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Likelihood (MSL) estimator. Second, we show that when imposing distributional assumptions 
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1 Introduction

Accounting for unobserved heterogeneity is important when estimating non-linear mod-

els. Numerous studies document that discrete choice models without unobserved het-

erogeneity require either very strong and often implausible assumptions or lead to

biased estimates of central parameters. In particular, this is true for dynamic mod-

els which analyze the role of state dependence in the behavior of agents because in

these models it is necessary to disentangle true state dependence from individual spe-

cific effects, see for example Heckman (1981a, 1981b).1 For a recent study in labor

economics see e.g. Prowse (2010), for an example from marketing see Dube, Hitsch,

and Rossi (2010). The structure of unobserved heterogeneity in discrete choice models

can be complex and therefore it is often necessary to allow for a general specifica-

tion with potential correlations of the different processes. Estimation of such models

often is computationally expensive and numerical problems with classical estimation

procedures may arise (e.g. non-convergence or convergence at a local maximum of

the optimization algorithm). These problems are particularly severe when unobserved

heterogeneity is assumed to follow a less convenient distribution - such as a log-normal

distribution - rather than a multivariate normal distribution which is the standard as-

sumption. Train (2009) points out that in the classical approach locating the maximum

of the likelihood is considerably more difficult with log-normal distributions. And, even

if a maximum is found, it may happen that the Hessian is singular at this point.

However, economic theory clearly indicates that in many applications the assump-

tion of a normal distribution of unobserved effects is not appropriate since this poten-

tially leads to counterintuitive effects, e.g. negative preferences for income of consump-

tion or positive price effects of normal goods. Bayesian procedures, such as Markov

Chain Monte Carlo (MCMC) methods serve as an important alternative for the estima-

tion of non-linear models with unobserved heterogeneity. Since the Bayesian MCMC

estimator does not involve maximization of a likelihood function, the numerical prob-

lems of classical procedures such as maximum simulated likelihood (MSL) do not arise.2

1The same applies for hazard rate models which try to separate duration dependence from dynamic

selection due to unobserved characteristics, see e.g. Lancaster (1990) and van den Berg (2001) for

overviews.
2In the context of static mixed logit models Regier et al. (2009) demonstrate that MSL estimation
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Consistency and efficiency can be achieved under more relaxed conditions.3

The use of MCMC methods in the analysis of dynamic discrete choice models has

become more popular in recent years. Fitzenberger, Osikominu, and Paul (2010) and

Troske and Voicu (2010) are two examples in the context of dynamic labor supply mod-

els, whereby Fitzenberger, Osikominu, and Paul (2010) focus on the impact of training

incidence and duration on employment outcomes and Troske and Voicu (2010) analyze

interdependencies between fertility choices and labor supply behavior of females. Imai,

Jain, and Ching (2009) propose a method applying MCMC methods combined with

dynamic programming for structural estimation of dynamic discrete choice models.

However, the majority of applied micro-econometric studies estimating discrete choice

panel data models with lagged states applies classical maximum likelihood approaches,

see e.g. Akay (2009), Haan (2010) and Prowse (2010).

The contribution of our paper is to compare the numerical performance of Bayesian

estimation procedures with MSL estimation of dynamic discrete choice models and to

provide evidence about the advantages of Bayesian methods for practitioners. We

consider an application of a dynamic discrete choice model of female labor supply with

three distinct states and estimate dynamic mixed logit models. Our analysis is based

on longitudinal data from the German Socioeconomic Panel (SOEP).4

The empirical comparison leads to two important conclusions which are highly

relevant for practitioners estimating dynamic discrete choice models with unobserved

heterogeneity. First, when considering a multivariate normal distribution for the unob-

served heterogeneity both approaches, the MCMC estimator and the MSL estimation,

yield almost identical results. This shows that for a finite sample of the size which is

typical for common household panels, our findings are in line with the asymptotic re-

converge at a local maximum when unobserved effects follow a log-normal distribution. Therefore -

similar to our strategy for dynamic models in this paper - they suggest to use Bayesian methods for

the estimation of the static model.
3Zellner and Rossi (1984) were the first to apply Bayesian procedures for a logit model using

importance sampling, and starting with Zeger and Karim (1991) various MCMC methods have been

developped for the estimation of discrete choice models, see Albert and Chib (1993) and McCulloch

and Rossi (1994) for probit models, and Allenby and Lenk (1994) and Allenby (1997) for logit models.
4From a practitioner’s perspective, it seems more interesting to assess the numerical performance

of the Bayesian and maximum likelihood procedures with real world data than with a simulated data

set because the distributional assumptions of a simulated data set often appear a bit artificial.
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sults of the Bernstein-von Mises Theorem. Hence, the Bayesian estimates can be given

a classical interpretation. Second, we show that when imposing distributional assump-

tions about the unobserved heterogeneity which are consistent with economic theory,

e.g. log-normally distributed consumption preferences, only the Bayesian method pro-

vides reliable estimates. The classical estimator does not converge because it fails to

find an increase of the likelihood function after a few iterations. This is the case even

for starting values that have been set close to the maximum of the likelihood function.

With log-normally distributed consumption preferences the respective coefficient de-

creases significantly by about 20%. In our example, however, this translates not into

significantly different labor supply elasticities for the population mean.

The paper is organized as follows. After a general comparison between Bayesian

and classical estimation of discrete choice models with unobserved heterogeneity, we

outline our MCMC procedure. Then, we describe the dynamic labor supply model, the

detailed specification and the data for our specific application. We compare estimation

results of the dynamic labor supply model with different specifications of unobserved

heterogeneity using i) classical and ii) Bayesian estimation procedures. A final section

summarizes our findings.

2 Classical versus Bayesian estimation of discrete

choice models

In the following, we describe the classical and the Bayesian estimation procedure of

discrete choice models. For convenience we use a similar notation as in Train (2009).

We start with the classical perspective.

2.1 Maximum Simulated Likelihood Estimation

Let’s assume that each individual i maximizes period t’s utility Uijt by making choice

j ∈ 1, ..., J . The probability that individual i makes a series of choices j = (j1, ..., jT )

in the T observed time periods is Pij = Prob(Uijt > Uikt,∀j 6= k,∀j ∈ j,∀t = 1, ..., T ).

Allowing for random taste variation, we can set up a random utility model Uijt =

βixijt + εijt where xijt is a vector of covariates, βi is an individual-specific (random)
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coefficient vector, and εijt is an idiosyncratic error term. We denote the conditional

probability of i making a series of choices j as Lij(βi). Then, we can write the un-

conditional probability Pij =
∫
Lij(βi)f(βi|θ)dβi where f(βi|θ) is the density function

describing the distribution of βi conditional on the parameters θ of the distribution.

Thus, we integrate over all possible states of βi. Usually, the integral must be approxi-

mated by simulation methods. Assuming that εijt follows an extreme value distribution,

the model becomes a mixed logit model. McFadden and Train (2000) show that any

random utility model can be approximated to any degree of accuracy by a mixed logit

model if the density function f(βi|θ) is chosen appropriately.

The probability Pij can be approximated by simulation procedures like the method

of simulated likelihood.5 The idea is that taking draws βri from f(βi|θ) allows calcu-

lating Lij(β
r
i ). The simulated probability is then P̂ij = 1

R

R∑
r=1

Lij(β
r
i ) where R is the

number of draws. The simulated log likelihood function becomes

SLL =
N∑
i=1

∑
j∈J

dijlogP̂ij (1)

dij equals 1 if individual i makes the series of choices j and zero otherwise. J is the set

of all possible series of choices. The maximum simulated likelihood estimator (MSLE)

θ̂MSL of θ is the value that maximizes the SLL. The maximum of the SLL can be found

using numerical methods. However, problems may arise if the optimization algorithm

does not converge or converges at a local maximum of the likelihood function. The

MSLE is consistent if R rises at any rate with
√
N . It is also efficient if R rises

faster than
√
N . Note that for R fixed the MSLE is inconsistent. For the asymptotic

distribution of θ̂MSL, we have
√
N(θ̂MSL − θ) d→ N(0,−H−1). -H is the information

matrix. Thus, the MSLE is consistent, efficient and asymptotically normal if R rises

faster than
√
N .

2.2 Bayesian Estimation

When estimating a discrete choice model with unobserved heterogeneity, there is a

Bayesian analog to the classical procedures such as the method of MSL. From a

Bayesian perspective the prior beliefs of the researcher about the parameters θ are

5See Train (2009) for more details on this method as well as alternative approaches like the method

of simulated moments and the method of simulated scores.
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represented by a prior distribution k(θ). Given the observed series of choices Y of the

N decision makers, there is a density K(θ|Y ) that summarizes the information about

θ that is provided by Y. This density is called posterior distribution. The relation-

ship between k(θ) and K(θ|Y ) is given by Bayes rule. If Pij(θ) is the probability that

decision maker i makes the series of choices j, the probability of observing the sam-

ple is given by L(Y |θ) =
N∏
i=1

Pij(θ). By Bayes rule K(θ|Y )L(Y ) = L(Y |θ)k(θ) where

L(Y ) =
∫
L(Y |θ)k(θ)dθ. It follows that K(θ|Y ) = L(Y |θ)k(θ)

L(Y )
.

The relationship between the classical and the Bayesian perspective is stated by the

Bernstein-von Mises Theorem. A formal outline of the theorem can be found in Train

(2009). First, the posterior distribution of θ converges to a normal distribution with

variance −H
−1

N
as the sample size increases. -H is the information matrix being well-

known from classical statistics. Thus, the parameters’ posterior distribution converges

to the sampling distribution of the maximum likelihood estimator. Second, the mean of

the posterior distribution θ̄ =
∫
θK(θ|Y )dθ converges to the maximum of the likelihood

function.6 As a consequence, θ̄ is asymptotically equivalent to the MSLE. Since the

Bayesian MCMC-estimator does not involve maximization of a likelihood function, the

numerical problems of classical procedures do not arise. Standard errors can easily

be calculated recognizing that the variance of the posterior distribution of θ is the

asymptotic sampling variance of the MSLE. Note that this is a classical perspective

on Bayesian estimates. Simulation methods allow an approximation of θ̄ by taking R

draws from the posterior distribution. Then, θ̂MCMC = 1
R

R∑
r=1

θr is the simulated mean

where θr is the rth draw from K(θ|Y ). Since the standard errors of the estimates

correspond to the standard deviation of K(θ|Y ), they can be simulated by taking

the standard deviation of the R draws. For a fixed number of draws, the simulated

mean of the posterior distribution is consistent and asymptotically normal. We have
√
N(θ̂MCMC − θ) d→ N(0,−H−1) as for the MSLE. If the number of draws increases at

any rate with sample size, the estimator is efficient. Thus, consistency and efficiency

can be achieved under more relaxed conditions than for the MSLE. Draws from the

posterior distribution K(θ|Y ) can be taken by MCMC methods.

6This follows directly from the symmetry of the normal distribution. As has been pointed out, the

posterior distribution of the parameters is asymptotically normal.
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2.3 MCMC procedure

We follow an estimation procedure that has been developed by Allenby and Lenk (1994)

and Allenby (1997), and generalized by Train (2001). The approach relies on diffuse

priors and applies Gibbs sampling together with the more general, but computationally

more expensive, Metropolis-Hastings algorithm (Metropolis et al. (1953) , Hastings

(1970)). Gibbs sampling allows taking draws from the posterior distribution of subsets

of the parameters conditional on the other parameters. We specify diffuse priors for

the mean b and variance-covariance matrix W of the individual-level coefficients βi:

k(b) is N(b0, S0) with S0 being extremely large (i.e. flat prior) and k(W) is inverted

Wishart IW(F,I) where F is the number of random coefficients and I is an F-dimensional

identity matrix. In empirical applications, we often have no clear idea about the

prior distribution. Therefore, it seems to be reasonable to assume an uninformative

prior. If the utility that individual i obtains in period t from choosing alternative j

is Uijt = βixijt + εijt, drawing from the posterior distribution K(b,W |Y ) is fast and

convenient when βi is considered as parameters along with b and W (see Train (2009)

for more details). Then, the posterior distribution is

K(b,W, βi|Y ) ∝ Lij(βi)φ(βi|b,W )k(b,W ),∀i (2)

where φ is the normal density function with mean b and variance-covariance matrix

W. Since some of the coefficients are kept fixed, this requires an additional layer of

the Gibbs sampling. The fixed coefficients are denoted α and the utility becomes

Uijt = αzijt + βixijt + εijt. Then, the individual-level coefficients βi must be drawn

conditional on α and vice versa. The prior distribution of α, k(α), is also assumed to

be normal and flat. Then, we get the following four posterior distributions for the four

sets of parameters βi, b, W, and α:

1. K(βi|α, b,W ) ∝ Lij(α, βi)φ(βi|b,W ), ∀i. The Metropolis-Hastings algorithm is

used to draw from this posterior distribution.

2. K(b|W,βi) is N( 1
N

∑
i βi,

W
N

), ∀i.

3. K(W |b, βi) is IW (K + N, KI+NS̄
K+N

), ∀i, where F is the number of random coeffi-

cients, I is an F-dimensional identity matrix and S̄ =
∑

i(βi−b)(βi−b)′
N

.
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4. K(α|βi) ∝
∏

i Lij(α, βi), ∀i. The Metropolis-Hastings algorithm is used to draw

from this posterior distribution.

Setting the initial values for all parameters to 0.1 and using Gibbs sampling to

draw from the posterior distribution of the four sets of parameters, it takes a number

of iterations until the draws converge to draws from the posterior distribution. The

draws prior to convergence must be discarded. In our empirical application we discard

the first 20,000 draws for burn-in and use the following 10,000 draws for the actual

estimation. We always check on convergence by increasing the number of draws used

for burn-in and, then, comparing the results. If results do not change even with a

substantial increase of the draws used for burn-in, this suggests that convergence has

been achieved. The acceptance rate in the Metropolis-Hastings algorithm is set to be

0.3.7 Since the draws are serially correlated, we follow the suggestion of Train (2009)

and save only every tenth draw reducing the correlation of the retained draws by an

order of ten.

3 Economic model and specification

We specify a dynamic discrete choice model with random coefficients to model labor

supply of married females. Our approach assumes that current labor supply is causally

affected only by last period’s labors supply, thus following a first-order Markov process,

see, e.g. Keane and Wolpin (2001) or Haan (2010). We differentiate between three

distinct states, j ∈ 1, 2, 3: full-time, part-time and non-employment. The median

hours of work per week are 13.5 for part-time employees and 38 for full-time employees.

We focus on married females in prime working age, defined as 25-59 years. The wife

maximizes her utility conditional on her husband’s behavior which is taken as given.

Collective bargaining as suggested by e.g. Chiappori (1988) is not considered. Each

period t, wife i receives a utility flow Uijt depending on her choice of labor supply

category j. Uijt is a function of period t’s leisure time and household consumption as

well as of the previous period’s labor market state. Since our model does not account for

saving behavior, household consumption equals net household income. Net household

7Gelman, Carlin, Stern, and Rubin (1995) find that the optimal acceptance rate is about 0.44 if

xijt contains only one variable and decreases with the number of variables in xijt towards 0.23.
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income is simulated using the micro simulation model STSM (Steiner, Wrohlich, Geyer,

and Haan, 2008), for more details, see below. We ensure concavity of the preferences

by assuming a Cobb-Douglas functional form of the utility function:

Uijt = βLitLogLjt + βIi LogIijt + εijt (3)

βLit = bLi + bCCit + bEEit + bZ10Z1i0 + bZ20Z2i0 + bZ1iZ1it−1 + bZ2iZ2it−1 (4)

where Ljt is wife’s leisure time and Iijt is household consumption (i.e. net household

income). Z1it−1 and Z2it−1 are dummy variables indicating the state which has been

chosen in the previous period; Z1it−1: non-employment, Z2it−1: part-time. Analogously

Z1i0 and Z2i0 are variables indicating the employment state of the first observed period

(2001). Thus, we follow Wooldridge (2005) by modelling the distribution of unobserved

heterogeneity conditional on the first observed state to account for the nonrandomness

of the initial state.8 The lagged dependent variables and the initial state are modeled

as taste shifters of the leisure time in the current period, Ljt. Similarly, other indi-

vidual specific characteristics are included as taste shifters for leisure. Cit is a dummy

variable for children aged 0-3 years in the household and Eit is a dummy variable in-

dicating residence in East Germany. εijt is an i.i.d. error term that follows an extreme

value distribution. Note that in the above specification βIi , bLi , bZ1i, and bZ2i are indi-

vidual specific coefficients which introduce unobserved preference heterogeneity to the

model. Distributional assumptions for these random coefficients must be imposed, and

a standard approach in the literature is to assume a multivariate normal distribution

for the unobserved components. This leads to a mixed logit model (McFadden and

Train, 2000).

We estimate various specifications of the model. In a first specification, we neglect

unobserved preference heterogeneity and assume that the variance-covariance matrix

of the individual specific coefficients is zero. This results in a simple conditional logit

model. The second specification only assumes two random coefficients, for bLi and

βIi that are uncorrelated. Specification 3 extends specification 2 allowing the two

random coefficients to be correlated. In specification 4, we estimate the full model

8See Akay (2011) for the performance of the method suggested by Wooldridge (2005).
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allowing for four random coefficients (also on the state dependence) and for a free

correlation structure. Specifications 2 to 4 assume a multivariate normal distribution

of the random coefficients which is a standard approach in the literature. While this

makes sense for the leisure preferences, it is problematic for consumption preferences,

see e.g. van Soest (1995). Assuming a normal distribution of unobserved heterogeneity

in consumption preferences predicts negative preferences for some individuals. In our

example, about 15 % of the individuals are predicted to have negative consumption

preferences when estimating specification 4. This is not plausible from an economic

point of view. Therefore, we estimate a fifth specification that restricts consumption

preferences to be positive by assuming them to be log-normally distributed. This can

be easily achieved by setting βIi equal to eb
I
i and estimating bIi under the assumption

that bIi is normally distributed. Thus, the utility function becomes:

Uijt = βLitLogLjt + eb
I
iLogIijt + εijt (5)

If bIi is normally distributed, eb
I
i follows a log-normal distribution. We can ob-

tain draws from the posterior distribution of the log-normally distributed βIi by trans-

forming the draws from the posterior distribution of bIi with e(·). The variance of

the log-normally distributed coefficient can be estimated transforming draws from the

posterior distribution of the mean and the variance of bIi to draws from the posterior

distribution of the variance of βIi . Note that var(βIi ) = e(mean(bIi )+var(bIi )/2)∗(evar(bIi )−1).

Specification 5 also allows for a free correlation structure.

The first specification is estimated by the method of maximum likelihood using an

analytic gradient in the optimization algorithm. Specifications 2 to 4 are estimated by

the method of MSL using again an analytic gradient.9 For comparison, we estimate

specification 4 as well using the Bayesian MCMC estimator.10 Specification 5 could

not be estimated by ths MSL-estimator because the optimization algorithm does not

converge because it fails to find an increase of the likelihood function after a few

iterations. This is the case even for starting values that have been set close to the

9The simulation of the choice probabilities is based on 200 Halton draws. Estimating the model

with other choices of R has shown that 200 Halton draws seems to be a lower bound to the number

of draws required for the MSLE to have good statistical properties in our finite sample.
10We only compare the estimation of specification 4 with both estimation procedures, the compar-

ison of the less flexible specifications 2 and 3 lead to the same results and are therefore omitted.
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maximum of the likelihood function. Train (2009) points out that in the classical

approach locating the maximum of the likelihood is considerably more difficult with

log-normal distributions. And, even if a maximum is found, it may happen that the

Hessian is singular at this point. However, specification 5 can be estimated easily

by the Bayesian procedures. Since the Bayesian MCMC estimator does not involve

maximization of a likelihood function, the numerical problems of the classical approach

do not arise.

4 Data

The empirical analysis is based on data from the German Socio-Economic Panel (SOEP).

The SOEP started in 1984 and annually collects information at the household and in-

dividual levels (Wagner, Frick, and Schupp, 2007). We construct a balanced panel of

married females covering the years 2001 to 2008. The sample is restricted to married

females in prime working age defined as 26-59 years whose labor supply may be consid-

ered as flexible, thus excluding pensioners, self-employed, and people in institutions.

The final sample consists of 1,598 wives. The SOEP contains detailed information

about employment behavior, as well as other individual and household characteristics.

As mentioned above, we differentiate between non-employment, part-time and full-time

work. The median hours of work per week are 13.5 for part-time employees and 38

for full-time employees. Leisure time is defined as 80 minus median hours of work per

week of the employment category.

Table 1: Descriptive statistics

Variable Mean Std. Min Max
Age 44.6 7.1 26 59

Children from 0-3 years 0.054 0.227 0 1
German nationality 0.932 0.251 0 1

East Germany 0.232 0.422 0 1
Non-employment 0.21 0.407 0 1

Part-time 0.263 0.44 0 1
Full-time 0.527 0.5 0 1

Table 1 contains some descriptive statistics including the distribution of the working

alternatives. Net household income is simulated for each employment category using

the micro simulation model STSM (Steiner, Wrohlich, Geyer, and Haan, 2008). Net
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household income is a complex nonlinear function of the gross wages of both partners.11

The STSM allows taking into account the complexity of the German tax and transfer

system. Simulation is based on detailed information on household characteristics as

contained in the SOEP. Other explanatory variables entering directly our labor supply

model are a regional dummy indicating whether a household is living in eastern or

western Germany and a binary variable providing information on young children aged

three or less in the household.

5 Results and discussion

5.1 Parameter estimates

Table 2 contains the parameter estimates for the five specifications that have been

described above. Assuming no preference heterogeneity (see specification 1) seems to

result in a substantial underestimation of the income coefficient, βIi . When allowing for

correlation between random coefficients, the size of βIi increases significantly in compar-

ison to the specification without correlated random coefficients (compare specifications

2 und 3). This finding supports previous studies, e.g. Prowse (2010) that specifica-

tions without unobserved heterogeneity lead to biased estimates of central structural

parameters. Because of the multiple interactions of the leisure term the interpretation

of coefficient bLi is not straight forward. However we find again a substantial difference

in this estimated coefficient between models with and without unobserved heterogene-

ity. Neglecting heterogeneity in the coefficients of state dependence, bZ1i and bZ2i, results

in significantly smaller estimates of these coefficients (compare specifications 3 and 4).

This misspecification is in particular relevant for the interpretation of state dependence

Heckman (1981b) and the prediction of short term labor supply elasticities. Looking

at the information criteria AIC and BIC, specification 4 appears to have the better

trade-off between flexibility and efficiency in comparison to specifications 1-3. Both a

free correlation structure of the random coefficients and accounting for heterogeneity

in the coefficients of state dependence improve the fit of the model. It appears that ne-

glecting the correlation between random coefficients leads to an underestimation of the

variances. The estimated covariances indicate a positive correlation between income

11Note, for women not employed in the month preceding the interview, gross hourly wages are
estimated by applying a two-stage estimation procedure with a Heckman sample selection correction.
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and leisure preferences. To summarize we find in line with the previous literature that

it is important to account for unobserved heterogeneity in a flexible and general way.

However, a more detailed comparison of the results lead to important conclusions

for practitioners related to the Bayesian estimations procedures that go beyond the

standard findings. First, when considering a multivariate normal distribution for the

unobserved heterogeneity (e.g. Specification 4) both approaches, the MCMC estimator

and the MSL estimation, yield almost identical results. The estimated means of the

posterior distribution of the parameters and of the variance-covariance matrix of the

random coefficients differ only marginally from the parameter estimates of the MSL

estimation. This shows that for a finite sample of the size which is typical for common

household panels, the Bernstein-von Mises Theorem holds and the Bayesian estimates

can be given a classical interpretation.

Second, we show that when imposing distributional assumptions about the unob-

served heterogeneity which are more in line with economic theory only the Bayesian

method provides reliable estimates. In particular, restricting consumption preferences

to be positive by assuming them to be log-normally distributed yields an estimate of

the respective coefficient, βIi , that is significantly smaller than in the case of normally

distributed consumption preferences (compare specifications 4 and 5). The distribution

of a normally distributed βIi is shifted to the right when fitting the model such that

a smaller share of individuals is predicted to have negative consumption preferences.

Restricting βIi to be positive is necessary to avoid an overestimation of the coefficient.

The classical estimator does not converge because it fails to find an increase of the

likelihood function after a few iterations. This finding even holds for starting values

that have been set close to the maximum of the likelihood function. With log-normally

distributed consumption preferences the respective coefficient decreases significantly

by about 20 %.

5.2 Labor supply elasticities

For an economic interpretation of the female labor supply behavior it is necessary

to compute labor supply elasticities. Therefore, we use the estimates for different

specifications to derive elasticities for a permanent shock to gross wage. We only derive

elasticities for the population mean. In particular we calculate the relative change in

12



Table 2: Parameter estimates

Parameters ML MSL MSL MSL MCMC MCMC
(spec. 1) (spec. 2) (spec. 3) (spec. 4) (spec. 4) (spec. 5)

value value var. value var. value var. mean var. mean var.
bZ10 3.30 9.54 10.75 5.75 5.88 4.03

(0.19) (0.58) (0.59) (0.66) (0.55) (0.32)
bZ20 2.05 5.92 6.25 4.02 4.05 2.81

(0.15) (0.42) (0.43) (0.45) (0.38) (0.20)
bC 2.75 4.73 5.24 5.06 4.90 4.17

(0.29) (0.41) (0.44) (0.45) (0.42) (0.35)
bE -1.36 -2.58 -2.53 -2.10 -2.20 -1.71

(0.17) (0.35) (0.39) (0.31) (0.31) (0.26)
bZ1i 9.34 5.64 5.60 11.07 51.34 11.02 55.87 12.27 67.72

(0.23) (0.32) (0.32) (0.72) (7.80)1 (0.58) (8.25) (0.53) (8.55)
bZ2i 4.54 2.46 2.32 4.18 5.87 4.07 5.14 4.87 6.91

(0.15) (0.21) (0.21) (0.37) (1.78)1 (0.30) (1.21) (0.23) (1.04)
bLi -5.17 -4.31 8.51 -3.39 51.93 -3.30 18.21 -3.22 19.61 -4.21 7.63

(0.15) (0.29) (1.40)1 (0.37) (6.14)1 (0.33) (3.74)1 (0.30) (3.83) (0.24) (1.81)
βI
i 1.89 7.54 26.61 10.38 167.95 9.39 92.46 9.41 89.49 6.97 81.382

(0.19) (0.53) (4.12)1 (0.69) (22.94)1 (0.78) (15.18)1 (0.64) (14.96) (0.54) (24.52)
random coeff. no 2 2 4 4 4

free correlation no no yes yes yes yes
log-normal βI

i no no no no no yes
ML / MSL -6393.1 -6245.8 -6137.5 -6052.5 - -

AIC 12802.3 12511.5 12297.0 12140.9 - -
BIC 12845.3 12565.3 12356.1 12237.7 - -

Standard errors / standard deviations of the posterior distributions are given in parentheses.
1 For numerical reasons, we estimate the elements of the Cholesky matrix of the variance-covariance

matrix with the method of MSL. The standard errors of the derived variances, then, are approxi-
mated on the basis of 200 draws taken from the asymptotically normal sampling distribution of the
elements of the Cholesky matrix.

2 The variance of the log-normally distributed coefficient has been estimated transforming draws from
the posterior distribution of the mean and the variance of bIi to draws from the posterior distribution

of the variance of βI
i . Note that βI

i = eb
I
i .

the labor supply behavior which result from a permanent relative increase in female

gross wages. We predict for 10 consecutive periods of time for both a baseline scenario

without a shock and a scenario where a permanent wage shock occurs in the first

period, i.e. wages are 10% higher in the second scenario. Then, we use the differences

between the predictions of the two scenarios to derive the labor supply elasticities. All

predictions are based on the posterior distribution of the model parameters.12 This

allows investigating the dynamics of female labor supply. For a detailed description of

the calculation see Haan (2010) and Haan and Uhlendorff (2012).

Table 3 contains the gross wage elasticities. The elasticities for period 1 can be inter-

12This is natural for predictions based on Bayesian estimation. For predictions based on MSL
estimation, we have to compute the choice probabilities conditional on each individual’s series of
choices by a procedure that involves simulation within simulation.
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Table 3: Gross wage elasticities

Period ML MSL MSL MSL MCMC MCMC
(spec. 1) (spec. 2) (spec. 3) (spec. 4) (spec. 4) (spec. 5)

1 0.054 0.143 0.165 0.141 0.143 0.124
[0.044,0.064] [0.127,0.158] [0.155,0.176] [0.124,0.157] [0.127,0.159] [0.109,0.141]

2 0.080 0.184 0.207 0.190 0.193 0.163
[0.065,0.096] [0.165,0.203] [0.195,0.219] [0.170,0.211] [0.174,0.214] [0.144,0.186]

3 0.096 0.199 0.221 0.213 0.219 0.187
[0.077,0.114] [0.179,0.219] [0.208,0.233] [0.192,0.234] [0.196,0.243] [0.164,0.213]

4 0.105 0.205 0.225 0.225 0.234 0.202
[0.085,0.126] [0.184,0.225] [0.212,0.239] [0.204,0.247] [0.210,0.261] [0.177,0.230]

5 0.110 0.207 0.227 0.232 0.245 0.212
[0.089,0.131] [0.186,0.228] [0.213,0.241] [0.211,0.254] [0.219,0.273] [0.186,0.242]

6 0.113 0.208 0.228 0.236 0.252 0.220
[0.092,0.135] [0.187,0.229] [0.214,0.241] [0.215,0.258] [0.225,0.281] [0.193,0.251]

7 0.115 0.208 0.228 0.239 0.258 0.226
[0.094,0.137] [0.187,0.229] [0.214,0.242] [0.217,0.260] [0.230,0.288] [0.198,0.257]

8 0.117 0.208 0.228 0.240 0.262 0.231
[0.095,0.138] [0.187,0.229] [0.214,0.242] [0.219,0.262] [0.234,0.293] [0.201,0.263]

9 0.117 0.208 0.228 0.241 0.265 0.235
[0.095,0.138] [0.187,0.229] [0.214,0.242] [0.219,0.263] [0.237,0.297] [0.205,0.268]

10 0.118 0.208 0.228 0.242 0.268 0.239
[0.096,0.139] [0.187,0.229] [0.214,0.242] [0.220,0.263] [0.239,0.300] [0.207,0.272]

We calculate confidence intervals at the 5 percent significance level. Note that the
interpretation of the Bayesian confidence intervals differs from the interpretation of the
classical confidence intervals.

preted as short term elasticities, while the elasticities for period 10 can be interpreted as

long term elasticities. Confidence intervals are estimated at the 0.95 significance level.

The confidence intervals for the elasticities derived from the MCMC estimation have

been computed directly using the draws from the posterior distribution of the model

parameters. We also approximate confidence intervals for the elasticities derived from

the ML and MSL estimation by taking 200 draws from the sampling distribution of

the model parameters and deriving the elasticities for each of these draws. Unlike

the Bayesian confidence intervals, this approach must assume that the asymptotically

normal sampling distribution of the parameters holds for our finite sample. Note that

the interpretation of Bayesian confidence intervals differs from the interpretation of

classical confidence intervals. The Bayesian confidence interval represents the belief

that the true elasticity lies within the interval with a probability of 0.95.

The estimated elasticities differ depending on whether random coefficients are al-

lowed for. It results from the underestimation of the income coefficient in the condi-

tional logit model that neglecting preference heterogeneity seems to induce a substan-

tial downward bias to the estimated elasticities. For example, the conditional logit
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model predicts a long term gross wage elasticity of about 0.12 as opposed to 0.24 for

specification 4 (MSL). The difference is significant. The predicted elasticities do only

differ marginally depending on whether the model has been estimated by the method

of MSL or by the Bayesian MCMC estimator. This reflects the very similar parameter

estimates of both estimation approaches. Finally, despite of the smaller income coef-

ficient in specification 5 - related to log-normally distributed consumption preferences

- labor supply elasticities for the population mean are not statistically different from

specification 4.

6 Conclusion

This analysis provides evidence for the advantage of using Bayesian estimation pro-

cedures instead of classical maximum likelihood estimation for the estimation of dy-

namic discrete choice models. These models usually require a general specification of

unobserved preference heterogeneity and therefore often relatively complex estimation

routines need to be applied. We estimate a dynamic discrete choice model of female

labor supply with three distinct states and different specifications of unobserved het-

erogeneity.

The empirical comparison leads to two important conclusions which are highly

relevant for practitioners estimating dynamic discrete choice models with unobserved

heterogeneity. First, when considering a multivariate normal distribution for the unob-

served heterogeneity both approaches, the MCMC estimator and the MSL estimation,

yield almost identical results. This shows that for a finite sample of the size which

is typical for common household panels, our findings are in line with the asymptotic

results of the Bernstein-von Mises Theorem. Hence, the Bayesian estimates can be

given a classical interpretation. The second finding demonstrates the advantage of

using Bayesian estimation procedures. We show that when imposing distributional

assumptions which are consistent with economic theory, e.g. log-normally distributed

consumption preferences, the Bayesian method performs well and provides reasonable

estimates, while the MSL estimator does not converge. These results indicate that

Bayesian procedures can be a beneficial tool for the estimation of dynamic discrete

choice models.
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