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and yields a linear probability model that is solidly founded on the discrete choice framework 
that underlies logit and probit. 
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Pregibit: A Family of Discrete Choice Models 
 
1.  INTRODUCTION 

When studying dichotomous outcomes of “successes” and “failures,” most applied 
researchers reach for the familiar logit and probit models without giving any thought to the 
question whether the selected model is appropriate for the data at hand.  These two models 
dictate that responses are symmetric: the marginal effect of an explanatory variable on the 
probability of success is the same whether the probability of success is 100 ൈ  percent (say, at 
30 percent) or 100 ൈ ሺ1 െ  ሻ percent (say, 70 percent).  Moreover, the choice of the model
dictates the magnitude of these marginal effects for different : those of the logit model are 
stronger near the median value of  ൌ 50 percent and in the tails when  is close to 0 or close to 
1, and they are distinctly weaker when  is around 10 percent or 90 percent.  But in a study of 
labor force participation or the purchase of consumer durables or whatever, which of these 
models is better?  There is no way to posit a priori that one model is better than the other.  In 
fact, neither of these models may be able to capture the reality that the sample data represent; the 
relationship may not even be symmetric.  Thus, blind reliance on probit and logit models invites 
instances of model misspecification. 

Over the past two decades, econometricians have been developing more flexible models 
of dichotomous choice.  The essence of these models lies in the choice of the function that relates 
explanatory variables to the dichotomous outcome.  On the one hand, this function derives from 
the distribution of the unobservable factors that drive the outcome—a normal distribution leads 
to a probit model; a logistic distribution yields a logit model—but there is no reason why this 
distribution would have to be symmetric.1  On the other hand, this function may simply be 
viewed as a link function that connects linear combinations of explanatory variables to 
dichotomous outcomes, such that a flexible link function yields better predictions of these 
outcomes.  Thus, the aim of these new models is to improve their predictive power and, at the 
same time, to reduce the likelihood of misspecification that results from a poorly chosen 
distribution of the unobservables. 

The models that are now available in the literature may be classified in various ways.  
One classification is through the skewness and kurtosis of the underlying assumed distribution.  
For example, the distributions behind the probit, logit and cauchit models are all symmetric with 
tails that, between these three models, vary in thickness; loglog and cloglog models have 
asymmetric distributions with thicker right and left tails, respectively.  But as we will see 
momentarily, the literature offers other, more flexible models that defy this simple classification 
by skewness and kurtosis. 

A second classification method focuses on the number of parameters in the link function: 
the larger this number of parameters, the more freedom one has in fitting the likelihood of 
success to its determinants, and the greater is the variation in the shapes of the underlying 
distribution.  A zero-parameter model allows only one shape; examples of such models are 
probit, logit, cauchit, loglog, and cloglog.  A one-parameter model permits shapes with a fixed 
trade-off of skewness-versus-kurtosis options; this category includes the scobit model of Nagler 

                                                            
1 A normal distribution may be defended on grounds that there are many unobservable factors, with none 
particularly dominant, such that the aggregate is approximately normally distributed according to Central Limit 
Theorems.  Such assumed conditions are sometimes but not necessarily universally appropriate. 
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(1994) that generalizes the logit model; the gosset model (Koenker and Yoon, 2009; see also Liu, 
2006, who calls it robit), which builds a discrete choice model around the t-distribution and then 
optimizes the degrees of freedom parameter; and the skewed probit model of Bazán et al. (2010) 
that uses a bivariate normal cdf in a creative way.  A two-parameter model opens up a greater 
range of choices of both skewness and kurtosis; under this category are found the h-family of 
Stukel (1998) that generalizes the logistic distribution and the betit family of Vijverberg (2000) 
that builds on the beta distribution.   

This paper explores the bounty of another two-parameter model that is derived from the 
generalized Tukey lambda (GTL) family of distributions (Ramberg and Schmeiser, 1974; 
Pregibon, 1980).  The GTL family is highly flexible (Freimer et al., 1988): the density can be 
unimodal, U-shaped, J-shaped, symmetric or asymmetric; the range can be finite or infinite; and 
the tails can be truncated, smooth or abrupt.  The resulting discrete choice model nests the logit 
model (Pregibon, 1980; Koenker and Yoon, 2009), and whether it offers an improvement may be 
examined with the goodness of link test of Pregibon (1980) or with a likelihood ratio test 
(Koenker and Yoon, 2009). 

We make four contributions to this literature on what we shall refer to as the pregibit 
model.  First, we show that the pregibit model is a highly flexible discrete choice model that not 
only directly nests the logit model but also approximately nests probit, loglog, cloglog, and 
gosset models.  Furthermore, we find that pregibit offers a version of the linear probability model 
that is more solidly grounded on the typical discrete choice framework than the standard linear 
probability model that is estimated with Ordinary Least Squares.  Thus, the pregibit model offers 
a comprehensive family of models. 

Second, for each of pregibit’s special cases, this paper develops a new Lagrange 
multiplier (LM) test and extends Pregibon’s goodness of link (GL) test.  The advantage of the 
LM and GL tests over the customary likelihood ratio test is that they are based on the estimates 
of the restricted model and thus are straightforward to add as post-estimation commands to 
existing software.  In particular, the LM test is easier to compute. 

Third, in order to illustrate the utility of this new model, we apply the pregibit model to 
six research problems that span different fields in economics.  One of these examines enrollment 
in post-secondary education.  Whereas probit and logit point out types of individuals who 
virtually surely do (or do not) enroll, the pregibit model finds thicker tails: some high school 
students will not enroll even if all explanatory variables are in their favor, and vice versa.  
Moreover, pregibit marginal effects are much stronger for the typical student than probit ones.  
This shows how imposing the probit structure can color the estimation results.  Another 
application explores denial rates of mortgage applications.  Unlike probit, pregibit indicates that 
even high-risk applicants have a positive probability of getting their mortgage application 
approved.  The GTL density proves to be badly skewed, such that it appears that mortgage 
officers are more inclined to uncover reasons to make a mortgage deal than to send clients away 
empty-handed.  Overall, among the six applications, the flexibility of pregibit fails to lead to 
further insights in only two cases.  In these, the sample size is smaller—and of course probit or 
logit may well be adequate in some contexts. 

Fourth, these applications yield estimates of the two parameters ሺߙ,  ሻ of the GTLߜ
distribution that differ from the range of values that were considered in Freimer et al. (1988) and 
Koenker and Yoon (2009), which warrants a further examination of the characteristics of the 
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GTL distribution.  In particular, the tails of estimated GTL densities can be so thick that the 
usual skewness and kurtosis cannot be computed.  This feature may be attractive for applications 
particularly in finance but also in more general contexts.  Furthermore, there is not one but 
actually four sets of ሺߙ,  ሻ values that turn the GTL density into a uniform density.  Not onlyߜ
does this create a minor identification issue but it also indicates that the log-likelihood function 
may have local maxima in a portion of the ሺߙ,  .ሻ-parameter spaceߜ

In the following, Section 2 builds the pregibit model and discusses how it nests the 
various special cases.  In doing so, it makes a case for standardizing the distribution on which the 
discrete choice model is built, whether this distribution is normal, logistic, Gumbel, uniform, or 
GTL. Section 3 examines the asymptotic bias that results from inappropriately specifying logit or 
probit when pregibit is in order.  In Section 4, we apply the pregibit model to six different 
research questions, ranging from mortgage applications to labor market, education and health 
outcomes.  Section 5 concludes. 

 
2.  PREGIBIT: A PARAMETRIC FAMILY OF DICHOTOMOUS CHOICE MODELS 

2.1.  Pregibit and the core design of dichotomous choice models 

The dichotomous choice framework connects a dichotomous outcome variable ݕ to a 
vector of explanatory variables ܺ through a latent variable equation, which in this paper is 
assumed to be linear, and an index function: 

ݕ 
כ ൌ ܺ

ᇱߚ  ߳ (1) 

ݕ  ൌ ݕሺܫ
כ  0ሻ ൌ ሺ߳ܫ  െ ܺ

ᇱߚሻ (2) 

where ݅ ൌ 1,… , ݊ indexes individuals.  Let ܨሺ߳;  is vector of ߠ ሻ be the CDF of ߳, whereߠ
parameters that either is specified a priori or must be estimated along with ߚ, and let ݂ሺ߳;  ሻ beߠ
the associated PDF.  Then the probabilities of a “success” ݕ ൌ 1 and a “failure” ݕ ൌ 0 are 
given by, respectively, 

  ؠ ܲሾݕ ൌ 1| ܺሿ ൌ 1 െ ሺെܨ ܺ
ᇱߚ;  ሻ (3a)ߠ

 1 െ  ؠ ܲሾݕ ൌ 0| ܺሿ ൌ ሺെܨ ܺ
ᇱߚ;  ሻ (3b)ߠ

Equations (3a)-(3b) are the ultimate expression of the relationship between ݕ and ܺ.  In 
this model, ܨ plays two roles.  First, ܨ represents the distribution of the unobservables that drive 
the choice outcome, captured by ߳.  Theories about the relationship between ݕ and ܺ hardly ever 
dictate the nature of this distribution (Amemiya, 1981).  One might defend an assumption of a 
normal distribution with an appeal to the central limit theorem: subject to regularity conditions, 
the combined effect of many unobservable factors is approximately normally distributed.  But 
there must be many unobservables and none must dominate.  It is really more out of convenience 
that researchers might assume that ߳ has a normal distribution; an equally common choice, the 
logistic distribution, does not have a central limit theorem to argue for it. 

Second, separate from (but of course flowing out of) its connection with ߳, the function ܨ 
plays a more direct role in the relationship between ݕ and ܺ.  As ܺ

ᇱߚ rises, െ ܺ
ᇱߚ declines, 

ሺെܨ ܺ
ᇱߚ; helps translate ܺ ܨ ,ሻ falls, and a success becomes more likely.  In other wordsߠ

ᇱߚ into 
  . for each individualݕ  and thereby into a dichotomous (or bernoulli) pattern of outcomes
Notice that the shape of the left tail of the distribution of ߳ determines how ܺ

ᇱߚ drives the 
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probability of success on the right side of the S-shaped ሺ, ܺ
ᇱߚሻ curve, and vice versa.  This 

insight is essential for the proper interpretation of pregibit estimates later on in this paper. 

The distribution of ߳ is often stated in a “natural” form with a mean ߤఢ not equal to 0 and 
a standard deviation ߪఢ not equal to 1;  i.e.,  it  is  usually not standardized.  In fact, candidate 
distributions may differ greatly in the value of ߤఢ and ߪఢ, which is matched by shifts in the 
intercept and slopes in ߚ.  For example, it is well-known that logit parameters are roughly 
comparable to probit parameters once the latter are multiplied by the standard deviation of the 
common logistic distribution, ߨ √3⁄ ൌ 1.81.2  Moreover, in the notation in equations (3a)-(3b), 
variations in ߠ also cause shifts in ߤఢ and ߪఢ, making comparison of estimates of ߚ difficult even 
within the same family of discrete choice models.  Expressing the model in standardized form 
avoids this problem.3  Define ߳̃ ൌ ሺ߳ െ ఢሻߤ ⁄ఢߪ , and let ܨ෨ሺ߳̃; ሻߠ ൌ ఢߤሺܨ  ;ఢ߳̃ߪ  ሻ denote theߠ
CDF of ߳̃.  Let a success occur when the standardized disturbance ߳̃ exceeds െ ܺ

ᇱߚ෨, or when ߳ 
exceeds ߤఢ െ ఢߪ ܺ

ᇱߚ෨ ؠ െ ܺ
ᇱߚ: equations (3.a) and (3b) are simply restated as  

  ؠ ܲሾݕ ൌ 1| ܺሿ ൌ 1 െ ෨൫െܨ ܺ
ᇱߚ෨; ൯ߠ ൌ 1 െ ሺെܨ ܺ

ᇱߚ;  ሻ (3a’)ߠ

 1 െ  ؠ ܲሾݕ ൌ 0| ܺሿ ൌ ෨൫െܨ ܺ
ᇱߚ෨; ൯ߠ ൌ ሺെܨ ܺ

ᇱߚ;  ሻ (3b’)ߠ

The search in the literature for different families of dichotomous choice models arises out 
of a dissatisfaction with the common probit and logit models that assume normal and logistic 
distribution, respectively, for ߳.  The desire is to find a flexible functional form for ܨ that 
imposes fewer restrictions on the estimated relationship between ݕ and ܺ

ᇱߚ.  Thus, the literature 
diverges into two directions: one offers new families of dichotomous choice models that are 
derived from a particular function ܨሺ·;  ሻ; the other branch starts off with a so-called linkߠ
function ܩ that implies a distribution of ߳, i.e., ߳ ൌ ;ݍሺܩ   a uniform random variableݍ ሻ withߠ
over the range ሾ0,1ሿ.  In essence, this aims to translate  into ܺ

ᇱߚ in a flexible way: ܺ
ᇱߚ ൌ

െܩሺ1 െ ; .ሻߠ
4  Since ିܩଵ ൌ  the two approaches are related, but new families of ,ܨ

dichotomous choice models may sometimes be more easily specified through ܩ than through ܨ, 
and vice versa.  In all this, what these specifications of ܨሺ·; ;·ሺܩ ሻ andߠ  ሻ mean for the patternߠ
of ߳ in the data—its distribution, more particularly—is essentially secondary. 

Pregibon (1980) proposed the generalized Tukey lambda (GTL) link function as a way to 
introduce asymmetric disturbances into a linear model and proceeded to explore this link 
function in the context of a logit model of grouped data.  In this section, we build up this discrete 
choice model with generalized Tukey lambda disturbances, and we refer to this discrete choice 

                                                            
2 Amemiya (1981) suggests a value of 1.6 instead, which more closely links the marginal effects at the center of the 
distribution.  Greene (2012:695) suggests a value of 1.7 instead, as this make the average marginal effect more 
comparable.  Since the marginal effect is intimately related to the PDF, Greene’s suggestion amounts to selecting a 
factor that minimizes the difference between the PDFs, fitting a transformed logistic density to the standard normal 
density. 
3 Standardization has another benefit.  If the distribution is specified in its natural form, the surface of the likelihood 
function exhibits a ridge-like shape, such that an iterative search may traverse tediously through a narrow range of 
values of ൫ߚመ,   increases, the mean and standard deviation rise, say, which necessitates a parallel adjustmentߠ ൯: asߠ
in the searched value of ߚመ .  Standardization makes these search directions more independent of each other: indeed, 
in our experience with the pregibit model, likelihood functions formulated with distributions in standardized form 
(when feasible) converge more quickly and with greater success. 
4 Identically in approach but with a slight difference in the precise formulation, the link function is sometimes 
specified in the following form: ܺ

ߚ′ ൌ  .ଵିܨ to ܩ ሻ.  We prefer the approach in the text, tyingሺܩ
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model as the pregibit model.  As will be seen below, the pregibit model fits in the class of two-
parameter models.  The two parameters endow the pregibit model with a capability to fit data 
generated with asymmetric disturbances.  This is clearly beyond the capability of the popular 
probit and logit models, which rely on symmetric disturbances that are generated by the standard 
normal and logistic distribution, respectively.  It is also more general than the loglog and cloglog 
models that are sometimes used when disturbances are presumed to be asymmetric.  The pregibit 
model directly or approximately nests all of these four discrete choice models as well as the 
gosset model of Liu (2006) and Koenker and Yoon (2009).  And finally, it offers a version of a 
linear probability model that properly fits within the general discrete choice framework. 

2.2.  Generalized Tukey lambda disturbances 

The pregibit model of Pregibon (1980) builds on the generalized Tukey lambda (GTL) 
distribution that was first proposed by Ramberg and Schmeiser (1974).  The versatility of the 
pregibit model is better understood if the great flexibility of the GTL distribution is clear.  Thus, 
this section augments the literature on GTL distributions.  In particular, we will illustrate the 
GTL distributions for a wider range of parameter values; we will make a case for standardization 
of the distribution; and we will gain a better perspective on the type of data that facilitate 
estimation of the pregibit model.   

In the notation of the present paper, the GTL link function is given by 

 ߳ ൌ ;ݍሺܩ ሻߠ ൌ ഀషഃିଵ

ఈିఋ
െ ሺଵିሻഀశഃିଵ

ఈାఋ
 (4) 

for ݍ א ሾ0,1ሿ, ߠ ൌ ሺߙ, ߙ ,ሻߜ െ ߜ ് 0, and ߙ  ߜ ് 0.5  The link function in equation (4) 
translates a uniformly distributed random variable ݍ into a GTL disturbance ߳.  The inverse of ܩ 
does not have an analytical solution for general values of ߙ and ߜ but is of practical value: 
ݍ ൌ ଵሺ߳ሻ is the CDF of ߳ since 0ିܩ  ݍ  1 and since the derivative 

 
డீషభሺఢሻ

డఢ
ൌ ଵ

பீሺሻ ப⁄
ൌ ଵ

ഀషഃషభାሺଵିሻഀశഃషభ
 (5) 

is positive for all values of ݍ א ሾ0,1ሿ.  Thus, in terms of notation introduced in Section 2.1, 
ଵିܩ ൌ ଵିܩ߲ and ܨ ⁄ߝ߲ ൌ ݂. 

This link function yields a very rich and diverse family of GTL density functions 
(Freimer et al., 1988): ݂ can be symmetric or non-symmetric, unimodal or U-shaped, J-shaped or 
monotone; the tails of ݂ can be smooth or truncated or abrupt and thus can be thick, thin or non-
existing; and the range of ߳ can be finite or infinite.   

Let us first consider the range of ߳.  When ߙ   the lower bound of the range of ߳ is ,ߜ
finite and equals െ1 ሺߙ െ ⁄ሻߜ ; otherwise, when ߙ   ,the lower bound of ߳ is െ∞.  Similarly ,ߜ
when ߙ  െߜ, the upper bound is finite and equals 1 ሺߙ  ⁄ሻߜ ; otherwise, when ߙ  െߜ, the 
upper bound of ߳ is ∞.  (Proof of these and other properties is provided in Appendix A.)  Figure 
1 demonstrates this property.  In the (ߙ,  plane, to the right of the 45 degree line in the direction (ߜ
of the small arrows, the lower bound is finite, and to the right of the 135 degree line in the 
direction of the large arrows, the upper bound is finite.   

                                                            
5 When ߙ െ ߜ ൌ 0, the first term in (4) is replaced with ln  according to L’Hôpital’s Rule.  Similarly, when ݍ
ߙ  ߜ ൌ 0, the second term in (4) is replaced with lnሺ1 െ  .ሻݍ
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Figure 1: Feasible parameter regions 
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Next, consider four moments of the GTL distribution: mean, variance, skewness and 
kurtosis.  From equations (4) and (5), we may derive the mean and the variance of the GTL 
distribution as follows. 

ሺ߳ሻܧ  ൌ ఢߤ ൌ െ ଶఋ

ሺఈାଵሻమିఋమ
ൌ െ ଶఋ

ሺାଵሻሺାଵሻ
 (6) 

ሺ߳ሻݎܸܽ  ൌ ఢଶߪ ൌ ሺ߳ଶሻܧ െ  ఢଶ (7)ߤ

where ܽ ൌ ߙ െ ܾ ;ߜ ൌ ߙ  ሺ߳ଶሻܧ ;ߜ ൌ ଶ

ሺଶାଵሻሺାଵሻ
 ଶ

ሺଶାଵሻሺାଵሻ
െ ଶ


ቀܤ 

ሺିଵሻ

ሺାଵሻሺାଵሻ
ቁ; and  

ܤ ൌ Γሺܽ  1ሻΓሺܾ  1ሻ Γሺܽ  ܾ  2ሻ⁄ .6  This implies that the mean of ߳ equals 0 only when ߜ 
equals 0 and that the variance of ߳ can be any positive number.   

Now, the mean is defined only for parameter values for which ߙ െ ߜ  െ1 and ߙ  ߜ 
െ1, or more succinctly, െߙ െ 1 ൏ ߜ ൏ ߙ  1.  In Figure 1, this constraint is represented by the 
kinked solid line that intersects with the horizontal axis at ߙ ൌ െ1: to the right of this kinked 
line, the mean is a finite number; to the left the expected value of ߳ does not exist.  Similarly, the 

variance exists only if ߙ െ ߜ  െଵ

ଶ
 and ߙ  ߜ  െଵ

ଶ
, i.e., if, െߙ െ ଵ

ଶ
൏ ߜ ൏ ߙ  ଵ

ଶ
.  This 

constraint shows up in Figure 1 as the kinked solid line that intersects with the horizontal axis at 

ߙ ൌ െଵ

ଶ
: the variance exists only to the right of this kinked line. 

The third and fourth moments exist only if െߙ െ 1 3⁄ ൏ ߜ ൏ ߙ  1 3⁄  and െߙ െ 1 4⁄ ൏
ߜ ൏ ߙ  1 4⁄ , respectively (Appendix A).  Thus, skewness may be computed for parameter 
values to the right of the kinked line that intersects the horizontal axis at ߙ ൌ െ1 3⁄ , and kurtosis 

                                                            
6 Note that the equation of the second moment changes in the case of ܽ ൌ 0 and/or ܾ ൌ 0.  Expressions are given in 
Appendix A. 
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to the right of a similar kinked line at ߙ ൌ െ1 4⁄  (not shown in Figure 1).  In the following, we 
shall refer to skewness as ߢଷ and to kurtosis as ߢସ.7 

Table 1 reports the four moments for various values of ߙ and ߜ, or more precisely, for 
values of ߙ െ ߙ and ߜ   to make the table more effective.  Thus, within each block of the ߜ
table, on the diagonal we find cases with ߜ ൌ 0 and ߙ taking on values as indicated in either 
margin; below the diagonal ߜ is positive; and above the diagonal ߜ is negative.  Thus, with ߜ ൌ
0, the distribution is symmetric—both ߤఢ and ߢଷ equal zero—but can range from extremely 
peaked with long tails (ߪఢ ൌ ସߢ ,2.74 ൌ 22.21) to not peaked at all and all bunched up (ߪఢ ൌ
ସߢ ,0.29 ൌ 1.80).  A positive ߜ yields negative skewness, and a negative ߜ implies positive 
skewness.8  Each moment has an asymptote of ∞ or െ∞ at the boundary of the feasible 
parameter area.  Outside the feasible area, the moment is not defined—but that does not mean 
that the distribution does not exist.  As we will see later on, applications sometimes yield 
estimates of ߙ and ߜ outside these feasible areas. 

As seen in Figure 1, the ሺߙ,  ሻ-value of ሺ0,0ሻ is an interesting special case, turningߜ
GTL(0,0) into the logistic distribution (Pregibon, 1980).  The value of ሺ0,0ሻ is on the boundary 
of the parameter area where the range of ߳ is infinite in both directions while achieving 
symmetry and the lowest degree of kurtosis among densities with an infinite range.  Freimer et 
al. (1988) examine the GTL distribution primarily for positive values of ߙ െ ߙ and ߜ   which ,ߜ
corresponds to the area to the right of the kinked line through the origin, and they ignore 
parameter values for which coefficients of skewness and kurtosis do not exist.  Without 
commenting on coefficients of skewness and kurtosis, Koenker and Yoon (2009) illustrate the 
GTL distribution for ߙ ൌ െ0.25, 0, 0.25 and ߜ ൌ െ0.25, 0, 0.25, and they perform simulations 
for ሺߙ,  ሻ-pairs equal to ሺ0,0ሻ, ሺെ0.25,0ሻ, ሺെ0.15,0.15ሻ, and ሺെ0.40,0.30ሻ.  These values are allߜ
close to ሺ0,0ሻ.  In our applications, we find estimates of ߙ and ߜ that are much farther away from 
these well-studied values.9  Let us therefore examine the GTL distribution in detail for a broader 
range of parameter values. 

Figure 2 shows two kinds of GTL distributions.  In Figure 2A, ߜ equals 0 and ߙ varies 
from െ2 to 2: the CDF curve becomes steeper as the value of ߙ increases.  Thus, it seems to 
imply that, as ߙ rises, the marginal increment in probability increases for a given unit change in 
߳. However, the standard deviation actually decreases substantially when the value of ߙ increases 
from െ0.5 to 2; similarly, to the left of ߙ ൌ െ0.5 where the standard deviation is not defined, 
the distribution becomes more compact as ߙ increases.  Thus, one must be cautious when 
interpreting the implication of a unit change of the argument of the CDF.  In Figure 2B, ߙ equals 
0 and ߜ ranges from െ1 to 1.   Here, the CDF curve shifts leftward as the value of ߜ increases.  
For ߜ ൌ 0.5 and ߜ ൌ 1, the upper bound is a finite value and the lower tail is not bounded, while 
for ߜ ൌ െ0.5 and ߜ ൌ െ1, the lower bound is finite and the upper tail is not bounded. 

                                                            
7 For clarity, ߢଷ ൌ ݉ଷ ⁄ఢଷߪ  and ߢସ ൌ ݉ସ ⁄ఢସߪ  where ݉ denotes the ݇th moment around the mean of ߳. 
8 For larger values of ߙ  ߙ and ߜ െ ߙ with ߜ  ߜ ൏ ߙ െ  the sign of the skewness measure switches.  This ,ߜ
unexpected phenomenon is also reported in Ramberg (1979:206) and Freimer et al. (1988:3552). 
9 In an application, Koenker and Yoon (2009) also find some of such estimates. 
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The differences between these distributions are clearly accentuated by the lack of 
standardization.  Let us therefore also compare standardized distributions (i.e., of ߳̃), scaled such 
that the mean is 0 and the standard deviation is 1 for all distributions, which, in view of Figure 1, 

requires us to restrict ሺߙ, ߙሻ to be such that െߜ െ ଵ

ଶ
൏ ߜ ൏ ߙ  ଵ

ଶ
.10  First, consider the case where 

ߜ is negative.  Figure 3A.1 indicates that, for ߙ ൌ 0, the CDF curve becomes flatter in the 
neighborhood of ߳̃ ൌ 0 as ߙ increases from −0.4 to 0.  Accordingly, the density curves of Figure 
3A.2, which are all symmetric since ߜ ൌ 0, are less peaked and have thinner tails as ߙ increases 
(since the probability mass in the middle must be balanced with probability mass in the tails to 
yield the same standard deviation).  Figure 3B.1 shows that, in the case ߙ ൌ െ0.2, the CDF 
curve steepens as well when ߜ declines, but the way the CDF approaches 1 as ߳ rises is more 
gradual than the way it approaches 0 as ߳ falls.  The PDF gets a fatter right tail and a thinner left 
tail as ߜ decreases from 0 to −0.27: the distribution is right-skewed when ߜ is negative. 

Next, let ߙ be positive.  Figure 4A.1 shows the CDFs of varying positive ߙ values 
ranging from 0 to 1.5 with ߜ ൌ 0.  Of the four curves in Figure 4A.1, a major divergence occurs 
between ߙ ൌ 0 and ߙ ൌ 0.5; all of the curves associated with ߙ ൌ ߙ ,0.5 ൌ 1 and ߙ ൌ 1.5 stay 
close to each other except at the tail areas.  The corresponding PDF curves in Figure 4A.2 show 
that, except for ߙ ൌ 0, all have finite tails on both sides, which is consistent with Figure 1.  
Figure 4B.1 illustrates that as ߜ moves from 0 to −0.75, the CDF rises more abruptly from 0 and 
approaches 1 more gradually.  The left tail of the PDF becomes shorter and the right tail 
becomes longer (Figure 4B.2).  Indeed, given that ߙ ൌ 0.5, we are traversing from the right to 
the left of the 135 degree line through the origin in Figure 1 as ߜ decreases: note that the upper 

                                                            
10 If this restriction is violated and ሺߙ,  ሻ occurs to the left of the kinked line that intersects the horizontal axis inߜ

Figure 1 at ߙ ൌ െ
ଵ

ଶ
, standardization with mean and standard deviation is no longer feasible, but as we will see later, 

the distribution may be standardized in a different way with fruitful results. 

Figure 2: Various Non-Standardized Cases 

߳   ߳

  ሺ߳ሻܨ ሺ߳ሻܨ
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bound of ߳̃ is infinite on the left of the 135 degree line.  Thus, for ߜ ൌ െ0.5 and ߜ ൌ െ0.75, the 
upper limit of ߳̃ is ∞ and the PDF has an infinite right tail. 

When either ߜ ൏ െߙ െ 1 2⁄  or ߜ  ߙ  1 2⁄ , standardization by ߤఢ and ߪఢ is no longer 
feasible.  But a degree of standardization may still be obtained with other, familiar statistics that 
are available for any distribution: the median ݉ఢ as a measure of centrality, and one half of the 
interquartile range ݏఢ as a measure of spread.  Figure 5 illustrates this type of “iqr-
standardization” with two GTL distributions that also appeared in Figure 2A, with ሺߙ, ሻߜ ൌ ሺ0,0ሻ 
and ሺെ2,0ሻ, and two that use the more “extreme” values of ߙ and ߜ of ሺെ2,െ1ሻ and ሺെ3,1ሻ.  In 
their natural form, the value of ݏఢ equals 1.10, 7.11, 11.60 and 35.16, respectively: these 
distributions are so spread out that they are difficult to compare.  With the iqr-standardization, 
the CDF- and PDF-curves illustrate the relative skewness and peakedness of the distributions 
well, even if ߢଷ and ߢସ cannot be computed. 

2.3.  Pregibit: a family of discrete choice models with GTL disturbances 

The pregibit model is simply a dichotomous choice model with disturbances that follow 
the generalized Tukey lambda distribution, which we shall denote as GTL(ߙ,  The parameters  .(ߜ
ߠ and ߚ ൌ ሺߙ,  ሻ are estimated simultaneously, which allows for a rich family of dichotomousߜ
choice models that relate success to its determinants in many different ways.  In particular, 
members of this family distinguish themselves in two ways: (i) the impact of ܺߚ on the 
probability of success  in the intermediate range of , and (ii) the shape of the upper and lower 
tail of the relationship between ܺߚ and .  In regard to the latter, recall that the left tail of the 

ሚ݂ሺ߳̃ሻ ݂ሚሺ߳̃ሻ  

Figure 3: Various Standardized Cases with ࢻ  0 

߳̃   ߳̃

߳̃߳̃  

  ෨ሺ߳̃ሻܨ ෨ሺ߳̃ሻܨ



10 
 

CDF of ߳ determines the shape at the right end of the relationship between ܺߚ and  and that the 
right tail of the CDF determines the shape at the left end (equation (3a)). 

Five members of this family stand out.  First, Pregibon (1980) already highlighted the 
fact that the GTL distribution becomes the logistic distribution when ߙ ൌ ߜ ൌ 0.  Thus, logit is a 
special case of pregibit.  Second, Table 1 already hints at the fact that there is a member in this 

ሚ݂ሺ߳̃ሻ

 ݂ሚሺ߳̃ሻ   ሚ݂ሺ߳̃ሻ

Figure 4: Various Standardized Cases with ࢻ  0 

 
Figure 5: GTL Distributions Standardized with ࣕ and ࢙ࣕ for various ሺࢻ,  ሻࢾ

  ෨ሺ߳̃ሻܨ ෨ሺ߳̃ሻܨ

߳̃   ߳̃

߳̃   ߳̃

߳̃  ߳̃  

  ෨ሺ߳̃ሻܨ
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family for which ߢଷ ൌ 0 and ߢସ ൌ 3, similar to the standard normal distribution: indeed, as 
Joiner and Rosenblatt (1971), Ramberg et al. (1979), and Freimer et al. (1988) noted, this 
happens for ሺߙ, ሻߜ ൌ ሺ0.1349,0ሻ.  This distribution has finite tails: the density is positive for 
െ7.41 ൏ ߳ ൏ 7.41 with ߪఢ ൌ 1.46, or, in a standardized form, for െ5.06 ൏ ߳̃ ൏ 5.06.  Given 
that these endpoints are finite and that the GTL link function in equation (4) and the derivative in 
equation (5) leave the density function undefined outside the endpoints, we define the density to 
equal 0 for all values outside the endpoints.    The similarity of the moments expresses that these 
distributions are similar, but the accuracy of the approximation may also be expressed by two 
indices: the absolute difference in the CDF, ܮ൫ܨ෨,Φ൯ ൌ ;෨ሺ߳̃ܨห ,ߙ ሻߜ െ Φሺ߳̃ሻห݀߳̃, and in the PDF, 
൫ܮ ሚ݂, ߶൯ ൌ ห ሚ݂ሺ߳̃; ,ߙ ሻߜ െ ߶ሺ߳̃ሻห݀߳̃, where Φ and ߶ refer to the CDF and PDF of the standard 
normal distribution.  We find ܮ൫ܨ෨,Φ൯ ൌ 0.0028, which means that as Φ rises from 0 to 1, ܨ෨ 
follows it with a cumulative error of only 0.28 percentage points.  Also, ܮ൫ ሚ݂, ߶൯ ൌ 0.0067, 
which implies that the total difference in the area underneath the PDFs (itself equal to 1) equals 
only 0.0067.  Thus, GTLሺ0.1349,0ሻ closely resembles the standard normal distribution.11,12  In 
this way, the pregibit(0.1349,0) model closely approximates the probit model, which therefore 
permits a test of the probit model against a more general member of the pregibit family that 
permits skewness and different tail behavior. 

Third, when ߜ is restricted to 0 while ߙ is estimated as a free parameter, skewness ߢଷ 
equals 0.  This class of special cases of the pregibit model is therefore referred to as symmetric 
pregibit.  Now, as ߙ declines from 0.1349 to −0.25 while holding ߜ at 0, ߢସ rises from 3 to ∞.  
Kurtosis of the t distribution varies over the same range: ߢସ of a ݐሺߥሻ distribution rises from 3 to 
∞ as ߥ decreases from ∞ to 4, and of course the ݐ distribution is symmetric.  Thus, any ݐሺߥሻ 
distribution for ߥ  4 may be matched with a GTLሺߙ, 0ሻ distribution with an ߙ in the range of 
ሺെ0.25,0.1349ሻ.  For example, GTLሺെ0.1359,0ሻ matches the moments of ݐሺ5ሻ, and 
GTLሺ0.0571,0ሻ matches the moments of ݐሺ15ሻ.  The absolute difference indices are small, 
though not as small as for the standard normal distribution: ܮ൫ܨ෨, ෨௧ሺହሻ൯ܨ ൌ 0.0326 and 
൫ܮ ሚ݂, ሚ݂௧ሺହሻ൯ ൌ 0.0650—but we will return this shortly.  Thus, by close approximation, the 
pregibit family encompasses the gosset model of Liu (2006) and Koenker and Yoon (2009).13 

Fourth, let us consider the loglog and cloglog models.  Disturbances ߳ that follow an 
extreme (maximum) value distribution (which may also be referred to as the Gumbel or loglog 
distribution) yield a cloglog link function and thus underlie the cloglog discrete choice model 
that permits asymmetrically distributed disturbance.  Similarly, if ߳ follows an extreme minimum 
value (or cloglog, the complement of Gumbel) distribution, the loglog discrete choice model 
results.  These two models are mirror images of each other, with the same kurtosis but opposite 
skewness.  Now, for the Gumbel distribution, ߢଷ ൌ 1.14 and ߢସ ൌ 5.4, which is matched by 
GTLሺ0.2107,െ0.2419ሻ: pregibit can also closely approximate the loglog and cloglog models. 

                                                            
11 The value of the standard normal density at ߳̃ ൌ 5.06 equals 0.000001, close to the value of 0 that GTL(0.1349,0) 
yields.  The peaks also are close: 0.3989 for the standard normal and 0.4018 for GTL(0.1349,0). 
12 Skewness and kurtosis also happen to equal 0 and 3 when ሺߙ, ሻߜ ൌ ሺ5.2,0ሻ, but this GTL density is radically 
different.  For example, the endpoints are found at −2.39 and 2.39, the density function does not go down to 0 at 
these endpoints but to 0.08, and the PDF peaks at ߳̃ ൌ 0 at a value of 0.7391 rather than 0.3989.  The absolute 
difference indices equal ܮ൫ܨ෨,Φ൯ ൌ 0.1081 and ܮ൫ ሚ݂, ߶൯ ൌ 0.3368. 
13 Matching by moments is not feasible for ߥ  4.  We address the approximation of ݐሺߥሻ for ߥ  4 later on. 
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How close is this approximation?  Figure 6 visualizes the Gumbel and its GTL match 
graphically.  Panel A and B show the CDF and PDF respectively.  In Panel A, a small gap is 
visible, which is quantified in the absolute difference index ܮ൫ܨ෨, ෨ீܨ ൯ ൌ 0.0190; Panel B shows a 
substantial discrepancy, quantified with ܮ൫ ሚ݂, ሚ݂ீ ൯ ൌ 0.0571.  This raises the question whether 
matching by moments is actually an optimal strategy.  In Panel C, the CDFs are depicted when 
ሺߙ, ,෨ܨ൫ܮ ሻ are matched by minimizingߜ ෨ீܨ ൯ instead: the minimum equals 0.0120 at ሺߙ, ሻߜ ൌ
ሺ0.1671,െ0.2334ሻ, and the gap is visibly smaller indeed.  In Panel D, the distribution is 
matched by minimizing ܮ൫ ሚ݂, ሚ݂ீ ൯; at the minimum of 0.0307, we have 
ሺߙ, ሻߜ ൌ ሺ0.1422,െ0.2290ሻ, with a remarkable improvement compared to Panel B. 

The same kind of improvement is possible for the matching with the standard normal and 
the ݐሺߥሻ distributions.  Table 2 provides the numbers: the L-indices can be cut in half with a 
better choice of ሺߙ,    .ሻߜ

Then, should distributions be matched by their CDF or their PDF?  On the one hand, we 
are interested in the relationship between the probability of success and its determinants, which 
favors matching by the CDF.  On the other hand, the discrete choice framework starts with 
positing a distribution for the disturbance, which favors matching by the PDF.  This dilemma is 
resolved by a Monte Carlo study with data of one of the six applications that will be used to 
illustrate the pregibit model in Section 4; a second Monte Carlo study with another dataset 

ሚ݂ሺ߳̃ሻ

Figure 6: Comparing GTL and Gumbel distributions 

 A: CDF, distribution matched by moments B: PDF, distribution matched by moments 

 C: CDF, distribution matched by ܮ൫ܨ෨, ෨ீܨ ൯ D: PDF, distribution matched by ܮ൫ ሚ݂, ሚ݂ீ ൯ 

ሚ݂ሺ߳̃ሻܨ෨ሺ߳̃ሻ  

߳̃   ߳̃

߳̃   ߳̃

  ෨ሺ߳̃ሻܨ
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yielded the same results.14  Let us consider an analysis of the probit match.  As a first step, we 
determine ߚ by estimating a probit model on the full dataset.  Then, for 100 runs, we select 
2000 observations at random, compute ܺᇱߚ, add a standard normal draw of ߳̃, determine ݕ, and 
then estimate the probit and the GTL-matched pregibit models.  Across the 100 runs, Table 2 
reports the average, minimum (largest negative) and maximum (largest positive) difference in 
the log-likelihood value, as well as the average of the largest difference in the estimated 
probability of success among the 2000 observations.  Both the likelihood function and the 
estimated probabilities of success are closer when the pregibit model is based on a GTL that is 
matched by the PDFs.  The same is true for the ݐሺ5ሻ and cloglog models.15  Thus, in the 
following, we will consider the GTLሺ0.1436,0ሻ to match the probit model, 
GTLሺ0.1422,െ0.2290ሻ to match the cloglog model, and GTLሺ0.1422,0.2290ሻ to match the 
loglog model.  

Lastly, the pregibit model yields one more special case that warrants our interest.16  
Figure 4A.2 already shows that the GTL distribution becomes a uniform distribution when ߙ ൌ 1 
and ߜ ൌ 0.  Indeed, the link function may be written as ߳ ൌ ݍ2 െ 1, implying ݂ሺ߳ሻ ൌ 0.5 for 
െ1  ߳  1 and ߪఢଶ ൌ 1 3⁄ .  In standardized form, we have 

  ൌ 0    for   ܺ
ᇱߚ෨ ൏ െߪఢିଵ 

      ൌ 0.5 ሺߪఢ ܺ
ᇱߚ෨  1ሻ    for   െߪఢିଵ  ܺ

ᇱߚ෨   ఢିଵ (8)ߪ

      ൌ 1    for   ܺ
ᇱߚ෨   ఢିଵߪ

Now, in the familiar linear probability model that is estimated with OLS, ݕ is regressed against 
ܺ.  One characteristic of that model is that ܧሾݕሿ ൌ ܲሾݕ ൌ 1ሿ ൌ ܺ

ᇱכߚ, from which the model 
gets its name: the probability of success is a linear function of ܺᇱכߚ.  One of the complaints 
about that model is that predicted probabilities may be less than 0 or greater than 1.  Through 
equation (8) based on the GTL(1,0) distribution, we arrive at a model where, within feasible 
limits,  is a linear function of ܺᇱߚ and yet the structure of the model is consistent with the 
common framework of dichotomous choice models.  In this way, the linear probability model is 
approximately nested within the pregibit family and may be tested against more general 
members of this family. 

Unfortunately, the GTL distribution turns into a uniform distribution not only when 
ሺߙ, ሻߜ ൌ ሺ1,0ሻ but also when ሺߙ, ሻߜ ൌ ሺ2,0ሻ and when ሺߙ, ሻߜ ൌ ሺߙ,െߙ  1ሻ for ߙ ՜ ∞ and 
when ሺߙ, ሻߜ ൌ ሺߙ, ߙ െ 1ሻ for ߙ ՜ ∞ (Freimer et al., 1988, p.3550).17  Thus, the log-likelihood 
function of the pregibit model takes on the same value for these four parameter pairs.  This has 
two consequences.  First, this creates an identification issue.  Even so, GTL density functions for 
values of ሺߙ,  ,ሻ in the neighborhood of these four points are distinctly different (Appendix B)ߜ
                                                            
14 The data used for Table 2 pertain to Application 4 (post-secondary enrollment) in Section 4, selected because 
successes and failures are roughly balanced.  A similar Monte Carlo analysis with data from Application 5 
(mortgage denial) yields similar results, even though the sample proportion of successes is only 12 percent. 
15 With ߙ ൌ െ0.8416, even ݐሺ1ሻ is matched with high accuracy (ܮሺ ௧݂, ݂ீ ሻ ൌ 0.0106), but since ݐሺߥሻ cannot be 
standardized for ݒ  2, a scaling factor must be computed numerically along with ߙ to help match the PDFs. 
16 Ramberg et al. (1979) mention that, with suitably selected (ߙ,  the GTL distribution can also closely ,(ߜ
approximate the lognormal, gamma, and Weibull distributions.  It is not likely that these distributions (shifted so as 
to have a mean of 0) have ever been used within a discrete choice framework, but pregibit is a comprehensive model 
indeed. 
17 The latter conditions can be restated as ሺߙ െ ,ߜ ߙ  ሻߜ ൌ ሺ∞, 1ሻ and ሺߙ െ ,ߜ ߙ  ሻߜ ൌ ሺ1,∞ሻ. 
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which suggests that the identification issue is limited to only these four points.  Second, the 
configuration of these four points makes it likely that the loglikelihood function is poorly 
behaved for values of ሺߙ, ߙ ሻ withߜ  1 and െߙ  1  ߜ  ߙ െ 1, which in Figure 1 
corresponds to an area to the right of a kinked line that intersects the horizontal axis at ߙ ൌ 1.  
Local maxima may occur.  In our applications, we indeed found some evidence of this. 

2.4.  Comparing members of the pregibit family 

The pregibit family has many members that are popular in the empirical literature but are 
special cases of the more general pregibit model.  The parameter restrictions that these popular 
models impose ought to be tested.  Four tests are available.  First, a Wald test compares ൫ߙො,  መ൯ ofߜ
the unrestricted model with the implied ሺߙ,  ሻ of the restricted model.  Second, a likelihoodߜ
ratio test compares the log-likelihood values of the restricted and unrestricted models, which 
therefore must both be estimated, making this test computationally intensive.  The third and 
fourth tests, the Lagrange Multiplier (LM) and Goodness of Link (GL) tests, require estimation 
of only the restricted model.  These two tests are related and are now discussed in more detail. 

Consider the model in standardized form:18 the CDF ܨ෨൫ ܺ
ᇱߚ෨; ,ߙ ൯ߜ ؠ   is derived from

the expression ߤఢ െ ఢߪ ܺ
ᇱߚ෨ ൌ ሺ1ܩ െ ; ,ߙ ఢߤ ሻ, whereߜ ൌ ,ߙሺߤ ఢߪ ሻ andߜ ൌ ,ߙሺߪ  ߞ ሻ.  Defineߜ

to be the vector that combines all parameters of the pregibit model: ߞ ൌ ሺߚ෨ᇱ  ߜ  ߙሻԢ.  Define 
݀ ൌ ܨ߲ ⁄ߞ߲ .  Specifically, 

 ݀ ൌ

ۉ

ۈۈ
ۇ

ିఙച
ீ

ଵ

ீ
ቀെܩఈ 

డఓച
డఈ

െ ܺ
ᇱߚ෨ డఙച

డఈ
ቁ

ଵ

ீ
ቀെܩఋ 

డఓച
డఋ

െ ܺ
ᇱߚ෨ డఙച

డఋ
ቁی

ۋۋ
ۊ

 , (9) 

where ݍ ൌ 1 െ  denote ܩ and where subscripts of ,ܩ as the first argument of the function 
derivatives with respect to the indicated argument.19 

For the LM test, the first order derivative of the likelihood function is 

 
డ୪୬

డ
ൌ ∑ ଵି௬ିி෨

ி෨ሺଵିி෨ሻ
݀


ୀଵ   (10) 

and the expected value of the second order derivative is20 

ܧ  డమ୪୬

డడᇲ
ൌ െ∑ ଵ

ி෨ሺଵିி෨ሻ
݀݀

ᇱ
ୀଵ   (11) 

                                                            
18 The LM and GL tests are shown for the standardized pregibit model.  For tests on the unstandardized model, just 
set ߤఢ equal to 0 and ߪఢ equal to 1.  When iqr-standardization is applied, replace ߤఢ with ݉ఢ and ߪఢ with ݏఢ. 
19 For an arbitrary ሺߙ, αܩ ሻ, we haveߜ ൌ

ଵ

ఈିఋ
ቀݍఈିఋlnݍ െ

ഀషഃିଵ

ఈିఋ
ቁ െ

ଵ

ఈାఋ
ቀሺ1 െ ሻఈାఋlnሺ1ݍ െ ሻݍ െ

ሺଵିሻഀశഃିଵ

ఈାఋ
ቁ.  For 

ߙ െ ߜ ൌ 0, the first term of this expression equals 
ଵ

ଶ
ሺlnݍሻଶ by L’Hôpital’s Rule.  Similarly, for ߙ  ߜ ൌ 0, the first 

term of this expression equals 
ଵ

ଶ
ሺlnሺ1 െ ఋܩ ሻሻଶ.  We also haveݍ ൌ െ

ଵ

ఈିఋ
ቀݍఈିఋlnݍ െ

ഀషഃିଵ

ఈିఋ
ቁ െ

ଵ

ఈାఋ
ቀሺ1 െ

ሻఈାఋlnሺ1ݍ െ ሻݍ െ
ሺଵିሻഀశഃିଵ

ఈାఋ
ቁ.  ܩ is more straightforward: ܩ ൌ ఈିఋିଵݍ  ሺ1 െ  .ሻఈାఋିଵݍ

20  Since ܧሾݕሿ ൌ 1 െ  ෨, many terms drop out of the expression for the second order derivatives when theܨ
expectation is taken. 
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The LM test statistic is then computed in the familiar way: ܯܮ ൌ డ୪୬

డᇲ
ቀെܧ డమ୪୬

డడᇲ
ቁ
ିଵ డ୪୬

డ
.  The 

expressions are evaluated at the estimate of ߞመᇱ ൌ ቀߚ෨መᇱ, ,ߙ  ቁ of the restricted pregibit modelߜ

(e.g., probit) that is to be tested.  ܯܮ is distributed asymptotically as ߯ଶሺ2ሻ for every restricted 
model.21  To compute ܯܮ, the restricted model is estimated only once. 

As for the GL test, Pregibon (1980) proposed a goodness of link test as a way to test for 
the logistic specialty case of the generalized Tukey lambda link function in the context of 
grouped date.  Within the context of individual data and discrete choice models other than logit, 
this test is straightforwardly to implement as well.  Rewrite the link function in standardized 
form as22 

 ܺ ෨ߚ′ ൌ െீሺ;ఈ,ఋሻିఓച
ఙച

ൌ െܩ෨ሺݍ; ,ߙ  ሻ (12)ߜ

As before, let ߙ and ߜ be the hypothesized population parameters.  The link function in 
equation (12) with correctly specified parameters ߙ ് ߜ  andߙ ്   may be approximated withߜ
a first order Taylor expansion around (ߙ,  :(ߜ

;ݍ෨ሺܩ  ,ߙ ሻߜ ൌ ;ݍ෨ሺܩ ,ߙ ሻߜ  ߙ෨ఈሺܩ െ ሻߙ  ߜ෨ఋሺܩ െ  ሻ (13)ߜ

where the derivatives ܩ෨ఈ ൌ ;ݍ෨ሺܩ߲ ,ߙ ሻߜ ⁄ߙ߲  and ܩ෨ఋ ൌ ;ݍ෨ሺܩ߲ ,ߙ ሻߜ ⁄ߜ߲  are both functions 
of ߙ ,ݍ and ߜ.  Inserting (13) into (12) and rearranging terms yields 

෨ߚ′ܺ   ߙ෨ఈሺܩ െ ሻߙ  ߜ෨ఋሺܩ െ ሻߜ ൌ െܩ෨ሺݍ; ,ߙ  ሻ (12)ߜ

In other words, the deviation between the correct and the hypothesized link function will show 
up through significant parameter estimates on the auxiliary variables ܩ෨ఈ and ܩ෨ఋ that are added 
to the hypothesized model along with the regular explanatory variables ܺ.  The GL test is 
therefore a Wald test on the parameters of ܩ෨ఈ and ܩ෨ఋ, distributed asymptotically as ߯ଶሺ2ሻ.23  
Note that the GL test requires estimation of two restricted pregibit models since ݍ in ܩ෨ఈ and ܩ෨ఋ 
depends on ሺߚᇱ  ߙ  ߜሻ. 

As discussed in Section 2.2, for some values of ሺߙ,  ෨ߚto ܺᇱ ݍ ሻ, the link function linksߜ
only over a finite range of ܺᇱߚ෨.  In other words, ܩ෨ becomes vertical for ݍ ൌ 0 and ݍ ൌ 1.  For 
such values of ߙ ,ݍ and ߜ have no impact on the relationship between ݍ and ܺᇱߚ෨.  Accordingly, 
we define ܩ෨ఈሺ0; ,ߙ ሻߜ ൌ ;෨ఈሺ1ܩ ,ߙ ሻߜ ൌ 0 and similarly ܩ෨ఋሺ0; ,ߙ ሻߜ ൌ ;෨ఋሺ1ܩ ,ߙ ሻߜ ൌ 0. 

Apart from these formal statistical tests, a less formal comparison of pregibit models may 
be desirable as well.  In the case that ሺߙ,  ,ఢ is feasibleߪ ఢ andߤ ሻ is such that standardization byߜ
we have ܸܽݎሺכݕሻ ൌ ሻߚሺܺᇱݎܸܽ  1 since ߳ and ܺ are independent by assumption.  Thus, the fit 
of the model may be expressed by a pseudo-ܴଶ measure equal to 

ܴ௩ଶ ൌ ݎܸܽ ቀܺᇱߚ෨መቁ ቀܸܽݎ ቀܺᇱߚ෨መቁ  1ቁൗ , which parallels the traditional ܴଶ statistics of linear 

models estimated by ordinary least squares (McKelvey and Zavoina, 1975; Laitila, 1993; 

                                                            
21 For the symmetric pregibit model, which only restricts ߜ, evaluate the expressions at ߞመᇱ ൌ ቀߚ෨መᇱ, ,ොߙ ߜ ቁ withߜ ൌ 0; 

the LM test is distributed as ߯ଶሺ1ሻ. 
22 Note that ߤఢ and ߪఢ are functions of ߙ and ߜ as well, as highlighted in the derivatives in equation (9). 
23  For a goodness of link test on the symmetric pregibit model, only ܩ෨ఋ ൌ ;ݍ෨ఋሺܩ ,ොߙ 0ሻ is added to the set of 
regressors.  The asymptotic distribution of GL is ߯ଶሺ1ሻ. 
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Windmeier, 1995).  In this similarity, it has an advantage over other measures of fit that describe 
the match of the probability of success to a successful outcome.  In other words, ܴ௩ଶ  measures 
what the explanatory factors in the data say about the variation of כݕ rather than ݕ.  One example 
where this matters is in the measurement of the willingness to pay for a particular service in the 
context of a discrete outcome: this relies on determining the variation in כݕ.  Note, however, that 
computation of ܴ௩ଶ  is not feasible when ߪఢ is not defined. 

 
3.  ASYMPTOTIC BIAS IN PROBIT AND LOGIT UNDER PREGIBIT 

The gain offered by the pregibit model lies in the accurate quantification of the 
relationship between explanatory variables X and the dichotomous variable Y.  This relationship 
is expressed as ܲሾܻ ൌ 1|ܺሿ ൌ 1 െ ;෨ߚ෨൫െܺᇱܨ  ൯ if standardization of the disturbance term of theߠ
model is feasible, or it is expressed through the marginal impact formula as 

 
ௗሾୀଵ|ሿ

ௗ
ൌ ሚ݂ሺെܺᇱߚ෨ሻߚ෨  (19) 

where ሚ݂ is the standardized version of the GTL density.  If an erroneous distribution is assigned 
to ߳, the discrete choice model suffers from a specification error.  In this section, we examine the 
asymptotic bias in ߚ෨ and in the marginal effect when ሚ݂ is misspecified as either standard normal 
or standardized logistic.   

Let us consider of values of ሺߙ,  ሻ that permit standardization of the GTL distributionߜ
and therefore are not in any way “extreme.”  ߙ ranges from −0.4 to 1, corresponding to 
distributions with infinite tails (ߙ  0) and with shorter finite tails (ߙ  0).  For ߙ ൌ െ0.2, ߜ 
varies from −0.27 to 0.27, and for ߙ ൌ  varies from −0.5 to 0.5.  We employ a simple ߜ ,0.5
model that contains only one explanatory variable.  The data generating process uses ߚ෨ ൌ 1 and 
෨ଵߚ ൌ 1 with the GTL-distributed disturbance term for several combinations of ߙ and ߜ.  We 
consider three scenarios that differ in the likelihood of success; more particularly, for each 
scenario we select the range of the explanatory variable ሾܺ, ܺሿ such that, for the given ߚ෨, ߙ and 
ሾܻܲ ,ߜ ൌ 1|ܺሿ falls within a specified interval.  The intervals that we select are (0.01,  0.99), 
(0.5, 0.99) and (0.333, 0.667), such that the data of the first probability interval cover two tails; 
the second covers one tail; and the third observes neither tail.  There are 500 equally spaced X 
values within each range. 

Table 3 summarizes logit and probit estimators of ߚ෨ଵ and the difference between the 
estimated marginal logit and probit impacts and the true pregibit impact, expressed as a ratio for 
ease of comparison; the table reports the lowest value of this ratio, the median value, and the 
highest value.  As can be seen, the asymptotic bias in the logit and probit estimators of ߚ෨ଵ differs 
according to the data range and the parameter values of ሺߙ,  ሻ.  When data are characterized withߜ
a higher probability in success, i.e., ܲሾܻ ൌ 1|ܺሿ ranges between (0.5, 0.99), the estimate of ߚ෨ଵ at 
ሺߙ ൌ െ0.2, ߜ ൌ െ0.27ሻ is extremely large, e.g., 4.716 or 4.660, even though the difference of 
the estimated marginal logit and probit impacts and the true pregibit impact is not large.  But 
once again, the relationship between X and Y is more subtle, depending on the CDF of the 
assigned distribution.  Thus, depending on the values of ߙ and ߜ and the data range, the marginal 
impact may be underestimated by as much as 97 percent or overestimated by more than 270 
percent.  The median value of the ratio is mostly close to 1, again as one would expect, though in 
a few cases even the median impact is overestimated by 40 percent. 
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4.  APPLICATIONS 

A model that is more elaborate than its popular predecessors adds value only if it 
improves research outcomes.  Thus, we have looked for examples in the literature for which data 
have been made publicly available.  Table 4 gives an overview of the results; detailed estimates 
are provided in Appendix C.24  The first four lines of the table describe each dataset in the 
simplest terms: the size of the sample and the range of the probability of a success (ݕ ൌ 1) 
according to the probit model.  Rather than getting carried away by potential outliers, we 
characterize the probability range by the 1st and 99th percentile of the estimated probability 
values, and the mean probability corresponds closely to the proportion of the sample reporting a 
success.  As stated before, the pregibit model distinguishes itself from simpler models such as 
logit or probit in the behavior of the probability of success in the tails and, possibly, in the 
variation in the slope of the CDF over common middle ranges of the probability of success.  
Research applications with large samples where the probability of success ranges from nearly nil 
to nearly certain hold the greatest promise of evidence in support of pregibit.  Thus, the 
application in the sixth column is actually not particularly promising: even though the sample is 
quite large, the probit probability of success ranges only from 47 to 72 percent.  The third and 
fifth applications lack evidence in the lower and upper tails, respectively. The first and second 
applications use smaller samples that may prevent an unambiguous diagnosis of pregibit 
behavior. 

In the bottom portion of the table, results of the LR, SC and LM tests are reported; to 
conserve on space, the Wald test is omitted.  A quick glance suggests that the popular models are 
adequate for some applications and must be rejected in other cases.  Let us now consider each 
application in turn for evidence in regard to the pregibit model. 

  The first application is drawn from Bliss (1935) and was used by Prentice (1976) and 
Pregibon (1980) in their analysis of discrete choice models.  The data describe mortality among 
beetles when they are exposed to varying dosages of a pesticide.  Pregibon illustrated with a 
graph that his model, which is referred to as the unstandardized pregibit model in this paper, 
performs better than logit, but he reported neither the estimates of ߙ and ߜ nor any of the test 
statistics—and he did not consider any other model as a special case of pregibit.  The pregibit 
model is preferred over any of the symmetric models: the underlying distribution is decidedly 
asymmetric.25  However, cloglog is an acceptable model as well. 

The labor force participation example uses well-known data of Mroz (1987), used in 
textbooks by Berndt (1991) and Wooldridge (2002).  The estimated pregibit model finds 
ොߙ ൌ 0.500 and ߜመ ൌ െ0.057.  The distribution of the disturbance term is therefore nearly 
symmetric (ߢଷ ൌ 0.12) but less peaked (ߢସ ൌ 2.12) than probit or logit.  These estimates imply 
that standardized disturbance ranges from −1.99 to 2.37.  However, the difference with either 
                                                            
24 In addition to the six illustrations reported in Table 4, we applied the pregibit model to a seventh dataset that 
measured the incidence of prostate cancer spreading to lymph nodes on the basis of indicators that are more easily 
obtainable than a biopsy of the lymph nodes themselves (data from Brown (1980), made available through Davison 
and Hinkley (1997)).  With only 53 observations, there is no clear preference for any model.  The iterative search to 
maximize the likelihood function of the pregibit model failed to formally converge but indicate no improvement 
over logit or probit. 
25 Skewness ߢଷ cannot be computed as (ߙො,  መ) falls left of the kinked line in Figure 1 that intersects the horizontalߜ
axis at 0.333. 
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logit or probit is small and statistically insignificant, and the difference with the linear 
probability model is smaller yet. 

The third illustration is drawn from Vijverberg and Zeager (1994) concerning sector 
choice in Tanzania.  The model estimated here is a simplified version of the one published 
originally, permitting a larger sample size.  With ߙො ൌ 1.472 and ߜመ ൌ 0.682, the distribution of 
the disturbance term is distinctly left-skewed and rather “flat” (ߢଷ ൌ െ0.36, ߢସ ൌ 1.97), and the 
range of the standardized disturbance equals [−2.12,1.46].  Figure 7 depicts the estimated CDF 
and PDF of the disturbances of the probit and pregibit models: although the CDFs appear to 
overlap, the densities are clearly very different.  However, the general pregibit model is not 
statistically preferred over probit or any of the popular special cases (with the possible exception 
of the loglog model). 

The fourth application employs data gathered by Kelchtermans and Verboven (2010) for 
a study of the demand for post-secondary education among high school students in Flanders, 
Belgium.  Their nested multinomial logit model includes every major at every institution of 
higher education as possible outcomes as well as the option of not pursuing a post-secondary 
degree.  We simplify the model by aggregating all higher education options into a single 
aggregate outcome that is contrasted with the option of not pursuing a post-secondary degree.  
We condense one of their datasets, which contains a still-large subsample of students with all of 
their options.  In addition to personal characteristics and the nature of the high school 
curriculum, we include both the minimum and the mean cost of travel to the various institutions 
as determinants of the choice to pursue a post-secondary degree; both variables matter in the 
discrete choice models we estimate (see Appendix C).  The pregibit model resoundingly rejects 
the logit, probit and linear probability models (Table 3), opting instead for an unstandardized 
model with (ߙො ൌ െ1.467, ߜመ ൌ െ0.016) with a distribution that is nearly symmetric and has long 
tails.   

Figure 8 shows the implications of the distributional shift: whereas the probit model 
detects some types of individuals who appear to be certain to pursue a higher education 
(probability near 1) and others who apparently are certain not to continue their education 
(probability near 0), the pregibit model tempers such predictions.  Panel A shows this through a 
sample scatterplot that contrasts the probit and pregibit probabilities; Panel B illustrates this by 

Figure 7: Difference between pregibit and probit: Tanzanian data on sector choice 
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both CDFs as functions of the respective standardized values of ܺᇱߚመ .26  Over the middle 
probability range, a 1-standard deviation change in ܺᇱߚመ  produces a greater impact in the pregibit 
model, but closer to the tails, the impact is more muted.  Panel C compares the PDFs of the 
disturbances of the two models again, scaled by the median as the measure of centrality and one 
half of the interquartile range as the measure of spread since the mean and variance of the 
disturbance are not defined (see Section 2.4).  The higher peak and the thicker tails of the 
pregibit distribution are offset by lower density values at intermediate-sized disturbances.   

Thus, the effect of ܺᇱߚመ  on the probability of success consists of three phases: starting 
from the mean, an increase in ܺᇱߚመ  initially induces large numbers of students to seek a higher 
education; a subsequent increase in ܺᇱߚመ  adds smaller numbers according to the pregibit than 
according to the probit model; and a continued increase still finds students to induce to higher 
education under pregibit, whereas probit asserts that there are hardly any students left to induce.  
Decreases in ܺߚመ  from the mean encounter the same three phases.  Thus, the thick tails of the 
distribution of ߳ indicate that, regardless of the deterministic component of the choice model, 

                                                            
26 The values of ܺߚመ  differ greatly between the two models, as is evident from the range of pregibit’s ܺߚመ  in panel D.  
The standardization rescales ܺߚመ  in the traditional way such that, for both models, its mean is 0 and its standard 
deviation equals 1.  In this way, the CDFs are comparable. 

Figure 8: Difference between pregibit and probit: enrollment in post-secondary education in 
Belgium 
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success (or failure) will never be virtually certain.   All of this implies that the marginal effect 
under the probit model must differ substantially from that under the pregibit model.  Panel D 
expresses this for the Belgian sample of high school students in the form of the difference in the 
marginal effect, arranged by the value of pregibit’s ܺᇱߚመ .27 

The fifth application concerns the outcome of mortgage applications (Munnell et al., 
1996; see also Stock and Watson, 2007).  In our model, success is defined as a mortgage 
application for which funding was denied.  We estimate the same specification as Munnell et 
al.’s baseline model, with three differences.  First, we are not able to include fixed effects for 
census tract and for lender identity as these variables are not available in the publicly available 
data.  Second, we omit a dummy indicating whether the applicant’s application for mortgage 
insurance had been denied.  We consider this dummy variable to be potentially endogenous: 
officers evaluating mortgage insurance applications look at similar information as those 
evaluating mortgage applications, such that this dummy variable may well be correlated with the 
disturbances that drive the mortgage application outcome.28  Third, we do not pool African-
American and Hispanic applicants into a single minority dummy variable.   

The (unstandardized) pregibit model is strongly preferred over all symmetric models, 
with ߙො ൌ െ1.626 and ߜመ ൌ 0.919: the disturbances are distributed with a left skew and long tails.  
Even the asymmetric models (loglog and cloglog) fail because while they are able to capture 
skewness, they cannot generate long tails.   

Figure 9 examines the implications of the difference between probit and pregibit.  Panel 
A contrasts the pregibit and probit probabilities of denial for members of the sample; Panel B 
compares the probabilities of denial by overlaying the CDFs of the two models such that ܺߚመ  is 
standardized to have mean 0 and variance 1.  In Panel A, for the large group of observations with 
a pregibit probability ranging of 0.0 to 0.2, which is around the average denial rate of 0.14, the 
probit probability is more likely to be higher than the pregibit probability.  In other words, 
according to the probit model, these applicants are more at risk of being denied their mortgage 
request than the preferred pregibit model indicates.  On the other hand, when the pregibit 
probability is between 0.25 and 0.65, the risk of being denied is actually higher relative to the 
probit model, by 5 percentage points on average and by more than 8 percentage points for one 
fourth of the applicants in this range.  Finally, for 1.3 percent of the sample, the pregibit risk of 
being denied exceeds 70 percent but none ever exceeds 0.87.  For this group, the probit model is 
on average 9 percentage points more definite that the mortgage is denied than the pregibit model 
and indicates virtual certainty of denial for a few persons.  The more clinical comparison in 
Panel B highlights the difference in the relationship between determinants and the probability of 
denial, especially in the upper tail. 

                                                            
27 For any continuous variable, the marginal effect may be computed with equation (19).  Since marginal effects are 
difficult to fruitfully compare when there are many continuous and discrete variable, we employ a more aggregative 
measure instead, both here and in the discussion of other applications below.  Since X is the same for the two models 
that we compare, the standard deviation of ܺߚመ  (denoted as ߪఉ ) measures the scale of ߚመ  for a given model.  Thus, 

we compare marginal effects across models on the basis of ݂൫െ ܺߚመ൯ߪఉ . 
28  Indeed, 93 percent of the applicants who failed to obtain mortgage insurance had their mortgage application 
denied as compared with about 12 percent in the overall sample. 
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The difference in the disturbance distribution is even starker when viewed by their PDFs 
(Panel C).  The densities are both scaled by the median and half-IQR.  The GTL density is 
sharply peaked and has much longer tails: the tails that Panel C cuts off of the normal density 
contain only 0.45 percent probability each, but the long tails of the GTL density hold 18.2 
percent on the left and 1.4 percent on the right.  Thus, the left tail is noticeably thicker than the 
right tail: GTL density is also badly skewed to the left.   

For the evaluation of mortgage applications, this means the following.  Recall that the 
index function is stated as כݕ ൌ ܺᇱߚ  ߳ and that the mortgage is denied whenever כݕ  0: a 
negative ߳ helps to get the application accepted.  Thus, holding observable factors constant, the 
array of unobservables that cause the mortgage to be accepted is larger than the set of 
unobservable factors that cause the mortgage to be denied.  In other words, mortgage officers 
appear to be more inclined to uncover reasons to make a deal than to send clients away empty-
handed. 

The sharply different distributions imply different marginal effects as well.  According to 
the pregibit model, variations in ܺᇱߚመ  matter much more near the center of the distribution than 
out in the tail. 

The sixth and last illustration derives from data used by Riphahn, Wambach and Million 
(2003); see also Greene (2012, Ch.17).  The study examines determinants of doctor’s visits in 

Figure 9: Differences between pregibit and probit: denial of mortgage applications in the US 
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Germany.  The database is a panel of households; to simplify the example, we define the 
dependent variable as a 0/1 indicator of whether the household visited the doctor’s office during 
the survey year (rather than the number of visits it made), and to avoid an obvious violation of 
the iid assumption of the discrete choice models studied here, we retain households in the first 
year of the panel only.   

This application is not as successful as the previous five.  The iterative search for the 
maximum of the log-likelihood function takes off to large negative estimates of ߙො and ߜመ; in the 
unstandardized version of the model, ߚመ  becomes exceedingly large, whereas when the model is 
standardized with the median and IQR, ߚ෨ becomes very small.  As the search progresses, the link 
function ܩሺݍሻ produces values in the order of 10ଶ, at which point one must worry about 
numerical overflow and resulting numerical inaccuracies that diminish the validity of the 
estimation outcome. Thus, we stopped the search at a point where the obtained parameters, 
though not optimized, are already able to illustrate implications of the pregibit model for these 
data.  Table 4 reports estimates ߙො ൌ െ10.037 and ߜመ ൌ െ4.760: for these parameters, the mean 
and standard deviation of the GTL distribution are not defined, and the model is estimated with 
the standardization on basis of the median and the IQR.  The range of the unstandardized 
disturbances is ሺെ∞,∞ሻ.  All restricted pregibit models have significantly lower likelihood 
values.29  But are the results plausible?  Figure 10.A plots probit probabilities of visiting a doctor 
against pregibit probabilities: the probit model underpredicts the probability of a doctor’s visit 
both for households that are least likely to visit a doctor and for households that are most likely 
to visit a doctor: the 1-to-99 percentile range of probabilities changes from (0.47,0.73) for probit 
to (0.53,0.76) for pregibit, while maintaining the same sample-averaged probability of 0.59.  
The scaled CDFs in Panel B highlight the divergence of the two models: in the pregibit model, a 
change in ܺߚ has little impact at the lower end but makes a large difference in the upper middle 
half.  The scatterplot of the marginal effect (panel D) indicates this succinctly.  Panel C focuses 
our attention on the distribution that is driving these results.  Scaled by median and IQR, the 
density is so sharply peaked that it can be shown together with the normal density only if the 
vertical axis is in logarithmic scale.  Both GTL tails are long but especially the right tail is heavy: 
the distribution is strongly right-skewed. The range of the standardized ܺߚ shown in panel D is 
tiny compared to the tails that are illustrated in panel C, but variations in ܺߚ do matter much 
near the narrow peak of the distribution. 

This application exemplifies the caution for the use of the pregibit model.  Among the six 
applications that we have considered, only this sixth application does not allow measurement of 
tail events: there are no households for which, on the basis of observable characteristics, visits to 
the doctor are nearly certain or exceedingly rare.  The pregibit model is less well suited for such 
an application.30 

                                                            
29 The log-likelihood function actually becomes quite flat: for ߙො ൌ െ18 and ߜመ ൌ െ8, lnܮ rises by less than 2. 
30 One might argue that the shape of the estimated GTL distribution indicates model misspecification in that the true 
model might be a mixture of (i) an exogenous common risk that a given household must visit the doctor’s office in a 
given year but is unrelated to household resources, and (ii) a discretionary decision to see a doctor for less urgent 
needs that is related to the explanatory variables included in our model.  The fat right tail of the GTL density (panel 
C of Figure 9) sets a high floor on the probability of a doctor’s visit (panel B), but ultimately the GTL distribution is 
not designed to mimic such a mixture. 
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The six applications yield a range of experiences with the pregibit model.  For three, the 
estimates of ߙ and ߜ permit a traditional standardization with ߤఢ and ߪఢ, the mean and standard 
deviation of the disturbance, in the way that is done with probit implicitly—and we have done 
this also for each of the special cases of pregibit in Appendix C such that the slope estimates ߚመ  
become more easily comparable.  But for the other three applications, ߤఢ and ߪఢ are not defined 
for the estimated values of ߙ and ߜ.  Section 2.2 suggested standardization by means of ݉ఢ and 
 ఢ, the median and half-IQR.  Table 5, panel A, shows the benefit of doing so for the fifthݏ
application which deals with denial of mortgages.  The probit estimates in the first column are 
traditional and therefore standardized, but the pregibit in the third column are unstandardized 
because standardization is not feasible.  The slopes take on a different order of magnitude and 
simply are not comparable.  However, the estimates of probit in column 2 and pregibit in column 
4 are standardized with ݉ఢ and ݏఢ and are comparable.31  Pregibit parameter estimates are all 
somewhat smaller, but less so for ‘PI ratio’ (ratio of debt payments over income) and ‘Credit 
score’ (evidence of problematic credit history of the applicant) and more so for African-
American and self-employed applicants.  Thus, the pregibit model assigns more weight to 

                                                            
31 In its unstandardized (or raw) form, the pregibit approximation of probit with ߙ ൌ 0.1436 and ߜ ൌ 0 has a mean 
and median equal to 0, a standard deviation of 1.445, and an IQR of 1.950.  The unrestricted, unstandardized 
pregibit model has a median of ‐1.006 and an IQR of 14.596.  Thus, the distributions have a very different scale, 
but standardization makes them comparable (see also Figure 8, panel C). 

Figure 10: between pregibit and probit: doctor’s visits in Germany 
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objective financial variables and less to personal characteristics; this conclusion is supported also 
by the marginal effects that are computed for each variable separately in panel B.32  Even so, 
there are some applicants for whom a small variation in ܺᇱߚመ  generates a large rise in the 
probability of success (Figure 8, panel B): for them, any variation in any variable generates a 
large marginal effect.  Thus, the larger pregibit marginal effects are all substantially greater than 
the larger probit marginal effects, for every variable. 

The pseudo-ܴଶ values that describe what the data reveal about the importance of 
observable determinants in explaining the variation in the latent variable כݕ that underlies the 
observed outcomes ݕ.  For the probit model, ܴ௩ଶ  ranges from a high of 0.611 in the study of 
beetle mortality to a low of 0.030 in the study of visits to the doctor’s office: pesticides inflict 
mortality in a highly predictive manner, but a visit to the doctor’s office depends on many 
unobserved factors.  The other studies found intermediate values of 0.301 (mortgage 
applications), 0.314 (post-secondary education), 0.373 (labor force participation), and 0.190 
(sector choice).  Within any given study, a model with higher log-likelihood value usually but 
not always yields a higher ܴ௩ଶ .  In the labor force participation study, ܴ௩ଶ  rises from 0.373 
(probit) to 0.411 (unrestricted pregibit) and further to 0.424 for the linear probability model that 
is a restricted pregibit model.  But indeed, the ܴ௩ଶ  focuses not on ݕ but on כݕ.  In the mortgage 
application, post-secondary education and doctor’s visits studies, ܴ௩ଶ  cannot be computed for 
the pregibit model because the variance of ߳ is undefined for the estimated values of ߙ and ߜ.  
The design of a pseudo-ܴଶ that overcomes this weakness while summarizing explanatory 
evidence on כݕ remains a topic for future research. 

 
 5. CONCLUDING REMARKS 

The pregibit model adds considerable flexibility to the estimation of discrete choice 
models.  It does not impose a rigid distribution on the disturbances that help generate successes 
and failures.  Rather, it allows for symmetric or asymmetric disturbances, and it allows for 
distributions with fat tails, thin tails, or no tails.  It nests, exactly or approximately, all of the 
models that researchers turn to when they study discrete choices: logit, probit, loglog, and 
cloglog; the gosset model that is built on the t-distribution; and a linear probability model that is 
reformulated within the context of the discrete choice framework. 

The six applications that we explore illustrate the benefits of the pregibit model.  For 
example, an analysis under a maintained assumption of normally distributed disturbances leads 
to biases in the parameter estimates and the marginal effects; as in the mortgage application, the 
pregibit model may place a greater emphasis on different variables than the probit model.  The 
pregibit model may show thicker tails, which implies that observations with a predicted 
probability of success (or failure) near 1 under probit are not such a certain thing anymore, as the 
post-secondary enrollment application illustrates well. 

                                                            
32 The African-American indicator matters more for African-Americans than for non-African-Americans in both the 
probit and pregibit models, but whereas the pregibit marginal effects are substantially smaller for non-African-
Americans, they are generally only a little smaller for African-Americans (and on average even slightly larger).  The 
same is true for Hispanics, but no such discrepancy is found for the self-employment effect by self-employment 
status.  Thus, the flexibility of the pregibit model also yields differences in the way that explanatory variables 
determine outcomes across relevant subgroups in the sample. 
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The pregibit model is best able to distinguish itself from the traditional discrete choice 
models if the sample is large enough and contains near-certain successes and/or failures, 
provided naturally that the traditional models are a misspecification of the underlying data 
generating process.  Since estimation of the pregibit model relies on more intensive numerical 
computations than the traditional models, it takes a little longer to obtain pregibit estimates than, 
say, logit estimates.  Moreover, the likelihood function can become rather flat for larger negative 
values of ߙ and ߜ and may exhibit local maxima for larger positive values of ߙ and ߜ, such that 
the iterative search may have difficulty to converge.  Thus, the gains that pregibit can bring about 
come at some cost—but as the six applications show, the model can yield significant new 
insights into the determinants of success. 

The pregibit model is designed for a single-equation discrete choice context.  The 
exploration in Section 2 yields useful insights also for the case where the dependent variable is 
continuous: the GTL distribution can generalize standard regression models as well.  
Furthermore, through the copula method, bivariate distributions can be constructed that permit 
flexible marginal GTL distributions and non-zero correlations between the equations.  This will 
permit a generalization of the Heckman selection model. 
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 Table 1: Characteristics of generalized Tukey lambda distributions  

ߙ െ  ߜ
ߙ   4 2 1 0 0.1− 0.2− 0.4− ߜ

Mean 
−0.4 0.00 0.42 0.56 0.67 1.17 1.33 1.47 
−0.2 −0.42 0.00 0.14 0.25 0.75 0.92 1.05 
−0.1 −0.56 −0.14 0.00 0.11 0.61 0.78 0.91 

0 −0.67 −0.25 −0.11 0.00 0.50 0.67 0.80 
1 −1.17 −0.75 −0.61 −0.50 0.00 0.17 0.30 
2 −1.33 −0.92 −0.78 −0.67 −0.17 0.00 0.13 
4 −1.47 −1.05 −0.91 −0.80 −0.30 −0.13 0.00 

Standard deviation 
−0.4 5.68 4.44 4.27 4.17 3.87 3.81 3.77 
−0.2 4.44 2.74 2.47 2.31 1.84 1.74 1.67 
−0.1 4.27 2.47 2.19 2.01 1.49 1.38 1.30 

0 4.17 2.31 2.01 1.81 1.26 1.14 1.06 
1 3.87 1.84 1.49 1.26 0.58 0.43 0.35 
2 3.81 1.74 1.38 1.14 0.43 0.29 0.20 
4 3.77 1.67 1.30 1.06 0.35 0.20 0.12 

Skewness 
−0.4 … … … … … … … 
−0.2 … 0.00 1.10 1.70 3.58 4.07 4.40 
−0.1 … −1.10 0.00 0.55 2.08 2.45 2.69 

0 … −1.70 −0.55 0.00 1.42 1.74 1.94 
1 … −3.58 −2.08 −1.42 0.00 0.23 0.26 
2 … −4.07 −2.45 −1.74 −0.23 0.00 −0.08 
4 … −4.40 −2.69 −1.94 −0.26 0.08 0.00 

Kurtosis 
−0.4 … … … … … … … 
−0.2 … 22.21 18.45 21.92 47.56 57.79 65.90 
−0.1 … 18.45 6.79 6.05 11.44 14.10 16.20 

0 … 21.92 6.05 4.20 5.90 7.29 8.38 
1 … 47.56 11.44 5.90 1.80 1.84 1.94 
2 … 57.79 14.10 7.29 1.84 1.80 1.96 
4 … 65.90 16.20 8.38 1.94 1.96 2.45 

 

  



29 
 

Table 2: Matching standard normal, t(5), and Gumbel distributions to GTL 
 

Standard normal matched bya t(5) matched byb Gumbel matched byc 

Moments CDF PDF Moments CDF PDF Moments CDF PDF 

 0.1422 0.1671 0.2107 0.0710- 0.0783- 0.1359- 0.1436 0.1421 0.1349  ߙ

 0.2290- 0.2334- 0.2419- 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000  ߜ

GTL: ߢଷ  0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.1412 1.2797 1.3796 

GTL: ߢସ  3.0001 2.9620 2.9542 9.0032 5.9352 5.7005 5.4001 6.4868 7.3851 

Absolute difference indices 

CDF 0.0028 0.0015 0.0016 0.0326 0.0076 0.0087 0.0190 0.0120 0.0152 

PDF 0.0067 0.0033 0.0031 0.0650 0.0147 0.0128 0.0571 0.0350 0.0307 

Difference in log-likelihood value across 100 runsd 

Average -0.0048 -0.0005 -0.0003 0.0269 0.0019 0.0029 -0.7686 -0.4108 -0.2070 

Minimum -0.1768 -0.0645 -0.0334 -0.6501 -0.2942 -0.2332 -1.4619 -0.8167 -0.5515 

Maximum 0.0908 0.0417 0.0309 0.5977 0.2388 0.1780 -0.0394 -0.0145 0.1746 

Largest absolute difference in estimated probability of success across 100 runsd 

Average 0.0019 0.0009 0.0007 0.0133 0.0050 0.0040 0.0104 0.0089 0.0086 

Notes: a For standard normal, ߢଷ ൌ 0 and ߢସ ൌ 3. 
 b For ݐሺ5ሻ, ߢଷ ൌ 0 and ߢସ ൌ 9. 
 c For Gumbel, ߢଷ ൌ 1.1396 and ߢସ ൌ 5.4.  The match by moments is the result of minimizing the sum of 

the absolute differences in skewness and kurtosis of the Gumbel and GTL distributions. 
 d Results of a Monte Carlo analysis of a model based on data of Application 4 in Section 4. 
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Table 3: Asymptotic Comparison of Logit, Probit, and Pregibit 

   logit                  probit 
Scenario   asy.value Plogit /Ppregibit    asy.value Pprobit /Ppregibit 
α    δ   of 1      min      med      max    of 1 min med max 

Range of P[Y=1] = (0.010.99) 
-0.4 0 1.538 0.460 1.200 1.772    1.452 0.207 1.324 2.361 
-0.2 -0.27 2.273 0.124 0.944 2.992    2.048 0.024 1.036 3.707 
-0.2 0 1.098 0.749 1.098 1.299    1.080 0.469 1.175 1.644 
-0.2 0.27 2.273 0.124 0.944 2.992    2.048 0.024 1.036 3.707 

0 0 1.000 1.000 1.000 1.000    1.018 0.814 1.062 1.206 
.1349 0 0.964 0.861 0.940 1.088    0.999 0.976 1.002 1.012 

0.5 -0.5 0.854 0.337 0.953 1.241    0.856 0.359 1.002 1.366 
0.5 0 0.887 0.610 0.838 1.228    0.950 0.685 0.900 1.157 
0.5 0.5 0.854 0.337 0.953 1.241     0.856 0.359 1.002 1.366 

1 0 0.817 0.355 0.884 1.284     0.891 0.392 0.924 1.232 
            
Range of P[Y=1] = (0.50.99) 

-0.4 0 1.255 0.498 1.216 1.578     1.076 0.367 1.313 1.91 
-0.2 -0.27 4.716 0.907 0.968 1.259      4.660 0.964 1.023 1.097 
-0.2 0 1.008 0.757 1.087 1.252      0.920 0.600 1.142 1.506 
-0.2 0.27 1.415 0.346 1.283 1.706      1.182  0.246 1.402 2.052 

0 0 1.000 1.000 1.000 1.000      0.964  0.843 1.041 1.178 
.1349 0 1.004 0.869 0.957 1.136      0.996  0.981 0.999 1.009 

0.5 -0.5 1.608 0.331 1.023 1.715      1.742  0.366 1.048 1.642 
0.5 0 0.981 0.615 0.936 1.361      1.025  0.688 0.981 1.250 
0.5 0.5 0.725 0.783 1.007 1.046      0.690  0.651 1.060 1.208 

1 0 0.926 0.356 1.017 1.455      0.993   0.393 1.045 1.373 
            

Range of P[Y=1] = (0.3330.667) 
-0.4 0 2.337 0.984 1.005 1.061         2.642   0.979 1.007 1.083 
-0.2 -0.27 3.676 0.870 0.999 1.196         4.156   0.885 0.994 1.223 
-0.2 0 1.303 0.992 1.002 1.029         1.474   0.987 1.004 1.049 
-0.2 0.27 3.676 0.870 0.999 1.196         4.156   0.885 0.994 1.223 

0 0 1.000 1.000 1.000 1.000         1.131   0.995 1.002 1.020 
.1349 0 0.890 0.983 0.999 1.005         1.007   0.999 1.000 1.002 

0.5 -0.5 0.922 0.753 1.023 1.165         1.043   0.765 1.018 1.191 
0.5 0 0.733 0.945 0.996 1.015         0.829   0.963 0.997 1.010 
0.5 0.5 0.922 0.753 1.023 1.165         1.043   0.765 1.018 1.191 

1 0 0.651 0.912 0.994 1.023          0.737   0.930 0.995 1.018 
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Table 4: Evidence of Pregibit in Six Datasets 

Beetle 
mortality 

Labor force 
participation 

Sector of 
employment 

Demand for 
post-sec. 
education 

Denial of 
mortgage 

Visit to 
doctor's office 

Bliss Mroz (1987) 

Vijverberg 
and Zeager 

(1994) 

Kelchtermans 
and Verboven 

(2010) 
Munnell et al 

(1996) 
Riphahn et al 

(2003) 

Sample size 477 753 1820 14464 2925 7293 

Range of ܲሾܻ ൌ 1ሿ (Probit) 

1-pctile 0.059 0.038 0.239 0.102 0.012 0.472 
average 0.614 0.569 0.609 0.656 0.144 0.594 
99-pctile 0.988 0.975 0.958 0.956 0.789 0.727 

Parameter estimatesa 

 10.037– 1.626– 1.467– 1.472 0.500 0.102–  ߙ
(0.352) (0.477) (1.061) (0.210) (0.563) (0.440) 

 4.760– 0.919 0.016– 0.682 0.057– 0.284–  ߜ
(0.152) (0.139) (0.851) (0.066) (0.364) (0.241) 

Tests of restricted models 

Probitb 
LR 6.04 1.01 3.54 106.81 24.02 17.18 
GL 5.33 0.41 2.68 79.52 9.24 12.98 
LM 5.65 0.37 2.65 101.11 16.11 12.89 

Logitb 
LR 7.07 1.43 4.24 83.62 19.27 17.65 
GL 5.80 0.48 3.25 69.46 9.62 13.36 
LM 6.46 0.48 3.30 71.70 15.90 13.39 

Linear probability modelb 
LR 7.99 0.72 1.78 307.47 85.64 15.31 
GL 7.46 0.76 n.av. 128.05 n.av. 11.36 
LM 6.53 0.21 0.54 199.28 65.90 10.88 

Cloglogb 
LR 0.69 1.14 3.17 140.06 33.88 15.27 
GL 0.75 0.77 1.03 71.86 18.60 11.20 
LM 0.78 0.76 1.00 84.16 35.58 10.90 

Loglogb 
LR 22.35 5.34 3.65 152.03 41.31 19.21 
GL 14.53 3.32 3.52 79.62 25.28 14.81 
LM 18.91 3.50 2.66 307.17 40.03 15.09 

Symmetric Pregibitc 
LR 4.78 0.17 1.59 0.06 15.89 15.02 
GL 4.07 0.14 n.av. 0.04 9.19 9.19 
LM 4.42 0.07 0.49 0.04 17.74 10.39 

Notes: a Estimates of the full models are given in the Appendix.  Standard errors in parentheses.  Estimates in the 
last column are provided subject to a caution about convergence, as discussed in the text.  

 b Critical values: 3.22 (20%), 4.61 (10%), 5.99 (5%), 9.21 (1%), 13.82 (0.1%). 
 c Critical values: 1.64 (20%), 2.71 (10%), 3.84 (5%), 6.63 (1%), 10.83 (0.1%).  
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Table 5: Comparing probit and pregibit estimation results: Denial of mortgage 
 

Probita Probitc Pregibitb Pregibitc 

A: Model estimates 

  Estimate St.Err.   Estimate St.Err.   Estimate St.Err.   Estimate St.Err.   
African-American 0.509 0.078 *** 0.754 0.115 *** 3.367 1.569 ** 0.461 0.248 * 
Hispanic 0.354 0.111 *** 0.525 0.164 *** 2.521 1.262 ** 0.345 0.213 
PI ratio 3.413 0.434 *** 5.058 0.644 *** 33.497 17.925 * 4.590 2.252 ** 
HEI ratio -0.744 0.517 -1.103 0.766 -4.881 4.685 -0.669 0.663 
LV medium 0.340 0.068 *** 0.504 0.100 *** 2.646 1.409 * 0.363 0.194 * 
LV high 1.009 0.136 *** 1.495 0.201 *** 7.097 3.468 ** 0.973 0.490 ** 
Credit score 0.253 0.061 *** 0.374 0.090 *** 2.480 1.432 * 0.340 0.168 ** 
Public record 0.907 0.094 *** 1.343 0.139 *** 6.184 2.945 ** 0.847 0.411 ** 
Self-employed 0.280 0.095 *** 0.415 0.141 *** 1.683 1.041 0.231 0.154 
Intercept -3.010 0.166 *** -4.460 0.246 *** -23.449 11.604 ** -3.351 1.611 ** 
 *** 0.563 1.626- *** 0.563 1.626- 0.1436 0.1436  ߙ
 ** 0.364 0.919 ** 0.364 0.919 0 0  ߜ
lnL -974.68 -974.68 -962.48     -962.48     

B: Marginal effectsd 

Probit Pregibit 
Average 5th pct 50th pct 95th pct Average 5th pct 50th pct 95th pct 

African-American 0.101 0.066 0.102 0.137 0.088 0.026 0.063 0.252 
Hispanic 0.069 0.043 0.069 0.096 0.064 0.018 0.044 0.199 
PI ratio 0.071 0.020 0.063 0.149 0.084 0.013 0.047 0.319 
HEI ratioe -0.013 -0.004 -0.012 -0.028 -0.011 -0.002 -0.006 -0.040 
LV medium 0.063 0.040 0.061 0.092 0.058 0.019 0.040 0.193 
LV high 0.223 0.158 0.228 0.270 0.251 0.066 0.228 0.456 
Credit score 0.025 0.007 0.022 0.052 0.030 0.004 0.016 0.112 
Public record 0.197 0.137 0.201 0.243 0.211 0.056 0.175 0.420 
Self-employed 0.053 0.032 0.054 0.076 0.041 0.012 0.028 0.133 
መߚܺ   0.117 0.033 0.105 0.246 0.120 0.018 0.066 0.453 

Notes: a The model is estimated in standardized form on the basis of mean and standard deviation. 
 b The model is estimated in unstandardized form. 
 c The model is estimated in standardized form on the basis of median and half-interquartile range. 
 d For dummy variables, marginal effects reflect the change in probability of mortgage denial when the 

variable changes from 0 to 1.  For continuous variables, marginal effects are computed as the product of the 
density function, the parameter estimate, and the standard deviation of the variable. 

 e Percentile values are ordered according to their absolute value, i.e., from least negative to most negative. 
 ***, **, * denote asymptotic significance levels of the t-statistic at 1, 5 and 10 percent level. 
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APPENDIX A: CHARACTERISTICS OF THE GTL DISTRIBUTION 

A.1 Lower and Upper Limit of the GTL Distribution 

 The link function is given by the following formula 

 ߳ ൌ ;ݍሺܩ ሻߠ ൌ ഀషഃିଵ

ఈିఋ
െ ሺଵିሻഀశഃିଵ

ఈାఋ
  (A.1) 

The lower bound ߳ is found as follows: 

 ߳ ൌ lim՝ ሺ߳ሻ  ൌܩ lim՝
ഀషഃିଵ

ఈିఋ
െ lim՝

ሺଵିሻഀశഃିଵ

ఈାఋ
 

   ൌ lim՝
ഀషഃିଵ

ఈିఋ
െ 0 

   ൌ െ∞  if  ߙ െ ߜ  0  or  ߜ   ߙ

   ൌ െ ଵ

ఈିఋ
  if  ߙ െ ߜ  0  or    ߜ ൏  (A.2) ߙ

The upper bound ߳ு is found in a similar way: 

 ߳ு ൌ lim՛ଵ ሺ߳ሻ  ൌܩ lim՛ଵ
ഀషഃିଵ

ఈିఋ
െ lim՛ଵ

ሺଵିሻഀశഃିଵ

ఈାఋ
 

   ൌ 0 െ lim՛ଵ
ሺଵିሻഀశഃିଵ

ఈାఋ
 

   ൌ ∞  if  ߙ  ߜ  0  or  ߜ  െߙ 

   ൌ ଵ

ఈାఋ
  if  ߙ  ߜ  0  or    ߜ  െߙ (A.3) 

Thus, in particular, the range is finite on both ends if െߙ ൏ ߜ ൏  .ߙ

A.2 The Moments of the GTL Distribution 

When computing moments, it is always easier to make a change of variable from ߳ to 

ݑ ൌ ݃ିଵሺ߳ሻ.  Thus, ߳ ൌ ݃ሺݑሻ and the jacobian 
ௗఢ

ௗ௨
ൌ ݃′ሺݑሻ happens to be equal the ratio of 1 

over the density function.  Accordingly, the mean is found to be 

ሾ߳ሿܧ  ൌ  ݂߳ሺ߳ሻ݀߳
ఢೆ
ఢಽ

ൌ  ݃ሺݑሻ݀ݑ
ଵ
 ൌ ଵ

ఈିఋ
 ൫ݑఈିఋ െ 1൯݀ݑ
ଵ
 െ ଵ

ఈାఋ
 ൫ሺ1 െ ሻఈାఋݑ െ 1൯݀ݑ
ଵ
   

 ൌ െ ଵ

ିஔାଵ
 ଵ

ାஔାଵ
ൌ ିଶஔ

ሺିஔାଵሻሺାஔାଵሻ
  (A.4) 

The integrals may be solved provided that ߙ െ ߜ  1  0 and ߙ  ߜ  1  0, or that – ሺߙ 
1ሻ ൏ ߜ ൏ ߙ  1. 
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The solution of the second, third and fourth moments depends on several intermediate 
results.  The first are properties of symmetry in particular expressions, where ߣ may denote either 
ߙ െ ߙ or ߜ  ଵߣ ,ߜ ൌ ߙ െ ଶߣ and ߜ ൌ ߙ   .ߜ

 
ଵ

ఒೖ
൫ሺ1 െ ሻఒݑ െ 1൯


ݑ݀

ଵ
 ൌ 

ଵ

ఒೖ
൫ݒఒ െ 1൯


ݒ݀

ଵ
 ؠ ,ߣଵሺܬ ݇ሻ  (A.5) 

 
ଵ

ఒభ
ೖభ
൫ݑఒభ െ 1൯

భ ଵ

ఒమ
ೖమ
൫ሺ1 െ ሻఒమݑ െ 1൯

మ݀ݑ
ଵ
 ؠ ,ଵߣሺܬ ݇ଵ, ,ଶߣ ݇ଶሻ ൌ ,ଶߣଶሺܬ ݇ଶ, ,ଵߣ ݇ଵሻ  (A.6) 

Generally, 

ሾ߳ሿܧ  ൌ  ݃ሺݑሻ݀ݑ
ଵ
 ؠ    (A.7)ߤ

Therefore, ߤఢ ൌ ఢଶߪ ,ଵߤ ൌ ଶߤ െ ଵߤ
ଶ, ߢଷ ൌ ሺߤଷ െ ଵߤଶߤ3  ଵߤ2

ଶሻ/ߪఢଷ, and ߢସ ൌ ሺߤସ െ ଵߤଷߤ4 
ଵߤଶߤ6

ଶ െ ଵߤ3
ସሻ/ߪఢସ.  From the definition of ݃, ܬଵ and ܬଶ follows: 

ሾ߳ሿܧ  ൌ ,ଵߣଵሺܬ 1ሻ െ ,ଶߣଵሺܬ 1ሻ  (A.8) 

ሾ߳ଶሿܧ  ൌ ,ଵߣଵሺܬ 2ሻ െ ,ଵߣଶሺܬ2 1, ,ଶߣ 1ሻ  ,ଶߣଵሺܬ 2ሻ (A.9) 

ሾ߳ଷሿܧ  ൌ ,ଵߣଵሺܬ 3ሻ െ ,ଵߣଶሺܬ3 2, ,ଶߣ 1ሻ  ,ଵߣଶሺܬ3 1, ,ଶߣ 2ሻെܬଵሺߣଶ, 3ሻ (A.10) 

ሾ߳ସሿܧ  ൌ ,ଵߣଵሺܬ 4ሻ െ ,ଵߣଶሺܬ4 2, ,ଶߣ 1ሻ  ,ଵߣଶሺܬ6 2, ,ଶߣ 2ሻെ4ܬଶሺߣଵ, 1, ,ଶߣ 2ሻ  ,ଶߣଵሺܬ 4ሻ (A.11) 

The solution of ܬଵ is: 

,ߣଵሺܬ  ݇ሻ ൌ
ሺିଵሻೖ!

ሺఒାଵሻ൫ሺିଵሻఒାଵ൯…ሺఒାଵሻ
ൌ

ሺିଵሻೖ!

∏ ሺఒାଵሻೖ
ೕసభ

  (A.12) 

provided that ݇ߣ  1  0, which, when applied to ߣଵ and ߣଶ, implies that the kth moment exists 

if െߙ െ ଵ


൏ ߜ ൏ ߙ  ଵ


. 

The solution of ܬଶ is stated for each case separately.  We start with ݇ଵ ൌ ݇ଶ ൌ 1.  For ߣଵ ് 0 
and ߣଶ ് 0, we have 

,ଶሺλଵܬ  1, λଶ, 1ሻ ൌ
ଵ

ఒభఒమ
ቀܤሺߣଵ  1, ଶߣ  1ሻ െ ଵ

ఒభାଵ
െ ଵ

ఒభାଵ
 1ቁ  (A.13) 

 ൌ ଵ

ఒమሺఒభାଵሻ
െ ଵ

ఒమሺఒమାଵሻሺఒభାఒమାଶሻ
 
ሺఒభାఒమାଶሻିሺఒభାଵሻሺఒమାଵሻ

ఒభ
  (A.13’) 

where ܤሺ·,·ሻ and Γሺ·ሻ are the beta and gamma functions, respectively.  With ߣଵ ՜ 0, the 
numerator and denominator of the last ratio in (A.13’) both go to 0.  L’Hôpital’s Rule implies 
that this ratio goes to Γሺߣଶ  2ሻ൫߰ሺߣଶ  2ሻ െ ߰ሺ1ሻ൯, where ߰ሺ·ሻ is the digamma function 
(the derivative of lnΓሺ·ሻ).  Thus, 

,ଶሺ0,1ܬ  ,ଶߣ 1ሻ ൌ
ଵ

ఒమ
െ ଵ

ఒమሺఒమାଵሻ
൫߰ሺߣଶ  2ሻ െ ߰ሺ1ሻ൯  (A.14) 
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The solution for ܬଶሺߣଵ, 1,0,1ሻ follows from (A.6) and (A.14).  (For ߣଵ ൌ ଶߣ ൌ 0, the GTL density 
becomes the logistic density, in which case the moments are well-known.)  Other cases are derived in the 
same way, where ߰ଵሺ·ሻ is the derivative of ߰ሺ·ሻ and ߰ଶሺ·ሻ is the derivative of ߰ଵሺ·ሻ: 

,ଵߣଶሺܬ  2, ,ଶߣ 1ሻ ൌ
ଵ

ఒభ
మఒమ

ቀܤሺ2ߣଵ  1, ଶߣ  1ሻ െ ଵߣሺܤ2  1, ଶߣ  1ሻ  ଵ

ఒమାଵ
െ ଶఒభ

మ

ሺఒభାଵሻሺଶఒభାଵሻ
ቁ  (A.15) 

,ଶሺ0,2ܬ  ,ଶߣ 1ሻ ൌ
ିଶ

ఒమ
 ଵ

ఒమሺఒమାଵሻ
ቄ൫߰ሺߣଶ  2ሻ െ ߰ሺ1ሻ൯

ଶ
െ ሺ߰ଵሺߣଶ  2ሻ െ ߰ଵሺ1ሻሻቅ  (A.16) 

,ଵߣଶሺܬ  2,0,1ሻ ൌ
ଵ

ఒభ
మ ቄ1 

ଵ

ଶఒభାଵ
൫߰ሺ2ߣଵ  2ሻ െ ߰ሺ1ሻ൯ െ

ଶ

ఒభାଵ
ሺ߰ሺߣଵ  2ሻ െ ߰ሺ1ሻሻቅ  (A.17) 

,ଵߣଶሺܬ 3, ,ଶߣ 1ሻ ൌ
ଵ

ఒభ
యఒమ

ሺܤሺ3ߣଵ  1, ଶߣ  1ሻ െ ଵߣሺ2ܤ3  1, ଶߣ  1ሻ  ଵߣሺܤ3  1, ଶߣ  1ሻ  ܿሻ   

  (A.18) 

where  ܿ ൌ െ ଵ

ఒమାଵ
െ ଵ

ଷఒభାଵ
 ଷ

ଶఒభାଵ
െ ଷ

ఒభାଵ
 1. 

,ଶሺ0,3ܬ  ,ଶߣ 1ሻ ൌ


ఒమ
െ ଵ

ఒమሺఒమାଵሻ
ቄ൫߰ሺߣଶ  2ሻ െ ߰ሺ1ሻ൯

ଷ
 ܿቅ  (A.19) 

where  ܿ ൌ െ3ሺ߰ଵሺߣଶ  2ሻ െ ߰ଵሺ1ሻሻሺ߰ሺߣଶ  2ሻ െ ߰ሺ1ሻሻ  ሺ߰ଶሺߣଶ  2ሻ െ ߰ଶሺ1ሻሻ. 

,ଵߣଶሺܬ  3,0,1ሻ ൌ
ଵ

ఒభ
య ቄ1 െ

ଵ

ଷఒభାଵ
൫߰ሺ3ߣଵ  2ሻ െ ߰ሺ1ሻ൯  ܿቅ  (A.20) 

where  ܿ ൌ ଷ

ଶఒభାଵ
ሺ߰ሺ2ߣଵ  2ሻ െ ߰ሺ1ሻሻ െ

ଷ

ఒభାଵ
ሺ߰ሺߣଵ  2ሻ െ ߰ሺ1ሻሻ. 

,ଵߣଶሺܬ 2, ,ଶߣ 2ሻ ൌ
ଵ

ఒభ
మఒమ

మ ሺܤሺ2ߣଵ  1, ଶߣ2  1ሻ െ ଵߣሺ2ܤ2  1, ଶߣ  1ሻ െ ଵߣሺܤ2  1, ଶߣ2  1ሻ  ܿሻ  

  (A.21) 

where  ܿ ൌ ଵߣሺܤ4  1, ଶߣ  1ሻ  ଵ

ଶఒభାଵ
െ ଶ

ఒభାଵ
 ଵ

ଶఒమାଵ
െ ଶ

ఒమାଵ
 1. 

,ଶሺ0,2ܬ ,ଶߣ 2ሻ ൌ
ଵ

ఒమ
మ ቄ2 

ଵ

ଶఒమାଵ
൬൫߰ሺ2ߣଶ  2ሻ െ ߰ሺ1ሻ൯

ଶ
െ ሺ߰ଵሺ2ߣଶ  2ሻ െ ߰ଵሺ1ሻሻ൰  ܿቅ (A.22) 

where  ܿ ൌ െ ଶ

ఒమାଵ
൬൫߰ሺߣଶ  2ሻ െ ߰ሺ1ሻ൯

ଶ
െ ሺ߰ଵሺߣଶ  2ሻ െ ߰ଵሺ1ሻሻ൰. 
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APPENDIX B: GTL DISTRIBUTIONS AND THE UNIFORM DISTRIBUTION 

As noted in Section 2.4, four pairs of ሺߙ,  ሻ values simplify the GTL distribution to aߜ
uniform distribution.  The density functions for values neighboring these four sets of values 
exhibit very different shapes, however.  Figure B.1 shows four densities for values around 
ሺߙ, ሻߜ ൌ ሺ1,0ሻ; Figure B.2 does the same for values around ሺߙ, ሻߜ ൌ ሺ2,0ሻ; and Figures B.3 aand 
B.4 show densities for ሺߙ, ሻߜ ൌ ሺ10,െ9ሻ and ሺߙ, ሻߜ ൌ ሺ10,9ሻ, respectively, in representation of 
the case where ሺߙ, ሻߜ ൌ ሺߣ, െߣ  1ሻ for ߣ ՜ ∞ and ሺߙ, ሻߜ ൌ ሺߣ, ߣ െ 1ሻ for ߣ ՜ ∞.  The vertical 
axes are curtailed in order to zoom in on the curvature of the densities. 

 

 

 

  

Figure B.4: GTL densities for ሺࢻ, ሻࢾ ൌ ሺ10,9ሻ
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Figure B.3: GTL densities for ሺࢻ, ሻࢾ ൌ ሺ10,െ9ሻ
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Figure B.2: GTL densities near ሺࢻ, ሻࢾ ൌ ሺ2,0ሻ
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Figure B.1: GTL densities near ሺࢻ, ሻࢾ ൌ ሺ1,0ሻ
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APPENDIX C: DETAILED INFORMATION ABOUT THE SIX APPLICATIONS 

In each of the following applications, four specifications are shown.  These were selected 
because (i) they were the specifications yielding the lowest log-likelihood value, (ii) they showed 
the performance under an a priori asymmetric distributional assumption, or (iii) they 
demonstrate the performance under various symmetry assumptions. 

 

Table C.1: Beetle Mortality 
 
A: Variable definition and descriptive statistics 
 
Variable Definition Mean Std. 
Mortalitya Dummy: 1=beetle died, 0=beetle survived 0.610 0.488 
lndosage Log of dosage 1.794 0.063 
Note: a Dependent variable 
Number of observations: 477 
 
B: Parameter estimates 
 

Probita Linear Probabilitya Clogloga Pregibita 

  Estimate St.Err.   Estimate St.Err.   Estimate St.Err.   Estimate St.Err.   
lndosage 19.839 1.496 *** 18.552 0.600 *** 16.446 1.268 *** 9.807 20.198 
Intercept -35.110 2.659 *** -32.836 1.099 *** -29.071 2.288 *** -17.275 35.751 
 0.352 0.102- 0.1422 1 0.1436  ߙ
 0.152 0.284- 0.2290- 0 0  ߜ
lnL -181.92     -182.92     -179.27     -178.93   
ܴ௩ଶ   0.611 0.580 0.521 0.279 
Meanb 0 0 0.366 0.783 
St.Dev.b 1.464 0.577 1.648 3.764 
Skewnessb 0  0 1.380  n.a. 
Kurtosisb 3      1.800     7.385      n.a.   
Notes: a The model is estimated in standardized form.  Other models: logit (lnL = -182.46), loglog (lnL = -190.11), 

and symmetric pregibit (lnL= -181.32, ߙො ൌ 0.410 ሺ0.175ሻ). 
 b Characteristics of the Generalized Tukey Lambda distribution in its unstandardized form. 
 ***, **, * denote asymptoticsignificance levels of the t-statistic at 1, 5 and 10 percent level. 
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Table C.2: Female labor force participation 
 
A: Variable definition and descriptive statistics 
 
Variable Definition Mean Std. 
Lfpa Dummy, =1 if person is employed, =0 if not 0.568 0.496 
lnwage Imputed logwage 1.095 0.315 
kl6 Number of children less than 6 years of age 0.238 0.524 
k618 Number of children between 6 and 18 years of age 1.353 1.320 
age Age (years) 42.538 8.073 
educ Schooling (years) 12.287 2.280 
urate Unemployment rate in the county of residence 8.624 3.115 
city Dummy, =1 if person lives in an SMSA 0.643 0.480 
othinc Other household income ($000s) 20.129 11.635 
Note: a Dependent variable 
Number of observations: 753 
 
B: Parameter estimates 
 

Probita  Linear Probabilitya  Symmetric Pregibita Pregibita 

  Estimate St.Err.   Estimate St.Err.   Estimate St.Err.   Estimate St.Err.   
lnwage 2.324 0.273 *** 2.562 0.252 *** 2.528 0.274 *** 2.474 0.333 *** 
kl6 -0.904 0.118 *** -1.074 0.121 *** -1.033 0.140 *** -1.023 0.153 *** 
k618 0.003 0.042 0.016 0.043 0.006 0.045 0.006 0.045 
age -0.044 0.008 *** -0.050 0.008 *** -0.049 0.008 *** -0.048 0.009 *** 
educ -0.075 0.036 ** -0.097 0.037 *** -0.088 0.040 ** -0.087 0.041 ** 
urate -0.014 0.017 -0.015 0.020 -0.015 0.018 -0.014 0.018 
city -0.150 0.114 -0.188 0.126 -0.171 0.123 -0.155 0.125 
othinc -0.013 0.005 *** -0.013 0.005 *** -0.014 0.005 *** -0.014 0.005 *** 
Intercept 1.149 0.503 ** 1.493 0.547 *** 1.394 0.565 ** 1.392 0.555 ** 
 0.477 0.500 0.430 0.568 1 0.1436  ߙ
 0.139 0.057- 0 0 0  ߜ
lnL -414.86     -414.74     -414.46     -414.37     
ܴ௩ଶ   0.373 0.424 0.418 0.411 
Meanb 0 0 0 0.051 
St.Dev.b 1.464 0.577 0.862 0.930 
Skewnessb 0  0 0  0.115 
Kurtosisb 3      1.800     2.014     2.105     
Notes: a The model is estimated in standardized form.  Other models: logit (lnL = -415.09), cloglog (lnL = -

414.94), and loglog (lnL = -417.04) 
 b Characteristics of the Generalized Tukey Lambda distribution in its unstandardized form. 
 ***, **, * denote asymptotic significance levels of the t-statistic at 1, 5 and 10 percent level. 
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Table C.3: Sector choice in Tanzania 
 
A: Variable definition and descriptive statistics 

Variable Definition Mean Std. 

Publica Dummy, =1 if person is employed, =0 if person is employed in private sector 0.609 0.488 
edst1 Education: Dummy, =1 if person completed Standard 1-4 or more, =0 if not 0.814 0.389 
edst5 Education: Dummy, =1 if person completed Standard 5-8 or more, =0 if not 0.601 0.490 
edfm1 Education: Dummy, =1 if person completed Form I-IV or more, =0 if not 0.198 0.399 
edfm5 Education: Dummy, =1 if person completed Form V, VI or more, =0 if not 0.024 0.152 
eduni Education: Dummy, =1 if person has a university degree, =0 if not 0.011 0.104 
age Age in years 29.827 9.783 
sex Dummy, =1 if person is female, =0 if male 0.132 0.338 
married Dummy, =1 if person is married, =0 if not 0.579 0.494 
relig Dummy, =1 if person is Christian, =0 if not 0.459 0.498 
skilled Dummy, =1 if person is in a skilled occupation, =0 if not 0.640 0.480 
citizen Dummy, =1 if person is citizen of Tanzania, =0 if not 0.960 0.195 
salaam Dummy, =1 if person resides in Dar Es Salaam, =0 if not 0.661 0.474 
Note: a Dependent variable 
Number of observations: 1820 
 
B: Parameter estimates 

Probita Linear Probabilitya Clogloga Pregibita 

  Estimate St.Err.   Estimate St.Err.   Estimate St.Err.   Estimate St.Err.   
edst1 -0.241 0.098 ** -0.341 0.127 *** -0.236 0.087 *** -0.263 0.144 * 
edst5 0.435 0.085 *** 0.550 0.108 *** 0.367 0.073 *** 0.545 0.112 *** 
edfm1 0.410 0.096 *** 0.416 0.096 *** 0.299 0.069 *** 0.536 0.147 *** 
edfm5 0.975 0.509 * 0.809 0.617 0.660 0.279 ** 1.078 0.482 ** 
eduni -0.587 0.615 -0.285 0.664 -0.329 0.354 -0.527 0.649 
age 0.015 0.004 *** 0.016 0.004 *** 0.012 0.003 *** 0.020 0.005 *** 
sex -0.042 0.095 -0.078 0.111 -0.041 0.076 -0.074 0.116 
married 0.152 0.073 ** 0.164 0.090 * 0.102 0.059 * 0.203 0.094 ** 
relig 0.165 0.067 ** 0.221 0.078 *** 0.155 0.054 *** 0.194 0.098 ** 
skilled 0.403 0.070 *** 0.545 0.091 *** 0.351 0.060 *** 0.530 0.106 *** 
citizen 0.762 0.167 *** 0.945 0.199 *** 0.664 0.150 *** 0.912 0.187 *** 
salaam 0.126 0.067 * 0.158 0.078 ** 0.098 0.054 * 0.171 0.084 ** 
Intercept -1.540 0.234 *** -1.797 0.269 *** -1.098 0.200 *** -2.068 0.293 *** 
 1.061 1.472 0.1422 1 0.1436  ߙ
 0.851 0.682 0.2290- 0 0  ߜ
lnL -1107.16     -1106.30     -1107.00     -1105.41     
ܴ௩ଶ   0.190 0.242 0.173 0.278 
Meanb 0 0 0.366 -0.242 
St.Dev.b 1.464 0.577 1.648 0.483 
Skewnessb  0  0 1.380 -0.359 
Kurtosisb  3.000      1.800     7.385      1.968     
Notes: a The model is estimated in standardized form.  Other models: logit (lnL = -1107.53), loglog (lnL = -

1107.24), and symmetric pregibit (lnL = -1106.21, ߙො ൌ 0.744 ሺ0.467ሻ). 
 b Characteristics of the Generalized Tukey Lambda distribution in its unstandardized form. 
 ***, **, * denote asymptotic significance levels of the t-statistic at 1, 5 and 10 percent level. 
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Table C.4: Demand for post-secondary education, Belgium 

A: Variable definition and descriptive statistics  

Variable Definition Mean Std. 
Tertiarya Dummy, =1 if person enrolled at an institution of post-sec education, =0 if not 0.657 0.475 
Male Dummy, =1 if male, =0 if female 0.486 0.500 
Foreign Dummy, =1 if foreigner, =0 if Belgian national 0.019 0.135 
Catholic Dummy, =1 if catholic high school, =0 if not 0.778 0.416 
Classical Dummy, =1 if high school field in classical languages, =0 if not 0.105 0.307 
Lang Dummy, =1 if high school field in modern languages, =0 if not 0.184 0.387 
Econ Dummy, =1 if high school field in economics, =0 if not 0.147 0.354 
Science Dummy, =1 if high school field in sciences, =0 if not 0.160 0.366 
Math Dummy, =1 if high school field in mathematics, =0 if not 0.229 0.420 
TSOH Dummy, =1 if `product-focused’ technical high school, =0 if not 0.142 0.349 
TSO Dummy, =1 if technical high school, =0 if not 0.356 0.479 
Years rep Years of repetition (= age - 18) 1.603 0.908 
Meantrav Average travel cost to institutions of post-secondary education  0.836 0.201 
Mintrav Minimum travel cost to institutions of post-secondary education 0.163 0.103 
Note: a Dependent variable 
Number of observations: 14464 

B: Parameter estimates 

Probita  Logita Symmetric Pregibitb Clogloga

  Estimate St.Err.   Estimate St.Err.   Estimate St.Err.   Estimate St.Err.   
Male -0.166 0.026 *** -0.162 0.024 *** -1.529 0.372 *** -0.110 0.019 *** 
Foreign -0.512 0.087 *** -0.511 0.083 *** -6.382 2.057 *** -0.496 0.086 *** 
Catholic 0.148 0.028 *** 0.128 0.026 *** 0.395 0.225 * 0.153 0.022 *** 
Classical 0.574 0.054 *** 0.563 0.055 *** 8.445 2.871 *** 0.351 0.032 *** 
Lang 0.351 0.046 *** 0.310 0.045 *** 2.725 1.028 *** 0.282 0.031 *** 
Econ 0.563 0.053 *** 0.536 0.052 *** 5.244 1.467 *** 0.378 0.035 *** 
Science 0.451 0.050 *** 0.433 0.049 *** 4.509 1.309 *** 0.288 0.032 *** 
Math 0.410 0.046 *** 0.372 0.045 *** 3.954 1.268 *** 0.310 0.032 *** 
TSOH -0.225 0.040 *** -0.200 0.036 *** -1.768 0.508 *** -0.189 0.032 *** 
TSO 0.507 0.034 *** 0.457 0.031 *** 3.415 0.751 *** 0.389 0.029 *** 
Years rep -0.387 0.015 *** -0.361 0.015 *** -3.016 0.641 *** -0.350 0.014 *** 
Meantrav -0.211 0.064 *** -0.212 0.060 *** -2.456 0.717 *** -0.109 0.048 ** 
Mintrav -0.344 0.125 *** -0.303 0.116 *** -1.952 1.046 * -0.290 0.095 *** 
Intercept 0.774 0.069 *** 0.743 0.064 *** 7.419 1.682 *** 0.765 0.055 *** 
 0.1422 *** 0.197 1.450- 0 0.1436  ߙ
 0.2290- 0 0 0  ߜ
lnL -7627.6   -7616.01 -7574.23     -7644.23     
ܴ௩ଶ   0.314 0.286 n.a. 0.229 
Meanc 0 0 n.a. 0.366 
St.dev.c 1.464 1.814 n.a. 1.648 
Skewnessc  0  0 n.a. 1.380 
Kurtosisc  3.000      4.200     n.a.     7.385     
Notes: a The model is estimated in standardized form.  Other models: linear probability (lnL = -7727.94) and 

loglog (lnL = -7650.21). 
 b The model is estimated in unstandardized form.  Other model: unrestricted pregibit (lnL = -7574.20, 

ොߙ ൌ െ1.467 ሺ0.210ሻ and ߜመ ൌ െ0.016 ሺ0.066ሻ). 
 c Characteristics of the Generalized Tukey Lambda distribution in its unstandardized form. 
 ***, **, * denote asymptotic significance levels of the t-statistic at 1, 5 and 10 percent level. 
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Table C.5: Result of mortgage application 
 
A: Variable definition and descriptive statistics 
 
Variable Obs Mean Std. 
Denya Dummy, =1 if mortgage application was denied, =0 if not 0.144 0.351 
Black Dummy, =1 if applicant was African-American, =0 if not 0.160 0.367 
Hisp Dummy, =1 if applicant was Hispanic, =0 if not 0.073 0.260 
PIratio Ratio of total monthly debt payment to total monthly income 0.333 0.113 
HEIratio Ratio of housing expense to income 0.255 0.098 
LVmed Loan/Appraised value: medium (between 0.80 and 0.95) 0.409 0.492 
LVhi Loan/Appraised value: high (above 0.95) 0.039 0.193 
Creditscore Consumer credit score (index between 1 and 6) 1.742 0.533 
Publicrecord Dummy, =1 if public record of credit problems, =0 if not 0.079 0.270 
Selfemp Dummy, =1 if applicant was self-employed, =0 if not 0.117 0.322 
Note: a Dependent variable 
Number of observations: 2925 
 
B: Parameter estimates 
 

Logita Symmetric Pregibita Clogloga  Pregibitb 

  Estimate St.Err.   Estimate St.Err.   Estimate St.Err.   Estimate St.Err.   
Black 0.501 0.076 *** 1.319 0.337 *** 0.572 0.086 *** 3.367 1.569 ** 
Hisp 0.364 0.108 *** 1.029 0.379 *** 0.434 0.125 *** 2.521 1.262 ** 
PIratio 3.653 0.459 *** 11.007 3.204 *** 3.415 0.392 *** 33.497 17.925 * 
HEIratio -0.724 0.519 -2.024 1.469 -0.532 0.603 -4.881 4.685 
LVmed 0.364 0.070 *** 1.072 0.342 *** 0.511 0.087 *** 2.646 1.409 * 
LVhi 0.986 0.129 *** 2.607 0.649 *** 1.123 0.134 *** 7.097 3.468 ** 
Creditscore 0.266 0.063 *** 0.765 0.259 *** 0.305 0.071 *** 2.480 1.432 * 
Publicrecord 0.862 0.089 *** 2.176 0.467 *** 0.899 0.091 *** 6.184 2.945 ** 
Selfemp 0.264 0.097 *** 0.640 0.290 ** 0.257 0.111 ** 1.683 1.041 
Intercept -3.079 0.184 *** -8.638 2.107 *** -3.244 0.192 *** -23.449 11.604 ** 
 *** 0.563 1.626- 0.142 * 0.142 0.257- 0  ߙ
 ** 0.364 0.919 0.229- 0 0  ߜ
lnL -972.11     -970.43     -979.42     -962.48     
ܴ௩ଶ   0.301 0.252 0.338 n.a. 
Meanc 0 0 0.366 n.a. 
St.dev.c 1.814 3.192 1.648 n.a. 
Skewnessc  0 0 1.380  n.a. 
Kurtosisc  4.200     na     7.385      n.a.     
Notes: a The model is estimated in standardized form.  Other models: probit (lnL = -974.68), linear probability 

(lnL = -1005.30, failing to converge close to a presumed maximum), loglog (lnL = -983.14). 
 b The model is estimated in unstandardized form. 
 c Characteristics of the Generalized Tukey Lambda distribution in its unstandardized form. 
 ***, **, * denote asymptotic significance levels of the t-statistic at 1, 5 and 10 percent level. 
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Table C.6: Visit to the doctor’s office, Germany 
 
A: Variable definition and descriptive statistics 
 
Variable Definition Mean Std. 
Visita Dummy, =1 if household visited doctor’s office during survey year, =0 if not 0.594 0.491 
Age Age in years, divided by 10 3.982 1.206 
Hhninc Household income, divided by 10000 0.324 0.164 
Hhkids Number of children in the household 0.414 0.493 
Educ Years of education of household head 11.377 2.306 
Married Dummy, =1 if household head is married, =0 if not 0.691 0.462 
Note: a Dependent variable 
Number of observations: 7293 
 
B: Parameter estimates 
 

Probita Symmetric Pregibita Clogloga Pregibitb 

  Estimate St.Err.   Estimate St.Err.   Estimate St.Err.   Estimate St.Err.   
Age 0.095 0.014 *** 0.131 0.019 *** 0.080 0.011 *** 8.10E-06 3.62E-06 ** 
Hhninc -0.113 0.094 -0.160 0.129 -0.096 0.080 6.10E-07 4.43E-06 
Hhkids -0.186 0.034 *** -0.251 0.047 *** -0.153 0.028 *** -6.61E-06 3.80E-06 * 
Educ -0.022 0.007 *** -0.030 0.009 *** -0.018 0.006 *** -6.75E-07 5.46E-07 
Married 0.020 0.038 0.024 0.051 0.014 0.031 -7.61E-07 2.11E-06 
Intercept 0.219 0.101 ** 0.294 0.141 ** 0.338 0.085 *** 3.76E-05 1.62E-05 ** 
 *** 0.440 10.037- 0.1422 0.931 1.493 0.1436  ߙ
 *** 0.241 4.760- 0.2290- 0 0  ߜ
lnL -4856.81     -4855.73     -4855.86     -4848.22     
ܴ௩ଶ   0.030 0.055 0.021 n.a. 
Meanc 0 0 0.366 n.a. 
St.dev.c 1.464 0.398 1.648 n.a. 
Skewnessc  0 0 1.380  n.a. 
Kurtosisc  3.000     1.753     7.385      n.a.     
Notes: a The model is estimated in standardized form.  Other models: logit (lnL = -4857.05), linear probability 

(lnL = -4855.88) and loglog (lnL = -4857.83). 
 b The model is estimated in standardized form based on the median and half of the IQR.  Estimates are 

provided subject to a caution about convergence, as discussed in the text. 
 c Characteristics of the Generalized Tukey Lambda distribution in its unstandardized form. 
 ***, **, * denote asymptotic significance levels of the t-statistic at 1, 5 and 10 percent level. 
 
 




