
Drexl, Michael

Article

Branch-and-price and heuristic column generation for the
generalized truck-and-trailer routing problem

Revista de Métodos Cuantitativos para la Economía y la Empresa

Provided in Cooperation with:
Universidad Pablo de Olavide, Sevilla

Suggested Citation: Drexl, Michael (2011) : Branch-and-price and heuristic column generation for the
generalized truck-and-trailer routing problem, Revista de Métodos Cuantitativos para la Economía y
la Empresa, ISSN 1886-516X, Universidad Pablo de Olavide, Sevilla, Vol. 12, pp. 5-38

This Version is available at:
https://hdl.handle.net/10419/59097

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

  http://creativecommons.org/licenses/by-sa/3.0/es/

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/59097
http://creativecommons.org/licenses/by-sa/3.0/es/
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/
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ABSTRACT

The generalized truck-and-trailer routing problem (GTTRP) constitutes a
unified model for vehicle routing problems with trailers and a fixed lorry-
trailer assignment. The GTTRP is a generalization of the truck-and-trailer
routing problem (TTRP), which itself is an extension of the well-known ve-
hicle routing problem (VRP). In the GTTRP, the vehicle fleet consists of
single lorries and lorry-trailer combinations. Some customers may be visited
only by a single lorry or by a lorry without its trailer, some may also be vis-
ited by a lorry-trailer combination. In addition to the customer locations,
there is another relevant type of location, called transshipment location,
where trailers can be parked and where a load transfer from a lorry to its
trailer can be performed.
In this paper, two mixed-integer programming (MIP) formulations for the
GTTRP are presented. Moreover, an exact solution procedure for the prob-
lem, a branch-and-price algorithm, and heuristic variants of this algorithm
are described. Computational experiments with the algorithms are pre-
sented and discussed. The experiments are performed on randomly gener-
ated instances structured to resemble real-world situations and on TTRP
benchmark instances from the literature. The results of the experiments
show that instances of realistic structure and size can be solved in short
time and with high solution quality by a heuristic algorithm based on col-
umn generation.

Keywords: vehicle routing; transshipment; fleet planning; elementary short-
est path problem with resource constraints.
JEL classification: C610.
MSC2010: 90B06; 90C11; 90C90.
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Branch-and-Price
y generación heuŕıstica de columnas

para el problema generalizado
de rutas de trenes de carretera

RESUMEN

El problema generalizado de rutas de trenes de carretera (generalized truck-
and-trailer routing problem, GTTRP) constituye un modelo unificado para
problemas de rutas de veh́ıculos con remolques y asignación fija camión-
remolque. El GTTRP es una generalización del truck-and-trailer routing
problem (TTRP), que es una extensión del conocido problema de rutas de
veh́ıculos (vehicle routing problem, VRP). En el GTTRP, la flota de veh́ıculos
consiste en camiones sin remolque (camiones solos) y trenes de carretera. Al-
gunos clientes pueden ser visitados exclusivamente por un camión solo o un
camión sin su remolque, otros pueden ser visitados también por un tren de
carretera. Además de las ubicaciones de los clientes hay otro tipo de lo-
calización llamada ubicación de trasbordo. Alĺı los remolques pueden ser
aparcados, y es posible efectuar un trasbordo de carga desde un camión a
su remolque.
En este trabajo se presentan dos modelos de programación lineal entero
mixto (MIP). Además, se describen un algoritmo exacto branch-and-price
y variantes heuŕısticas de este algoritmo. Se presentan y analizan estudios
computacionales con los algoritmos. Se usan problemas generados aleatoria-
mente, diseñados para semejar situaciones reales, y problemas TTRP de la
literatura. Los resultados muestran que, utilizando un algoritmo heuŕıstico
basado en generación de columnas, se pueden resolver problemas de estruc-
tura y tamaño real en poco tiempo y con solución de alta calidad.

Palabras clave: rutas de veh́ıculos; trasbordo; planificación de flotas; pro-
blema del camino más corto con limitaciones de recursos.
Clasificación JEL: C610.
MSC2010: 90B06; 90C11; 90C90.
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1 Introduction

The generalized truck-and-trailer routing problem (GTTRP) is a generalization of the truck-

and-trailer routing problem (TTRP) (a term introduced by [8]), which itself is an extension

of the well-known vehicle routing problem (VRP) ([10], [43], [19]). The GTTRP constitutes a

unified model for vehicle routing problems with trailers and a fixed lorry-trailer assignment.

The GTTRP can be described as follows. There is a set of customers with a known, deter-

ministic supply of a single good, and a set of transshipment locations used for parking and/or

load transfer. Visiting a transshipment location only incurs the distance-dependent cost for the

resulting detour. We assume that both the parking and load transfer poses no additional cost.

All customers and all transshipment locations may have a time window associated with them.

Each customer must be visited exactly once. The customers’ supplies must be collected and

transported to a central depot. To this end, a fleet of heterogeneous vehicles with limited loading

capacity is available.

There are four main criteria in which the vehicles differ: First of all, the fleet is comprised of

single lorries and of lorry-trailer combinations (LTCs) (see Figure 1).

Single lorry
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Figure 1: GTTRP fleet

There is a fixed assignment of an LTC lorry to its trailer (and vice versa), i.e., each trailer may

be pulled by only one lorry, and only this lorry may perform a load transfer into this trailer.

Second, the vehicles may have different loading capacities: Evidently, single lorries have fewer

loading capacity than lorry-trailer combinations. In addition, also vehicles of the same type

(that is, single lorries or LTCs) may have different capacities. For example, a single lorry may

have two axles, limiting the loading capacity (payload) to approximately 10 tons, another may

have three axles, leading to a loading capacity of about 15 tons (see also Section 5.2). For

LTCs, two capacities are relevant, the lorry capacity and the trailer capacity. Third, because of

different sizes and total weights, the vehicles may have different fixed and distance-dependent

costs. Fourth, the vehicles may be subject to accessibility constraints, i.e., they may not be

allowed to visit some customers. Such constraints are mostly due to limited manoeuvring space

on customer premises or to bad road conditions, especially in winter. The driving speeds are

assumed to be identical for all lorries, whether or not they pull a trailer, and whether or not

they carry load. An LTC lorry need not use its trailer at all and may simply leave it at the

depot. Also, it can decouple and re-couple its trailer at any transshipment location. All vehicles

are initially located at the depot, and all vehicles must return to the depot at the end of their

tour. That is, a trailer cannot be left behind at a transshipment location by its lorry, it must
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also be pulled back to the depot. Each vehicle may perform at most one tour. If, in a solution,

a vehicle is not used, the vehicle’s fixed cost is not added to the objective function value of the

solution. This is for two reasons. On the one hand, for a tactical planning problem, where the

fleet size and mix are to be determined, not using a vehicle in a solution means that the vehicle

need not be acquired or rented, so that the fixed cost is actually not incurred. On the other

hand, for an operative planning problem, not using a vehicle in a solution means that the vehicle

is available for other purposes. Moreover, in both a tactical and an operative setting, using fixed

vehicle costs is a way to reduce the overall number of vehicles used, an objective often pursued

in vehicle routing problems.

Customers which can only be visited by a lorry without a trailer are called lorry customers. The

other customers, which can be visited by a single lorry, an LTC lorry, or an LTC, are called trailer

customers. Split collection is not allowed, so there are no customers with a supply exceeding

the capacity of the largest single or LTC lorry (or LTC, in the case of trailer customers).

The single lorries are used as in a ‘usual’ VRP. The LTCs are used as follows. To visit lorry

customers, the trailer is parked at a transshipment location and the LTC lorry does some

collecting. It then returns to its trailer and either transfers its load to the trailer and continues

collecting, or it re-couples the trailer, parks it elsewhere, decouples and does some more collecting

before transferring load. When a trailer customer is visited by an LTC, the supply of the

customer can directly be loaded completely or partly into the trailer. In essence, the trailers

are used as mobile depots and extend the capacity of their lorries. A load transfer between

two lorries or between two trailers is not allowed. This means that single lorries never visit

transshipment locations.

Figure 2 depicts a possible route plan with one single lorry and one LTC. The single lorry

route is evident. The LTC lorry starts at the depot with its trailer, visits a trailer customer,

goes on to a transshipment location, decouples the trailer, visits two customers, returns to

the transshipment location, re-couples the trailer, pulls it to a second transshipment location,

decouples it again (and perhaps performs a load transfer), visits two more customers, returns

to the second transshipment location, re-couples the trailer and goes back to the depot. Two

transshipment locations in the centre of the figure are not used.
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Figure 2: Example GTTRP route plan
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The task is to devise tours minimizing the sum of fixed and distance-dependent, that is, variable,

cost over all vehicles (some of which may not be needed), such that the complete supply of all

customers is collected and delivered to the depot while respecting vehicle capacities, accessibility

constraints, and location time windows.

To see when and why it is sensible to use LTCs, imagine that the supply of the customers

visited by the LTC lorry exceeds the capacity of the largest single lorry. Then, without LTCs,

two single lorry tours are necessary to serve these customers, so that overall, three lorries (and,

consequently, three drivers) are required instead of two as in the above figure. This will increase

overall fixed costs. Moreover, in general, the overall distance travelled will increase as well, thus

increasing variable costs.

The GTTRP is of considerable practical relevance. Actual and potential applications are fuel

oil delivery to private households, food distribution to supermarkets ([42]), raw milk collection

at farmyards ([6], [44], [18], [39]), intermodal container transportation ([22]), and the so-called

park-and-loop problem encountered in postal delivery ([2], [4]). Moreover, many location-routing

problems (LRPs, see [28], pp. 169 ff., [11], pp. 339 ff., [33], [34]) can be modelled as GTTRPs.

The problem just described is denoted generalized TTRP, because it generalizes the TTRPs

considered in the literature (see next section) in the following ways:

• Variable costs for the trailers and fixed costs for the vehicles are considered.

• Time windows are considered.

• Trailer customer locations as well as pure transshipment locations can be used for parking

trailers and performing load transfers.

No other paper cited below considers these three aspects simultaneously. In particular, the pres-

ence of pure transshipment locations adds an additional degree of freedom, because visiting a

pure transshipment location is optional. Hence, a selection has to be made as to which transship-

ment locations to use. In most variants of the VRP or the VRP with time windows (VRPTW)

documented in the literature, with the notable exception of location-routing problems, such a

selection component is not present.

The remainder of the paper is structured as follows. In the next section, the existing literature

is reviewed. In Section 3, a mixed-integer programming (MIP) model for the GTTRP, based

on binary arc flow and continuous resource variables, is developed. In Section 4, branch-and-

price algorithms based on a path flow reformulation of this model are presented. Computational

results with implementations of these algorithms are presented and analyzed in Section 5. The

paper ends with a brief summary and a research outlook in Section 6.
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2 Literature Review

The practical relevance of the problem is not adequately reflected by the existing literature. The

following is a brief review of the few contributions there are. [6], [44], and [18] consider only

one transshipment location per trailer. [6] develops a heuristic sequential solution approach for

this type of problem (clustering of customers, determination of one transshipment location per

trailer, routing). [44] proceeds similarly. [18] presents several construction heuristics and intra-

and inter-tour exchange improvement procedures. Also, the paper mentions an unpublished

working paper containing an MIP formulation.

[42], [41], [8], and [39] (see also [40]) allow that trailers be parked several times at different

locations. However, they equate the potential trailer parking locations with the trailer customers.

This means that a trailer can be parked at any trailer customer location but nowhere else, and

that only one trailer can be parked at such a customer location, because the corresponding lorry

is then assumed to service the customer. [42] consider time windows and heterogeneous lorries,

but identical trailers. [42] and [41] also consider accessibility constraints for the lorries. [8] and

[39] limit the number of available vehicles and the length or duration of a tour. The term ‘Truck-

and-Trailer Routing Problem’ (TTRP) was coined by [8] and is also used by [39], [40], [20], [21],

[31], [32]. [39] extends the approaches of [41] and [8] and considers a multi-period and a multi-

depot version of the problem. [32] consider the case of an unlimited number of vehicles. Contrary

to all other papers, [20] and [21] consider the situation where the transshipment locations are

separate locations and do not coincide with the trailer customer locations. All authors solve their

respective problems by sophisticated heuristic procedures, mostly tabu search and simulated

annealing. [41] and [39] also give mathematical programming formulations of the problems they

consider (0-1 IP models), but they do not solve their models with an exact method.

The present paper is based on the technical report [14]. In the next subsection, a network

representation for the GTTRP is presented. Interestingly, a similar network was used in [29] for

the solution of a location-routing problem.

3 A Mixed-Integer Programming Model for the GTTRP

3.1 Network Representation

The subsequent formulation is based on a ‘time-space-operation’ network D = (V, A). Each

vertex in V corresponds to a location in space, an absolute and/or relative period of time,

and a type of operation. L:={Depot} ·∪ LC ·∪ LT is the set of relevant real-world locations.

LC := LCL
·∪ LCLT

is the set of customer locations, which is partitioned into LCL
, the set of

lorry customers, and LCLT
, the set of trailer customers. LT is the set of pure transshipment

locations. For each i ∈ V , loci ∈ L denotes the location corresponding to i, [ai, bi] j [0, T ], is
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the arrival time window of i, where T is the length of the planning horizon, and si is the supply

of vertex i (which is zero for depot and transshipment vertices). V is comprised as follows.

There is one start depot vertex o and one end depot vertex d, both with a time window of

[0, T ]. For each customer, there is one customer vertex. Let VC := VCL
·∪ VCLT

be the set of

customer vertices, where VCL
is the set of lorry customers, and where VCLT

is the set of trailer

customers. Following [8] and [39], it is assumed that the locations corresponding to trailer

customers can also be used for parking and transshipment operations. Hence, for each trailer

customer location and for each (pure) transshipment location l, there are nTS = 3 vertices vdec
l ,

vtrans,1
l , . . . , vtrans,nTS−2

l , vcoup
l . Let Vdec be the set of decoupling vertices, let Vtrans be the set

of transfer vertices, and let Vcoup be the set of coupling vertices. Let VI := Vdec ·∪ Vtrans ·∪ Vcoup

be the set of transshipment vertices. The idea behind this separation of transshipment locations

and processes is the following: At a vertex in Vdec, an LTC lorry may decouple its trailer, and it

may also perform a load transfer. Decoupling vertices can be reached only with a trailer and left

without a trailer. At a vertex in Vtrans, an LTC lorry may perform a load transfer to its trailer.

Transfer vertices can be reached and left only without a trailer. At a vertex in Vcoup, it may

re-couple its trailer, and it may again perform a load transfer. Coupling vertices can be reached

only without a trailer and left only with a trailer. It is assumed that each vertex is visited by

each vehicle at most once. If an LTC wants to use transshipment location l, the LTC must first

visit vdec
l . The trailer then moves in time to the vertices vtrans,1

l , . . . , vtrans,nTS−2
l , vcoup

l , while

the LTC lorry visits customers and finally re-couples the trailer at vcoup
l . The LTC lorry need

not visit any of the transfer vertices of l. The LTC lorry must not visit any other vertex in VI

before having re-coupled its trailer at vcoup
l . The formulation below takes this into account.

F := FL ·∪ FLT denotes the set of vehicles. FL is the set of single lorries, which do not have a

trailer. FLT is the set of lorry-trailer combinations. For all k ∈ F , qtotal
k is the total capacity

of a vehicle, i.e., it is the capacity of single lorry k, or, respectively, the capacity of LTC lorry

k and its trailer. For all k ∈ FLT , qlorry
k is the capacity of LTC lorry k, and qtrailer

k is the

capacity of LTC lorry k’s trailer. All vehicles are initially at the start depot vertex o and end

their tour at the end depot vertex d. Single lorries are allowed, in principle, to visit lorry and

trailer customer vertices, and LTC lorries may, in principle, visit all vertices of D. Trailers can

only reach the transshipment vertices and the trailer customers. However, as mentioned above,

there may be additional accessibility constraints for certain vehicles at certain customers (e.g.,

trailer customers with too much supply for a single lorry).

It is assumed that each LTC uses each transshipment location at most once. Thus, for each

trailer, there are at most nTS transshipment operations at each transshipment location. As for

the ‘correct’ choice of nTS , note that in the worst case, a feasible solution to the model may

exist only when, for each trailer, there are as many intermediate and coupling vertices as there

are lorry customers, because it may be necessary to perform a load transfer after each visit to a

lorry customer. Consequently, an optimal solution to the model may only be an optimal solution

to an underlying problem instance when there are as many opportunities for a load transfer at
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the right transshipment location as there are lorry customers. Depending on the instance data,

better values for nTS can be computed. However, as will become clear in the next section, in the

branch-and-price algorithm, the numerical value of nTS need not be fixed in advance; rather,

this value is determined during the solution of the pricing problems.

The arc set consists of the following arcs:

• (o, d)

• (o, vc) and (vc, d) for all customer vertices vc ∈ VC

• (o, vdec
l ) for all transshipment locations l ∈ LCLT

·∪ LT

• (vcoup
l , d) for all transshipment locations l ∈ LCLT

·∪ LT

• (vc, vc′) for all customer vertices vc, vc′ ∈ VC with c 6= c′

• (vdec
l , vc) for all transshipment locations l ∈ LCLT

·∪ LT and all customer vertices vc ∈ VC

• (vtrans,i
l , vc) for all transshipment locations l ∈ LCLT

·∪ LT , all i ∈ {1, . . . , nTS − 2} and all

customer vertices vc ∈ VC

• (vcoup
l , j) for all transshipment locations l ∈ LCLT

·∪ LT and all vertices j ∈ (Vdec \ {vdec
l })

·∪ VCLT

• (i, j) for all trailer customer vertices i ∈ VCLT
and all transshipment vertices j ∈ VI

• (i, j) for all lorry customer vertices i ∈ VCL
and all transfer and coupling vertices j ∈ Vtrans

·∪ Vcoup

For each arc (i, j) ∈ A, τ tr
ij is the traversal time. τ tr

ij includes the service time at vertex i. For all

k ∈ F , let V k (Ak) be the set of vertices (arcs) that can be reached (traversed) by vehicle k. For

all subsets of V (A) defined hereafter, let the superscript k denote the intersection of the respec-

tive subset with V k (Ak). In particular, Ak
LT :=Ak\({(i, j) ∈ A : i ∈ VCL

·∪ Vdec} ·∪ {(i′, j′) ∈
A : j′ ∈ VCL

·∪ Vcoup}) is the set of arcs LTC lorry k can traverse with its trailer attached.

clorry,k
ij denotes the cost of traversing arc (i, j) with lorry k ∈ F (for LTC lorries, without its

trailer attached), and ctrailer,k
ij denotes the additional cost of pulling LTC lorry k’s trailer over

arc (i, j). On arcs emanating from the start depot o, except for the arc (o, d), the fixed vehicle

cost is included in clorry,k
oj , respectively, ctrailer,k

oj .

Similar to [8] and [39], a fixed time for load transfer is assumed, independent of the actual amount

of load transferred. This is a sensible assumption when the setup cost is the determining factor

for the duration of a transshipment operation.

Figure 3 visualizes the subnetworks for the different vehicle types. To keep the figure clear and

concise, there is only one arc for each arc type present in the subnetwork of the respective vehicle

type. For example, in the LTC subnetwork, one arc from the left trailer customer to the right

one is depicted to indicate that LTCs can freely move from any trailer customer to any other

trailer customer (unless capacity, time window, or accessibility constraints prohibit this). The

absence of an arc from the right trailer customer to the left one in the figure does not mean that

there is no such arc in the network.
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Figure 3: Network structure

3.2 Formulation

The subsequent formulation uses the following variables:

• xk
ij ∈ {0, 1} ∀ k ∈ F, (i, j) ∈ Ak.

xk
ij =

{
1, lorry k traverses arc (i, j)

0, otherwise
• yk

ij ∈ {0, 1} ∀ k ∈ FLT , (i, j) ∈ Ak
LT .

yk
ij =

{
1,LTC lorry k traverses arc (i, j) with its trailer attached

0,LTC lorry k does not traverse arc (i, j) with its trailer attached

• lcoll,k
i ∈ R+ ∀ k ∈ F, i ∈ V k.

The total amount of customer supplies that lorry k has collected when reaching vertex i,

before k starts its service at i.

• ltrans,k
i ∈ R+ ∀ k ∈ FLT , i ∈ V k.

The total amount of customer supplies that LTC lorry k has transferred to its trailer when

reaching vertex i, or, equivalently, the load of LTC lorry k’s trailer when k reaches vertex i

(with or without its trailer attached), before k starts its service at i.

• tki ∈ R+ ∀ k ∈ F, i ∈ V k.

The point in time when lorry k starts its service at vertex i.

The resulting model is:
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(GTTRP):

min
∑

k∈F

∑

(i,j)∈Ak

clorry,k
ij xk

ij +
∑

k∈FLT

∑

(i,j)∈Ak
LT

ctrailer,k
ij yk

ij subject to (1)

∑

k∈F

∑

(h,i)∈Ak

xk
hi = 1 ∀ i ∈ VC (2)

∑

(h,i)∈Ak

xk
hi 5 1 ∀ k ∈ FLT , i ∈ Vdec (3a)

∑

(vcoup
l ,j)∈Ak

LT

xk
vcoup

l j −
∑

(h,vdec
l )∈Ak

LT

xk
hvdec

l
= 0 ∀ k ∈ FLT , l ∈ LCLT

·∪ LT (3b)

∑

(h,i)∈Ak

xk
hi −

∑

(vcoup
l ,j)∈Ak

LT

xk
vcoup

l j 5 0 ∀ k ∈ FLT , l ∈ LCLT
·∪ LT , i ∈ Vtrans, loci = l (3c)

∑

(i,d)∈Ak

xk
id = 1 ∀ k ∈ F (3d)

∑

(i,d)∈Ak
LT

yk
id = 1 ∀ k ∈ FLT (3e)

∑

(h,i)∈Ak

xk
hi −

∑

(i,j)∈Ak

xk
ij = 0 ∀ k ∈ F, i ∈ V k \ {o, d} (3f)

∑

(h,i)∈Ak
LT

yk
hi −

∑

(i,j)∈Ak
LT

yk
ij = 0 ∀ k ∈ FLT , i ∈ V k

CLT
(3g)

yk
ij 5 xk

ij ∀ k ∈ FLT , (i, j) ∈ Ak
LT \ {(o, d)}, i /∈ Vcoup, j /∈ Vdec (4a)

xk
hi = yk

hi ∀ k ∈ FLT , i ∈ Vdec, (h, i) ∈ Ak
LT (4b)

xk
ij = yk

ij ∀ k ∈ FLT , i ∈ Vcoup, (i, j) ∈ Ak
LT (4c)

ltrans,k
i 5 lcoll,k

i ∀ k ∈ FLT , i ∈ V k (5a)

lcoll,k
i − ltrans,k

i 5 qlorry
k ∀ k ∈ FLT , i ∈ V k (5b)

xk
ij = 1 ⇒ lcoll,k

i + si 5 lcoll,k
j ∀ k ∈ F, (i, j) ∈ Ak (5c)

xk
ij = 1 ⇒ ltrans,k

i 5 ltrans,k
j ∀ k ∈ FLT , (i, j) ∈ Ak (5d)

xk
ij = 1 ⇒ ltrans,k

i = ltrans,k
j ∀ k ∈ FLT , i ∈ VCL

, (i, j) ∈ Ak (5e)

xk
ij = 1 ∧ yk

ij = 0 ⇒ ltrans,k
j 5 ltrans,k

i ∀ k ∈ FLT , i ∈ VCLT
, (i, j) ∈ Ak (5f)

yk
ij = 1 ⇒ ltrans,k

j 5 ltrans,k
i + si ∀ k ∈ FLT , i ∈ VCLT

, (i, j) ∈ Ak
LT (5g)

xk
ij = 1 ⇒ tki + τ tr

ij 5 tkj ∀ k ∈ F, (i, j) ∈ Ak (6a)

tk
vdec

l
5 tk

vtrans,1
l

∀ k ∈ FLT , l ∈ LCLT
·∪ LT (6b)

tk
vtrans,i

l

5 tk
vtrans,i+1

l

∀ k ∈ FLT , i ∈ {1, . . . , nTS − 3}, l ∈ LCLT
·∪ LT (6c)

tk
v

trans,nTS−2

l

5 tkvcoup
l

∀ k ∈ FLT , l ∈ LCLT
·∪ LT (6d)
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tkvcoup
l

5 T
∑

(h,vdec
l )∈Ak

LT

xk
hvdec

l
∀ k ∈ FLT , l ∈ LCLT

·∪ LT (6e)

xk
ij ∈ {0, 1} ∀ k ∈ F, (i, j) ∈ Ak (7a)

yk
ij ∈ {0, 1} ∀ k ∈ FLT , (i, j) ∈ Ak

LT (7b)

0 5 lcoll,k
i 5 qtotal

k ∀ k ∈ F, i ∈ V k (7c)

0 5 ltrans,k
i 5 qtrailer

k ∀ k ∈ FLT , i ∈ V k (7d)

ai 5 tki 5 bi ∀ k ∈ F, i ∈ V k (7e)

The objective function (1) minimizes total fixed and variable costs over all lorries and all trailers.

Seen from a column generation perspective, constraints (2) are linking constraints affecting more

than one vehicle within each single constraint, (3) and (4) are non-linking or independent flow

constraints, (5) and (6) are non-linking constraints specifying the update of the load and time

resource variables respectively, and (7) determine the ranges of the variables.

With regard to contents, the constraints have the following meaning: (2) are the customer

covering constraints stating that each customer must be visited exactly once. (3a)–(3c) make

sure that each transshipment location is used at most once by each k ∈ FLT , and that only

intermediate and coupling vertices of those transshipment locations are used whose decoupling

vertex is visited. (3d) and (3e) require that each vehicle reach the end depot (possibly via

the arc (o, d)). (3f) and (3g) are flow conservation constraints: They ensure that if a vehicle

enters a vertex (except for the start and the end depot vertex), the vehicle also leaves this

vertex. (4a)–(4c) are the constraints linking the routing of the trailer to that of its lorry. Note

that it is possible that an LTC lorry does not use its trailer, in which case the latter moves

directly from o to d. (5a) require that the load of the trailer be at most equal to the total

amount of supply collected. (5b) require that the amount of supply collected be not greater

than the lorry capacity and the amount of supply already transferred to the trailer. Without

constraints (5a), ltrans,k
i could always be set equal to the trailer capacity. Because of constraints

(5b), lcoll,k
i would then be bounded from above only by the overall vehicle capacity, and not by

the lorry capacity and the amount of supply already transferred. This would illicitly enlarge

the lorry capacity. A lorry could then park its trailer before doing any collecting and collect

as much supply as the overall vehicle capacity permits, without having to transfer any load.

(5c) are the load update constraints. The total amount of load collected increases (at least)

by the supply of each vertex visited. Similarly, constraints (5d)–(5g) are for the update of the

transshipment variables, respectively, the trailer load variables. (5d) state that the trailer load

is non-decreasing. (5e) state that the trailer load is non-increasing at lorry customer vertices.

(5f) state that at trailer customer vertices, the trailer load of an LTC k can only increase if

the vertex is visited by the lorry and its trailer. (5g) state that at a trailer customer vertex,

the trailer load does not increase by more than the customer’s supply. Constraints (6a) are the

constraints for the update of the timing variables: The overall time en route for a vehicle after
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traversing an arc increases (at least) by the travel time along the arc. (6b)–(6e) are needed to

make sure that the vertices of a transshipment location are visited in the correct order, i.e., that

decoupling vertices of a transshipment location are visited before their corresponding coupling

vertex. Without these constraints, it would be possible to visit decoupling vertex vdec
l1

, go to

coupling vertex vcoup
l2

, then to decoupling vertex vdec
l2

and then to vcoup
l1

. Note that if an LTC

lorry does not visit a transshipment intermediate vertex for some l, the time variable for this

vertex can be fixed appropriately; it is not required to have a visiting time of zero for non-visited

vertices.

To improve readability, constraints (5c)–(6a) are written as logical implications. However, these

can easily be linearized using a Big-M technique without introducing additional variables (see

[46]). Hence, the convex hull of all points fulfilling (2)–(7) is a bounded polyhedron.

The only existing formulations for the TTRP, by [41] and [39], are conceptually different from

the above formulation. [39] uses binary three-index arc flow variables similar to the above yk
ij

variables, and five-index variables indicating whether a certain lorry traverses a certain arc on

the nth subtour starting at a certain trailer customer or at the depot, where n is the number of

customers (in the worst case, as many single lorry (sub-)tours starting at a trailer customer or

at the depot are necessary as there are customers). [41] uses similar variables, but requires that

at most one subtour originate at each trailer customer, and hence the second variable type has

only four indices in his model. Neither author uses resource variables; rather, both formulations

are pure 0-1 IPs.

In the GTTRP, several lorry-trailer combinations may use the same transshipment location.

Hence, the GTTRP formulation (1)–(7), using the arc set defined in Section 3.1, is a relaxation

of the TTRP models from the literature. To make sure that only the lorry which visits a certain

trailer customer vertex h uses the corresponding location l for parking and load transfer, the

arc set can be restricted by removing all arcs entering the corresponding decoupling vertex i,

except for the arc (h, i).

4 Branch-and-Price Algorithms for the GTTRP

For capacitated vehicle routing problems (with time windows), many authors have devised for-

mulations and solution approaches based on the integer programming version of Dantzig-Wolfe

decomposition, i.e., branch-and-price. Standard references focused on the methodology include

[3], [45], and [30]. [12] present a unified model for the solution of time-constrained vehicle rout-

ing and scheduling problems by branch-and-price. In this section, a reformulation of (1)–(7) for

use in a branch-and-price algorithm is developed. The subsequent exposition follows [12].
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The usual decomposition approach for VRPs can also be applied to the GTTRP. The linking

constraints, i.e., the customer covering constraints (2), go in the master program, the non-linking

constraints (3)–(7) define the sub- or pricing problems.

4.1 The Master Program

The model presented in Section 3 uses arc flow variables for each relevant combination of lorry

or trailer k and arc (i, j). Branch-and-price approaches for vehicle routing problems use path

flow variables in the master program: There is one variable for each feasible o-d-path of each

vehicle. As for VRPs without trailers, also for the GTTRP, each feasible tour of a single lorry is

an elementary path from the start depot vertex to the end depot vertex through the respective

subnetwork. This is also true for the LTC lorries. However, the movements of a trailer in the

network D of Section 3 do not constitute a path: There are no trailer flow variables leaving

decoupling vertices or entering coupling vertices. This, though, is only to avoid unnecessary

variables and constraints. In the real world, the itinerary of a single lorry or a trailer resulting

from a solution to the above formulation is an elementary path, too, whereas the itinerary of an

LTC lorry using its trailer is not elementary; it will contain cycles starting and ending at the

transshipment locations where the trailer is parked.

It follows from the flow decomposition theorem (see, for example, [1], p. 80 f.) that the extreme

points of the convex hull of all points fulfilling the pricing problem constraints (3)–(7) correspond

to lorry paths from o to d in D, some of which may be non-elementary, because D is not acyclic.

For LTCs, constraints (3d)–(4c) additionally imply that the extreme points represent a path-like

structure consisting of an o-d-path for the lorry and one or more paths for its trailer. The union

of these trailer paths is a subset of the lorry path.

These extreme points are described by flow and resource vectors

(xk
p, y

k
p , lcoll,k

p , ltrans,k
p , tkp) = (xk

ijp, y
k
ijp, l

coll,k
ip , ltrans,k

ip , tkip) ∀ k ∈ F, p ∈ P k, (i, j) ∈ Ak, (8a)

where P k is the set of extreme points for single lorry or LTC k, and where, for simplicity of

notation, in the following

yk
p = yk

ijp := 0 ∀ k ∈ FL,

and

ltrans,k
p = ltrans,k

ip := 0 ∀ k ∈ FL.

Any solution satisfying (3)–(7) can be expressed as a convex combination of these extreme points:

xk
ij =

∑

p∈P k

xk
ijpλ

k
p ∀ k ∈ F, (i, j) ∈ Ak (8b)

xk
ij ∈ {0, 1} ∀ k ∈ F, (i, j) ∈ Ak (8c)

yk
ij =

∑

p∈P k

yk
ijpλ

k
p ∀ k ∈ FLT , (i, j) ∈ Ak

LT (8d)
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yk
ij ∈ {0, 1} ∀ k ∈ FLT , (i, j) ∈ Ak

LT (8e)

lcoll,k
i =

∑

p∈P k

lcoll,k
ip λk

p ∀ k ∈ F, i ∈ V k (8f)

ltrans,k
i =

∑

p∈P k

ltrans,k
ip λk

p ∀ k ∈ FLT , i ∈ V k (8g)

tki =
∑

p∈P k

tkipλ
k
p ∀ k ∈ F, i ∈ V k (8h)

∑

p∈P k

λk
p 5 1 ∀ k ∈ F (8i)

λk
p = 0 ∀ k ∈ F, p ∈ P k (8j)

The integer master program (IMP) is then:

∑

k∈F

∑

p∈P k


 ∑

(i,j)∈Ak

clorry,k
ij xk

ijp


λk

p +
∑

k∈FLT

∑

p∈P k


 ∑

(i,j)∈Ak
LT

ctrailer,k
ij yk

ijp


λk

p → min (9a)

subject to

∑

k∈FL

∑

p∈P k


 ∑

i∈V l
C

∑

(h,i)∈Ak

xk
hip


λk

p = 1 ∀ l ∈ LC (9b)

∑

p∈P k

λk
p 5 1 ∀ k ∈ F (9c)

λk
p = 0 ∀ k ∈ F, p ∈ P k (9d)

λk
p ∈ {0, 1} ∀ k ∈ F, p ∈ P k (9e)

In general, it is not true that binary restrictions on the original xk
ij arc flow variables can be

replaced by binary restrictions on the λk
p path flow variables. However, this statement holds for

the above GTTRP reformulation, since the definition of the original master problem solution

space, i.e., the constraint set (2), involves only the xk
ij variables. Hence, binary requirements

on the path variables are equivalent to binary requirements on the xk
ij variables, see [12], p. 75.

Moreover, if the xk
ij variables are binary, the yk

ij variables will be binary, too. This is because

for any path of an LTC lorry k represented by the values of the xk
ij variables, the values of the

pertinent yk
ij variables are unequivocally determined: If the path visits transshipment vertices, all

partial paths ending at a decoupling vertex or starting at a coupling vertex have all yk
ij variables

equal to one, and all partial paths between a decoupling and its corresponding coupling vertex

have all yk
ij variables equal to zero. Paths visiting only customers and at least one lorry customer

trivially have all yk
ij variables equal to zero, and paths visiting only trailer customers have all yk

ij

variables equal to one, unless the total demand of the customers on the path does not exceed

the lorry capacity, in which case the corresponding trailer will not be used.
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4.2 The Pricing Problems

As it is the case for all vehicle routing problems, also the pricing problems for the GTTRP are

(elementary) shortest path problems with resource constraints ((E)SPPRCs) (see [24]). When

the fleet is heterogeneous, in each pricing step, a pricing problem must be solved for each vehicle.

Because of the dual prices coming from the master problem, the pricing problem networks usually

have negative cost cycles. This makes the problem NP-hard in the strong sense (ibid., p. 38).

There is a considerable amount of literature on the solution of (E)SPPRCs. It is beyond the

scope of this paper to give a detailed review, but some important contributions are [16], [37],

[38], [36], [5], [7], [25].

The standard solution technique for (E)SPPRCs is a labelling algorithm based on dynamic

programming. In principle, such an algorithm works similar to a labelling algorithm for shortest

path problems without resource constraints, e.g., the Dijkstra algorithm (see [1], pp. 93 ff.). The

basic concepts used in such an algorithm are the following (see [24]). A resource is an arbitrarily

scaled one-dimensional quantity that can be determined or computed at the vertices of a directed

walk in a network. Examples are cost, time, load, or the information ‘Is LTC lorry k currently

pulling its trailer?’. The value of a resource at a vertex is stored in a resource variable. An

arbitrarily scaled resource is constrained if there is at least one vertex in the network where the

associated resource variable must not take all possible values. A cardinally scaled resource is

constrained if there is at least one vertex in the network with a finite upper or lower bound on

the value of the resource. The resource window of a nominally scaled resource r at a vertex is

the set of allowed values of r at this vertex. The resource window of a cardinally scaled resource

r at a vertex i is the interval [lbr
i , ubr

i ] j ] −∞, +∞[. A resource extension function (REF ) is

defined on each arc in a network for each resource considered. An REF for a resource r maps

the set of all possible vectors of resource values at the tail of an arc to the set of possible values

of r at the head of the arc. More precisely, let R := (σ1, . . . , σ|R|)T be a vector of (values of)

resource variables. Then, an REF for a resource r is a function f r : A×R|R| 7→ R. For simplicity,

let f r
ij(R) := f r(((i, j), R)). An REF for a cardinally scaled resource r indicates (lower bounds

on) the consumptions of r along the arcs. When seeking a path from an origin vertex o to a

destination vertex d, partial paths from o to a vertex i 6= d are extended along all arcs (i, j)

emanating from i to create new, extended paths. For each o-i-path, there is a corresponding

label l resident at i that stores the values of all resource variables at i for its path, along with the

information on how it was created: the arc (h, i) over which i was reached and (a reference to)

the label of the o-h-path whose extension along (h, i) yielded the o-i-path (this makes it easy to

reconstruct the path corresponding to a label). Initially, there is exactly one label corresponding

to the path (o). W.l.o.g., the values of the resource variables of the initial label are all set to

the lower bounds of their respective resource windows at o. A label l is feasible iff the value of

each resource variable in l is within the resource window of its respective resource. If a label

is not feasible, it is discarded. An extension of a path/label along an arc (i, j) is feasible iff

the resulting label at j is feasible. An h-j-path is feasible iff, for each arc (i, i′) in the path, a
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feasible label at i exists which can be extended along (i, i′) to a feasible label at i′. To keep the

number of labels as small as possible, it is very important to perform a dominance procedure to

eliminate feasible but unnecessary labels. A label l1 dominates a label l2 iff both reside at the

same vertex, the value of the resource variable of each nominally scaled resource in l1 is equal to

the corresponding value in l2, the value of the resource variable of each cardinally scaled resource

in l1 is ‘better’ (less or greater, depending on the resource) than or equal to the corresponding

value in l2, and the value of the resource variable of at least one cardinally scaled resource in l1

is strictly ‘better’ than the corresponding value in l2. Dominated labels are discarded as well.

The resources used in the labelling algorithm for vehicle k are:

• an unconstrained, cardinally scaled resource for cost

• one cardinally scaled resource for each of the three resource variables used in (1)–(7), i.e., for

collected load, transferred load, and time

• one cardinally scaled visitation counter resource for each customer

• one nominally scaled auxiliary resource for each trailer

In the following, these resources are described in detail. The auxiliary resource is presented first,

because it is needed to describe the REFs for cost and load.

The auxiliary resource is primarily needed for the correct modelling of the routing logic at

transshipment locations. It must be considered that, on its itinerary, an LTC lorry must visit

the decoupling, transfer, and coupling vertices of each transshipment location in the correct order

(or not at all), and that, after an LTC lorry has visited the decoupling vertex of transshipment

location l, it must not visit any decoupling, transfer or coupling vertex of any other transshipment

location before having visited the coupling vertex of l. To this end, one nominally scaled resource

rtp is used to model the trailer logic. rtp (‘trailer position’) records the current position of the

trailer by means of a resource variable σtp
i , which indicates the position of the trailer when the

LTC lorry reaches vertex i. σtp
i is either zero, meaning that the LTC lorry is currently pulling

its trailer, or equal to the vertex number of the decoupling vertex where the trailer was parked.

The corresponding REF is f rtp
with

f rtp

ij (σtp
i ) =





σtp
i , j ∈ VC ·∪ Vtrans ·∪ {d}
j, j ∈ Vdec

0, j ∈ Vcoup

∀ (i, j) ∈ A, (10)

and the resource windows at a vertex j are as shown in Table 1.
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Resource window for

{0} j ∈ {o, d} ·∪ Vdec

{1, . . . , |V |} j ∈ VCL

{0, . . . , |V |} j ∈ VCLT

{i} j ∈ Vtrans ·∪ Vcoup, i ∈ Vdec, locj = loci

Table 1: Resource windows for rtp at vertex j

Additionally, rtp serves the following purposes:

• It is used to model the load transfer logic at trailer customer and transshipment locations (see

below).

• It is used for the update of the visitation counter resources (see below).

• It does not only determine the feasibility of an extension of a path along an arc, it is also

relevant for (exact) dominance considerations, as a label can only dominate another label if

their respective current trailer positions are equal (see below).

• It is used to consider the trailer costs in the pricing problems for LTCs, i.e., to express the yk
ij

variables: If LTC lorry k reaches vertex j via arc (i, j) with its trailer attached, the ctrailer,k
ij

costs are incurred. This is registered in the pricing problems by checking whether σtp
j = 0.

For each of the resource variables used in formulation (1)–(7), there is one constrained resource.

For the total amount of customer supplies that lorry k has collected when reaching vertex i, the

resource rcoll with resource variable σcoll
i and REF f rcoll

with

f rcoll

ij (σcoll
i ) = σcoll

i + si ∀ (i, j) ∈ A (11)

is used. f rcoll

ij models constraints (5c) and sets σcoll
j to the lowest nonnegative value fulfilling

these constraints. The resource window at a vertex j is [0, qtotal
k ].

For the total amount of customer supplies that LTC lorry k has transferred when reaching vertex

i, the resource rtrans with resource variable σtrans
i and REF f rtrans

with

f rtrans

ij (σtrans
i , σcoll

i , σtp
i ) =





σtrans
i , j ∈ VCL

∨ (j ∈ VCLT
∧ σtp

i 6= i)

σtrans
i + min{si, q

trailer
k − σtrans

i }, j ∈ VCLT
∧ σtp

i = i

σtrans
i + min{σcoll

i − σtrans
i , qtrailer

k − σtrans
i },j ∈ VI

∀ (i, j) ∈ A

(12)

is used. f rtrans

ij models constraints (5a), (5b), and (5d)–(5g) and sets σtrans
j to the highest

possible value that fulfils these constraints. The resource window at a vertex j is [0, qtrailer
k ].

21



This means that an LTC lorry always transfers as much load as possible to its trailer (its complete

load or an amount of load equal to the residual capacity of its trailer, whichever is less). This is

a sensible stipulation, as it was assumed above that the time needed for a load transfer is fixed,

independent of the actual amount of load transferred. If this assumption is abandoned, there

is a trade-off between transferring few load and saving time on the one hand, and transferring

much load and gaining lorry capacity on the other hand. In the former case, it is possible to visit

more customers before the end of their time windows, but the lorry capacity may be insufficient

to do so. In the latter case, it is possible to visit more customers before having to perform the

next load transfer, but perhaps it is no longer possible to arrive at some customers before the

end of their time windows. Correctly treating such a trade-off is non-trivial. It is beyond the

scope of this paper to elaborate further on this issue. The reader is referred to [23].

For the point in time when lorry k begins its service at vertex i, the resource rtime with resource

variable σtime
i and REF f rtime

with

f rtime

ij (σtime
i ) = σtime

i + τ tr
ij ∀ (i, j) ∈ A (13)

is used. f rtime

ij models constraints (6a) and sets σtime
j to the lowest nonnegative value fulfilling

these constraints. The resource window at a vertex j is [aj , bj ].

The branch-and-price algorithm in the present paper solves the elementary SPPRC in each

pricing step. For the ‘usual’ VRP or VRPTW, to solve the ESPPRC by dynamic programming,

it is necessary to have a binary visitation counter resource for each customer (vertex). This is

also the case for the GTTRP. In the course of the algorithm, for a label l residing at a vertex

v, this resource is set to zero for a customer c if it is not or no longer possible to extend l such

that c is visited after v on any extension of l. This will mostly be the case because c has already

been visited, but possibly also because of time window, capacity and accessibility constraints.

To be precise, for each vc ∈ VC , there is one binary resource rvisit,vc with resource variable σvc
i

at each vertex i ∈ V and REF f rvisit,vc with

f rvisit,vc

ij (σvc
i , σcoll

j , σtrans
j , σtime

j , σtp
j ) =





0 , vc = i ∨ not enough capacity ∨ not enough time

σvc
i , otherwise

∀ (i, j) ∈ A (14)

where σvc
j = 0 means that customer vc cannot be visited any more, and where ‘not enough

capacity’ means

σcoll
j + sj > qtotal

k

∨ (vc 6= j ∧ σcoll
j + sj + svc > qtotal

k )

∨ (σtp
j 6= j ∧ σcoll

j − σtrans
j + sj > qlorry

k )

∨ (vc 6= j ∧ σtp
j 6= j ∧ σcoll

j − σtrans
j + sj + svc > qlorry

k )
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and ‘not enough time’ means

σtime
j + τ tr

jvc
> bvc , where τ tr

hh := 0 ∀ h ∈ V.

The resource window for vertex j at vertex j is [1, 1], and the resource window for a vertex

j′ 6= j at vertex j is [0, 1].

When the pricing problems are solved by dynamic programming, it is not necessary to introduce

more than one intermediate vertex in the LTC subnetworks. It is sufficient to have only one, and

to allow multiple visits to this vertex. Visitation counters are maintained only for the customers,

not for the transshipment vertices. Cycle elimination can be performed with visitation counters

only for the customers, as every possible cycle in the subnetworks (as well as in the network

corresponding to the compact formulation) contains a customer. It is then also possible to use a

transshipment location more than once, which may be relevant depending on the time windows.

This is an additional degree of freedom compared to the compact formulation. Indeed, when

the pricing problems are solved by dynamic programming, it would be possible to use only one

vertex per transshipment location. Although this would reduce the subnetwork size for the LTC

subproblems, the number of possible labels, which determines the difficulty of an (E)SPPRC,

would remain the same.

Finally, there is one unconstrained resource rcost measuring the cost. The corresponding resource

variable is σcost
i , and the REF is f rcost

with

f rcost

ij (σcost
i ) = σcost

i + c̃k
ij ∀ (i, j) ∈ A, (15)

where c̃k
ij is the reduced cost of traversal of arc (i, j) for vehicle k. Introducing dual variables

(αT , γT ) := (α1, . . . , α|LC |, γ1, . . . , γ|F |) (16)

for constraints (9b) and (9c), the objective function of the pricing problem for vehicle k can be

written as

∑

(i,j)∈Ak

clorry,k
ij xk

ij +
∑

(i,j)∈Ak
LT

ctrailer,k
ij yk

ij −
∑

l∈LC

∑

i∈V l
C

∑

(h,i)∈Ak

αlxk
hi − γk, (17)

and the reduced costs of the arcs in the pricing problem for a lorry-trailer combination k can be

stated as in Table 2. The reduced cost of the arcs in the pricing problem for a single lorry k are

as shown in Table 3.

c̃k
ij for

clorry,k
ij − αl (i, j) /∈ Ak

LT , j ∈ V k
C , locj = l

clorry,k
ij + ctrailer,k

ij max(1− σtp
j , 0)− αl (i, j) ∈ Ak

LT , j ∈ V k
CLT

, locj = l

(continued on next page)
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(continued from previous page)

c̃k
ij for

clorry,k
ij + ctrailer,k

ij j ∈ Vdec

clorry,k
ij j ∈ Vtrans ·∪ Vcoup

clorry,k
id + ctrailer,k

id − γk j = d

Table 2: Reduced cost of arcs in the GTTRP pricing problem for a lorry-trailer combination k

c̃k
ij for

clorry,k
ij − αl (i, j) ∈ Ak, j ∈ V k

C , locj = l

clorry,k
id − γk j = d

Table 3: Reduced cost of arcs in the GTTRP pricing problem for a single lorry k

With the above resource specifications, a feasible label l1 dominates a feasible label l2 if and

only if

• both reside at the same vertex i,

• σtp
i (l1) = σtp

i (l2),

• σcost
i (l1) 5 σcost

i (l2),

• σcoll
i (l1) 5 σcoll

i (l2),

• σtrans
i (l1) 5 σtrans

i (l2),

• σtime
i (l1) 5 σtime

i (l2),

• σvc
i (l1) = σvc

i (l2) ∀ vc ∈ VC ,

• and at least one of the above inequalities is strict,

where σr
i (l) denotes the value of the resource variable σr

i for a label l resident at vertex i.

The value of the cost resource of a label l resident at the end depot vertex d indicates the reduced

cost of the path represented by the label. The reduced cost of a path p is

c̃k
p(α, γ) =

∑

(i,j)∈Ak

clorry,k
ij xk

ijp +
∑

(i,j)∈Ak
LT

ctrailer,k
ij yk

ijp −
∑

l∈LC


 ∑

i∈V l
C

∑

(h,i)∈A

xk
hip


αl − γk. (18)

If a path p is feasible and if (18) is negative, a new column corresponding to p can be added to

the restricted master problem. The path itself is recursively reconstructed from the l, because

each label stores its direct predecessor arc and predecessor label. As explained in Section 4.1,

the trailer (sub)path(s) of a path of an LTC lorry is/are also unequivocal and can easily be
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reconstructed, so, the objective function coefficient of a new column in the restricted master

problem can be determined efficiently, too.

The network D for the compact formulation (1)–(7) contains an arc (o, d) that can be traversed

by a trailer without being pulled by its lorry to model the fact that an LTC lorry may also be

used without its trailer. This must be taken into account by solving a pricing problem ESPPRC

for each LTC, for each single lorry, and for each LTC lorry for which there is no single lorry

with identical properties. However, if several vehicles are identical, the resulting symmetry in

the problem can be exploited. This can be done as described in [12], p. 84 ff.

5 Computational Experiments

5.1 Algorithms

Extensive studies of possible set-ups for branch-and-price algorithms were performed. In par-

ticular, many computational experiments were performed to determine useful strategies for the

solution of the pricing problems. The aim was to find successful procedures for the exact as well

as the heuristic solution of the pricing problems, and, hence, the overall problem.

For standard VRP(TW)s, it has proved useful for computational purposes to perform heuristic

pricing, i.e., to solve the ESPPRC heuristically as long as negative reduced cost paths are found,

and to solve the ESPPRC exactly only when heuristic procedures fail to find any more negative

reduced cost paths (see, for example, [37]). In view of this, the following exact approach turned

out to be acceptable. The pricing problems are solved in three stages:

(i) Initially, the ESPPRC is solved heuristically considering the visitation counters only in the

REFs (to ensure that only elementary paths are returned), but completely disregarding

the visitation counters in the dominance procedure. In this way, fewer labels are created,

because the dominance procedure becomes much stronger (indeed, it becomes too strong,

and not all undominated negative reduced cost paths will be found: It is possible that a

path is now dominated by another path although both cover different customers). This

first stage is performed for each vehicle class on a reduced subnetwork where only the ms

shortest arcs in the forward star of each vertex are considered (ms = 3 for instances with

less than 15 customers, and ms = 5 otherwise).

(ii) If no negative reduced cost path is found, the ESPPRC is solved heuristically (i.e., ignoring

the visitation counters in the dominance step as before) for each vehicle class on the entire

network.

(iii) Only if this also does not yield a negative reduced cost path, the ESPPRC is solved exactly

(i.e., with the visitation counter resources of all customers considered in the dominance

step) for each vehicle class on the entire network.
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By performing each stage for each vehicle class, emphasis is put on quickly returning many

negative reduced cost columns. To exactly solve the pricing problems, also bounded bidirectional

dynamic programming as described in [38] was used. This yielded moderately better results than

the unidirectional approach for the larger instances of the test bed described below. Incremental

state space augmentation as described in [38] and [5] was also tried, but did not lead to good

results. For more details on experiments with exact algorithms see [13].

The following branching strategy was used:

(i) branch on the number of tours

(ii) branch on an aggregated arc flow variable (i.e., aggregated over all vehicles or vehicle

classes) for an arc whose head and/or tail is a customer vertex

(iii) branch on an arc flow variable for a vehicle or vehicle class for an arc whose head and/or

tail is a customer vertex

It is sufficient to consider the xk
ij variables for the branching decisions. As described in Sec-

tion 4.1, once these are all binary, the path variables will be binary as well. It is already

sufficient that all xk
ij variables where i or j are customer vertices are integral. This is because

each customer is visited exactly once. This also holds if there are identical pricing problems,

again because of the constraint that each customer is visited exactly once.

For the solution of the GTTRP with a heuristic approach based on branch-and-price or column

generation, also many different settings were investigated. These settings were combinations

of heuristic solutions to the pricing problems. Many different heuristic solution strategies for

ESPPRCs are described, for example, in [37], p. 207 f. Most of the heuristic strategies tried

yielded small computation times, but a quite bad solution quality. The following three strategies

(henceforth referred to as H-1, H-2 and H-3) turned out to offer the best trade-off between these

two conflicting objectives:

(i) Solve the subproblems by completely disregarding the visitation counter resources for all

customers in the dominance procedure, as in the first two stages of the three-stage exact

approach.

(ii) Solve the subproblems by disregarding the visitation counter resources for all customers

and also ignoring the trailer locations of the labels, i.e., ignoring the requirement that a

label l1 can only dominate a label l2 if σtp
i (l1) = σtp

i (l2).

(iii) Use the same dominance as in (ii), but solve the problem only at the root vertex of the

branch-and-bound tree, i.e., perform heuristic column generation. After no more columns

are found at the root vertex, solve a set covering problem with the generated columns. If,

in the solution of the set covering problem, a customer is visited more than once, keep

the customer only in the tour where the saving in tour length obtained by removing the

customer from the tour is minimal over all tours where the customer is visited, and remove

the customer from all other tours.
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All three heuristic approaches also first solved the subproblems on thin graphs, as in the exact

approach.

5.2 Test Instances

The application context that motivated this research is, as in several other papers described

in the literature review, raw milk collection at farmyards (in this case in southern Bavaria,

Germany). The aim was to be able to solve realistic instances. Therefore, the test instances

were devised so as to resemble real-world situations with respect to number of customers and

transshipment locations, customer supplies, and vehicle costs and capacities.

In practice, the following types of vehicle are used:

• Single lorries:

– single lorry with two axles and a capacity of 10 tons

– single lorry with three axles and a capacity of 15 tons

• Lorry-trailer combinations:

– two-axle lorry with three-axle trailer, with a capacity of 10 and 15 tons, respectively (‘2/3-

combination’)

– three-axle lorry with two-axle trailer, with a capacity of 15 and 10 tons, respectively (‘3/2-

combination’)

The cost data used are shown in Table 4. These data approximately reflect absolute values of the

different cost types for each vehicle type as well as ratios of cost of one vehicle type to another.

Two- and three-axle single lorries have the same cost data as two- and three-axle lorries of a

lorry-trailer combination.

Cost type →
Vehicle type ↓ Fixed Distance-dependent

Two-axle lorry 18,000 65

Three-axle trailer 2,500 6

Three-axle lorry 20,000 70

Two-axle trailer 2,000 4

Table 4: Cost data for computational experiments

The transfer of milk from one tank is fast, comfortable and clean and requires no specific location

for their operation, it is performed by the driver himself without imposing any additional cost.

Therefore, load transfer performance only involves time costs.

The customer and transshipment locations were randomly selected on a 100 × 100 km grid

with the depot located in the centre. The resulting Euclidean distances between each pair of
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vertices were multiplied by a distance factor of 1.3. The customer supplies were chosen randomly

from [1,000; 10,000]. As load transfer time, 2 minutes per 1,000 units of supply were assumed

throughout.

The length of the planning horizon was assumed to be 12 hours or 1,320 minutes, respectively. All

customers and pure transshipment locations have one time window: [0; 1,320]. This is supposed

to model the fact that in the targeted application context, most customers and transshipment

locations do not have time windows at all, or at least very long ones (hence, completely ignoring

time windows would not be justified). For a code capable of solving problems with time windows,

such instances represent the worst case and thus constitute a stress test. It is clear that with

tighter time windows, larger instances can be solved.

For each n ∈ {6, . . . , 10, 20, 25}, 30 so-called ‘x y z’-instances were created with the vehicle, cost

and distance data specified above. x stands for the number of lorry customers, y stands for the

number of trailer customers, and z stands for the number of pure transshipment locations, and

x = y = z = n. This means that an x y z-instance has 1 + x + y + 3 · (y + z) + 1 vertices:

One for the start depot, x for the lorry customers, y for the trailer customers, three for each

transshipment location (of which there are y+z) to represent decoupling, transfer, and coupling,

and one for the end depot. The following table shows the sizes of the instances and the resulting

subnetworks. The column ‘No. arcs in VRP’ indicates the number of arcs in a ‘standard’ VRP

with as many vertices as the LTC subnetwork in the same column. Considering the number of

arcs, a 10 10 10-instance of the GTTRP hence corresponds to a VRP instance with 53 customers.

Instance Type 6 6 6 10 10 10 20 20 20 25 25 25

No. vertices in single lorry subnetworks 14 22 42 52

No. arcs in single lorry subnetworks 157 421 1,641 2,551

No. vertices in LTC subnetworks 50 82 162 202

No. arcs in LTC subnetworks 1,033 2,841 11,281 17,601

No. arcs in VRP 2,353 6,481 25,761 40,201

Arc ratio VRP/GTTRP 2.28 2.28 2.28 2.28

Table 5: Test instance sizes

5.3 Computational Results

The algorithms of Section 5.1 were implemented in C++ with the Visual C++ compiler using

the Boost Graph library (BGL, boost.org), the ABACUS branch-and-cut-and-price-framework

(www.informatik.uni-koeln.de/abacus) with CPLEX (www.ilog.com/products/cplex) as

LP solver and the r c shortest paths code from the BGL for the solution of the pricing prob-

lems. The tests were performed on a 2.16 GHz processor with 2 GB of main memory under

28



Windows XP Professional 32 SP 3. The results obtained are shown in the subsequent Tables 6–

10. (The 20 20 20 and 25 25 25 instances could be solved only with the H-3 approach.)

The most important observations to be made in Tables 6–10 are:

• Solution quality:

– In general, the solution quality of all heuristic algorithms is very good.

– The H-1 approach was able to solve to optimality more than 95 % of the instances for which

an optimal solution is known. The instance defining the worst relative solution quality (of

113.7 %) for the H-1 approach is a unique outlier. There were only two instances where the

H-1 approach computed a solution that was more than 0.25 % worse than the best solution

found with the exact algorithm.

– The H-2 and H-3 approaches did not find many optimal solutions, but average deviations

of 0.3 % and 1.3 % respectively from the solutions found with the exact algorithm are still

highly satisfactory.

– For a considerable percentage of instances, the heuristic approaches found better solutions

than the exact one. This apparently paradox result is due to the fact that for such instances,

the exact algorithm was not able to explore the branch-and-bound tree deep and wide

enough within the available computation time.

– It is also noteworthy that the average and maximal lengths (in number of arcs) of the tours

in the solutions decreased steadily from the exact to the ‘most heuristic’ algorithm. This

implies that the heuristic algorithms were not able to find the rather long tours needed to

solve some instances to optimality.

• Computation times:

– The computation time limits for each algorithm are indicated in the tables. The maximum

times reported sometimes exceed these values, because the elapsed time was checked at

the end of each pricing step, not within the (E)SPPRC solution algorithm and not with a

second thread.

– The computation times vary widely for all three branch-and-price approaches. For example,

the shortest CPU time for the exact algorithm for a 6 6 6-instance was two seconds, the

longest was 2,630 seconds (which is more than 1,000 times longer). For H-3, the column

generation heuristic, the variation is much smaller.

– The pricing step is by far the most time consuming part in the algorithms.

– The number of subproblems to be solved varies widely for the branch-and-price algorithms.

The number of (E)SPPRCs to be solved at each subproblem is much less variable. Conse-

quently, the number of subproblems to be solved is the main determinant for the compu-

tation time of the branch-and-price algorithms for an instance.
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Overall, the computational results show that the H-3 heuristic approach offers the best trade-off

between solution quality and computation time. Evidently, the visitation counters and, even

more interestingly, the current trailer location act as fetters in the dominance procedures and

slow down the solution progress without significantly improving solution quality.

The computational results obtained are satisfactory insofar as with the H-3 approach, instances

with realistic network and cost structure and with realistic size (50 customers and 50 pure

transshipment locations) could be solved in short time and with very high solution quality.

The test instances created for this paper use a vehicle cost function containing variable and

fixed components. It is noteworthy that tests showed that when the fixed cost component was

disregarded, the instances were considerably easier to solve with all four solution approaches:

Not only did the overall computation times decrease, but also the difference in computation time

between the instance that took longest and the one that took shortest to solve became smaller.

5.4 Computational Experiments with Existing TTRP Benchmark Instances

[8] introduced a set of 21 benchmark instances for the TTRP version he considered (no pure

transshipment locations, homogeneous fixed fleet, no time windows, Euclidean distances). The

instances range from 38 lorry and 12 trailer customers to 50 lorry and 149 trailer customers.

Encouraged by the results obtained with the H-3 approach as well as by the paper by [9], who

present a heuristic column generation approach to the heterogeneous fleet VRP and obtain very

convincing results on benchmark instances for this problem, it was tried to solve the Chao

benchmark instances with the H-3 approach (due to the size of the Chao instances, a solution

with the other approaches was not possible).

The H-3 approach allows an unlimited number of vehicles, and it cannot easily be modified so

as to use a fixed number. In addition, as explained in Section 3.2, the GTTRP allows that a

trailer customer location be used as a transshipment location by more than one lorry-trailer-

combination. Hence, the H-3 approach solves a relaxation of the problem studied by Chao.

Unfortunately, the results obtained were rather disappointing. Although all 21 instances could be

solved within a few minutes, only the four smallest instances could be solved with the unmodified

H-3 approach. To solve the larger instances, it was necessary to limit the number of labels to

be created within one run of the SPPRC algorithm and to operate on thin graphs containing

only the ms shortest arcs in each forward star. The results for the four smallest instances were

as given in Table 11. The best known solutions are all from [32]. These authors obtained

their results on a 1.5 GHz processor. In the above table, the original times were divided by

two, yielding a generous lower bound for the computation times had these experiments been

performed on the same hardware as the ones described in this paper. In all four solutions, no

transshipment location was used by more than one vehicle.

33



The solution quality for the other Chao instances was very low and decreased with increasing

instance size; however, the scaled computation times were always shorter than the ones reported

in [32].

The reason for these results is that the average ratio of customer supply to vehicle capacity is

much smaller in the Chao instances. This makes the solution of the subproblems much harder,

as many more paths are possible, and therefore many more labels have to be created. The

approach of solving (E)SPPRCs with a labelling algorithm reaches its limits here.

As mentioned in the literature review, very recently [32] have studied the TTRP version in-

troduced by Chao allowing an unlimited number of vehicles. They used a simulated annealing

heuristic and were able to improve the best known solutions for 18 of the 21 Chao benchmark

instances. They also created 36 new test instances, all of which had at least 75 customers and

at least 18 trailer customers. Due to the unsatisfactory performance of the H-3 approach for the

Chao instances, these instances were not tackled.

Considering that for the vehicle routing problem with time windows, ‘50 clients’ means 50

vertices and 2,550 arcs (and a homogeneous fleet), the following quote from [17], p. 492, puts the

above computational results in perspective: ‘It should be noted that . . . column generation has

been the dominant approach for the Vehicle Routing Problem with Time Windows (VRPTW).

Current branch-and-price algorithms can consistently solve tightly constrained instances (those

with narrow time windows) with up to 100 clients. However, they often fail on less constrained

instances with only 50 clients.’ See also the results obtained by [38] for the capacitated vehicle

routing problem (CVRP).

6 Summary and Research Outlook

This paper has studied the generalized truck-and-trailer routing problem (GTTRP) and has

presented an arc-flow-based and a path-flow-based formulation for this problem. Moreover, the

paper has described an exact solution procedure for the problem, a branch-and-price algorithm,

and heuristic versions of this algorithm. A major advantage of the proposed solution approach

over a possible branch-and-cut algorithm based on the arc flow formulation is that fleet planning

(deciding on the number of vehicles to use of each possible type) and vehicle routing can be

performed simultaneously without additional modelling or computational effort.

Extensive computational experiments have been performed. The experiments used randomly

generated instances structured to resemble real-world situations and TTRP benchmark instances

from the literature. The results showed that with a heuristic column generation approach, real-

world GTTRP instances can be solved in short time with high solution quality. However, the

results for the TTRP benchmark instances were not so successful due to the low ratio of customer
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supplies to vehicle capacity in these instances, which makes the use of labelling algorithms for

the solution of the pricing problems highly difficult.

The implementations can still be improved significantly. As the computational experiments

showed, the number of subproblems to be solved is the main factor influencing the computation

times. Therefore, the most important refinements (which may make the solution of the larger

Chao instances and the new instances by [32] possible) are:

• The inclusion of stabilization in the column generation process ([30], pp. 1017 ff.).

• The development of better lower bounding procedures, i.e., the addition of cutting planes. It

would be particularly interesting to investigate (the possibility of) generalizing the two-path

cuts used for the VRPTW ([27]) to a heterogeneous fleet with trailers.

• The solution of the pricing problems by branch-and-cut ([26]).

• The solution of the pricing problems by (meta)heuristics, and the embedding of the branch-

and-price framework into a metaheuristic framework. Recently, [35] have obtained very good

results for the VRPTW with a large neighbourhood search algorithm that uses heuristic

branch-and-price (heuristic solution of the pricing problem by tabu search, depth-first branch-

ing without backtracking) as the reconstruction procedure. This appears to be a very promis-

ing approach also for the GTTRP.

The first two points would reduce the number of subproblems to be solved, the last two points

would (hopefully) reduce the average time needed for solving one subproblem.

A very interesting and challenging further area of research is the vehicle routing problem with

trailers and transshipments (VRPTT) ([13]). The GTTRP as described above is a special case

of the VRPTT. In the VRPTT, the assumption of a fixed lorry-trailer assignment is abandoned.

A trailer may be pulled by any compatible lorry on a part or on the whole of its itinerary,

and any lorry may perform a load transfer to any trailer. Moreover, there may also be so-

called support vehicles (lorries as well as trailers), which are not technically equipped to visit

customers. The vehicles equipped to visit customers may use these support vehicles as mobile

depots for load transfers (note that all location-routing problems described in [34] are special

cases of the VRPTT as shown in [13]). The difficulty with the VRPTT is that, by abandoning the

fixed lorry-trailer assignment, the so-called interdependence problem arises, that is, the tours of

different vehicles become interdependent: In the simplest case, if a lorry l1 wants to transfer load

into a trailer at a certain transshipment location, the trailer must be at this location before the

transfer can start. If a different lorry l2 pulls this trailer to the location, l1’s tour depends on l2’s

tour, and l1 may have to wait. Moreover, the amount of load that l1 can transfer is affected by

the amount of load other lorries have transferred into the trailer before. Such interdependencies

do not usually occur in VRPs studied in the literature and require special solution approaches.

It is beyond the scope of this paper to elaborate further on this issue. Suffice it to say that

vehicle routing problems with interdependent tours such as the VRPTT are an emerging topic

in VRP research and to refer the reader to the recent survey [15].
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As can be seen, a lot of interesting research remains to be done, for the GTTRP itself and for

its potential extensions and generalizations.
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