform
work onobjects. To remove this restriction requires additional parent-child synchronization,
e.g., byusing retention locks [H&3] or implicit child transactions [US92]. The approach of
upwardinheritance relies othe strict two-phaskcking protocol, i.e., it cannot bapplied to
arbitrary concurrency control protocols [US92].

Thetransaction toolkit approach [US92,MUZ94] (Fig. 3) is also based on the closed nested
transaction modeBut the nain goal of the toolkit is to suppodifferent protocolswithin a
transaction hierarchy. This permitee definition of transaction hierarchieshich areespecially
adapted to the individual needs of the application.

inherit object/lock

object poo /\ \\by child (checkout)
N
O oL
/\ \ \ \\ release object/lock to
\ parent (checkin)
O SIREROY

Figure 3: Nested Transactions with Downward Inheritance

In the toolkit, every transaction irthe hierarchy has an objegool which (logically, not
necessarily physicallyjontains those objects that awarently locked by the transaction. The
root transaction has direct access to the database. In contrastlas#iealconcept, locks are
inherited indownwarddirection. This means thatchild transaction can acquire a lock resp. an
objectonly if its parentalready has acquired that lock/object. If nbe lock/object must be
acquired step by step in downward directfoom the higher levels ofthe hierarchy.When
releasing a lock/objecthe process works in the upward direction. Thegepwise transfeof
locks resp. objects is performedhis mechanismcorresponds to the&heckout/checkin
paradigm often used in design environments.

The nmain advantage of stepwise transfer is {hassibility to apply different concurrency

control procotols atlifferent nodes othe tree(Fig. 4). Each transactiodefinesthe protocol

to be used by itshildrenfor accessing its objegiool. If, for example, a transaction requires a
two-phase lock protocol fats object pool, itschildren may use strict or simple two-phase

locking, but not aroptimistic protocol toaccess the pool. Thus vget atwo stage control
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sphere The protocoldefined by aparent isonly relevant for itschildren. Thechildren may
apply other protocols on their own object pools etc.
control sphere

object pool (>\ \\ r— protocol for object pool
/ \T_ access parent pool according to protocol

Figure 4: Heterogeneous Protocols within a Transaction Hierarchy

two-stage

Cooperation between transactions is achieved by transferring objects aldngrahehy in a
stepwise manneiVhile this may induce some overhead, it guarantees #ilathe protocols
defined bytransactions arebeyed). This is a very important preconditidor controlling
cooperation and recovery in a nested transaction hierarchy as will be shown in the next section.

As an example, consider a developethaf User Interface component. If he wants

to pass on an object to a Kernel developer, he has to checkin this object to the
User Interface DT and then to the Developni@it The Kernel developer has to
checkout the objectfrom the Development DT through th&ernel DT. If the
protocol of one of these DTs domeet allow the transfer, the cooperation cannot

be established.

4 Recovery for Nested Transactions

In this section, wdook at the recovery aspects in a nested ldrarchy. We base our
discussion orthe toolkit approach with downwardheritance and stepwise transfer because
this approach gives us the possibility to define different protocols for the nodes of the DT tree.

Recovery is always caused by a failure. A typical classification of failures distinguishes between
transaction failures system (site) failuresmedia failuresand communication failuresWe
assume thathe underlying database systerfor storing design objects alreadgupports
recovery for conventiongkhort) transactionand thereby masksost of thefailures. Thus,

4) At the user interface, there may be high-level operations for cooperation that hide the stepwise transfer.
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we restrict ourselves tlogical failures within aDT, which are, forexample, caused by an
exception handler of an application or by a synchronization protocol.

For concurrency control, wassume a lockingrotocol using conventional lock moddike
sharedandexclusive When checking out an object, a DT acquires a lock and copies the object
to its object pool. Wen checking in anbject, it releases the lock and removes its copy. We
do notallow parallel modifications afhe same object by severBITs and donot discuss any
versioning.

We can distinguish betweéwo kinds of DTs,Service DTswvhich onlyserve as a database for
their children and doot perform realwork onobjects, andVorking DTswhich performwork
on objects. If a non-leaf D&cts as a WorkindT, we assume a mechanisfar handling
parent-child synchronization (e.g., by starting an implicit child DT).

The Recovery Process

Recovery is always initiated bycartainrecovery evente.g., ampplicationerror. We all this
recovery event @rimary recovery evenWhen such aevent is detected, a certaicovery
actionis performed.

When a DT irthe hierarchy executes a recoveagtion, other DTs$nay getinvolved too,i.e.,
they have to do some recovery actiomadi because thegre in somavay dependentn the
first DT. In this context, we talk ofsecondary recovery eventhat lead tocascading
recovery). While we cannot prevenprimary recoveryevents, we should try to reduce
secondary recovery events. In general, wedisimguishtwo ways to deal witlthose events:
an optimistic approachwhere we allow secondary recovery event®d¢our and therefore
have toacceptcascading recovery, and pessimistic approachwhere we try to prevent
secondary recovery actions.

In the conventional model transactions eittayort or commit (according to theatomicity
principle). As noted above, this is too restrictive for DTs. Thus, we also allow a DT to abort or
commit parts of itswork. A DT canselectively abort part ofits work by rolling back the
modifications on some obje€lsWe call thisrollback of objects. A DT caselectively commit

a part ofits work by checking in some objects agd/ing upthe right torollback its changes
(although the DT itself can still abort). We call this of objects.

5) We use this term instead cdiscading rollbaclsince a rollback is onlgne possible recovery action
6) We can also imagine advanced recovery techniques like compensation or forward recovery here.
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As an example, let us assume that a Kernel developer has passed on a module
interface tothe User Interface subproject and now recognizesresr. Hewill

rollback his changes on theodule interface (#otal abort of thedeveloper's DT
normally would not beacceptable). If the User Interface subprojeas usedhis
interface, it has to perform some recovery actions as welilppalso onother
modules.

Dependencies

Recovery is influenced by dependenciestween DTswhich can beclassified as follows
(Fig.5):

parent-child dependencies

The principle of nesting implies that we get dependencies between a parentchitdrés.
In the classical model, &hild is alwaysweak-abort-dependeff€R92] on its parent, i.e.,
when the parent abortsll its childrenare aborted too. AZommit of a childand the
durability of itsresults are always subject to tbemmit of itsparent. A parent can be
abort-dependenon some of its children (calledtal [BOH+92]), i.e., it Wil abortwhen
one of its vital children aborts.

reads-from dependencies

Whenever a DT (say Dy) modifies anobject, this object is first in anncommittedstate,
l.e. it is still subject to a possible rollback. The changes committedonly when DT
releases this object or commits completelyhéwother DTs read anncommitted object
they becomeeads-from dependemwtn DT,. This hagwo effects: First, if Df executes a
recovery action, the dependent Dias/e to execute aappropriate recovery action agll
(cascading recovery). Second, the dependent DTs ceanmoiit as long athe object is in
an uncommitted state. This ensures that whegQDIIs back the object, eorrectrecovery
can occur (the property oécoverability[BHG87]).

The parent-child dependenciase already known fronthe classicalnested transaction model.
The reads-from dependenciesmut occur therdecause the two-phakxking protocolmust

be strict. As soon as waeallow DTs to cooperate wéave to cope with reads-from
dependencies.

7) If we allow non-two-phase locking protocotbjs condition may lead toycles,i.e., no DT cancommit

before the other one (deadlock)
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DTO
@object @
7 /
reads-from , /
dependency// parent—child dependency
DT1 / /

4

Figure 5: Dependencies between DTs

Service DTs are apecial casesince they onlyserve as a database for thehildren (as a
mediumfor transferring objects in a stepwise manner), waalowant aService DT toabort
due to reads-from dependencies on other DTs.

Cooperation and Recovery Algorithm

To makethe above description more precise, we now sketchlgorithm for performing
cooperation and recovery within nested transactions.

We modelcooperation by transferring objects along hirexarchy usinghe operationsheckin
and checkout We model recovery by describintbe state of an obje@nd the reads-from
dependencies between DTs.

Whenever a DT modifies arbject, weassign tahe DT a so-calledecide-rightftMUZ94] for

this modification onthe object.This means thathe DT hasthe right to decide whether it
commits oraborts itsmodificatior). The DT holds thedecide-rightuntil it comes to its
decision, even if it has transferréide object to another DT in thmeantime. The DT can
commit its modifications on an object either by committing completely or by releasing the
object (selective commit). The DT cabortits modifications on an object either by aborting
completely or by rolling bacthe modifications orthe object. IfseveralDTs have modified an
object one after the other, themay be arorderedist of decide-rightson the object (even for

the same DT). When anbject is transferred bgheckinor checkout it takesall the decide-
rights with it. When a DT releases afject onwhich it has alecide-right thedecide-rightis

8) This is similar to the notion aksponsibilityin the ACTA framework [CR92].
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inherited bythe parentor removed if the DT is theoot). When a DT rolls back aabject on
which it has alecide-right thedecide-rightis removed.

Thedecide-rightgives a DT theossibility torecognize whether an object it works aanstill

be subject to a rollback. Welllwse this irthe following to control cooperation and recovery.
When an object with decide-rightis checkedut orin, we establish a reads-from dependency
which isused in the case of recoveryitientify the way the objecthas alreadgoveredwithin

the hierarchy.

To describe the algorithm, we use the following notation:

- There is a predicatdeqx, m, DT), if DT owns thedecide-righton objectx for a certain
modification m. If a DT has made several modificationgthout any intervening
modification byanother DT thesenodifications can be combined tme. The predicates
are ordered by a relation "<".

— There is a relation DI O ' DTy, if DT is reads-from dependent on Pbecause of
the modificationm on objectx. When weadd a "*" wemeanthe reflexive and transitive
closure.

— The parent of a DT is called p(DT).

Since parent-child dependencee® fairly simpleand areonly relevant for complete aborts of
DTs, we restrict thalgorithm to reads-from dependencies. W®rmally sketch themain
steps for the operatiorcheckout checkin modify, releaseandrollback We also describe an
operationrecover which modelsthe reaction of a DT that is affected by recovery. The
algorithmdoes not treat theependencies between objeetthin a Working DT(caused, e.g.,
by operations or semantic dependencies).

DT.checkout(x) (DT checks out objectrom its parent.)

forall DTq: dedx, m, DTg)

do add (p(DT)O ' DT) (establish the reads-from dependencies)
DT.checkin(x) (DT checks in objektto its parent.)

(There must be deconx fromthe DT or its descendants. The object oaly bechecked
in if no child has checked out the object for modification.)
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forall DTy : dedx, m, DTy)
do add (DTO - p(DT)) (establish the reads-from dependencies)
DT.modify(x) (DT modifies objeckx by modificationm.)
adddedx, m, DT) (add alecpredicate for this modification)
DT.release(x) (DT releases objeawith deqdx, m, DT).)

(Here,m is the lastmodificationthe DT made orthe object. Earliemodifications by the
same DT are released implicitly, too.)

if ODTgq not ancestor of DT:deqx, m1, DTy) <dedqx, m, DT))

then error ("release of object would violate recoverability™)

if x was not already checked in

then DT.checkin(x)

forall object pools containing a copy of x wdkbdqx, m, DT)

do changededx, m, DT) todedx, m, p(DT)) (the parent inherits tldec)

remove the corresponding reads-from dependency

if DT is the root DT

then remove thalecpredicate and the corresponding reads-from dependencies for all DTs.
DT.rollback(x, m) (DT rolls back the modificationon objectx with deqx, m, DT).)

forall DT (DT 0T - DTj) do begin

DT_g.recover(x) ((cascading) recovery for (transitively) reads-from dependent DTs)

remove the corresponding reads-from dependency
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removededx, m, DT)
end
DT.recover(x, m) (DT performs recovery because of the modification objecix.)

rollback modificationm on x in the pool of DT (Here we expect tlegistence obefore
imagesor other recovery information.)

if there is a modification fnoccurring aftem

then DT.rollback(x,mq) (later modifications onthe same object have to be rolled back,
t0o0.)

if there is a modification gnon objecty relying on the modifications on
then DT.rollback(y, np) (other objects may be affected, too.)

The algorithmonly demonstrates thieasic principles otooperation and recovery. becomes
more complex if we remove the restrictions, e.g. by allowing more flexible lock modes.

The algorithmworks in a stepwisenanner: a DT caonly havedirect dependencies on its
parent or itchildren.All otherdependencies between arbitr@ys are transitiveThis gives
us thepossibility tocontrol dependencies by controllitige interaction between a parent and
its children.

We illustrate thealgorithm by an example (Fig.). DT1checksout object xfrom

DTO, modifies itand checks it in. TheBT3 checksout the object through DT2,

reads and modifies it. Thus, DT3 has read an uncommitted object, expressed by the
dedDT1) predicateand must be aware ofpmssible cascading recovery. If DT1
releases the object, itecwill be inherited byDTO. If DT1 rolls backthe object,

the changebave to be rolled back ime pools of DTO, DT2ndDT3, too. $ce

DT3 is a WorkingDT, its ownmodifications ananaybesome of itavork on other
objects will have to be rolled back as well.
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DTO

Service DT
/@ dec(DT1)
- \

N\
" AN
Working DT j >© a Service DT
i DT1
modify dec(oT1) Q dec(DT1)

parent—child—dependency dec(DT1) dec(DT1) | Working DT
- >© dec(DT3)
e : : modify

reads—from—-dependency

Figure 6: Example for the Algorithm
Controlling Cooperation and Recovery

The above algorithm can lead to a complex dependency grapref arenanydependencies
within a hierarchy.Our goal is to regulate the structure safch dependencies order to
prevent arbitrary cascading recovery.

There are three ways to influence dependencies:

— Declare a child as vital or non-vital. In the non-vital case, the paitntovbecomeabort-
dependent on the child.

— Allow or disallow reads-from dependencies frohe child to the parent. If we want to
disallow this, we have tprevent thechild from checking irobjects orwhich the child or
some of its descendants havdest This means thahe child must either run a stri¢wvo-
phase locking protocol or must release objects on checkin. We say that the dgckis-
safe

— Allow or disallow reads-from dependencies frahe parent to ahild. If we want to
disallow this, we have tgrevent thechild from checkingout objects onwhich a
descendant of an ancestor haged). A decfrom anancestor is notritical. Due to the

9) The child canbrowsesuchobjects. A browsédnaslower consistency requiremerdasid therefore will not
cause reads-from dependencies.
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nestingthe whole object pool of thehild is dependent on its ancest@syway. We say
that the child ixheckout-safe

Thus, we getight (theoretical) combinations of recovemoperties of DTs. If wealisallow
dependencies, we follow a pessimigtfgproach, i.e., we prevent cascading recovery. Such an
approach lints cooperation between DTs. Otherwise follow an optimisticapproach.This
gives usmore freedom for cooperation between DTs for the priceas€ading recovery. Of
course, there are other combinations in between.

As an example for a checkin-safe DT consitier Test DT. If itransfers an object
to the Customer Support DT,ntust guarantee that itilvnot rollback this object,
because this iaot acceptable for the Custom8upport DT. On the othdrand,
the Customer Support DT should be defined as checkout-safe.

Recovery Spheres

The advantage of th@inciple of stepwiséransfer is that themmay betransitivebut nodirect
dependencies betwedwo arbitrary DTs(which are not inparent-child relation)All the
dependencieare local within atwo stage control sphenghich is a noticeabladvantage in
comparison to traditional recovery concepts.

Thetwo stage control spheigives usthe possibility toadapt recovery to thgpecial needs of

each DT. In the toolkit approach, a DT has to use a protocol as required by its parent. Because
of the principle of stepwisetransfer, thisprotocol can act as abarrier. It defines the
information flow betweetthe DT and its descendants on the side andall other DTs on the
otherside. We call the DTogetherwith all its descendants thecovery spheréRS) of the

DT (Fig. 7). Of course, RSs can be nested.

A protocol for a DT can, e.g., have the following properties:

- The DTmay benon-vital. In thiscase, its parent safe against a rollback withthe DT's
RS (provided, there are no other dependencies).

- The DT may becheckout-safe. In this casthe DT's RS issafe against reads-from
dependencies on other DTs.

- The DT may becheckin-safe. In this casell other DTs aresafe against reads-from
dependencies on the DT's RS.



DT1l's recove}y sphere

Figure 7: Recovery Spheres

The concept of RSgives usthe possibility to define special environmenéd their
relationship toouter orinner environments. By specifyingotocols, wedefinethe interaction
of the RS with the outer DTs and the inner DTs.

For example,the Development's RS defindbe relation ofall the development
DTs to the DTs outside the ddgpment. This RS cam,q., bedefined as checkin-
safe, so that no uncommitted objectsy leave the developmentWithin the
Development's RS we have sevartier RSs, e.g., th®pell Checker's R&ithin
which arbitrary cooperation may be allowed.

Extensions

In the previousliscussion, we usedsimplified model. We distinguished between objects with
or without decide-rightand we defined rulefr eachobject a DT accesses. Forealistic
environment, this model is too restrictive.

A possible extension is to define several consistestayes for objectsThis is typical for
design environments where an objeatas just consistent onot consistent, but goes through
a number of states which eventually leadhi® requirecconsistency level. A typical example is
a software modulgvhich may beuncompiled, compiled, passéirough amoduletest, tested
togetherwith othermodules etc. If we have a mechanism to dest¢hbeonsistencystate of
an object (e.g., bfeatures[Kae91]), we can use this ttefine an RS on morespecific level.
More precisely, this means that we can define
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- what consistency state an object must have when it is checked out by a DT.

- what consistency state an object must have when it is checked in by a DT.

As an example, considére Test DT. Itshouldonly checkout objectsvhich have
been compiled and passed a modelgt, and it shouldonly checkinobjects for
which a certain test suite has been run successfully.

Another extension is tdistinguish between severabject types. Fosome types of objects,
there are strongesonsistency requirements than father types. Thus, a Diay refuse to
checkout or checkin objects of a certain type with a certain consigtatey but it wl allow
to checkout or checkin objects of another type.

For example, considathe Test DT. Itshouldonly checkinobjects forwhich the
testsuite was rursuccessfullyBut if it wants totransmit atest protocol to the
DevelopmentDT, this should be allowed. Thushe rules should belefined
differently for different object types.

In our model, we can release or rollback single objects. Since olajextsften dependent on

other objectsthis can cause inconsistencies. Thassicaltransaction model deals withis

problem by aborting complete transactions amglicity assuming thattransactions are
consistency-preserving units. Thus, to permit selective recovery, we have to consider the
dependencies between objects. These dependencies may be caused by operations on objects, b
the dataschemale.g., objectxontainingother objects) or by thapplication semantics. We

have to refer the reader to forthcoming results here.

Consider a developer checkingt aninterface and using some of its functions in
another module. If thenterface is rolled back, a rollback or a correction of the
changes in the other module has to be performed.

Summary

We presented aumber of recoverprotocolswhich can be independently applied different
nodes of a nested transaction:

DTs can be defined as vital or non-vital.

DTs can be checkin-safe and/or checkout-safe.

For checking objects in and out, certain consistency states can be defined.
The protocols can distinguish between different types of objects.
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Because of theprinciple of stepwisetransfer, we candefine suchfeatures forwhole
environments, called recovespheres. This allows us tain control over thebehaviour of
certain environments within a DT hierarchy. Thereby, we can avoid arbitrary inforrflaion
between DTs and thus avoid arbitratgpendencies that could lead to cascading recovery.
Another advantage of thiecality occurs in distributedcenvironments: a node ithe DT
hierarchy can autonomously decialeoutits protocols andas to communicate directiynly

with its parent and children.

5 Related Work

The problem of recovenyithin cooperative environments is dealt with rarely in literature. The
work of [HR87,HR93] is based on tlekassicahested transaction model.dbes nogllow for
configuration of the nodes in a transaction hierarchy and for building recovery spheres.

In [NRZ92], selective recovery is pposed based omdividual operations.Dependencies
between operations within a transaction and operations in different transacarsorded in
a log. When cascading recovesgcurs, a transaction camact inseveral wayge.g., reread
invalid versions or compensate operatiofgain, there is nowvay to buildrecovery spheres
with defined properties.

The concept oBplit TransactiongPK92] allows transactions teelectively commit oabort
parts of theirwork by splitting off thiswork as a separate transactidime modelrelies on
serializabilityand doesiot deal withthe problem of cascading recovery causectbgperation
between transactions.

In some work, cooperation is achieved Wyuilding special relationshipge.g., a usage,
delegation or negotiate relationship as described in [RMH+98ajge arbitrary transactions
can cooperate irsuch a way, it is venylifficult to control the consequences of recovery.
Therefore, we prefer the more restrictive approach of stepwise transfer.

Many papers (e.g., [KLS90,WR92,WS92]) suggesinpensation as a means of recovery in
cooperative environments. Compensation could be integratedun&pproach too: iallows
to pass on objects witldecide-right even if DTs are checkout-safe ocheckin-safe.
Compensation can be performed withagusing cascading recovery dther DTs are
restricted to executenly those operationsvhich are commutative to theompensating
operation. Thus, we either mudgfinerestrictive rules for compensation to seccessful or
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must acceptascading compensations [WR92]. dny case, compensation is restricted to
special environments and therefore not generally applicable.

6 Conclusion and Future Work

In this paper, wehave describedhow recoveryproblems can be handled in aoperative
transaction environment. We have presented a nested transaggiovach with downward
inheritance and stepwise transfer. This givethepossibility to define differenprotocols for
the nodes of thehierarchy and tocontrol the cooperation and recovebghaviour of
subhierarchies (called recovery spheres).

We have shown sevematimitives to defingecovery protocols for the nodes. Thesenitives
already allow to describe lat of different kinds of recovery sphereBhere are somether
facilities which should be included as well:

- Compensation should be integrated because it permits more application-specific recovery.

- Other recoverymechanismshould be integratedE.g., it should be possible teeread
invalidated objects or make automatic manualcorrections instead ablling back the
changes.

- Event-Triggemechanismshould be considered. On the one hahely could be used as a
mechanism to define application-specifcovery actions. On the othleand, it has to be
prevented that by sucmechanisms informatiosan flow within the hierarchy without
considering the protocols of the DTs.

- Additional dependencies (e.g., data schema dependencies) should be handled.

The implementation othe proposedmechanisms orthe base ofour transaction toolkit
prototype and the investigation of the above facilities are topics of future work.
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