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1 Introduction

Focusing on the returns to educational qualifications when attainment is potentially misreported, this

paper offers a two-fold contribution. First, it provides reliable estimates of a highly policy relevant pa-

rameter for the UK, namely the return from attaining any academic qualification compared to leaving

school at the minimum age without any formal qualification. Secondly, it estimates misclassification

probabilities and patterns of misclassification, including the temporal correlations in misreporting by

individuals across survey waves. These results are obtained by casting the identification and estimation

problem in terms of a mixture model, and using a semi-parametric estimation approach.

The measurement of the return to education, that is of the individual wage gain from investing

in more education, has become probably the most explored and prolific area in labour economics.1

Two important and interrelated issues arise as to the measurement of education. A first question is

whether we can summarize it in the single, homogeneous measure of years of schooling. Although

particularly convenient, this “one-factor” model assumes that the returns increase linearly with each

additional year, irrespective of the level and type of educational qualifications the years refer to. In

the US, grades generally follow years, and it has long been argued that the returns to an additional

year are reasonably homogeneous (see for example Card, 1999). In the UK and other European

countries, however, there are alternative nationally-based routes leading to quite different educational

qualifications, and the importance of distinguishing between different types of qualifications is widely

accepted. Blundell, Dearden and Sianesi (2005b) highlight the potential shortcoming of the “one-

factor” model when applied to the UK’s educational system, in which individuals with the same

number of years of schooling have quite different educational outcomes. Not only would this obfuscate

the interpretation of the return to one additional year, but imposing equality of yearly returns across

educational stages was found to be overly restrictive.

A second important issue as to the measurement of education - and the one object of this paper

- is the possibility of errors in recorded education and its consequences on the estimated returns.

Misrecorded education could arise from data transcript errors, as well as from misreporting: survey

respondents may either over-report their attainment, not know if the schooling they have had counts as

a qualification or simply not remember. With the continuous years of schooling measure of education,

standard results based on classical measurement error show that OLS estimates are downward biased,

1Policymakers too have shown increasing interest, with estimated returns feeding into debates on national economic
performance, educational policies, or the public funding of education. Reliable measures of returns to education are in fact
needed to establish whether it is worthwhile for individuals to invest in more education (and in which type), to compare
private and social returns to education, or to assess the relative value that different educational qualifications fetch on
the labour market. For an extensive discussion of the policy interest of the individual wage return from education, see
Blundell, Dearden and Sianesi (2005a).
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and that appropriate IV methods applied to the linear regression model provide consistent estimates.

Indeed, the trade-off between attenuation bias due to measurement error and upward bias due to

omitted variables correlated with both schooling and wages (the so-called “ability bias”) has been at

the heart of the early studies on returns to years of schooling. The received wisdom has traditionally

been that ability bias and measurement error bias largely cancel each other out (for a review see in

particular Griliches, 1977, and Card, 1999; for a recent UK study see Bonjour et al., 2003).

With the categorical qualification-based measure of education, however, any measurement error in

educational qualifications will vary with the true level of education. Individuals in the lowest category

can never under-report their education and individuals in the top category cannot over-report, so that

the assumption of classical measurement error cannot hold (see, for example, Aigner, 1973). In the

presence of misclassification, OLS estimates are not necessarily downward biased, so that the cancelling

out of the ability and measurement error biases cannot be expected to hold in general. Moreover, it is

now well understood that the IV methodology cannot provide consistent estimates of the returns to

qualifications (see, for example, Bound, Brown and Mathiowetz, 2001).

To date, empirical evidence on the importance of these issues is restricted to the US, where it was

in fact shown that measurement error might play a non-negligible role (see the results in Kane, Rouse

and Staiger, 1999, Black, Sanders and Taylor, 2003, and Lewbel, 2007). For the UK there are no

estimates of the returns to educational qualifications that adequately correct for measurement error.2

This is of great concern, in view of the stronger emphasis on returns to discrete levels of educational

qualifications in the UK and given the widespread belief amongst UK researchers and policymakers

that ability and measurement error biases still cancel out (Dearden, 1999, Dearden et al., 2002, and

McIntosh, 2006).

A first possibility to overcome the bias induced by misreported educational qualifications is to de-

rive bounds on the returns by making a priori assumptions on the misclassification probabilities (see,

for example, Molinari, 2008). This approach only allows partial identification of returns. In previous

work (Battistin and Sianesi, 2011) we suggest bounds that can be derived allowing for arbitrarily

heterogeneous individual returns. The corresponding sensitivity analysis is easy to implement and can

provide an often quite informative robustness check. The alternative approach is more demanding in

terms of data requirements but, if feasible, allows point identification of the returns. An additional

appealing feature is that it provides estimates of the extent of misclassification in the educational mea-

sures, which may often be of independent interest. What is needed is (at least) two categorical reports

of educational qualifications for the same individuals, both potentially affected by reporting error but

2Ives (1984) only offers a descriptive study of the mismatch between self-reported and administrative information on
qualifications in the NCDS, finding serious discrepancies particularly for the lower-level academic qualifications.
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coming from independent sources (for the proof of non-parametric identification, see Mahajan, 2006,

Lewbel, 2007, and Hu, 2008). Repeated measurements on educational qualifications are typically

obtained by combining complementary datasets, for example exploiting administrative records and

information self-reported by individuals.

In this paper, we build on the latter approach and provide a number of new contributions of

considerable policy and practical relevance, as well as of methodological interest. First, we provide

the first reliable estimates of the returns to educational qualifications in the UK that allow for the

possibility of misreported attainment. We focus on the highly policy-relevant return from attaining

any academic qualification compared to leaving school at the minimum age of 16 without any formal

qualification (the latter being akin to dropping out of high-school in the US). The institutional details

and the literature review relevant to motivate our interest for this parameter is discussed at length in

Section 4. We rely on detailed longitudinal data from the British National Child Development Survey

(NCDS), which allows us to control for a large set of family background and school type variables, as

well as for ability tests taken by individuals at early ages.

Second, using the unique nature of our data we identify the extent of misclassification in three dif-

ferent data sources on educational qualifications: administrative school files, self-reported information

very close to the dates of completion of the qualification, and self-reported recall information ten years

later. To this end, we combine multiple measurements self-reported by individuals in the NCDS with

administrative data on qualifications coming from school records. Compared to the existing papers

in the literature, the availability of multiple self-reported measurements introduces a certain degree

of over-identification, which allows us to isolate the extent of misreporting in school files from that of

individuals, while allowing for persistence in the propensity to misreport across self-reported measure-

ments. Thus, our setup gives us the unique chance of assessing the temporal patterns of misreporting

errors across survey instruments and of decomposing misreporting errors into a systematic component

linked to individuals’ persistent behaviour and into a transitory part reflecting survey errors that occur

independently of individuals in each cross-section survey wave.

Third, exploiting the information available in the NCDS data, we explore how the biases from

measurement error and from omitted variables interact in the estimation of returns to educational

qualifications. We produce a simple calibration rule to allow policy makers to use nationally repre-

sentative data sets such as the Labour Force Survey to estimate returns to qualifications. These data

totally rely on self-reported qualifications and do not contain any information on individual ability

and family background.

Finally, on the methodological front we propose a semi-parametric estimation approach based
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on balancing scores and mixture models. As far as we are aware we are the first ones to cast the

estimation problem in terms of a mixture model, which combined with the propensity score defines

a semi-parametric procedure that allows for arbitrarily heterogeneous individual returns. Given that

the misclassification problem can be stated in terms of finite mixtures with a known number of

components, we find this approach particularly suited for the case at hand. We first show that all the

quantities of interest are non-parametrically identified from the data through the availability of our

repeated measurements on educational qualifications. The conditions required for this result are very

general in nature, or at least are as restrictive as those commonly invoked in the relevant literature on

misclassification. We then proceed with estimation, drawing from the statistical literature on finite

mixtures to propose a flexible strategy based on Bayesian modelling. We maintain throughout a unified

general framework for the study of the impact of misreported treatment status on the estimation of

causal treatment effects (Mahajan, 2006, Lewbel, 2007, and Molinari, 2008, and Battistin and Sianesi,

2011, are the only examples we are aware of). Our estimation method is thus of far wider interest,

since the same issues arise in any application looking at the effect of a potentially misrecorded binary

or categorical variable, such as eligibility to policy schemes, participation in (multiple) government

programmes or work-related training.

We report a number of findings of substantive importance. Our results suggest that individuals are

appreciably less accurate than transcript files when they don’t have any academic qualification, but

that they are slightlymore accurate than transcripts when they do in fact have academic qualifications.

In line with the scant evidence available from the US, we thus find that no source is uniformly better.

For individuals, over-reporting is by far the most important source of error. Under-reporting is more

of a problem in transcript files. Notwithstanding their different underlying patterns of measurement

error, transcript files and self-reported data appear to be remarkably similar in their overall reliability.

This is especially so when information is collected close to the time of attainment of the educational

qualification of interest. We estimate that the degree of accuracy in the reporting of educational

qualifications in the NCDS is about 80% in both transcript files and self-reported data collected close

to attainment of the qualification. This figure is 3 to 4% lower when educational attainment is recalled

ten years later.

From estimating the share of individuals who consistently report correctly, over-report and under-

report their educational qualification across survey waves of the NCDS, we find that figures from just

one wave are not likely to reveal behaviour. Our results do however show that the bulk of correct

classification can be attributed to some degree of persistency in the reporting of individuals across

waves. We estimate that about 90% of measurement error in the NCDS is related to the behaviour of

5



individuals; the remaining error is not systematic, and depends on random survey errors. We further

provide strong evidence of positive autocorrelation in self-reported measurements conditional on true

educational attainment. This finding in itself invalidates setups that base identification on repeated

measurements by the same individuals. A piece of interesting evidence on survey errors is the incidence

of recall errors among those with the qualification, which we estimate at 7.7%.

We estimate the true return from achieving any academic qualification for those who do so as

a 26.4% wage gain. This figure is statistically different from that obtained from raw data without

adjusting for measurement error. When educational records (from schools or individuals) are obtained

relatively close to the completion of the qualification of interest, we find that ignoring both ability

and misreporing biases would lead to strongly upward-biased estimates of returns. The resulting

calibration rule to get an LFS-style estimate close to the true return suggests to multiply the “raw”

estimate by 0.8. By contrast, when the educational information recorded in the data has been collected

after over 10 years since completion, the two biases do seem to cancel each other out, with LFS-style

estimates of the average return to academic qualifications being indeed very close to the true return.

The remainder of the paper is organized as follows. In Section 2 we allow for the possibility of

misclassification in the treatment status in the general evaluation framework, and discuss the resulting

identification problem. Our estimation strategy for the case at hand is presented in Section 3. Section

4 discusses how information in the data will allow us to implement this strategy under fairly weak

assumptions. It then presents the evidence on raw returns and on the agreement rates between

our multiple measurements. Section 5 presents our empirical results on the extent and features of

misclassification, as well as on the true educational returns. We also explore how the biases from

misclassification and from omitted variables interact in the estimation of such a return. Section 6

concludes.

2 General formulation of the problem

2.1 Identification when the educational qualification is observed

In the potential-outcomes framework, interest lies in the causal impact of a given “treatment” on

an outcome of interest Y .3 To fix ideas, and with our application in mind, in the following let the

treatment be the qualification of interest and let the outcome be individual (log) wages. Let Y1 and Y0

denote the potential wages from having and not having the qualification of interest, respectively.4 Let

3For reviews of the evaluation problem see Heckman, LaLonde and Smith (1999) and Imbens (2004). For the potential
outcome framework, the main references are Fisher (1935), Neyman (1935), Roy (1951), Quandt (1972) and Rubin (1974).

4For this representation to be meaningful, the stable unit-treatment value assumption needs to be satisfied (Rubin,
1980), requiring that an individual’s potential wages and the chosen qualification are independent of the qualification
choices of other individuals in the population.
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D∗ be a binary indicator for the qualification of interest, which we will later allow to be potentially

observed with error amongst individuals. The individual causal effect of (or return to) achieving

the qualification is defined as the difference between the two potential outcomes, β ≡ Y1 − Y0. The

observed individual wage can then be written as Y = Y0 +D∗β. We are interested in recovering the

average return for those individuals who have chosen to undertake the qualification of interest, that

is the average effect of treatment on the treated (ATT):5

∆∗ ≡ EY1|D∗ [Y1|1]− EY0|D∗ [Y0|1].

In the absence of misreporting of D∗, identification of the counterfactual term EY0|D∗ [Y0|1] follows

straightforwardly from the following two assumptions, which we will maintain throughout.

Assumption 1 (Unconfoundedness) Conditional on a set of observable variables X, the educa-

tional choice D∗ is independent of the two potential outcomes:

fY0,Y1|D∗,X [y0, y1|d∗, x] = fY0,Y1|X [y0, y1|x].

For the plausibility of this assumption, which allows one to focus on the impact of measurement

error in the reporting of D∗, we draw on Blundell, Dearden and Sianesi (2005b), who find the set of

regressorsX available in our NCDS data to be rich enough to control for the endogeneity of educational

choices. To give empirical content to Assumption 1, we also require the following condition on the

support of the X variables:

Assumption 2 (Common Support) Individuals with and without the qualification of interest can

be found at all values of X, that is:

0 < e∗(x) ≡ fD∗|X [1|x] < 1, ∀x

where e∗(x) is the propensity score.

Under these two assumptions one can perform any type of non- or semi-parametric estimation

of the conditional expectation function in the non-participation group, EY0|D∗X [Y0|0, x], and then

average it over the distribution of X in the participants’ group (within the common support) to get

the counterfactual term of interest. Conditions 1-2 together make the strong ignorability condition of

Rosenbaum and Rubin (1983).

5In the remainder of this paper, fY |X [y|x] and EY |X [Y |x] will denote the conditional distribution and the conditional
mean of Y given X = x, respectively. Also, we will use upper-case letters for random variables and lower-case letters for
their realisations.
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2.2 Misclassified educational qualification

When qualifications are misreported, either because individuals are left to self-report or because of

transcript errors, the treatment information recorded in the data may differ from the actual status

D∗. With our application in mind, we assume to have two repeated measurements of educational

qualifications self-reported by individuals at different points in time (D1
S and D2

S), as well as transcript

records on the same individuals coming from the schools (DT ). It is worth noting the the former two

measurements need not be independent of each other, as most likely they may be correlated through

unobservables that affect the propensity of individuals to misreport. More in general, neither of

self-reported and transcript measurements needs to coincide with D∗.

For any measurement W = {D1
S , D

2
S , DT }, define by fW |D∗X [1|1, x] the percentage of truth tellers,

or of individuals correctly classified in transcript files, amongst those actually holding the qualification

of interest. The corresponding percentage amongst those without the qualification of interest is instead

defined as fW |D∗X [0|0, x]. In the remainder of this paper, we will refer to these terms as probabilities

of exact classification for the measurement W . Similarly, letting DS ≡ [D1
S , D

2
S ] denote the vector

of self-reported measurements, define the probabilities fDS |D∗X [dS |1, x] and fDS |D∗X [dS |0, x] as the

survey response patterns conditional on educational attainment, separately for those having and not

having the qualification of interest, respectively. The definitions employed accommodate for error

heterogeneity through the observable characteristics X.6

Throughout our discussion we will assume that the misclassification error in either measure is non-

differential, that is conditional on a person’s actual qualification and on other covariates, reporting

errors are independent of wages (see Battistin and Sianesi, 2011, for a more detailed discussion of the

implications of this assumption). This assumption is stated more formally in what follows.

Assumption 3 (Non-Differential Misclassification Given X) Any variables DS and DT which

proxy D∗ do not contain information to predict Y conditional on the true measure D∗ and X:

fY |D∗DSDTX [y|d∗,dS , dT , x] = fY |D∗X [y|d∗, x].

As shown in Battistin and Sianesi (2011), even under Assumptions 1-3 causal inference drawn

from any of the triples (Y,D1
S , X), (Y,D2

S , X) or (Y,DT , X) will in general be invalid for the ATT,

with the magnitude of the bias depending on the extent of misclassification in each measurement. In

what follows, we will maintain the assumption of independent sources of error between self-reported

measurements and transcript files, conditional on the observables X.

6Note that the probabilities of D∗ conditional on DT or DS could also be employed, signaling the percentage of
achievers conditional on the educational status as it is observed in raw data (see Battistin and Sianesi, 2011).
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Assumption 4 (Independent Sources of Error Given X) The measurements DS and DT are

conditionally independent given D∗ and X:

fDSDT |D∗X [dS , dT |d∗, x] = fDS |D∗X [dS |d∗, x]fDT |D∗X [dT |d∗, x].

The assumption implies that qualifications self-reported by individuals and transcript files from

schools are correlated only through the true measurement D∗ and the observables X. This, together

with Assumption 3, are assumptions widely adopted in the relevant literature. However, as pointed

out by Hu (2008) and Battistin and Sianesi (2011), the conditioning on a large set of X’s makes them

weaker than those reviewed in Bound, Brown and Mathiowetz (2001).

The general identification problem induced by misclassification can be formalised as follows. Under

Assumption 3 and Assumption 4, the distribution of observed wages conditional on X for the 2×2×2

groups defined byD1
S×D2

S×DT can be written as amixture of two latent distributions: the distribution

of wages in the presence of the qualification, i.e. Y1, and the distribution of wages in the absence of

the qualification, i.e. Y0. The mixture is:

fY |DSDTX [y|dS , dT , x] = [1− p(dS , dT , x)]fY0|X [y|x] + p(dS , dT , x)fY1|X [y|x], (1)

where the equality follows from Assumption 1 and the probability:

p(dS , dT , x) ≡ fD∗|DSDTX [1|dS , dT , x],

denotes the true proportion of individuals with the qualification of interest amongst those with DS =

dS and DT = dT within cells defined by X.

The mixture representation implies two results worth mentioning. First, knowledge of the mixture

probabilities p(dS , dT , x)’s suffices to identify the probabilities of exact classification relative to the

self-reported measurements and transcript files. The result trivially follows from the Bayes theorem,

after noting that their computation involves distributions that are identified from the data. Second,

knowledge of the mixture components allows identification of:

∆∗(x) ≡ EY1|D∗X [Y1|1, x]− EY0|D∗X [Y0|1, x],

which corresponds, under Assumption 1, to the causal effect of having the qualification of interest for

individuals with X = x. As the ATT is obtained by integrating ∆∗(x) with respect to fX|D∗ [x|1], and

the latter term is identified from knowledge of the p(dS , dT , x)’s,
7 it follows that that the ATT is iden-

tified if the mixture in (1) is identified (see Battistin and Sianesi, 2011, for the exact characterisation

7There is:

fX|D∗ [x|1] =
fD∗|X [1|x]fX [x]∫
fD∗|X [1|x]fX [x]dx

,
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of the relationship between the true ATT, the effect estimated using either misrecorded measure and

the latter’s misclassification probabilities).

In the next section we show that, for the case at hand, the information in the data is sufficient to

retrieve non-parametrically both mixture weights and mixture components.

2.3 Identification in the presence of misclassification

With two reports, Kane, Rouse and Staiger (1999) and Black, Berger and Scott (2000) have developed

a procedure to simultaneously estimate the returns to qualifications and the distribution of reporting

error in each educational measure. Their approach moves from the specification of a parametric model.

The general problem of non-parametric identification in the case of two reports has been investigated,

amongst others, by Mahajan (2006), Lewbel (2007) and Hu (2008). The returns to qualifications and

the extent of misclassification are point identified by assuming that the two available measurements

come from independent sources of information. This implies that the extent of misclassification must

be independent across measurements, and qualifies one of these - provided additional conditions hold

- as an instrument-like variable for the problem.

We build upon this idea to show that the components of the mixture in (1) are non-parametrically

identified given the setup that we consider. Key to our identification result is Assumption 4. Although

three measurements of educational qualifications are available in our data, one can always reduce the

dimensionality problem by generating a new variable D̃ which results from the combination of D1
S

and D2
S , for example by considering D̃ ≡ D1

SD
2
S or D̃ ≡ D1

S(1 − D2
S). In this case, the two new

measurements (D̃,DT ) are sufficient to retrieve the returns to qualifications non-parametrically as in

Mahajan (2006), Lewbel (2007) and Hu (2008). The availability of multiple self-reported measurements

introduces a certain degree of over-identification, and allows one to isolate the extent of misreporting

in school files from that of individuals while allowing for persistence in the propensity to misreport

across self-reported measurements of educational qualifications. To the best of our knowledge, this is

the first paper that looks into this problem.

The identification result builds upon the following additional assumptions, that closely match

those exploited in the relevant literature (see, for example, Chen, Hong and Nekipelov 2011). The

general idea behind identification is to use DT as a source of instrumental variation which, through

Assumption 4, allows one to define a large enough number of moment conditions given the unknowns in

which is identified using:

fD∗|X [1|x] =
∑
dS

∑
dT

p(dS , dT , x)fDSDT |X [dS , dT |x],

if the p(dS , dT , x)’s are known.
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the mixture representation (1). The availability of multiple reports coming from the same individuals

sets the stage for additional moment restrictions, that can be used to allow for correlation in self-

reported measurements.

Assumption 5 (Relevance of Educational Qualifications Given X) The causal effect of having

the qualification of interest for individuals with X = x is such that:

∆∗(x) ̸= 0.

This assumption implies that the latent measurement D∗ is relevant for the policy parameter under

consideration at all valuesX. Following the discussion in the previous section, the requirement is stated

in terms of conditional expectations. However, as we show in Appendix A, it could be formulated in

more general terms by considering features of the conditional distribution fY |D∗X [y|d∗, x]. Intuitively,

this assumption is required to disentangle the mixture distributions in (1) when estimation is carried

out from raw data.

The next assumption requires that the measurement DT contains enough information on the true

educational qualification D∗ given X or, more formally, that fD∗|DTX [1|1, x] ̸= fD∗|DTX [1|0, x] (see

Chen, Hong and Nekipelov 2011). For the binary case considered in this paper, a sufficient condition

for this to hold is the following.

Assumption 6 (Informational Content of the Transcript Measurement Given X) The ex-

tent of misclassification in the measurement DT is such that fD∗|DTX [1|1, x] > 0.5 and fD∗|DTX [0|0, x] >

0.5.

This assumption is typically invoked in the literature and is indeed very reasonable, as it implies that

information from the school files is more accurate than pure guesses once X is corrected for.

Finally, a more technical assumption is needed to ensure identification, which is implied by a non-

zero causal effect of the latent measurement D∗ on the survey response patterns DS given X (see

Appendix A).

Assumption 7 (Relevance of Survey Instruments) For each value x on the support of X there

is: fDSDT |X [dSdT |x] ̸= fDS |X [dS |x]fDT |X [dT |x].

The general identification result can be summarized in the following theorem, for which the proof

is given in Appendix A, and particularizes to the setup considered in our application previous results

by Hu (2008).
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Theorem 1 (Identification) The mixture components fY0|X [y|x] and fY1|X [y|x] and the mixture

weights p(dS , dT , x) are non-parametrically identified from the data (Y,DS , DT , X) under Assumptions

1 - 7.

3 Estimation

Having proved that information on (Y,DS , DT , X) ensures non-parametric identification of the ATT

and features of the error distribution across measurements, we now describe the strategy employed in

the empirical section to estimate the quantities of interest. Two key assumptions will be maintained

throughout the estimation process. First, we will assume that the mixture components are normally

distributed, and propose a method that estimates (1) directly via MCMC. Given that the misclas-

sification problem can be stated in terms of finite mixtures with a known number of components,

we find this approach particularly suited for the case at hand. Note also that this is in the spirit of

the work by Heckman and Honore (1990), where it is shown that under normality it is possible to

estimate the distribution of potential wages in the Roy model from a single cross-section of data (see

also the discussion by Heckman, 2001). To reduce the dimensionality problem that results from having

a large number of X’s, we implement a semi-parametric estimator that makes use of the concept of

balancing scores taken from the programme evaluation literature (see Battistin and Sianesi, 2011, for

an application of the same idea). The second assumption we make is that the mixture weights are

heterogeneous across individuals only through functions of the X’s that can be estimated from raw

data. The estimation procedure employed will be discussed in the remainder of this section.

3.1 The curse of dimensionality

The main problem that hampers estimation of the ATT is the curse of dimensionality arising from a

large number of regressors in X. In this section we propose a method to reduce the dimensionality of

the problem based on the properties of balancing scores (see Theorem 1 by Rosembaum and Rubin,

1983, and Imbens, 2000). Let S(X) be a balancing score such that the distribution of X within cells

defined by S(x) is independent of (DS , DT ):

fX|DSDTS(X)[x|dS , dT , s] = fX|S(X)[x|s]. (2)

In what follows, we discuss under which conditions the mixture representation given X in (1) implies

a mixture representation given S(X). The idea is most simply put across by assuming that the

p(dS , dT , x)’s do not vary with X, that is by assuming p(dS , dT , x) = p(dS , dT ).

12



By using (2) and from the fact that X is finer than S(X) we can write:

fY |DSDTS(X)[y|dS , dT , s] =

∫
fY |DSDTX [y|dS , dT , x]fX|S(X)[x|s]dx.

Using (1) and the fact that the p(dS , dT , x)’s do not vary with X, the term on the right-hand-side of

the last expression can be written as:

[1− p(dS , dT )]

∫
fY0|X [y|x]fX|S(X)[x|s]dx+ p(dS , dT )

∫
fY1|X [y|x]fX|S(X)[x|s]dx,

so that there is:

fY |DSDTS(X)[y|dS , dT , s] = [1− p(dS , dT )]fY0|S(X)[y|s] + p(dS , dT )fY1|S(X)[y|s],

where the last relationship again follows from X being finer than S(x). Accordingly, the distribution

of wages conditional on S(X) = s for the group defined by all combinations of (DS , DT ) is again

a mixture of two latent distributions. The components of this mixture are weighted means of the

components in (1) taken over individuals with S(X) = s, with mixture weights given by p(dS , dT ).

Note that the same representation would hold if the p(dS , dT , x)’s were left to vary with X only

through the index S(x), i.e. by assuming p(dS , dT , x) = p(dS , dT , s):

fY |DSDTS(X)[y|dS , dT , s] = [1− p(dS , dT , s)]fY0|S(X)[y|s] + p(dS , dT , s)fY1|S(X)[y|s]. (3)

The identification problem is similar to the one described in the previous section: if (3) can be recovered

from raw data, then one could identify the extent of misreporting and, therefore, the ATT.

To make the definition of S(X) operational, let G be a multinomial variable identifying the 2×2×2

groups obtained from the cross tabulation of (DS , DT ). Define the propensity scores obtained from the

multinomial regression of G on the X’s as eg(x) ≡ fG|X [g|x]. Results in Imbens (2000) and Lechner

(2001) can be directly applied to conclude that the eg(x)’s are balancing scores for (DS , DT ). In

words, this implies that individuals sharing the same vector of eg(x)’s but characterized by different

combinations of (DS , DT ) are compositionally identical with respect to the vector of variables X. This

extends to the multinomial case the original idea introduced by Rosenbaum and Rubin (1983) for the

binary case.

3.2 Bayesian modelling and inference

In the previous section we have shown that, for the case at hand, the mixture representation holds

conditionally on the eg(x)’s if these are the only factors driving heterogeneity of the p(dS , dT , x)’s. We

now build on this assumption to estimate the mixture (3).
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We will assume throughout that, within cells defined by S(x), mixture components are normally

distributed with cell-specific parameters. This amounts to assuming log-normality of wages conditional

on the balancing score: given the nature of the outcome variable, this appears to be a sound specifi-

cation for the case at hand. Importantly, it can be shown that any finite mixture of univariate normal

distributions is identifiable (see, for example, Everitt and Hand, 1981) and this has some implications

that are discussed in what follows.8

Under the hypothesis of no returns conditional on S(x) the two mixture components coincide, and

thus the mixture representation is invalid. This is known as the problem of homogeneity, and is ruled

out by Assumption 5. Note that testing homogeneity, that is testing no mixture against a mixture

of two distributions, is a non-regular problem, in that the null hypothesis belongs to the boundary

of the parameter space. However, using the results in Yakowitz and Spragins (1968), it follows that

any non-degenerate finite mixture of normal distributions cannot itself be normal. It follows that, in

our application, testing Assumption 5 under the maintained assumption of normal components and

non-degenerate p(dS , dT , x)’s amounts to testing normality of the observed wage distributions.9

The mixture in (3) is estimated through a MCMC procedure, which is fully documented in Ap-

pendix B and whose main features can be described as follows.10 Let e(x) = [1, e2(x), . . . , e8(x)]
′ be

the 8× 1 vector containing the balancing scores. We set:

Yi|e(x) ∼ N(θ′ie(x), σ
2
i ), i = 0, 1

p(dS , dT , e(x)) = Φ(γ ′
ge(x)), g = 1, . . . , 8

for mixture components and mixture weights, respectively, where Φ(·) is the standard normal distri-

bution function. The former equation defines the 8 × 1 vectors of parameters θ0 and θ1, and the

scalars σ2
0 and σ2

1. The latter equation defines the 8×1 vector γg for any combination DT ×D1
S ×D2

S .

Overall, this specification defines 82 unknowns that fully characterise the mixture (3).

We specify a joint prior distribution for these parameters, and we use a Gibbs sampling algorithm

to obtain 2, 000 realizations from their joint posterior distribution. The posterior distributions for the

unknown quantities of the mixture representation (3) can easily be computed using these realizations.

8Perhaps the most natural and intuitive way of addressing the identification problem for mixtures of parametric
distributions is found in Yakowitz and Spragins (1968), who show that a necessary and sufficient condition for the
mixture to be identifiable is that the mixture components be a linearly independent set over the field of real numbers.
This condition is met for the case of mixtures of normal distributions. Using the result by Yakowitz and Spragins (1968),
it follows that our estimation procedure could be extended to more general families of parametric distributions.

9We implemented a simple test for this hypothesis through a suitably defined set of regressions. Within cells defined
by the cross tabulation of the three measurements of educational attainment, we regressed logged wages on the balancing
scores, and tested for the normality of residuals. The results of this procedure, which are available upon request, are
overall against the normality of logged wages.

10It is worth noting that the estimation results proved informationally similar to those obtained in a previous version
of this paper, where maximum likelihood estimation via the EM algorithm was employed.
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Knowledge of these quantities is in turn sufficient to obtain estimates of the probabilities of exact

classification and of the ATT.

4 Data and educational qualifications of interest

4.1 Data

In this paper we only consider methods relying on Assumption 1, and we thus require very rich back-

ground information capturing all those factors that jointly determine the attainment of educational

qualifications and wages. We use the uniquely rich data from the British National Child Develop-

ment Survey (NCDS), a detailed longitudinal cohort study of all children born in a week in March

1958 which contains extensive and commonly administered ability tests at early ages (mathematics

and reading ability at ages 7 and 11), accurately measured family background (parental education

and social class) and school type variables. In fact, Blundell, Dearden and Sianesi (2005b) could not

find evidence of remaining selection bias for the higher education versus anything less decision once

controlling for the same variables we use in this paper. We thus invoke their conclusion in assuming

that there are enough variables to be able to control directly for selection.

Our outcome is real gross hourly wages at age 33. As to educational attainment, of particular

interest to our purposes is that cohort members were asked to report the qualifications they had

obtained as of March 1981 not only in the 1981 Survey (at age 23), but also in the 1991 Survey (at

age 33).11 We can thus construct two separates measures of qualifications obtained up to March 1981,

based either on responses in the 1981 or in the 1991 survey. Furthermore, in 1978 the schools cohort

members attended when aged 16 provided information on the results of public academic examinations

entered up to 1978 (i.e. by age 20).12 For each individual we thus have three measurements, which - as

we argue in the next section - can all be taken as proxies of educational qualifications acquired by age

20. These are the measurements that we will consider to implement the strategy that was described

in Section 3.

We focus on males, further restricting attention to those in work (and with wage information) in

1991 and for whom neither of the three educational measure is ever missing.13 These criteria leave

us with a final sample of 2, 716 observations, which is the same sample used by Battistin and Sianesi

11After having been asked about qualifications obtained since March 1981, cohort members were asked to “help us
check our records are complete” in two steps. First, they had to identify on a card all the qualifications they had obtained
in their lives (including any they had just told the interviewer about), and subsequently they had to identify any of these
that had been obtained before March 1981.

12Similar details were collected from other institutions if pupils had taken such examinations elsewhere. Results were
obtained for approximately 95% of those whose secondary school could be identified.

13It is reassuring to note that the patterns that emerge from the following tables are the same irrespective of whether
the sample is selected on the basis of non-missing educational information ever or non-missing wage information in 1991
(the latter obviously also restricting attention to those employed in 1991).
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(2011).

4.2 Educational qualifications of interest

Non-parametric identification of the misclassification probabilities requires access to at least two inde-

pendent measurements of educational attainment (in the sense explained in Section 2.2). In the NCDS

data, such measurements are offered by self-reported attainment and by the School Files, the latter

however only recording academic qualifications and only those achieved by age 20 - that is Ordinary

Levels (O levels) and Advanced Levels (A levels).14

Although driven by the availability of an independent school measure for O and A levels only,

focusing on academic qualifications offers clear advantages, and allows one to estimate highly policy

relevant parameters. First, academic qualifications are well defined and homogenous, with the central

government traditionally determining their content and assessment. By contrast, the provision of

vocational qualifications is much more varied and ill-defined, with a variety of private institutions

shaping their content and assessment.15 A second advantage of focusing on O and A levels is that

they are almost universally taken through uninterrupted education, whereas vocational qualifications

are often taken after having entered the labour market. It is thus more difficult to control for selection

into post-school (vocational) qualifications, since one would ideally want to control also for the labour

market history preceding the acquisition of the qualification.

A highly policy relevant parameter, and the one we focus on in our application, is the return from

attaining any academic qualification (that is, from acquiring at least O levels) compared to leaving

school at the minimum age of 16 without any formal qualification.16 Special interest in O levels arises

from the finding that in the UK, reforms raising the minimum school leaving age have impacted on

individuals achieving low academic qualifications, in particular O levels. In particular, Chevalier et al.

(2003) show that the main effect of the reform was to induce individuals to take O levels. Del Bono

and Galindo-Rueda (2004) similarly show that changes in features of compulsory schooling have been

biased towards the path of academic attainment; the main effect of the policy was not to increase the

length of schooling, but rather to induce individuals to leave school with an academic certification.

14In the British educational system, those students deciding to stay on past the minimum school leaving age of 16 can
either continue along an academic route or else undertake a vocational qualification before entering the labour market.
Until 1986, pupils choosing the former route could take O levels at 16 and then possibly move on to attain A levels at
the end of secondary school at 18. A levels still represent the primary route into higher education.

15In fact, there is a wide assortment of options ranging from job-specific, competence-based qualifications to more
generic work-related qualifications, providing a blend of capabilities and competencies in the most disparate fields.

16Although the British system is quite distinct from the one in the US, one could regard the no-qualifications group as
akin to the group of high-school drop-outs. The “None” category also includes very low-level qualifications at NVQ level
1 or less, in particular the academic CSE grade 2 to 5 qualifications. Students at 16 could take the lower-level Certificates
of Secondary Education (CSE) or the more academically demanding O levels. The top grade (grade 1) achieved on a
CSE was considered equivalent to an O level grade C. Most CSE students tended to leave school at 16.
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In such a context it is thus of great policy interest to estimate the returns to finishing school with

O levels compared to leaving with no qualifications. Indeed, Blundell, Dearden and Sianesi (2005b)

found a non-negligible return of 18% for those who did leave with O levels and of 13% for those who

dropped out at 16 without any qualifications. Furthermore, the return to acquiring at least O levels

compared to nothing captures all the channels in which the attainment of O levels at 16 can impact

on wages later on in life, in particular the potential contribution that attaining O levels may give to

the attainment of A levels and then of higher education.

Having defined the parameter of interest, it is important to highlight the condition that allows us

to have repeated measurements of achievement at age 20 coming from both school records and NCDS

survey reports. As O level attainment is recorded by the schools by the time the individuals were aged

20 while it is self-reported by individuals by the time they were aged 23, we need O level qualifications

to be completed by age 20. The UK educational system is indeed such that O levels are obtained

before age 20, with the official age being 16.17

4.3 Evidence from the raw data

Table 1 presents estimates of the individual wage returns to any academic qualification using three

different methods (simple dummy variable OLS, fully interacted regression model and propensity

score matching), two sets of control variables (the full set of observables including ability and family

background measures and a subset mimicking what is available in Labour Force style datasets) and

most importantly for the aims of this paper, our three alternative measures of the treatment of interest,

i.e. of having obtained any academic qualification by age 20.

As in Blundell, Dearden and Sianesi (2005b), we find that while results change little in response to

the method used to control for selection on observables, controlling for ability test scores at an early

age and detailed family background measures is crucial, and significantly reduces the returns to a 15

to 28% wage gain depending on the educational measure used. As to the latter, it is indeed striking

that in the more flexible models (fully interacted linear model and matching), using an educational

measure rather than another gives rise to returns which exhibit the same magnitude of bias as from

omitted controls. In particular, matching yields estimates of returns which range from as low as 14.2%

(self-reported 13 years after attainment) to as high as 27.8% (self-reported 3 years after attainment),

with returns estimated from school files falling in between (23.9%). For all three estimation methods -

and irrespective of the set of control variables being used - the estimates using self-reported measures

at different times, as well as those using transcript vs recall information are significantly different (99%

17Indeed, in the NCDS only 5.7% of the O levels self-reported by the individuals at age 23 are reported to have been
obtained after leaving school, and only a negligible share (1.3%) is self-reported to have been completed after age 20.
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level - see the right hand side panel of Table 1). Estimates arising from measures obtained close to

completion (i.e. transcript and self-reports at age 23) are by contrast not statistically different.

To investigate such substantial differences in estimated returns according to the educational report

being used, Table 2 presents cross tabulations between the three underlying measurements. We find

that the percentage of the sample where the three measures all agree is 82%. In what follows, we will

refer to this statistic as the “agreement rate”. Despite this being quite high, there are still important

differences between the information contained in the reports. Of particular interest for our results, the

incidence of academic qualifications in the population is 58.8% according to transcript information,

whilst according to self-reports it is considerably higher, around 65% in both interviews.

If we were to believe the school files, only 3.1% of those students who did achieve O-levels reported

to have no academic qualifications at age 23. At age 33, when asked to recall the qualifications they

had attained by age 23, individuals are observed to make more mistakes, with 8% of O-level achievers

“forgetting” their attainment. Conversely, still taking the school files at face value, it appears that

almost one fifth of those with no formal qualifications over-report their achievement when interviewed

at age 23. As was the case with under-reporting, over-reporting behaviour seems to worsen when

moving further away from the time the qualification was achieved. When relying on recall information,

almost one fourth of individuals with no formal qualifications state to have some.

The highest agreement rates are observed between transcript files and self-reported information

close to completion (an agreement rate of 90% and a kappa-statistic of 0.79218), while the lowest are

found between transcript information and self-reported information based on recall (an agreement

rate of 85% and a kappa-statistic of 0.692). The degree of congruence in information provided by the

same individual 10 years apart falls in the middle (an agreement rate of 88% and a kappa-statistic of

0.745). The kappa statistics show a degree of agreement that Landis and Koch (1977) would view as

substantial (kappa between 0.61–0.80).

One can follow Mellow and Sider (1983) and perform a descriptive analysis of the determinants

of concordance across indicators of educational attainment. In results not shown, we find that only

a couple of measured characteristics seem to matter in predicting agreement rates. In particular,

having a father whose social class is professional is associated with a higher probability of agreement

between the two individual’s self-reports, and consequently among all three reports. Higher ability

as measured by mathematical test scores at 11 is associated with a higher probability of agreement

between self-reported and school information, the link being particularly strong close to completion,

but remaining significant 10 years on. This association also means that high ability individuals have

18The kappa-statistic measure of interrater agreement is scaled to be 0 when the amount of agreement is what would
be expected to be observed by chance and 1 when there is perfect agreement (see Fleiss, 1971).
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a higher likelihood of the three measures being congruent. Finally, school-type variables were found

to be associated with the degree of concordance, with some types of schools (secondary modern and

comprehensive) being associated with lower overall agreement rates. Overall, observed characteristics

are thus found to have a very low predictive power of the degree of concordance, this being particularly

the case when trying to infer the likelihood that information from the school files close to completion

agrees with self-reported information 10 years later (all the control variables jointly explain 3.9% of

the variance). By contrast, observables matter more in modelling the probabillity that individuals and

schools agree close to the attainment of the qualification of interest.

In conclusion, even though formal statistics like the kappa measure of interrater agreement may

show that there is substantial agreement between educational measures, we have seen that remaining

divergences in the resulting treatment indicators can lead to substantially and significantly different

impact estimates - indeed of the same magnitude as not controlling for the rich set of variables available

in the NCDS. Furthermore, taking the school files at face value, there appears to be much more over-

than under-reporting, and reporting errors seem to get worse when individuals are asked to recall their

qualifications. While it appears natural to take the school files as being closer to the “truth”, this is

however by no means an a priori correct assumption, and one which will be assessed empirically in

the next section.

5 Results

This Section presents our empirical results on the extent and features of misclassification, as well as

on the true return to academic qualifications, that is one which takes into account the misreporting

uncovered in the data. We also explore how the biases from misclassification and from omitted variables

interact in the estimation of such a return. We first define the quantities needed to characterize

misreporting across survey and transcript measurements. To ease readability, the conditioning on

observables X will be left implicit throughout.19

5.1 Summary of the quantities retrieved

For each measurement W = {D1
S , D

2
S , DT }, we start by considering the two probabilities of exact

classification fW |D∗ [0|0] and fW |D∗ [1|1] (see Section 2.2 for their definition). Similarly, we define the

percentage of over-reporters as 1−fW |D∗ [0|0], and the percentage of under-reporters as 1−fW |D∗ [1|1].

For each measurement W , the probability of correct classification (equivalent to the event W = D∗)

19As discussed in Section 3, heterogeneity along observable dimensions is modeled by conditioning on the propen-
sity scores eg(x). Thus, one can always view the quantities that will follow as the result of averaging out individual
heterogeneity using the distribution of the eg(x)’s in the population.
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can be computed by averaging the two probabilities of exact classification:

fW |D∗ [0|0](1− fD∗ [1]) + fW |D∗ [1|1]fD∗ [1].

The extent of misclassification in the measurement W is defined as one minus this quantity. Estimates

of these quantities will be presented in Table 3.

The availability of repeated measurements coming from the same individuals allows us to define

more structural parameters that reveal the individuals’ propensity to misreport across waves. Errors in

one survey wave are the result of purposive misreporting of individuals, or simply of survey errors that

may occur independently of individual behaviour. These are substantially different sources of error,

and so are their implications for the design of survey instruments aimed at recording educational

attainment. We therefore focus on four different types of individuals. Consistent truth tellers are

defined from the event D1
S = D∗, D2

S = D∗, namely as those individuals who self-report correctly their

educational attainment across survey waves. They are made up of two groups: consistent truth tellers

among those with the qualification (their share given by fDS |D∗ [1, 1|1]) and consistent truth tellers

among those without the qualification (their share given by fDS |D∗ [0, 0|0]). The percentage of these

individuals can be computed as:

fDS |D∗ [0, 0|0](1− fD∗ [1]) + fDS |D∗ [1, 1|1]fD∗ [1],

thus averaging probabilities that involve the survey response patterns. Similarly, one can define

consistent over-reporters (D1
S > D∗, D2

S > D∗, their share being given by fDS |D∗ [1, 1|0]), consistent

under-reporters (D1
S < D∗, D2

S < D∗, their share being given by fDS |D∗ [0, 0|1]) and the residual group

of confused (D1
S = 1−D∗, D2

S = D∗ or D1
S = D∗, D2

S = 1−D∗), namely individuals with inconsistent

response behaviour across survey waves. Estimates of these quantities will be presented in Table 4.

The comparison between the percentage of truth tellers, on the one hand, and the percentage of correct

classification in each survey wave, on the other hand, should reveal how much the latter results from

behavioural attitudes of respondents or from survey errors.

Finally, we define the probability of recall errors from the event D∗ = 1, D1
S = D∗, D2

S = 1−D∗,

denoting individuals holding the qualification of interest who report so at age 23, but who don’t recall

having the qualification ten years later. The probability of this event can be computed as:

fDS |D∗ [1, 0|1]fD∗ [1].

5.2 Characterising the extent of misclassification

The first three panels of Figure 1 present the distributions across individuals of the probabilities of

exact classification, namely fW |D∗X [1|1, x] and fW |D∗X [0|0, x], for school files (W = DT ), for reports
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in 1981 (W = D1
S) and for reports in 1991 (W = D2

S). The probabilities of exact classification have

been calculated for all individuals in the sample using the methodology described in Section 3.2. As for

each individual our procedure yields 2, 000 realizations from the posterior distribution of the quantity

of interest, all distributions in Figure 1 are obtained by first taking the individual average of these

realizations, and then plotting the distribution of such averages across individuals. The distributions

on the left hand side are in general more disperse than the corresponding distributions on the right

hand side. The probabilities of exact classification by recorded attainment reported in Table 3 are

simply the averages of these distributions.

Our results suggest that individuals are appreciably less accurate than transcripts when they don’t

have any academic qualification, and this is even more so when survey reports from the later 1991

wave are considered. Specifically, the bulk of the distributions on the left hand side column of Figure

1 increasingly shifts towards lower values as one moves down the three indicators (DT , D
1
S , D

2
S). The

averages reported in the second row of Table 3 summarise the extent of misclassification/over-reporting

for individuals without academic qualifications as being 16% in the school files, but as high as 27% and

31% in the 1981 and 1991 surveys. Thus while the degree of accuracy of self-reported measurements

seems to be between 11% to 15% lower when compared to transcript records, we find only a small

effect of the time of reporting for individuals without the qualification of interest (i.e. the survey closer

to completion is only 4% percentage points more accurate than the survey 10 years later).

On the other hand, it seems that individuals are slightly more accurate than transcripts when they

do in fact have academic qualifications (see the right hand side column of Figure 1, and the first row

of Table 3). Individuals with qualifications are between 3% to 7% more likely than schools to report

correctly their attainment, again pointing to little, or no, survey wave effect.

In line with the little evidence available from the US, no source thus appears to be uniformly better.

For individuals, we find that over-reporting is by far the most important source of error and that both

types of reporting error worsen over time. Under-reporting is more of a problem in transcript files,

although the incidence of errors coming from under- and over-reporting is markedly more similar than

when individuals are considered.

Notwithstanding their different underlying patterns of measurement error, the two types of data

sources appear to be remarkably similar in their overall reliability, especially when the sources collect

the information of interest close in time. Specifically, the extent of correct classification for school files

is estimated at 80%, for the 1981 wave at 80.3% and for the 1991 wave at 76.5% (see the last row of

Table 3). The numbers reported thus suggest that self-reported measurements close to completion are

just as accurate as the administrative information coming from the schools. The degree of accuracy is
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however around 4% lower when the information is collected up to 10 years after the qualification was

attained.

Using the misclassification probabilities, we recovered an estimate of the true incidence of academic

qualifications in the population, namely fD∗ [1], of 64.1%. Interestingly, while being substantially

higher than the incidence according to school files (58.8%), this estimate coincides with the incidence

according to either self-reported educational measure (64.0% in the 1981 wave and 65.0% in the 1991

wave).

The availability of two repeated measurements of qualifications which were self-reported by the

same individuals at two points in time gives us the unique chance of assessing the temporal patterns of

misreporting errors across survey instruments and of decomposing misreporting errors into a systematic

component linked to individuals’ persistent behaviour and into a transitory part reflecting survey errors

that occur independently of individual behaviour in each cross section survey wave. Table 4 offers

important insights on the nature of these errors.

First, the proportion of consistent truth-tellers, that is of those individuals who correctly self-

report their educational attainment in both survey waves, is considerably higher amongst those who

do have academic qualifications (76.9%) than amongst those who do not (63.1%). This is graphically

corroborated by the corresponding distributions across individuals presented in the bottom panel of

Figure 1. Overall, we calculated that the percentage of truth tellers represents almost three quarters

(71.9%) of the NCDS sample.

Looking at the share of consistent truth tellers amongst those correctly reporting their attainment

in a given survey wave, we find that among those who do have academic qualifications, 90.8% (=

0.769/0.847) of individuals who report so correctly in wave 1 will also report correctly in wave 2 and

94.8% (= 0.769/0.811) of individuals who reported correctly in wave 2 had also reported correctly in

wave 1. Among those with no academic qualifications, the corresponding ratios are lower (86.6% and

91.8%). Figures from just one survey round may thus not reveal behaviour, as we have shown that

individuals with or without the qualification of interest have different survey response patterns over

time. Our results do show however that the bulk of correct classification can be attributed to some

degree of persistency in the reporting of individuals across waves, while the remaining error (about 5

to 13 percentage points depending on the measurement considered) is not systematic.

Our results further provide a formal test against the assumption that self-reported measurements

in the 1981 and the 1991 surveys are conditionally independent given D∗. This would amount to

assuming conditionally independent errors in the two survey measurements, thus ruling out possible

correlation that may arise, for example, from unobserved individual propensity to misreport. Under
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the assumption stated, the covariance between D1
S and D2

S , conditional on the true attainment D∗,

would be zero, meaning that the probability of consistent classification in Table 4 should be equal to

the product of the probabilities of exact classification in the two waves in Table 3. The evidence that we

find clearly points to a different pattern (for those with the qualification, 0.769 > 0.687 = 0.847×0.811;

for those without the qualification, 0.631 > 0.501 = 0.729×0.687), highlighting the presence of positive

autocorrelation in measurements after controlling for D∗.20

Consistent over-reporters appear to be an important fraction of the no-qualification sample: one

in five (19.6%) of the NCDS members without any academic qualification over-report their attainment

at both survey waves. The size of this group would be noticeably overstated if one were to consider

only what happens in one survey wave (27.1% and 31.3% of the no-qualification samples in the 1981

and in the 1991 surveys, respectively). These two sets of results thus suggest that around one third

(28 to 37%) of over-reporting errors in a given wave are the results of non-systematic recording errors.

In survey data asking for a positive trait, one would expect the share of consistent under-reporters

to be much lower than the one of over-reporters. Indeed, at 11.2%, it is almost half the size. As was

the case for over-reporting, focusing on one survey wave alone would overstate the amount of under-

reporting. Interestingly, once we again combine the cross-sectional and panel results, we find that the

share of under-reporting errors accounted for by non-systematic survey errors is almost identical to

the one that accounted for over-reporting errors (27 to 40%), giving us confidence that we have indeed

isolated the true random error component that occurs independently of individual behaviour.

The last group, the “confused”, are those whose attainment is correctly recorded in one wave,

but misrecorded in the other. This group makes up 14% of the NCDS sample, with slightly more

“confused” among the no-qualification group (17%) than among the qualification group (12%). The

most interesting subgroup amongst the “confused” is the group affected by recall bias, whose share is

given by fDS |D∗ [1, 0|1]. We estimated the incidence of recall errors among those with the qualification

at 7.7%, and in the NCDS sample at 5%.

5.3 Returns to any academic qualification

With the misclassification probabilities in hand, we can then proceed to estimate the true ATT from

achieving any academic qualification as outlined in Section 3. Throughout this section, the following

notation will be employed. ∆∗
FULL and ∆∗

LFS denote estimates that are adjusted for misclassification

20Note also that this correlation cannot be explained by the observable characteristics X: the evidence discussed is
against the assumption that D1

S and D2
S are conditional independent given D∗ and X, as there must be at least one

value of X such that the latter assumption is violated. Figure 6 in Appendix C presents the conditional distributions
fD2

S
|D∗D1

S
X [a|1, b, x] and fD2

S
|D∗D1

S
X [a|0, b, x], visualizing the strong correlation across self-reports in the two survey

waves.
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and employ either full set of controls available in the NCDS or the LFS-style variables. Similarly,

estimates obtained from raw data without controlling for misclassification will be denoted by ∆FULL

and ∆LFS .

The most reliable estimate for the ATT (∆∗
FULL) is a 26.4% wage gain from achieving at least O-

levels, with a posterior standard deviation of 0.065. When we correct for misrecording but only rely on

the smaller set of controls (∆∗
LFS), the estimated ATT is 37.8% with a posterior standard deviation of

0.043 (note that we use such limited set of variables both to estimate the misclassification probabilities

and to then estimate the return). Taken together, these two results point to a 43% upward bias in

estimated returns that do not fully control for selection into educational attainment.

To put these estimates in context, Table 5 displays the new results together with our OLS estimates

from Table 1. In the following, we focus on the OLS estimates as the fully interacted regression model

(FILM) did not provide evidence for heterogeneous returns. It follows that in the remainder of this

section ∆FULL or ∆LFS will refer to point estimates obtained through OLS regressions. In order to

heuristically compare frequentist and Bayesian estimates, we constructed p-values using the asymptotic

distribution of the OLS estimator, calculating the probability of values larger, in absolute terms, than

∆∗
FULL. This amounts to assuming that the latter is the true value of the ATT. To ease readability,

in the table we simply refer to these numbers as p-values for the statistical difference between ∆∗
FULL

and ∆FULL, or between ∆∗
FULL and ∆LFS .

5.3.1 Estimating returns based on educational reports that were obtained relatively
close to the attainment of the qualification of interest

Ignoring both omitted-ability bias and potential misclassification in recorded attainment close to

completion (either in the school files or self-reported), we find a return to academic qualifications

(∆LFS) of 33%. Correcting for selection bias using our rich set of observed background characteristics

reduces the estimated ATT (∆FULL) to 19%. The value ∆∗
FULL thus appears to be bound below from

the estimate that controls only for selection bias and above from the LFS-style estimate that controls

for neither source of bias. Both these estimates are significantly different from the true return and

would provide a misleading picture of how much people with academic qualifications have gained by

investing in education.

What can we say about the relative importance of omitted ability and measurement error biases,

and about the possibilities that the two cancel out when the qualification is recorded close to its

attainment? By comparing the true return (∆∗
FULL) to the one ignoring both types of potential

biases (∆LFS), we do not find any evidence of balancing biases; quite to the contrary, ignoring both

biases leads to a sizeable upward bias in estimated returns of over one quarter (26%). This result
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is reassuringly consistent with the findings in Battistin and Sianesi (2011), who bound the ATT of

interest semi-parametrically and find that ignoring both misreporting and omitted ability bias would

generally lead to at times quite severely upward biased estimates of true returns.

The resulting calibration rule to get the LFS-style estimate of the average return to academic

qualifications for males close to the true return suggests to multiply the “raw” estimate by 0.8. It

has to be noted that these conclusions apply equally to education measured by the school as well as

self-reported by the individuals themselves.

As to the relative importance of ability and measurement error biases, we find that while both

sources of bias give rise to estimates that are significantly different from the true return, the bias

arising from omitted ability controls is larger. In particular, we have shown above how estimates that

correct for measurement error but not for omitted ability incur a 43% upward bias, whilst controlling

for ability but ignoring misclassification error in concurrent reports leads to a 27% downward bias

both in the case of self-reported measure and of school transcripts.

To conclude, in a situation where educational records were obtained relatively close to the com-

pletion of the qualification of interest, we find that the policymaker or analyst cannot simply rely on

measurement error to cancel out the ability bias.

5.3.2 Estimating returns based on educational reports that rely on recalling the attain-
ment of the qualification of interest over more than 10 years

We now turn to consider a situation in which the educational information recorded in the data has

been collected after over 10 years since completion. Since in line with a priori expectations we have

found the recall measure to suffer from a larger extent of measurement error, we now expect the

relative importance of omitted variable bias and measurement error bias to shift.

Indeed, relying on the recall educational measure and controlling only for the LFS-style variables,

the estimated raw return (∆LFS) is 29.3%, which is almost halved once we control for the full set of

observables (∆FULL being equal to 15.1%). However, once we compare these estimates to the true

return (∆∗
FULL) of 26.4%, we find that the latter is very close and statistically indistinguishable (at the

90% level) from the raw estimate ∆LFS . In this application, measurement error in recall information

is thus strong enough to fully compensate for the upward bias induced by omitted ability controls.

Specifically, while estimates that correct for misclassification but not for selection incur a 43% upward

bias (compare ∆∗
FULL to ∆∗

LFS), controlling for selection but ignoring misclassification gives rise to

a bias of exactly the same size (43%) but of different sign. Hence in sharp contrast to a situation

where information on education was obtained relatively close to attainment, when relying on recall

information it seems indeed to be the case that the two biases cancel each other out. There thus
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seems to be no need for a calibration rule: LFS-style estimates of the average return to academic

qualifications based on recall information on qualifications are indeed very close to the true return.

6 Conclusions

In this paper we have provided reliable estimates of the returns to educational qualifications in the UK

that allow for the possibility of misreported attainment. We have additionally identified the extent

of misreporting in different types of commonly used data sources on educational qualifications: exam

transcript files and self-reported educational measures at different elapsed times after completion of the

qualification of interest. We have thus provided estimates of the relative reliability of these different

data sources, as well as of the temporal correlation in individual response patterns.

We have also provided evidence on the relative importance of ability and measurement error biases,

and produced some simple calibration rules as to how to correct returns estimated on data that rely

on self-reported measures of qualifications and contain limited or no information on individual ability

and family background characteristics (such as the Labour Force Survey).

Results in this paper thus represent a new piece of evidence for the UK policy community, which

will allow one to appreciate the relative reliability of different sources of educational information as well

as check the robustness of current estimates of returns to the presence of misreported qualifications.

Knowing the extent of misreporting also has obvious implications for the interpretation of other studies

that use educational attainment as an outcome variable or for descriptive purposes.
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Table 1. Estimates of the returns to any academic qualification.

(1) (2) (3)
Transcript files 1981 Wave 1991 Wave tests of equality
from schools (at age 23) (at age 33) (1)=(2) (1)=(3) (2)=(3)

LFS controls only:

OLS
0.332 0.333 0.293 *** ***
(0.015) (0.016) (0.016)

FILM
0.330 0.336 0.289 *** ***
(0.015) (0.016) (0.016)

PSM
0.331 0.336 0.285 *** ***
(0.015) (0.015) (0.016)

Full set of controls:

OLS
0.194 0.194 0.151 *** **
(0.018) (0.018) (0.018)

FILM
0.216 0.241 0.137 ** ***
(0.030) (0.033) (0.026)

PSM
0.239 0.278 0.142 * *** ***
(0.033) (0.032) (0.025)

Note. Reported are estimates of the average treatment effect on the treated (ATT) obtained by controlling only

for the LFS set of variables (gender and age, ethnicity and region) or the full set of variables used by Blundell,

Dearden and Sianesi (2005) (LFS-controls plus math and reading ability test scores at 7 and 11, mother’s and

father’s education, mother’s and father’s age, father’s social class when child was 16, mother’s employment

status when child was 16, number of siblings when child was 16 and school type). Standard errors are in

parentheses. Estimation methods considered are ordinary least squares (OLS), fully interacted linear matching

(FILM) and propensity score kernel matching (PSM). Right-hand side panel : the corresponding columns are

significantly different at the 99% (***), 95% (**) and 90% (*) level, based on bootstrapped bias-corrected

confidence intervals.

Table 2. Cross tabulation of the indicators of educational attainment (transcript files from schools
and self-reported information from individuals at age 23 and at age 33; N=2716).

Transcript files from schools
Any None

1981 Wave 1991 Wave (at age 33) 1991 Wave (at age 33)
(at age 23) Any None Any None

Any 1445 103 148 70
None 24 25 120 781

Accordance between 1981 wave and 1991 wave (κD1
S ,D

2
S
): 0.745

Accordance between 1981 wave and transcripts (κD1
S ,DT

): 0.792

Accordance between 1991 wave and transcripts (κD2
S ,DT

): 0.692

Accordance across all indicators (κDT ,D1
S ,D

2
S
): 0.743

Note. Reported is the sample size of the 2× 2× 2 cells defined from the cross tabulation D1
S ×D2

S ×DT , where

each indicator is a dummy variable for having any academic qualification vis-à-vis having none. For example,

781 is the number of individuals who, according to all measurements available, have no academic qualification

at age 20. Also reported is the Fleiss’s (1971) kappa coefficient of accordance (see Section 4.3 for further details)

for the pairs (D1
S , D

2
S), (D

1
S , DT ) and (D2

S , DT ), and for the triple (D1
S , D

2
S , DT ).
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Table 3. Probabilities of exact classification across survey instruments (transcript files from schools
and self-reported information from individuals at age 23 and at age 33).

Transcript files 1981 Wave 1991 Wave
from schools (at age 23) (at age 33)

Probabilities of exact classification by recorded attainment:
Any qualification 0.783 0.847 0.811

(0.029) (0.03) (0.028)
No qualification 0.836 0.729 0.687

(0.067) (0.061) (0.057)

Correct classification 0.800 0.803 0.765
(0.033) (0.033) (0.031)

Note. The table presents estimates of the probabilities of exact classification for the three survey instruments.

Top Panel : the row labeled Any qualification reports estimates for fDT |D∗ [1|1], fD1
S |D∗ [1|1] and fD2

S |D∗ [1|1],
respectively; the row labeled No qualification reports estimates for fDT |D∗ [0|0], fD1

S |D∗ [0|0] and fD2
S |D∗ [0|0],

respectively. Bottom Panel : estimates of the probabilities of correct classification obtained by averaging the

two probabilities of exact classification (see Section 5.1 for definitions). Posterior standard deviations are

reported in parentheses.

Table 4. Extent of consistent misclassification across survey instruments (self-reported information
from individuals at age 23 and at age 33).

Academic qualification
Any None

Probabilities of consistent misclassification:
Truth tellers 0.769 0.631

(0.028) (0.053)
Over reporters 0.196

(0.065)
Under reporters 0.112

(0.03)
Confused 0.118 0.172

(0.017) (0.028)

Note. The table presents estimates of the percentage of individuals who consistently report correctly (truth

tellers), over-report (over-reporters) and under-report (under-reporters) their educational qualification across

survey waves. Presented also is the percentage of individuals with inconsistent response behaviour across survey

waves (confused). Numbers in the first column refer to fDS |D∗ [1, 1|1], fDS |D∗ [0, 0|1] and the residual category,

respectively. Numbers in the second column refer to fDS |D∗ [0, 0|0], fDS |D∗ [1, 1|0] and the residual category,

respectively. See Section 5.1 for definitions. Posterior standard deviations are reported in parentheses.
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Table 5. Comparison of estimates of returns to educational attainment.

∆∗
FULL

0.264
(0.065)

Transcript files 1981 Wave 1991 Wave
from schools (at age 23) (at age 33)

∆LFS
0.332 0.333 0.293
(0.015) (0.016) (0.016)

p-value: ∆LFS = ∆∗
FULL 0.000 0.000 0.070

∆FULL
0.194 0.194 0.151
(0.018) (0.018) (0.018)

p-value: ∆FULL = ∆∗
FULL 0.000 0.000 0.000

Note. The top panel of the table reports the ATT computed as described in Section 3 (∆∗
FULL), which

represents our most reliable estimate (posterior standard deviation is in parentheses). It is obtained using

the full set of controls, and adjusting for misclassification. Also, reported is the OLS estimate of the same

parameter from Table 1, using LFS controls (∆LFS) and the full set of controls available in the NCDS sample

(∆FULL). P-values are to test the equality of the two estimates (see Section 5 for a description of how the test

was implemented).
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Figure 1. Probabilities of exact classification in the indicators of educational attainment (transcript
files from schools and self-reported information from individuals at age 23 and at age 33).
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Notes. Top panel : Probabilities of exact classification in administrative information, i.e. percentage of indi-

viduals having any academic qualification for whom schools report so (right hand side figure) and percentage of

individuals without academic qualifications for whom schools report so (left hand side figure). Central panels:

probabilities of exact classification in self-reported information at age 23 (1981 wave) and at age 33 (1991 wave),

respectively, i.e. percentage of individuals reporting any academic qualification amongst those having so (right

hand side figures) and percentage of individuals reporting no academic qualification amongst those without

the qualification (left hand side figures). Bottom panel : probabilities of consistent exact classification in both

self-reported information at age 23 (1981 wave) and at age 33 (1991 wave), i.e. percentage of individuals report-

ing any academic qualification in both waves amongst those having so (right hand side figure) and percentage

of individuals reporting no academic qualification in both waves amongst those without the qualification (left

hand side figure). Posterior distributions are presented throughout (see Section 3 for details).

30



References

[1] Aigner, D. (1973), Regression with a Binary Independent Variable Subject to Errors of Observa-

tion, Journal of Econometrics, 1, 49-60.

[2] Battistin, E. and Sianesi, B. (2011), Misclassified Treatment Status and Treatment Effects: An

Application to Returns to Education in the UK, Review of Economics and Statistics, 93, 2, 495-

509.

[3] Black, D., Berger, M. , and Scott, F. (2000), Bounding Parameter Estimates with Non-Classical

Measurement Error, Journal of the American Statistical Association, 95, 451, 739-48.

[4] Black, D., Sanders, S., and Taylor, L. (2003), Measurement of Higher Education in the Census

and Current Population Survey, Journal of the American Statistical Association, 98, 463, 545-554.

[5] Blundell, R., Dearden, L., and Sianesi, B. (2005a), Measuring the Returns to Education. In:

What’s the Good of Education? The Economics of Education in the UK. Princeton University

Press, pp. 117-145. ISBN 0691117349.

[6] Blundell, R., Dearden, L., and Sianesi, B. (2005b), Evaluating the Effect of Education on Earnings:

Models, Methods and Results from the National Child Development Survey, Journal of the Royal

Statistical Society A, 168, 3, 473-512.

[7] Bonjour, D., Cherkas, L., Haskel, J., Hawkes, D., and Spector, T. (2003), Returns to Education:

Evidence from UK Twins, American Economic Review, 93, 5, 1799-1812.

[8] Bound, J., Brown, C., and Mathiowetz, N. (2001), Measurement error in survey data, in J.J.

Heckman and E. Leamer (eds.), Handbook of Econometrics. Vol. 5, Amsterdam: North-Holland,

3705-3843.

[9] Card, D. (1999), The Causal Effect of Education on Earnings, Handbook of Labor Economics,

Volume 3, Ashenfelter, A. and Card, D. (eds.), Amsterdam: Elsevier Science.

[10] Chen, X., Hong, H., and Nekipelov, D. (2011), Nonlinear Models of Measurement Errors, forth-

coming in the Journal of Economic Literature.

[11] Chevalier, A., Harmon, C., Walker, I., and Zhu, Y. (2004), Does education raise productivity, or

Just Reflect It?, The Economic Journal, 114, 499, 499-517.

[12] Dearden, L. (1999), Qualifications and earnings in Britain: how reliable are conventional OLS

estimates of the returns to education?, IFS working paper W99/7.

31



[13] Dearden, L., McIntosh, S., Myck, M., and Vignoles, A. (2002), The Returns to Academic and

Vocational Qualifications in Britain, Bulletin of Economic Research, 54, 249-274.

[14] Del Bono, E., and Galindo-Rueda, F. (2004), Do a Few Months of Compulsory Schooling Matter?

The Education and Labour Market Impact of School Leaving Rules, IZA Discussion Paper No.

1233.

[15] Everitt, B.S., and Hand, D.J. (1981), Finite Mixture Distributions, Chapman and Hall: London

[16] Fisher, R.A. (1935), The Design of Experiments, Edinburgh: Oliver&Boyd.

[17] Fleiss, J.L. (1971)Measuring nominal scale agreement among many raters, Psychological Bulletin,

Vol. 76, No. 5 pp. 378Ű-382.
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A Appendix A - Proof of non-parametric identification

The aim of this Appendix is to show that the setup considered in Section 2 is sufficient to non-

parametrically identify the mixture components fY |D∗ [y|d∗] and the extent of misclassification in the

data. The result in what follows generalizes Hu (2008) to allow for over-identification which, for

the case at hand, arises because of the availability of repeated measurements coming from the same

individuals; for simplicity, the conditioning on X = x will be left implicit throughout.

Let the following matrices constructed from raw data be defined:

FYDS |DT

2×4

=

[
fYDS |DT

[y, 0, 0|0] fYDS |DT
[y, 0, 1|0] fYDS |DT

[y, 1, 0|0] fYDS |DT
[y, 1, 1|0]

fYDS |DT
[y, 0, 0|1] fYDS |DT

[y, 0, 1|1] fYDS |DT
[y, 1, 0|1] fYDS |DT

[y, 1, 1|1]

]
,

FDS |DT

2×4

=

[
fDS |DT

[0, 0|0] fDS |DT
[0, 1|0] fDS |DT

[1, 0|0] fDS |DT
[1, 1|0]

fDS |DT
[0, 0|1] fDS |DT

[0, 1|1] fDS |DT
[1, 0|1] fDS |DT

[1, 1|1]

]
.

Define the following latent matrices:

FDS |D∗

2×4

=

[
fDS |D∗ [0, 0|0] fDS |D∗ [0, 1|0] fDS |D∗ [1, 0|0] fDS |D∗ [1, 1|0]
fDS |D∗ [0, 0|1] fDS |D∗ [0, 1|1] fDS |D∗ [1, 0|1] fDS |D∗ [1, 1|1]

]
,

FD∗|DT

2×2

=

[
fD∗|DT

[0|0] fD∗|DT
[1|0]

fD∗|DT
[0|1] fD∗|DT

[1|1]

]
,

FY |D∗

2×2

=

[
fY |D∗ [y|0] 0

0 fY |D∗ [y|1]

]
,

which are characterized by 10 unknowns.

Using Assumption 3 and assumption 4 there is:

fYDS |DT
[y,dS |dT ] =

1∑
d∗=0

fY |D∗ [y|d∗]fDS |D∗ [dS |d∗]fD∗|DT
[d∗|dT ],

fDS |DT
[dS |dT ] =

1∑
d∗=0

fDS |D∗ [dS |d∗]fD∗|DT
[d∗|dT ],

or, in matrix notation:

FYDS |DT
= FD∗|DT

FY |D∗FDS |D∗ , (4)

FDS |DT
= FD∗|DT

FDS |D∗ . (5)

Now, under Assumption 6 the matrix FD∗|DT
is nonsingular (i.e. full rank), so that from (5) there

is:

FDS |D∗ = F−1
D∗|DT

FDS |DT
, (6)

which if substituted into (4) yields:

FYDS |DT
= FD∗|DT

FY |D∗F−1
D∗|DT

FDS |DT
.

36



Identification of FY |D∗ , FD∗|DT
and FDS |D∗ is achieved by considering a particular type of gener-

alized inverse, called the right Moore-Penrose inverse, which here always exists and is unique provided

that the matrix to be inverted is of full rank (see, for example, Seber, 2008). Define:

A+ ≡ A′(AA′)−1.

The matrix A+ is known as the right Moore Penrose inverse of the matrix A and has the property

that AA+ equals the identity matrix. It follows that:

FYDS |DT
F+
DS |DT

= FD∗|DT
FY |D∗F−1

D∗|DT
,

where FDS |DT
has full rank because of Assumption 7. The above expression defines a singular value

decomposition (see Seber, 2008, page 334), implying that the mixture components on the main di-

agonal of the latent matrix FY |D∗ can be obtained as the singular values of the known matrix

M ≡ FYDS |DT
F+
DS |DT

. Additional assumptions need to be imposed to establish a correspondence

between the eigenvalues and the eigenvectors of M, the latter here been represented by the the matrix

of misclassification probabilities FD∗|DT
.

Assumption 5 ensures that there exist an ordering of the eigenvalues in the diagonal matrix FY |D∗ ,

while Assumption 6 guarantees that FD∗|DT
is a diagonally dominant matrix, hence characterizing

the order of the eigenvectors. The above argument proves identification of the fY |D∗ [y|d∗]’s, and

of the fD∗|DT
[d∗|dT ]’s. Knowledge of the latter probabilities implies, via (6), identification of the

fDS |D∗ [dS |d∗]’s and of the fD∗ [d∗]’s. This in turn implies identification of the mixture weights in (1).

The above argument may be generalized further to accommodate for D∗, DS and DT to be cate-

gorical random variables taking an arbitrary number of values as long as the independence assumption

betweenDT andDS is maintained. The proof would proceed along the same lines. In this more general

setting, the main complication lies in the fact that FD∗|DT
is no longer a square matrix, and that the

existence of its left generalized inverse, crucial to obtain equation (6) and defined by A− = A(A′A)−1,

is not guaranteed by the full rank condition stated above. It must also be the case that the number of

columns of the matrix to be inverted is larger than the number of its corresponding rows. In our setup,

this would amount to assuming that the support of the instrument DT is larger than the support of

the latent random variable D∗, an assumption which is standard in the literature on instrumental

variables.

Additional References

[1 ] Seber, G.A.F (2008). A Matrix Handbook for Statisticians. Wiley: New Jersey.
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B Appendix B - Description of the MCMC algorithm

B.1 Model setup

In what follows we describe the MCMC procedure used to estimate weights and components of the

mixture model. Let e(x) = (1, e1(x), . . . , eK−1(x))
′ be the vector of propensity scores obtained from

a multinomial regression of G, defined as in Section 3.2, on a set of conditioning variables X. In our

empirical application there is K = 8.

Assume that the indicator function:

D∗|dS , dT , e(x) ∼ Be (p(dS , dT , e(x))) ,

is distributed as a Bernoulli random variable. Note that, in the setup considered, D∗ is a latent quan-

tity. We will assume throughout that the mixture components are normally distributed as explained

in Section 3, namely:

Yi|e(x) ∼ N
(
µi(e(x)), σ

2
i

)
, for i = 0, 1.

Note that the propensity score is, by construction, only affecting the mean of the potential outcome

distribution, while retaining the assumption of homoscedasticity across individuals. The functions

p(dS , dT , e(x)) and µj(e(x)) we select are as follows:

p(dS , dT , e(x)) = pg(e(x)) = Φ(γ ′
ge(x)),

µi(e(x)) = θ′ie(x), i = 0, 1,

where γg and θj are K-dimensional parameter vectors and Φ(·) is the standard normal cumulative

density function. Note that the subscript g, defining the combination of dS and dT considered, is

introduced in the definition of pg(e(x)) to simplify notation. This setup defines the following vector

of parameters: ξ =
{
θ0, σ

2
0,θ1, σ

2
1,γ1, . . . ,γK

}
.

B.2 MCMC algorithm

The goal of the MCMC algorithm is to approximate the posterior distribution of ξ given the data.

For the case at hand, given a starting point ξ(0) we will generate a Markov chain whose invariant

distribution is the posterior. The large number of parameters makes it convenient to update the

Markov chain one component at a time. The Gibbs sampler implements this idea by drawing each

component (conditional on the others) from the corresponding full conditional distribution.

B.3 Prior distributions

To ease computation and to obtain closed form solutions for the full conditional distributions, we

considered the following priors for the parameters in ξ.
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Figure 2. Marginal prior distributions
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• Means of mixture components. For i = 0, 1 we set θi ∼ NK(ψ, V ), withψ = (2, 0, 0, 0, 0, 0, 0, 0)

and V = I, with I being the identity matrix. Such choice is made so that the resulting marginal

prior distribution for the mean of the potential outcomes21, is centered around the mean of the

observed outcome Y . The variance of such prior distribution is also chosen to be sufficiently

large (basically spanning the observed range of Y ) so that we are not imposing any strong prior

knowledge on the value of µi(e(x)), i = 0, 1. The top left panel of Figure 2 reports the shape of

such prior density.

• Variances of mixture components. For i = 0, 1 we set σ2
i ∼ IG(α, β), that is an inverse

gamma distribution with density:22

f(x) =
βα

Γ(α)
x−(α+1)e−

β
x .

21This is defined as: ∫
µj(e(x))dx.

22If the random variable Z has a gamma distribution with parameters α and β:

f(x) =
βα

Γ(α)
x(α−1)e−βx,

then Z−1 has the inverse gamma distribution with parameters α and 1/β. The density is always finite, its integral is
finite if α > 0, and is the conjugate prior distribution for the variance parameter of a normal distribution. To simulate
from an inverse gamma, one has to draw samples from a gamma variate, namely X, and then compute 1/X.
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The values of the shape α and scale β parameters were chosen to 2 and 1, respectively. The

corresponding density function is reported in the top right panel of Figure 2.

• Index probability. We set γg ∼ NK(ζg,W ). We select multivariate normal priors following

Albert and Chib (1993), so to ease sampling from the full conditional distributions (see below).

In the application we set W = 0.5I, where I is defined as above. Note that we adopt different

priors distribution for each group defined by the combination of dS and dT , summarized by

g = 1, . . . ,K, so to include prior knowledge on the corresponding probabilities pg(e(x)). In

particular ζ1 = (−1.5, 0, 0, 0, 0, 0, 0, 0, 0), so that the prior density on the marginal probability

of observing D∗ equal to one given that all reported measures are zero, i.e. fD∗|DSDT
[1|0, 0, 0],

is the one plotted in the bottom left panel of Figure 2, which give most of its weight to values

around zero. Similarly ζK = (1.5, 0, 0, 0, 0, 0, 0, 0, 0), so that the prior density for the probability

of observing D∗ equal to one given that all reported measures are one, i.e. fD∗|DSDT
[1|1, 1, 1],

is symmetric around 0.5 with respect to the former, hence giving most of its weights around

1. Finally ζg = (0, 0, 0, 0, 0, 0, 0, 0) for g = 2, . . . ,K − 1, resulting in a prior on the marginal

probability density given by the bottom right panel of Figure 2.

B.4 Full conditional distributions

The choice made on the prior distributions for the parameters involved implies that the full conditional

distributions can be derived as follows.

B.4.1 Latent state D∗
i

Given the prior distributions outlined above, then for all i :

Pr[D∗ = 1|dS , dT , e(x), ξ] ∝ p(dS , dT , e(x)) exp

{
−(y − µ1(e(x)))

2

2σ2
1

}
, (7)

Pr[D∗ = 0|dS , dT , e(x), ξ] ∝ (1− p(dS , dT , e(x))) exp

{
−(y − µ0(e(x)))

2

2σ2
0

}
, (8)

so that one could easily draw values from such conditional distributions.

B.4.2 Index probability γg

For any g = 1, . . . ,K define the latent random variable T as:

T |ξ, e(x), g ∼ N (γ ′
ge(x)) truncated at left (right) by 0 if D∗ = 1 (D∗ = 0). (9)

The conditional posterior distribution of γg is then a multivariate normal:

γg|ξ, e(x) ∼ NK(ζ̃g, W̃ ),
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where ζ̃g = (W−1 + E′
gEg)

−1(W−1ζg + EgTg) and W̃ = (W−1 + E′
gEg)

−1, with Eg and Tg being the

matrices corresponding to e(x) and T , respectively, including only rows for which there is G = g.

B.4.3 Conditional means of mixture components θi

The conditional posterior for θi is multivariate normal with mean vector:

ψ̃j = (V −1 + S′
jSj)

−1(V −1ψ + S′
jyj),

and variance:

Ṽj = (V −1 + S′
jSj)

−1,

where Sj and yj are the matrix obtained from e(x) and y only including rows for which there is D∗ = j.

B.4.4 Conditional variances of mixture components σ2
j

The conditional full posterior distribution for σ2
i is inverse gamma with parameters:

α̃ = α+ nj/2,

β̃ = β + 0.5
(
y′jyj +ψ

′Vψ − ψ̃j
′
Ṽ −1
j ψ̃j

)
,

where nj is the number of observations for which there is D∗ = j.

B.4.5 Algorithm

The sampler alternates two main steps. First, it draws from the distribution of the latent indicators

D∗ given the model parameters ξ; then, it draws from the model parameters ξ given the indicators D∗.

Convergence to the posterior distribution is obtained after a burn-in period set by a certain number of

iterations (10, 000 in our application). All draws after convergence refer to the posterior distribution

and are, by construction, autocorrelated. In our application, the number of random draws was set to

2, 000.

The algorithm consists of the following steps (with t denoting the generic iteration):

• Initialize the chain at
(
θ
(0)
j ,σ

(0)
j γ

(0)
g

)
, for j = 0, 1 and g = 1, . . . ,K.

• for t= 1, ..., iLoop

– Simulate D∗(t)|θ(t−1)
i ,σ

(t−1
i γ

(t−1)
g from a Bernoulli random variable as in equations (7) and

(8).

– Simulate T
(t)
i |D∗(t),γ

(t−1)
g , i = 1, . . . , N , from a truncated Normal distribution according

to (9).
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– Simulate γ
(t)
g |T (t),D∗(t) from a multivariate Normal distribution with mean ζ̃g and variance-

covariance matrix D̃, for g = 1, . . . ,K.

– Simulate θ
(t)
j |D∗(t),θ

(t−1)
j ,σ

(t−1)
j from a multivariate Normal distribution with mean ψ̃j

and variance-covariance matrix Ṽj , j = 0, 1;

– Permutation sampling step:23

∗ if
(∑N

i=1 θ
′
0e(x) <

∑N
i=1 θ

′
1e(x)

)
then (θ

(t)
0 , σ

2 (t)
0 ) and (θ

(t)
1 , σ

2 (t)
1 ) are interchanged;

– Simulate σ
2 (t)
j |D∗(t),θ

(t)
j ,σ

(t−1)
j from an inverse gamma random variable with parameters

α̃j and β̃j , j = 0, 1;

– t=t+1.

• End for

In Figure 3 we report the mixture components as they result from the algorithm. Reported in

Figure 4 are the posterior distributions of the variance parameter of potential outcomes. The evidence

in the figures is suggestive of heterogenous returns across individuals. Finally in Figure 5 we graph the

marginal posterior distribution of the ATT as obtained by the algorithm using the full set of controls.

Figure 3. Estimated distributions of potential outcomes
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23The mixture distribution is unchanged if the group labels are permuted, and thus the parameter space should be
defined to clear up any ambiguity. We did so by imposing that the marginal means of the mixture components are in
non-decreasing order (see Frühwirth-Schnatter, 2001).
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Figure 4. Posterior distributions of the variance parameter of potential outcomes
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Figure 5. Marginal posterior distribution of the ATT
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Additional References

[1 ] Albert, J.H., Chib, S. (1993), Bayesian Analysis of Binary and Polychotomous Response Data,

Journal of the American Statistical Association, 88, 422, 669-679.

[2 ] Frühwirth-Schnatter, S. (2001)Markov chain Monte Carlo Estimation of Classical and Dynamic

Switching and Mixture Models, Journal of the American Statistical Association. 96, 453, 194-209.
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C Appendix C - Miscellanea

Table 6. Sample selection

sample size
NCDS birth cohort 17,000

Non-missing education
1978 Exam Files 14,331
1981 Survey 12,537
1991 Survey 11,407
None missing 8,504

Males with non-missing wage in 1991 3,639
Non-missing wage in 1991 and education ever 2,716

Note. Reported is the sample size after each selection criterium is applied starting from raw data from the

British National Child Development Survey (see Section 4 for more details). The last row reports the sample

size of the working dataset. The selection criteria adopted are those in Blundell, Dearden and Sianesi (2005)

and Battistin and Sianesi (2011).

Figure 6. Exact classification probabilities in the 1991 Survey given for different values reported in
the 1981 Survey
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