
Hagemann, Stephan; Vossen, Gottfried

Working Paper

Web-Wide Application Customization: The Case of
Mashups

ERCIS Working Paper, No. 8

Provided in Cooperation with:
University of Münster, European Research Center for Information Systems (ERCIS)

Suggested Citation: Hagemann, Stephan; Vossen, Gottfried (2010) : Web-Wide Application
Customization: The Case of Mashups, ERCIS Working Paper, No. 8, Westfälische Wilhelms-
Universität Münster, European Research Center for Information Systems (ERCIS), Münster

This Version is available at:
https://hdl.handle.net/10419/58421

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/58421
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

ERCIS – European Research Center for Information Systems
Westfälische Wilhelms-Universität Münster
Leonardo-Campus 3 48149 Münster Germany
Tel: +49 (0)251 83-38100 Fax: +49 (0)251 83-38109
info@ercis.org http://www.ercis.org/

ERCIS – European Research Center for Information Systems
 Editors J. Becker, K. Backhaus, H. L. Grob, B. Hellingrath, T. Hoeren, S. Klein,
 H. Kuchen, U. Müller-Funk, U. W. Thonemann, G. Vossen

Working Paper No. 8

Web-Wide Application
Customization:
The Case of Mashups

Hagemann, S.
Vossen, G.

W
or

ki
ng

 P
ap

er
 N

o.
 8

W

eb
-W

id
e

Ap
pl

ic
at

io
n

Cu
st

om
iz

at
io

n:
 T

he
 C

as
e

of
 M

as
hu

ps

ISSN 1614-7448

cite as: Stephan Hagemann, Gottfried Vossen: Web-Wide Application Cus-
tomization: The Case of Mashups. In: Working Papers, European Research
Center for Information Systems No. 8. Eds.: Becker, J. et al. Münster
2010.

ISSN 1614-7448

Stephan Hagemann, Gottfried Vossen

Web-Wide Application Customization:
The Case of Mashups

Working Paper No. 8

ERCIS — European Research Center for Information Systems
Editors: J. Becker, K. Backhaus, H. L. Grob, B. Hellingrath, T. Hoeren,

S. Klein, H. Kuchen, U. Müller-Funk, U. W. Thonemann, G. Vossen

Working Papers

III ∎

Working Paper Sketch

Type

Research Report

Title

Web-Wide Application Customization:
The Case of Mashups.

Authors

Stephan Hagemann and Gottfried Vossen

fhagemann ∣ vossen g@ercis.uni-muenster.de

Abstract

Application development of is commonly a balancing of interests, as the question of what
should actually be implemented is answered differently by different stakeholders. This paper
considers mashups, which are a way of allowing an application to grow beyond the capabilities
of the original developers. First, it introduces several approaches to integrate mashups into
the services, or Web pages, that they are based upon. These approaches commonly implement
ways to determine which mashups are potentially relevant for display in a certain Web page
context. One approach, ActiveTags, enables users to create reliable mashups based on tags,
which effectively, leads to customized views of Web pages with tagged content. A scenario
that demonstrates the potential benefits of this approach is presented. Second, a formalization
of the approaches is presented which uses a relational analog to show their commonalities. The
abstraction from implementation specifics opens the range of vision for fundamental capabilities
and gives a clear picture of future work.

Keywords

Application customization; mashups; social tagging; meta-programming.

∎ IV

Contents
Working Paper Sketch . III

List of Figures . V

List of Tables . V

1 Introduction . 1

2 ActiveTags . 2
2.1 ActiveTags as a Sample of Web-Wide Application Customization 3
2.2 Design . 4
2.3 A Use Case: Personal Learning Environments 7

3 Alternatives to Web Application Customization 10
3.1 Piggy Bank . 10
3.2 Intel Mash Maker . 12

4 A Formalization: Mashup Creation as Meta-Programming 14
4.1 A Relational View of the Web . 15
4.2 A Meta-SQL Implementation of Client-Side Mashups 17

4.2.1 Tag Extraction . 17
4.2.2 Mashup Inclusion . 20
4.2.3 Mashup Execution . 21
4.2.4 The Meta Web Query . 22

4.3 On the Expressive Power of Meta Web Queries 23

5 Conclusions . 24

References . 25

V ∎

List of Figures
Figure 1: Overview of ActiveTags components. 4
Figure 2: High-level processes of ActiveTags. 5
Figure 3: Execution of mashups in ActiveTags. 6
Figure 4: Schematic of two sample uses of ActiveTags for Personal Learning Environments

(PLEs). 8
Figure 5: ActiveTags used as a PLE. 9
Figure 6: My Piggy Bank. 11
Figure 7: Extractor creation with Mash Maker. 12
Figure 8: Mash Maker mashup showing craigslist entries on a map. 13
Figure 9: Web page retrieval and meta-querying analogy. 14
Figure 10: Commutative diagram of the Web and Web pages. 16
Figure 11: Commutative diagram of ActiveTags-augmented Web and Web pages. . . 23

List of Tables
Table 1: The Document and Anchor relations. 16
Table 2: The Extractor relation. 17
Table 3: The Mashup relation. 18

1 ∎

1 Introduction

Web applications (“Web apps”) have been developed very rapidly over the past years. Their
development is different from the development of “classic” applications in that Web apps
are perceived and delivered as services, which “impacts the entire software development and
delivery process” (Musser and O’Reilly, 2007). What is immanent to both kinds of applications,
traditional and Web, is that there can never be a full accordance between providers, users, or
other stakeholders as to which features a certain application should have. The utility of new
features and functions differs between the stakeholders, and there will always be functions that
will not be implemented by the provider (although they are requested by users). With their
ever growing importance, the need for customizability henceforth also increases. Moreover, as
Maćıas and Paternò (2008) note, “there is an ongoing shift to end-user centered technology,
and even users with poor or no skill in Web-based languages may feel the need to customize
Web applications according to their preferences.” The present paper studies an approach to
Web application customization that fits particularly well with frameworks whose purpose is to
integrate mashups into Web apps.

The problem of application customization is particularly interesting for the context of Web
applications. Karger et al. (2009); Lutteroth and Weber (2008); Maćıas and Paternò (2008)
each deal with different aspects of this. A key observation of Karger et al. (2009) is that
“instead of warping their data to fit rigid applications, users should warp applications to fit
their data and tasks.” The present paper takes a complimentary approach by suggesting
practical Web app enhancement through mashups. In the first part of this paper, we present
the ActiveTags prototype originally outlined in Hagemann and Vossen (2009), which enables
this based on tag-based mashups that are integrated into Web pages on the fly via a browser
extension. In the second part, the generality of the approach is documented by a transformation
of the application into a relational equivalent.

Attempts to cope with the challenge of application customization from a technical point of
view are Application Programming Interfaces (APIs), which allow skilled developers or users to
create custom functionalities based on the data and functions provided by Web applications.
The number of such APIs has been rising continuously over the last years. This allows for
what Hippel (2005) has called “democratizing innovation.” Well-designed APIs turn Web sites
into platforms that make themselves indispensable by providing the grounds for “ecosystems”
of applications (cf. Musser and O’Reilly, 2007).

One form of API usage is mashup creation, i.e., Web applications which combine data or
functions from one or more sources into one interface. Because of the perceived tentative
character, mashups were first considered to be merely toys or gimmicks, but gradually they
are receiving more recognition from both research and industry. The utilization of mashups in
enterprises has been hampered by some important barriers which prevent widespread adoption
(cf. Hinchcliffe, 2007). However, many companies, large and small, have started to turn to
mashups as a useful option to quickly attain some needed functionality. 1 Offering APIs
enables third parties to develop functionality externally. However, the prerequisites are still
high, as they require programming skills, knowledge of the particular API, and the appropriate
infrastructure to run on.

1In fact, the financial crisis that took off in late 2008 has strengthened the role of mashups in companies
seeking cost savings and improved operations (cf. Rodier, 2009).

∎ 2

Mashups typically do not, however, integrate with the Web page they are based upon. So,
although they may be adding relevant functionality to an application, they are still perceived
as separate from their subjacent services. While this may be beneficial in many use cases, it
vastly prevents them from being used for application customization.

This paper therefore takes a look at mashup frameworks that can be used to integrate mashups
into Web applications, thereby allowing these to be extended in any desired way. The running
example will be ActiveTags, which is the prototype of a Firefox extension (Hagemann and
Vossen, 2009) developed as part of Hagemann (2009). It has the additional benefit of allowing
Web-wide customizations. In order to do so, tags are used as a layer separating Web applica-
tions and mashups. Its approach takes advantage of the fact that there are quite a number of
sites that provide a platform for communication and interaction, but little or no original con-
tent. Such sites intrinsically function as platforms for User-Generated Content (UGC): users
explicitly and implicitly create data through their usage of a site. One form of UGC that has
found particular interest in the research community is tagging (cf. Voss, 2007), i.e., manual,
free-for-all keyword annotation. Typically created in social tagging systems, tags come with a
dual role as personal and social metadata (cf. Ames and Naaman, 2007). While tags do not
constitute the most reliable form of metadata, their flexibility and ease of use has made them
popular among sites employing UGC. Despite being uncontrolled, tags have evolved beyond
their support of search and browsing.

We go one step further in this paper and not only look at the technical side of mashups
and their capabilities w.r.t. the creation of novel types of Web apps; beyond this, we are
also interested in a sound theoretical foundation. To this end, we have observed an analogy
between Web page requests and method execution, particularly immanent in our ActiveTags
concept. This analogy is amenable to meta-querying, which has previously been studied in the
context of relational databases. We adopt meta-querying for describing client-side mashups in
a concise manner, and are aeven able to demonstrate the universality of this approach, which
also subsumes other approaches to the creation of mashups. As an aside, this provides further
evidence of the descriptive power of the relational database model.

The remainder of this paper is organized as follows: Section 2 introduces the ActiveTags
prototype and details how it supports Web-wide application customization. Applications of
similar capabilities as ActiveTags are presented in Section 3. These two sections form the first
and the practical part of this paper. The second part, Section 4, deals with the formalization
of (a generalized version of) these approaches which is based on a relational representation
of the entire setting. In this setting, Document and Anchor relations, which have previously
been introduced in the context of WebSQL (Arocena et al. (1997)), are enhanced by Extractor
and Mashup relations, and it is shown how to specify mashup creation via suitably designed
functions as well as meta-queries. The paper is concluded in Section 5.

2 ActiveTags

In this section we describe the main features as well as the design of the ActiveTags system
and illustrate its usage in the construction of a personal learning environment.

3 ∎

2.1 ActiveTags as a Sample of Web-Wide Application Customization

Tagging is the common term for personal and free labeling (the tags) of information objects
(or items). The result of social tagging is often called a folksonomy. Many variants of social
tagging have been implemented and analyzed. A major distinction is into bag vs. set-based
tagging systems, which were first discussed under the names “broad” and “narrow” in Van-
der Wal (2005). Analyses since then have focused on the introduction and conceptualizations
of variants (e.g. Hotho et al., 2006; Lambiotte and Ausloos, 2006; Lee et al., 2007; Marlow
et al., 2006; Voss, 2007). What is common to all these works is that an agent (the tagger)
performs the act of tagging by attaching a label (the tag) to a resource. Of these three,
at least the latter two (tag and resource) are always presented together. To the users of a
tagging system, tags are more general than applications: Indeed, Thom-Santelli et al. (2008)
have found that taggers try to tag consistently across distinct tagging systems.

The characteristics of tagging are at the heart of the ActiveTags implementation, which we
capture in the four notions of tagging’s (1) free nature, (2) flexibility, (3) scope, and (4)
user-centricity. ActiveTags has been designed to keep and support these notions:

∎ ActiveTags allows multiple tag interpretations to coexist, not enforcing one particular
interpretation.

∎ Tag-based mashups can be added to the running system, which allows interpretations
and new uses to arise and evolve over time.

∎ Tags can be treated uniformly across the Web. Tags from one system can be, but do
not have to be treated differently.

∎ It is the users who control the interpretation and extend the system with new tag-based
mashups.

The question that may still be unclear is how exactly mashups can be based on tags. In short,
tags are used as the triggers and parameters of mashup execution. Mashups are defined in
such a way that the occurrence of certain tags triggers the calling of the mashup, while the
content of other tags is handed as parameters to the mashups.

One form of tags that is of particular interest for this is machine tags. Such tags use separators
to distinguish between their different parts. So-called triple tags (Catt, 2006) are divided into
three parts usually written in the form namespace:property=value. These tags are meant
to enable users to store additional information in a structured way for which there are no
predefined structured fields. Flickr, for example, supports triple tags by giving them special
treatment in their Graphical User Interface (GUI) and API, calling them machine tags (cf.
Straup Cope, 2007). Two examples of support for specific tags are present on Flickr, a
photo sharing site which allows the owners of photos to tag pictures, and to share them with
friends depending on settings. So-called machine tags were introduced in January 2007, see
Straup Cope (2007), which marked the beginning of special treatment of tags of the form
“namespace:predicate=value.” More functions are supported for machine tags when the
Flickr API is used (flickr.com/services/api/flickr.photos.search.html). Earlier,
the site had begun to support two sets of specific tags: geotags and event tags: (1) Geotags
are a combination of three tags that together indicate the presence of a geotag and encode
a geographic location. Two of the tags are machine tags, which encode the longitude and

flickr.com/services/api/flickr.photos.search.html

∎ 4

the latitude and can thus be used to position objects on a map. The site allows these two
tags to be exported into structured data fields for geographic information, so that the pictures
are automatically shown on maps as well. (2) Tags with the prefix “upcoming:event=” are
interpreted as links to events on Upcoming.org, with the effect that a link to the corresponding
event is included in the page.

As will be shown below, machine tags can be used to control the execution of mashups precisely.
Note that non-machine tags may also be suitable for this purpose if properly disambiguated
(cf. Hagemann, 2009).

A user survey has been conducted in Hagemann (2009), which has shown that there is a
considerable interest in the possibilities of ActiveTags, at least among technically versed users.
We believe this is due to the simplicity of the approach, which does not interfere with the
original purpose of Web applications, but can nevertheless extend and customize them in
meaningful ways.

2.2 Design

Figure 1 shows an overview of the main components of the ActiveTags system. Depicted at
the top is the user-side component: a browser with the ActiveTags extension. The ActiveTags
server (depicted on the left) stores global databases of definitions. The mashup or API providers
are part the Web and are not considered a part of ActiveTags.

ActiveTags
server

Web browser

Web-API
provider

ActiveTags
extension

Synchronization Web procedure
calls

Figure 1: Overview of ActiveTags components.

In Figure 2 the high-level processes of ActiveTags are shown. The diagram abstracts from
several aspects: There are detailed functions only when needed to complete the diagram. Data
stores are only shown at an aggregated level. Transport and communication are not shown,
neither are login and logout functions. Instead, processes are modeled to run indefinitely.

Two roles are shown in Figure 2, which form two separate processes: administrators and users.
While the processes of users span all components of ActiveTags, administrator processes are
limited to the ActiveTags server component. The administrator’s role is the management of
public definitions. To this end, the administrator performs his management function directly
on the ActiveTags server, depicted in the top right of Figure 2.

5 ∎

The user process can be subdivided into two subtasks. On the one hand, there is the manage-
ment of local definitions and feedback, which can also be subsumed as the user’s administrative
functions. On the other hand, it lays the execution of mashups. The latter function is con-
trolled indirectly by the user, as it operates whenever Web pages are browsed and loaded.
It is this function that initiates the communication with various providers to augment Web
pages with a mashup when appropriate. Both functions are performed through the ActiveTags
extension, use all the local definitions, and are depicted in the center of Figure 2.

Web browser

Browser ready

ActiveTags extension

User

Interact with
browser

Manage local
definitions and

feedback

ActiveTags server

Web API provider

Admin

Manage public
definitions and

feedback

Upload and
download public
definitions and

feedback

Get
mashups

Execute
mashups

Go back to
browser

Local
defintions

Public
defintions

Mashups
requested

Transfer
complete

Management
console displayed

Local
definition

Figure 2: High-level processes of ActiveTags.

The central user process is the one depicted at the bottom of Figure 2 and is comprised of the
functions “execute mashups” and “get mashups.” It stands out from the other processes as it
is the only one in which mashup providers are included in the communication and as it is not
initiated through the interface of the ActiveTags extension, but through the browsing of the
user in an ordinary session with the Web browser.

Next, the process implementing the execution of mashups is depicted in Figure 3. Two paths
are shown in this diagram, one of which connects the ActiveTags extension to the mashup
provider, the other is one that produces a MergeSpace.

The first path starts with the Web page being analyzed by the extension in the function “extract
tags.” This function uses TagExtractor definitions to determine which tags are present on the
current Web page. TagExtractor definitions do not necessarily have to be applicable on a
Web page, and those that are may return empty results if no tags have been entered for the
object represented on that page. If no tags are found, the entire process is aborted (which is
not shown). If tags are found, the next function in this path can determine relevant mashups
by using the Uniform Resource Locator (URL) of the current page and the extracted tags
to determine whether a mashup definition is active that demands execution under the given
circumstances. Again, if none are found the entire process can be aborted. If mashups are
found, their call parameters are determined on the basis of the tags provided. The tags are

∎ 6

Load Web
page

Extract tags

Show
augmented
Web page

HTTP GET
request

HTML

Web API providerBrowser

Web page

Tags

Augmented
Web page

Result

Local
mashup

Local
MergeSpace

Local
TagExtractor

ActiveTags extension

Augment
Web page

Determine
relevant
mashups

Mashup call parameters

Determine
MergeSpace

Web page

MergeSpace

Result

Retrieve
mashup result

Mashup
request

Figure 3: Execution of mashups in ActiveTags.

essentially used to create the URL used in the calling of the Web Procedure Call (WPC) server
which provides the mashup. The following steps are performed for every mashup that fulfills
the conditions: A Hypertext Transfer Protocol (HTTP) GET request is sent to the named
URL, which triggers the execution of the mashup at the mashup provider. The result is sent
back in Hypertext Markup Language (HTML) over HTTP and can now be used to augment
the original Web page. There is one result for every mashup executed, and all of these are
added to the Web page.

Before the Web page can be augmented, another mandatory function has to be performed:
the determination of the MergeSpace. This space, which is either typically at the end of a
Web page or somewhere among the content of the page as defined by a MergeSpace definition,
determines where mashups are to be added into the page. If, for some reason, no MergeSpace
can be determined, the entire process is aborted since there is no place to show the results of
mashups.

With these two prerequisites, mashup results and MergeSpace, ready, the Web page can finally
be augmented. The mashups are shown in their defined place and the loading of the augmented
Web page is complete. Note that since this process is part of the Web page loading procedure
performed by the browser, it can be aborted at any time during its execution, which happens,
for example, when the user clicks on a link to load a new page.

The ActiveTags server stores the global database of definitions. Through this database the ex-
tension instances exchange their definitions. The extension regularly synchronizes its database

7 ∎

of definitions with the server to support sharing among users. This encompasses TagExtractors,
MergeSpaces, and mashups.

2.3 A Use Case: Personal Learning Environments

The idea of employing service-orientation is still at the core of current developments in eLearn-
ing. One proposed concept are so-called PLEs: sets of tools which better support an entire
learning process and tend closer to a learner’s needs. According to Chatti et al. (2007), PLEs
introduce two new ideas to eLearning, namely a decentralization of learning systems through
the decoupling of learning from institutions, and a redirection of the focus from the content
towards the learner. The rationale for PLEs is that while people move through different institu-
tions over time (e.g., college, university, and corporations), their need for continuous learning
remains. The challenge is that a PLE is inherently “personal” and either needs to be built
individually or customized. As Severance et al. (2008) note, “monolithic VLEs are too hard to
customize at the individual user level, and evolve far too slowly to meet teaching and learning
of users who want their teaching and learning environments to be under their personal con-
trol.” This problem with the adaptation of Virtual Learning Environments (VLEs) has led to
proposals for studying mashups as an alternative implementation option for PLEs (cf. Johnson
et al., 2006). The rationale for looking at mashups for the implementation of PLEs is that they
are “distributed web-applications and services that support system-spanning collaborative and
individual learning activities in formal as well as informal settings.”2 While this last note hints
at the potential role of ActiveTags in realizing PLEs, it also leads to the question of whether
its reliance on tags can make it powerful enough.

The first relevant observation is that many Web applications are available through APIs that
can fit into a learning context. Figure 4 lists some of them on the right-hand side. Note that
whether a map viewer or any of the other applications is relevant for learning depends on the
specific learning context. We present the use of ActiveTags as a PLE in a scenario to highlight
how the coordinated usage of several services may over time evolve into the creation of a PLE.

The scenario is as follows: Peter is interested in learning more about robotics. He starts by
searching the Web for “robotics,” and the first entry he finds is the Wikipedia page on robotics.
In order to track his findings, he decides to store the interesting pages he finds in the Delicious
bookmarking system, where he tags them with “robotics.” He does the same for the link to
the Wikipedia page. Further searches might lead him to the Web site of Academic Earth3,
which collects video lectures from top US universities, where he finds a lecture on robotics.4
Peter then decides that he wants to follow the lectures of this course to have a structured way
of learning more about the field. He stores the lecture as a bookmark. While watching the
first lecture, he finds that he wants to take some notes. He decides to use his Google Docs5

account, where he can write documents, spreadsheets, and presentations. He stores a link to
the document in his bookmarks.

When Peter returns after some time, he opens up his bookmark page and sees the resources
he has collected. Being an ActiveTags user he sees that the tags he has added are highlighted.

2http://mupple08.icamp.eu/
3http://academicearth.org
4http://academicearth.org/courses/introduction-to-robotics/
5http://docs.google.com

http://mupple08.icamp.eu/
http://academicearth.org
http://academicearth.org/courses/introduction-to-robotics/
http://docs.google.com

∎ 8

Map viewer

User 1: Social Bookmarking Site

WPCs

Document
viewer 2

Video player

Slideshow player

Document editor

Web browser

ActiveTags MergeSpace

Bookmark 1

Video player
Document
viewer 1

Bookmark 2

Bookmark 3

Tag1, Tag2

Tag3

Tag4, Tag5, Tag6

Document editor

Document viewer 2

User 2: University LMS

ActiveTags MergeSpace

Notes

Video player

Course slideshow

Document editor

Tags
Tag1, Tag2, Tag3

...

Figure 4: Schematic of two sample uses of ActiveTags for PLEs.

He comes up with the idea that it would be nice to have the content mashed up directly on
this page. Checking for relevant mashups, he finds that two are available with which he could
integrate the lecture videos and his notes into his bookmarking page. He adds the relevant
tags manually, reloads the page, and gets the mashups as intended at the bottom of the page.

So far, Peter has been using tags for two functions: (i) He has tagged everything with
“robotics” to denote the context, and (ii) he has tagged the individual resources with the
appropriate tags that activate the mashups. If he does this for many of the lectures, the
context may become unclear: Which notes belong to what lecture? How is the structure
among lectures or courses? He can deal with this by using more specific tags to denote the
context. Instead of using the “robotics” tag he could switch to a combination of tags, such
as “robotics, lecture, lecture:number=i.” Now it becomes clear how contents are organized.
This is just one way of enhancing the context and it shows the flexibility of the approach. By
using it, Peter ends up with personally tailored learning Web pages, where he sees his notes,
the lectures of the course, and bookmarks to further items.

The top left side of Figure 4 (title “User 1: Social bookmarking site”) reflects this scenario
schematically. The tags on the bookmarked resources lead to mashups of relevant content
being shown. Figure 5 shows a screenshot of a browser where this scenario has been imple-
mented with the components mentioned above: Delicious is used for bookmarking, in the top
left of the MergeSpace, the video of the lecture can be seen. Next to it are the personal notes.
In addition to the above scenario a book on robotics is included here as well.

9 ∎

Figure 5: ActiveTags used as a PLE.

∎ 10

Since tagging is so pervasive, the same approach can easily be transferred to other scenarios:
A student taking a university course, for which an Learning Management System (LMS) to
distribute contents can be enhanced with exactly the same functionality when the tags are
copied from Peter’s page. Note that while this will call upon the same mashups, the result
may be different: For example, the content of the document stored at Google Docs can be
accessed only if the Peter has set it to be public or has invited collaborators. This is because
the sharing feature of Google Docs directly carries over to the Google Docs mashup. This
scenario is schematically depicted in the bottom left of Figure 4 (title “User 2: University
LMS”).

The process described here is manual: Peter has to enter the relevant tags based on the
needs of the mashups. Finding the necessary parameter values might not always be obvious.
This falls nicely into the observation of van Harmelen (2008): “While for technically skilled
users a browser-based loosely-joined pieces approach works well, the approach presents some
difficulties for learners who are less than comfortable with multiple systems.”

The difficulties of our loosely-joined approach can be remedied by a tagging support system
that complements the mashup capabilities of ActiveTags. The idea is that when the users
visit a resource that can be mashed up using a particular ActiveTags mashup, the necessary
tags could be generated automatically and offered to the user for copy-and-paste use. This
functionality complements TagExtractors in that it extracts tags for the purpose of resource
identification in other contexts. Coming back to our scenario one last time, this might allow
Peter to add the video lecture to his bookmarks by simply going to the Web page of the lecture
and copying the needed tags out of the tagging support extension.

3 Alternatives to Web Application Customization

In this section we look at applications of similar capabilities as ActiveTags, in particular MIT’s
Piggy Bank and the Intel Mash Maker. It will turn out later that all three, although funda-
mentally different and design and approach, can be treated in a formal way within the same
framework.

3.1 Piggy Bank

The Piggy Bank project6 states that it “is a Firefox extension that turns your browser into
a mashup platform, by allowing you to extract data from different web sites and mix them
together.” Piggy Bank can improve the Web surfing experience on Web sites that provide
their content in Resource Description Framework (RDF) in addition to HTML (cf. Huynh
et al., 2007, 2005). Where pages do not come with RDF descriptions of their data, Piggy
Bank can employ so-called screen scrapers. These scrapers are similar to the TagExtractors
of ActiveTags, but they can be defined to extract any content into an RDF data structure.
Scrapers can be site-specific (such as the ones for the ACM Portal or for LinkedIn) or general
(such as those for Embedded RDF (eRDF) or Gleaning Resource Descriptions from Dialects

6http://simile.mit.edu/wiki/Piggy_Bank

http://simile.mit.edu/wiki/Piggy_Bank

11 ∎

of Languages (GRDDL)).7 Scrapers are defined in RDF and can be added to an instance of
Piggy Bank through the extensions features.

The extension can invoke the extraction of this RDF data and store it locally. Figure 6 shows
one view of the data store. Since RDF data from any domain or ontology can be stored, the
available views are generic: list, calendar, map, timeline, and graph (the last one is active in
Figure 6). Searching for data is supported by a faceted search interface: this allows the user
to refine a collection of items by selecting properties. This feature can be seen on the right
side of Figure 6. A detailed view presents all the data belonging to an item in a table view.
All these features give users a good generic overview over the Semantic Web data they have
accumulated.

Figure 6: My Piggy Bank.

Users can share their data via Semantic Bank. This is a server implementation that accom-
panies Piggy Bank. Data from the local bank can be published to the server, where all those
that have access to it have the possibility of browsing it (just as in the local version) and can
choose to download it into their respective local banks.

As of now, Piggy Bank allows mashups based on the extracted data only in a very limited
way. Certainly, if several disconnected pages offer their content as RDF and data from these
sources is stored in the local bank, the content of these pages is mixed and shown uniformly in
Piggy Bank. However, there is no built-in possibility to make use of this information beyond
the generic views. This is due to the generic nature of the store, where more specific views
are linked to specific domains for which Piggy Bank currently is too general. As Huynh et al.
(2007) states, the authors “envision improvements to Piggy Bank that let users incorporate
on-demand templates for viewing the retrieved information items.” These templates could be
the equivalent to mashup definitions of ActiveTags.

7http://simile.mit.edu/wiki/Category:Javascript_screen_scraper

http://simile.mit.edu/wiki/Category:Javascript_screen_scraper

∎ 12

3.2 Intel Mash Maker

The Intel Mash Maker8 is available as extensions to Firefox and Internet Explorer (Ennals et al.,
2007). It comes with an API for the creation of widgets, which are Mash Maker applications
that perform a variety of functions related to extracted data including the display of mashups.
Mash Maker is aimed at the typical Web users, who “should be able to easily create applications
and interfaces that are specially customized not only for them, but for the exact task they are
performing at that moment.” Their “mission is mashups for the moment, on demand” (Ennals
et al., 2007).

Similar to Piggy Bank, Mash Maker employs an RDF extractor to gather the data from Web
pages and allows custom extractors to be built in case no RDF is available. In contrast to
the approach of Piggy Bank, extractors are not created in JavaScript and are not themselves
available as RDF. Instead they are built using a combination of point-and-click and menu
configurations. Figure 7 shows the creation of an extractor. The large shaded area in the
center of the figure shows the item that has been selected, the menu on the left shows that it is
stored in an “article” type. Optionally, an extractor can directly be specified using XPath. One
can expect that Mash Maker’s approach will lead to more extractors being created because
of the following reasons: (i) they are built collaboratively, (ii) incrementally, and (iii) they
immediately benefit all users because they do not have to be installed individually.

Figure 7: Extractor creation with Mash Maker.

In contrast to the implementation of the ActiveTags server, extractors for Mash Maker are
stored on a wiki-like server where any user can edit the extractors of any Web page. To
prevent vandalism, individual page extractors can be locked, or extractors can be rolled back
to older versions. In addition, the server stores argument handlers that contain information
on what parameters of a page are included in the URL. Just like extractors, the argument
handlers are specified by the users.

8http://mashmaker.intel.com/

http://mashmaker.intel.com/

13 ∎

In spite of all the support, the definition of extractors is a non-trivial process. In combination
with the limited spread of RDF, this is the reason why few pages are fully “understood” by
Mash Maker. Extractors that do work well include the pages discussed in Ennals et al. (2007)
such as housing on craigslist in San Francisco9 or flight results on expedia.com.10

Similar to ActiveTags, the creation of mashups is included in the browser and made part
of the ordinary browsing process. To this end, widgets need to be combined meaningfully:
“Widgets visualize the data on the page, add additions and action icons to items on the page,
provide data to other widgets, and see information that has been extracted from the page by
Extractors.”11

The combination of widgets can lead to a mashup; Figure 8 shows such a case: The source
page is a craigslist apartment listing. On top of it, several widgets are shown. The first widget
is “Find address,” which marks up the individual entries and allows users to trigger the retrieval
of that entry’s precise address. The “Google Maps” widget shows on a map the addresses that
a user picked.

Figure 8: Mash Maker mashup showing craigslist entries on a map.

Mash Maker utilizes all the data from Web pages, either through RDF or through custom
extractors. The wiki approach to extractor sharing seems a very promising way of quickly
building up a database. That the database is not large yet does not speak against this
approach. The widgets approach, combined with the idea to make mashups “on demand” is
currently the critical point: its complexity seems to produce many inoperable mashups.

9http://sfbay.craigslist.org/apa/
10http://www.expedia.com/
11http://mashmaker.intel.com/web/techinfo/gs_widgets.html

http://sfbay.craigslist.org/apa/
http://www.expedia.com/
http://mashmaker.intel.com/web/techinfo/gs_widgets.html

∎ 14

Finally, Mash Maker does not enable mashups based on tags as they are enabled by ActiveTags.
The extractors are too site-specific, and invocation criteria for a mashup based on the content
of tags cannot be specified. Invocation is based on the presence of certain properties and
not their contents. Nevertheless, it seems to be possible to integrate the functionality of
ActiveTags into Mash Maker, since the necessary information is potentially retrievable.

4 A Formalization: Mashup Creation as Meta-Programming

As noted by Hagemann and Vossen (2010), a straightforward analogy can be drawn between
the request of a Web page and the execution of a program or a method. In order for a method
to be called, it is typically referenced by its name. In addition, parameters may be passed to
the method, which specify the particular execution. As depicted in the first row of Fig. 9, the
method that requests a Web page is the HTTP GET method. The URL can be seen as its
parameter. The execution of the HTTP request leads to the result, i.e., a Web page. When
client-side mashups augment the surfing experience, there is an additional step in this process.
As the second row in Fig. 9 depicts, the Web page and the extractors define what mashups
are to be executed and appended to the Web page. The role of the extractors is thus to
specify which portions of the Web page are to be interpreted as the specification of additional
“method calls.” The result of these executions is again a Web page, but augmented with the
results from the execution of mashups.

GET http://www... HTTP request

Web page

Request Web page

ResultSpecification Execution

Web page

Extractors

1.

2.
Mashups

Web page

Apply augmentation

Figure 9: Web page retrieval and meta-querying analogy.

It turns out that the analogy already contains the essence of meta-querying : Queries that
execute or manipulate other queries as their data. Client-side mashups turn the data that is
the original Web page into a query when extractors are applied and mashups are subsequently
executed. One can hence say that a Web page implicitly includes the execution information,
which is made explicit by mashups and extractors. In this section we study this analogy, by
reformulating the application of client-side mashups as meta-querying.

15 ∎

Using meta-querying for the realization of the analogy highlights that, once again, seemingly
unrelated approaches can be ascribed to relational technology. This holds even for the most
recent developments (mashups) and again shows the robustness of the relational model. Such
an advancement is in line with the call for a broader application of existing mechanisms
from Abiteboul et al. (2005), while at the same time supporting the engineering of Web
information systems by contributing a conceptual viewpoint that highlights the need for further
developments.

4.1 A Relational View of the Web

In order to be able to analyze the meta-querying analogy more formally, an appropriate language
and setting must be chosen first. Any language that allows for meta-programming or even
reflection can be used. The question is: How to choose among the multitude of languages
that exist with this property? As noted in van den Bussche et al. (1996),

. . . adding reflection to a computationally complete programming language will
not enhance its expressive power, the features are typically meant to allow for a
more natural or succinct expression of certain advanced programming construc-
tions.

Indeed, computationally complete languages obviously allow for the representation of client-
side mashups, since they have been built as such. The question thus boils down to whether
a more limited language can be used to model our approach. That this is indeed the case is
shown by the WebSQL project Arocena et al. (1997), at least for ordinary Web queries, since
it has defined an “SQL-like query language for extracting information from the web.”12

However, reflection is neither native to Structured Query Language (SQL) nor to the relational
world, but has been introduced and analyzed in the literature: Programs as data have been
analyzed during the early 1980s already Stonebraker et al. (1984). van den Bussche et al.
(1996) presented an approach where relational algebra programs are stored in specific program
relations. Dalkilic et al. (1996) introduced Reflective SQL (RSQL), a design and implemen-
tation of the latter approach using SQL. The construction of these program relations was
shown to be effective, yet quite intricate, but led to a version of SQL that allowed for queries
ignoring precise schema information Masermann and Vossen (2000). Building on Stonebraker
et al. (1984), a complementary approach was presented in Neven et al. (1999) to create the
relational meta algebra, which allows relational algebra expression as a data type in relations.

The culmination of these efforts can be seen in Meta-SQL van den Bussche et al. (2005) where
the idea of the “program as a data type” is transferred to SQL and to commercial database
systems (in particular IBM’s DB2). “Practical meta-querying”, as it is called, is enabled here
by storing queries in an Extensible Markup Language (XML) notation and defining appropriate
functions that enable reflection in SQL. A working prototype of this has been developed.13 In
this section we use the results from work on WebSQL and Meta-SQL to remodel the approach
of client-side mashup applications from a relational standpoint.

12http://www.cs.toronto.edu/˜websql/
13http://alpha.uhasselt.be/˜lucg5855/meta_impl/

http://www.cs.toronto.edu/~websql/
http://alpha.uhasselt.be/~lucg5855/meta_impl/

∎ 16

Following Arocena et al. (1997), the Web can essentially be modeled using two relations
Document and Anchor (see Tab. 1). In the Document relation we assume, without loss
of generality, that the content of the text column contains HTML in the form of Extensible
Hypertext Markup Language (XHTML). This ensures that we can use XML operations without
restrictions. The url column identifies each document. All other columns of the document
relation contain document metadata. The Anchor relation stores the links between documents:
One, signified by the url column, points to the other denoted in the href column with the
label contained in the column label.

Table 1: The Document and Anchor relations.

url title text length type modif

http://www.acme.com/a title 1 text 1 1,234 text 09-01-01
http://www.acme.com/b title 2 text 2 2,691 text 09-01-01
http://www.acme.com/c title 3 text 3 6,372 text 09-01-01

⋮

url label href

http://www.acme.com/a label 1 http://www.acme.com/b
http://www.acme.com/a label 2 http://www.acme.com/c
http://www.acme.com/c label 3 http://www.acme.com/b

⋮

Surfing the Web then becomes requesting a row from the Document table. An individual Web
page is retrieved from Document by selecting on the url attribute:

select d.title, d.text
from Document d
where url="$SOME_URL",

The commutative diagram in Fig. 10 shows the effect of this relational mapping of the Web:
In the relational depiction of the Web (denoted as rel) an HTTP request resulting in a Web
page becomes an SQL query resulting in a “Web tuple” as defined by the query above. This
tuple is the same as one would get when applying the “tuplezing” function tup to a Web page.
This function simply projects the title and the text of a Web page into a tuple.

Webrel
SQL

> Web tuple

Web

rel

∧

HTTP
> Web page

tup

∧

Figure 10: Commutative diagram of the Web and Web pages.

17 ∎

4.2 A Meta-SQL Implementation of Client-Side Mashups

In order to transfer the functionality of client-side mashups into the relational world, we need
a way to incorporate it into the relational view and into the way this “relational Web” is
queried. As the discussion above has highlighted, it is the extractors and mashup definitions
that perform the implicit meta-querying contained in the Web pages. Therefore, essentially
these two need to be represented in relations as well. To this end, we introduce two new
relations for storing extractors and mashups, resp.

The Extractor relation (see Tab. 2) has two columns, with selector storing the XPath
expression that selects all the tags on a page and urlPattern defining, in the form of a
regular expression, the URLs on which the extractor operates. This captures the essential
properties of TagExtractors from ActiveTags Hagemann and Vossen (2009).

Table 2: The Extractor relation.

selector urlPattern

//a[contains(concat(’␣’,@rel,’␣’),’␣tag␣’)] .*
//div[contains(@id,’tagdiv’)]/a[@class=’Plain’] ˆ.*(www\.)?flickr\.com
//a[contains(@class,␣’spTagboxLink’)] ˆ.*www\.spiegel\.de.*$

⋮

Tab. 3 shows relation Mashup, which contains mashup definitions. The id column identifies
mashups. url typically specifies which document the mashup loads when it is called, note
that this column can contain null values. title gives the name of the mashup. tags contains
an XML document which defines the tags required for the execution of the mashup. The
root element in this document is always tags, in which there are an arbitrary number of tag
elements.

The tags contained in this XML tree are those necessary for the execution of the mashup.
urlPattern is a regular expression that is evaluated with the URL of a concrete Web page to
test whether the mashup is to be executed. Column template contains a template of what
the mashup will insert into a Web page should it be executed. Notice that not all mashups
have a template. The last column, program, contains the SQL code of the mashup. This is
the code that needs to be executed to evaluate the effect of a mashup. The depiction shown
here is a simplification: We later want to apply Meta-SQL functions, which actually operate
on an XML representation of the SQL queries van den Bussche et al. (2005). We have opted
for standard SQL syntax here for its compactness in representation.

Querying the mashed-up Web needs to incorporate the contents from the two additional tables.
To this end, we need to define how extractors work on documents and how mashups are
appended; this done next.

4.2.1 Tag Extraction

Before mashups can be applied, extractors need to be applied in order to determine which tags
are present on a Web page. It was stated above that Web pages are stored in XML format.

∎ 18

Table
3:

The
M

ashup
relation.

id
url

title
tags

urlPattern
tem

plate
program

1
http://upcoming.
yahoo.com/...

U
pcom

ing
event

<tags>
<tag>upcoming:event</tag>
</tags>

.*

<at:title/>

select
applyT

em
plate

(
m

.tem
plate

,
m

.title
,

m
.u

rl)
from

M
ashup

m
w

here
m

.id
=

1
,

2
http://www.
lastfm.de/...

Last.fm
event

<tags>
<tag>lastfm:event</tag>
</tags>

.*

<at:title/>

select
applyT

em
plate

(
m

.tem
plate

,
m

.title
,

m
.u

rl)
from

M
ashup

m
w

here
m

.id
=

2
,

3
http://dblp.
mpi-inf.mpg.de/...

D
B

LP
search

<tags>
<tag>DBLPsearch</tag>
</tags>

http:\/\/.*
bibsonomy...

<h4><at:title/>
</h4>
<iframe

src="{at:url}"/>

select
applyT

em
plate

(
m

.tem
plate

,
m

.title
,

m
.u

rl)
from

M
ashup

m
w

here
m

.id
=

3
,

4
NULL

D
B

LP
&

Events

<tags>
<tag>DBLPsearch</tag>
<tag>upcoming:event</tag>
</tags>

.*
N

U
LL

select
CM

B
(m

ashed
)

fromM
ashup

m
,

m
ashed

in
U

EVAL(m
.program

)
w

here
m

.id
=

1
or

m
.id

=
3

,

⋮

19 ∎

Listing 1: XSLT function “extractTags”

1 FUNCTION e x t r a c t T a g s PARAM s e l e c t o r STRING RETURNS XML
2 b e g i n
3 <xs l :param name = ” s e l e c t o r ” />
4

5 <x s l : t e m p l a t e match = ”/”>
6 <t a g s>
7 <x s l : f o r−e a c h s e l e c t = ”$ s e l e c t o r ”>
8 <tag><x s l : v a l u e−o f s e l e c t=” . ”/></ tag>
9 </ x s l : f o r−e a c h>

10 </ t a g s>
11 </ x s l : t e m p l a t e>
12 end

Listing 2: View definition “DocumentWithTags”

1 create view DocumentWithTags as
2 s e l e c t
3 d . ∗ , t . t a g s
4 from
5 Document d ,
6 (
7 s e l e c t CMB(e x t r a c t T a g s (d . t e x t , t e . s e l e c t o r)) as t a g s
8 from T a g E x t r a c t o r t e
9 where r e g e x p (t e . u r l P a t t e r n , d . u r l) = 1

10) t ,

We can thus use Extensible Stylesheet Language Transformations (XSLT) to make extractors
operational. Listing 1 contains the XSLT code of function extractTags, which will operate
on the XML content of a Web page. Since the extractor selectors are XPath expressions, it
suffices to extract all elements from the Web page that are returned by that expression, which
is precisely what this function does.

Listing 2 defines view DocumentWithTags that uses the extractTags function to add a column
with the extracted tags to the other information from the document relation. It uses the lateral
table syntax to include the text and the url of a Web page into the subquery (lines 7–9) that
applies extractTags. The function regexp is used in this subquery to ensure that only applicable
extractors are actually executed. It checks that the url of the document matches the regular
expression defined in column urlPattern of the extractor. Not all database systems contain
a regular expression function; however, if user-defined functions are allowed (which is the case
in most current database systems), it can be defined by implementing such a function Stolze
(2003).

The CMB function (“combine”) is taken from van den Bussche et al. (2005): It is an XML
aggregation function that leads from a set of XML documents to a single one. It does so by
adding a new root node, which is always cmb, and including the source documents d1, . . . , dn

as subelements. Column tags in view DocumentWithTags therefore always contains an XML
document that has cmb as its root node and several trees of tags as subelements.

∎ 20

While we have spoken of “tag extraction” in this section, the extension towards more elaborate
information is straightforward. Extracting more information from a page can be implemented
by defining several extractors for a page. If other data structures (instead of only tags) are to
be allowed, another column may be introduced into the extractor relation, which specifies how
the data is to be stored. Mashups may then make use of this. However, even all this may be
encoded into tags, for example, by using structured (also called machine) tags Straup Cope
(2007).

4.2.2 Mashup Inclusion

With view DocumentWithTags adding tags to documents we have the first component for the
“mashed-up relational Web” in place. The second component needed is the actual combination
of documents with mashups. For this we will create another view, but first we need another
function, which can check whether a set of tags (eventually coming from a Web page) is
sufficient for the execution of a particular mashup. This is what function checkTagSufficiency
depicted in Listing 3 does.

All tag nodes can be selected from the tags column in DocumentWithTags with the XPath
expression //tag. This path is used by checkTagSufficiency to construct the tagsOnPageKey
key of all the tags in a source document. The function then checks for all tags in the mashup
definition whether a key with the same name exists. This effectively checks if all the required
tags are present in (and thus form a subset of) the tags of a document. Only if all required
tags are found, the output document will be the empty string; otherwise it will contain one or
more “f” characters.

To make checkTagSufficiency work with the documents, we construct another view based on
DocumentWithTags, which is called DocumentWithMashups and which is depicted in Listing 4.
Essentially, this view copies the columns from DocumentWithTags, but performs the necessary
transformations on the title and the text column to include mashups. A note is appended
to the title (line 4), making it clear that this document has been processed by ActiveTags.
The mashups are added to the text in lines 5–13. The subquery (lines 8–11) executes and
prepares the mashups. Two checks are performed for each mashup: (1: line 11) whether the
URL matches that of the urlPattern (which we have already seen for TagExtractors) and

Listing 3: XSLT function “checkTagSufficiency”

1 FUNCTION c h e c k T a g S u f f i c i e n c y PARAM tagsOnPage XML RETURNS XML
2 b e g i n
3 <xs l :param name = ” tagsOnPage ” />
4

5 <x s l : k e y name=” tagsOnPageKey ” match=”$ tagsOnPage // tag ” use=” . ” />
6

7 <x s l : t e m p l a t e match = ”/”>
8 <x s l : f o r−e a c h s e l e c t = ”/ t a g s / tag ”>
9 < x s l : i f t e s t=” count (key (’ tagsOnPageKey ’ , s t r i n g (.)))=0”>f</ x s l : i f>

10 </ x s l : f o r−e a c h>
11 </ x s l : t e m p l a t e>
12 end

21 ∎

Listing 4: View definition DocumentWithMashups

1 create view DocumentWithMashups as
2 s e l e c t
3 dwt . u r l ,
4 c o n c a t (dwt . t i t l e , ’ (w i t h A c t i v e T a g s mashups) ’) as t i t l e ,
5 appendMashups (
6 dwt . t e x t ,
7 (
8 s e l e c t CMB(mashup) mashups
9 from Mashups m, mashup i n UEVAL(m. program)

10 where c h e c k T a g S u f f i c i e n c y (m. tags , dwt . t a g s) = ’ ’ and
11 r e g e x p (m. u r l P a t t e r n , dwt . u r l) = 1
12)
13) as t e x t ,
14 dwt . l e n g t h , dwt . type , dwt . modi f
15 from
16 DocumentWithTags dwt ,

(2: line 10) whether the tags in the document are sufficient for execution by checking that
checkTagSufficiency returns an empty string.

The from-clause uses another Meta-SQL expression from van den Bussche et al. (2005), namely
UEVAL. This function is one of two in Meta-SQL that allow for semantical meta-querying.
UEVAL dynamically executes SQL expressions (or more correctly, their XML representations)
which can be loaded from table columns and returns the table resulting from the execution as
a set of XML documents. UEVAL can appear anywhere in an SQL expression where a table
reference can be used.

Using again CMB, the mashups are combined so that one XML document is returned. Function
appendMashups is the final one to be applied here: It combines the original document text
with the combined mashups.

Listing 5 shows the definition of function appendMashups. This function copies all the contents
of the original document into the output. When the body element is discovered it is copied to
the output, too, but in addition the XHTML code generated for the mashups is appended.

4.2.3 Mashup Execution

The final component for querying the “mashed-up relational Web” is the execution of mashups.
Looking again at Tab. 3, we see that the first three mashups all contain a template and
use function applyTemplate in their program column. The template contains elements of
the form at:parameter, which the applyTemplate function replaces by the current parameter
values. The notation we use is that of Diamond (2002), who provides a full-fledged templating
solution for XSLT. This is usable for our implementation also, which is why we do not provide
a more specific implementation for applyTemplate here.

Looking at the templates in Tab. 3, one can see that those of Mashups 1 and 2 define simple link
mashups Hagemann and Vossen (2009): They create a link to the additional information. The

∎ 22

Listing 5: XSLT function “appendMashups”

1 FUNCTION appendMashups PARAM mashups XML RETURNS XML
2 b e g i n
3 <xs l :param name=” mashups ” />
4

5 <x s l : t e m p l a t e match=”∗”>
6 <x s l : c o p y>
7 <x s l : c o p y−o f s e l e c t=”@∗”/>
8 <xs l : app l y− t emp la te s />
9 </ x s l : c o p y>

10 </ x s l : t e m p l a t e>
11

12 <x s l : t e m p l a t e match=” body ”>
13 <x s l : c o p y>
14 <x s l : c o p y−o f s e l e c t=”@∗”/>
15 <xs l : app l y− t emp la te s />
16 <h1>A c t i v e T a g s mashups</h1>
17 <xs l : app l y− t emp la te s s e l e c t = ”n$ mashups /CMB” />
18 </ x s l : c o p y>
19 </ x s l : t e m p l a t e>
20 end

respective programs “reselect” the row of the mashup definition to retrieve the other columns
as parameters and apply url and title to the template. The result of applyTemplate is the
result of the query. Mashup 3 works similarly, but it creates an iframe mashup Hagemann and
Vossen (2009): The related information is loaded into the current page as an iframe.

While Mashups 1–3 use essentially the same program, Mashup 4 is defined quite differently
and shows the capabilities of this approach. This mashup has NULL-valued url and template
columns, which it does not need, as it combines the functionality of Mashups 1 and 3 by
selecting their definitions from the mashup database, executing them, and combining their
results. This combination leads to a new mashup, which is semantically different from the
individual mashups since it is only called, when all the necessary tags are present. Note that
url and template do not have to be NULL-valued for mashups to use other mashup definitions:
more intricate mashup definitions might use both.

4.2.4 The Meta Web Query

All functions and relations needed for querying the “Meta Web” are in now in place. Querying
a document from the Web augmented with mashups boils down to the query shown below.
Since views have been created to define the necessary steps for tag extraction and mashup
inclusion, all that needs to be changed as opposed to the query for the original Web is that the
query needs to get documents from view DocumentWithMashups instead of from Documents
directly.

select d.title, d.text
from DocumentWithMashups d
where url="$SOME_URL",

23 ∎

This last observation brings us back to the commutative diagram of Fig. 10, which has shown
the correct abstraction of a Web request in the relational depiction. Figure 11 shows a similar
diagram for the mashed-up Web and its relational equivalent. With client-side mashup appli-
cations requesting a Web page, they no longer only execute an HTTP request, but also apply
client-side mashups, denoted as HTTPM. The relational equivalent we have constructed in the
previous sections is denoted as SQLM. Note that the results of these functions are still Web
page and Web tuple: ActiveTags produces Web pages (albeit augmented) and the adapted
query produces a tuple of the same arity as the original query. This is why the tup function
can remain unchanged.

Webrel
SQLM > Web tuple

Web

rel

∧

HTTPM
> Web page

tup

∧

Figure 11: Commutative diagram of ActiveTags-augmented Web and Web pages.

4.3 On the Expressive Power of Meta Web Queries

The formalization presented above uses the analogy with ActiveTags. The question is: What
does it say about the alternative approaches to client side mashups, or what is the expressive
power of the approach outlined above? As, in terms of functionality related to client-side
mashups, Piggy Bank’s functionality is a subset of that of Mash Maker, we only need to
discuss the latter here.

Intel Mash Maker can operate on any information extracted from a Web page. This includes
tags, but can (potentially) encompass more than ActiveTags can work with. The following
informal argument shows that this information could also be stored in tags, of which the
number is proportional to the size of the Web page.

The content of any Web page can be represented as a tree structure (the DOM tree of the
page). The number of nodes in that tree is linearly proportional to the number of HTML tags in
the original document. In turn, any tree structure can be represented as a set of RDF triplets.
In addition to triplets storing the content (per node in the tree), additional triplets are needed
to denote the parent triplet of each triplet and the order of the triplets. In effect, the number
of triplets is still linearly proportional to the number of HTML tags in the original document
with a small constant factor. Tags have been called ”‘Poor Man’s RDF”’ (Andersen, 2005),
when it was observed that tags with structure could actually store triplets in a way similar
to RDF triplets. So, with some mild convention on how to delimit the parts of a triplet (for
example, the machine tag convention (Straup Cope, 2007)), triplets can be written as tags.

The argument now is that, with respect to information that can be used, the approaches of
ActiveTags and Intel Mash Maker are hence equivalent. Thus, the above formalization has
the expressive power to incorporate Mash Maker’s approach. In fact, the above argument

∎ 24

even gives an algorithm for making the entire content of a page processable by the client-side
mashup implementation.

5 Conclusions

This paper has presented the Web application customization capabilities of ActiveTags, Piggy
Bank, and Intel Mash Maker. Taking the first as an example it was shown that using the
new mechanisms entire Web pages are being repurposed and put to new uses. This gives
users greater flexibility as to how they can use tagged data. Web sites benefit from more
satisfied users and may use ActiveTags as an incubator for new features. The contribution of
ActiveTags is therefore beneficiary for consumers and producers. Also, while more elaborate
solutions are conceivable and are indeed built, ActiveTags has been shown to offer a quick and
simple solution. The example also shows that there is room for more than just the delivery of
simple mashups.

At the same time, this paper has proposed a relational meta-querying analogy to client-side
mashups. The analogy has been based on ActiveTags, and it has been shown that this does not
pose an essential limitation. As such, the analogy has shown the similarity of the approaches
of several client-side mashup applications. Additionally, it has explained how these can be
elegantly modeled using SQL based on a construction similar to that of WebSQL and with
the help of constructs from Meta-SQL. This shows that the meta-querying analogy is indeed
helpful in understanding the contribution of client-side mashups.

While in this work the analogy has been used for explanatory purposes only, it is possible to
implement it as a running system, since all the components are available. This is a direction
for future work which may unify the different approaches. Through a unification of extractor
and mashup definitions, this may concentrate the efforts and thus give the approaches greater
reach and increase the potential for a wider adoption of client-side mashups.

The combination or unification of the existing solutions can also provide a starting point for the
implementation of what has been termed ActiveMetadata in Hagemann (2009). The idea is
that the approaches presented here only cover a limited portion of systems that might benefit
from integrated mashups. Why not integrate them into the file managers of operating systems
or into enterprise resource planning systems?

25 ∎

References
Abiteboul, S., Agrawal, R., Bernstein, P. A., Carey, M. J., Ceri, S., Croft, W. B., DeWitt, D. J.,

Franklin, M. J., Garcia-Molina, H., Gawlick, D., Gray, J., Haas, L. M., Halevy, A. Y., Hellerstein,
J. M., Ioannidis, Y. E., Kersten, M. L., Pazzani, M. J., Lesk, M., Maier, D., Naughton, J. F., Schek,
H.-J., Sellis, T. K., Silberschatz, A., Stonebraker, M., Snodgrass, R. T., Ullman, J. D., Weikum,
G., Widom, J., and Zdonik, S. B. (2005). The Lowell database research self-assessment. Commun.
ACM, 48(5):111–118.

Ames, M. and Naaman, M. (2007). Why we tag: motivations for annotation in mobile and online
media. In CHI ’07: Proc. of the SIGCHI Conf. on Human factors in computing systems, pages
971–980, New York, NY, USA. ACM Press.

Andersen, B. (2005). Meta Tags: The Poor Man’s RDF? Sci-Fi Hi-Fi Blog. http://weblog.
scifihifi.com/2005/08/05/meta-tags-the-poor-mans-rdf (2009-04-22).

Arocena, G. O., Mendelzon, A. O., and Mihaila, G. A. (1997). Applications of a Web Query Language.
Computer Networks, 29(8-13):1305–1315.

Catt, D. (2006). Advanced Tagging and TripleTags. geobloggers Blog. http://geobloggers.com/
archives/2006/01/11/advanced-tagging-and-tripletags/ (2009-04-22).

Chatti, M. A., Jarke, M., and Frosch-Wilke, D. (2007). The future of e-learning: a shift to knowledge
networking and social software. Int. J. of Knowledge and Learning, 3(4/5):404–420.

Dalkilic, M. M., Jain, M., van Gucht, D., and Mendhekar, A. (1996). Design and Implementation of
Reflective SQL (Extended Abstract). Technical report, Indiana University School of informatics.

Diamond, J. (2002). Template Languages in XSLT. O’Reilly xml.com – xml from the inside out.
http://www.xml.com/pub/a/2002/03/27/templatexslt.html (2009-04-22).

Ennals, R., Brewer, E. A., Garofalakis, M. N., Shadle, M., and Gandhi, P. (2007). Intel Mash Maker:
join the web. SIGMOD Rec., 36(4):27–33.

Hagemann, S. (2009). A Framework for the Consistent Usage of Tag-based Mashups. PhD thesis, The
Münster School of Business and Economics, University of Münster, Münster.

Hagemann, S. and Vossen, G. (2009). ActiveTags: Making tags more useful anywhere on the Web.
In Lin, X. and Bouguettaya, A., editors, 20th Australasian Database Conf. (ADC 2009), Welling-
ton, New Zealand, volume 92 of Conferences in Research and Practice in Information Technology
(CRPIT).

Hagemann, S. and Vossen, G. (2010). Web Page Augmentation with Client-Side Mashups as Meta-
Querying. to appear in Proc. 2nd Asian Conference on Intelligent Information and Database Systems
(ACIIDS) 2010, Hue, Vietnam.

Hinchcliffe, D. (2007). The 10 top challenges facing enterprise mashups. Enterprise Web 2.0 Blog.
http://blogs.zdnet.com/Hinchcliffe/?p=141 (2009-04-22).

Hippel, E. V. (2005). Democratizing Innovation. MIT Press, Cambridge, Cambridge, MA, USA.

Hotho, A., Jäschke, R., Schmitz, C., and Stumme, G. (2006). Emergent Semantics in BibSonomy.
In Hochberger, C. and Liskowsky, R., editors, Informatik 2006 - Informatik für Menschen, Band
2, Beiträge der 36. Jahrestagung der Gesellschaft für Informatik e.V. (GI), 2.-6. Oktober 2006 in
Dresden, volume 94 of LNI, pages 305–312. GI.

Huynh, D., Mazzocchi, S., and Karger, D. (2007). Piggy Bank: Experience the Semantic Web inside
your web browser. Web Semant., 5(1):16–27.

http://weblog.scifihifi.com/2005/08/05/meta-tags-the-poor-mans-rdf
http://weblog.scifihifi.com/2005/08/05/meta-tags-the-poor-mans-rdf
http://geobloggers.com/archives/2006/01/11/advanced-tagging-and-tripletags/
http://geobloggers.com/archives/2006/01/11/advanced-tagging-and-tripletags/
http://www.xml.com/pub/a/2002/03/27/templatexslt.html
http://blogs.zdnet.com/Hinchcliffe/?p=141

∎ 26

Huynh, D., Mazzocchi, S., and Karger, D. R. (2005). Piggy Bank: Experience the Semantic Web Inside
Your Web Browser. In Gil, Y., Motta, E., Benjamins, V. R., and Musen, M. A., editors, The Semantic
Web - ISWC 2005, 4th Int. Semantic Web Conf., ISWC 2005, Galway, Ireland, November 6-10, 2005,
Proc., volume 3729 of Lecture Notes in Computer Science, pages 413–430. Springer-Verlag.

Johnson, M., Liber, O., Wilson, S., Milligan, C., Beauvoir, P., and Sharples, P. (2006). The Personal
Learning Environment: A report on the JISC CETIS PLE project. Technical report, JISC CETIS.

Karger, D. R., Ostler, S., and Lee, R. (2009). The web page as a WYSIWYG end-user customizable
database-backed information management application. In UIST ’09: Proceedings of the 22nd annual
ACM symposium on User interface software and technology, pages 257–260, New York, NY, USA.
ACM.

Lambiotte, R. and Ausloos, M. (2006). Collaborative Tagging as a Tripartite Network. In Alexandrov,
V. N., van Albada, G. D., Sloot, P. M. A., and Dongarra, J., editors, Computational Science - ICCS
2006, 6th Int. Conf., Reading, UK, May 28-31, 2006, Proc., Part III, volume 3993 of Lecture Notes
in Computer Science, pages 1114–1117. Springer-Verlag.

Lee, S. E., Son, D. K., and Han, S. S. (2007). Qtag: tagging as a means of rating, opinion-expressing,
sharing and visualizing. In SIGDOC ’07: Proc. of the 25th annual ACM Int. Conf. on Design of
communication, pages 189–195, New York, NY, USA. ACM Press.

Lutteroth, C. and Weber, G. (2008). End-user GUI customization. In Marshall, S. and Masoodian, M.,
editors, CHINZ, ACM International Conference Proceeding Series, pages 1–8. ACM.

Maćıas, J. A. and Paternò, F. (2008). Customization of Web applications through an intelligent
environment exploiting logical interface descriptions. Interacting with Computers, 20(1):29–47.

Marlow, C., Naaman, M., boyd, d., and Davis, M. (2006). HT06, tagging paper, taxonomy, Flickr,
academic article, to read. In Wiil, U. K., Nürnberg, P. J., and Rubart, J., editors, HYPERTEXT
2006, Proc. of the 17th ACM Conf. on Hypertext and Hypermedia, August 22-25, 2006, Odense,
Denmark, pages 31–40. ACM Press.

Masermann, U. and Vossen, G. (2000). SISQL: Schema-Independent Database Querying (On and Off
the Web). In Desai, B. C., Kiyoki, Y., and Toyama, M., editors, IDEAS, pages 55–64. IEEE Computer
Society.

Musser, J. and O’Reilly, T. (2007). Web 2.0 - Principles and Best Practices. O’Reilly Media, Sebastopol,
CA, USA.

Neven, F., van den Bussche, J., van Gucht, D., and Vossen, G. (1999). Typed Query Languages for
Databases Containing Queries. Inf. Syst., 24(7):569–595.

Rodier, M. (2009). Mashups slowly Gain Traction on Wall Street. Wall Street and
Technology. http://www.wallstreetandtech.com/data-management/showArticle.jhtml?
articleID=216401169 (2009-04-22).

Severance, C., Hardin, J., and Whyte, A. (2008). The coming functionality mash-up in Personal
Learning Environments. Interactive Learning Environments, 16(1):p47 – 62.

Stolze, K. (2003). Bringing the Power of Regular Expression Matching to SQL. IBM develop-
erWorks. http://www.ibm.com/developerworks/data/library/techarticle/0301stolze/
0301stolze.html (2009-04-22).

Stonebraker, M., Anderson, E., Hanson, E., and Rubenstein, B. (1984). QUEL as a data type. In
SIGMOD ’84: Proc. of the 1984 ACM SIGMOD Int. Conf. on Management of data, pages 208–214,
New York, NY, USA. ACM Press.

Straup Cope, A. (2007). Machine tags. Flickr API / Discuss. http://www.flickr.com/groups/
api/discuss/72157594497877875/ (2009-04-22).

http://www.wallstreetandtech.com/data-management/showArticle.jhtml?articleID=216401169
http://www.wallstreetandtech.com/data-management/showArticle.jhtml?articleID=216401169
http://www.ibm.com/developerworks/data/library/techarticle/0301stolze/0301stolze.html
http://www.ibm.com/developerworks/data/library/techarticle/0301stolze/0301stolze.html
http://www.flickr.com/groups/api/discuss/72157594497877875/
http://www.flickr.com/groups/api/discuss/72157594497877875/

27 ∎

Thom-Santelli, J., Muller, M. J., and Millen, D. R. (2008). Social tagging roles: publishers, evangelists,
leaders. In CHI ’08: Proc. of the twenty-sixth annual SIGCHI Conf. on Human factors in computing
systems, pages 1041–1044, New York, NY, USA. ACM Press.

van den Bussche, J., van Gucht, D., and Vossen, G. (1996). Reflective Programming in the Relational
Algebra. J. Comput. Syst. Sci., 52(3):537–549.

van den Bussche, J., Vansummeren, S., and Vossen, G. (2005). Towards practical meta-querying. Inf.
Syst., 30(4):317–332.

van Harmelen, M. (2008). Design trajectories: four experiments in PLE implementation. Interactive
Learning Environments, 16(1):p35 – 46.

Vander Wal, T. (2005). Explaining and Showing Broad and Narrow Folksonomies. vanderwal.net Blog.
http://www.vanderwal.net/random/entrysel.php?blog=1635 (2009-04-22).

Voss, J. (2007). Tagging, Folksonomy & Co - Renaissance of Manual Indexing? Talk at the 10th
International Symposium for Information Science, Cologne, Germany. http://arxiv.org/abs/cs/
0701072 (2009-04-22).

http://www.vanderwal.net/random/entrysel.php?blog=1635
http://arxiv.org/abs/cs/0701072
http://arxiv.org/abs/cs/0701072

∎ 28

Working Papers, ERCIS

Nr. 1 Becker, J.; Backhaus, K.; Grob, H. L.; Hoeren, T.; Klein, S.; Kuchen, H.; Müller-Funk, U.;
Thonemann, U. W.; Vossen, G.; European Research Center for Information Systems (ERCIS).
Gründungsveranstaltung Münster, 12. Oktober 2004. October 2004.

Nr. 2 Teubner, R. A.: The IT21 Checkup for IT Fitness: Experiences and Empirical Evidence from 4
Years of Evalutation Practice. March 2005.

Nr. 3 Teubner, R. A.; Mocker, M.: Strategic Information Planning – Insights from an Action Research
Project in the Financial Services Industry. June 2005.

Nr. 4 Gottfried Vossen, Stephan Hagemann: From Version 1.0 to Version 2.0: A Brief History Of
the Web. January 2007.

Nr. 5 Hagemann, S.; Letz, C.; Vossen, G.: Web Service Discovery – Reality Check 2.0. July 2007.
Nr. 7 Ciechanowicz, P.; Poldner, M.; Kuchen, H.: The Münster Skeleton Library Muesli – A Com-

prehensive Overview. 2009.

29 ∎

∎ 30

ERCIS – European Research Center for Information Systems
Westfälische Wilhelms-Universität Münster
Leonardo-Campus 3 48149 Münster Germany
Tel: +49 (0)251 83-38100 Fax: +49 (0)251 83-38109
info@ercis.org http://www.ercis.org/

ERCIS – European Research Center for Information Systems
 Editors J. Becker, K. Backhaus, H. L. Grob, B. Hellingrath, T. Hoeren, S. Klein,
 H. Kuchen, U. Müller-Funk, U. W. Thonemann, G. Vossen

Working Paper No. 8

Web-Wide Application
Customization:
The Case of Mashups

Hagemann, S.
Vossen, G.

W
or

ki
ng

 P
ap

er
 N

o.
 8

W

eb
-W

id
e

Ap
pl

ic
at

io
n

Cu
st

om
iz

at
io

n:
 T

he
 C

as
e

of
 M

as
hu

ps

ISSN 1614-7448

	Working Paper Sketch
	List of Figures
	List of Tables
	Introduction
	ActiveTags
	ActiveTags as a Sample of Web-Wide Application Customization
	Design
	A Use Case: Personal Learning Environments

	Alternatives to Web Application Customization
	Piggy Bank
	Intel Mash Maker

	A Formalization: Mashup Creation as Meta-Programming
	A Relational View of the Web
	A Meta-SQL Implementation of Client-Side Mashups
	Tag Extraction
	Mashup Inclusion
	Mashup Execution
	The Meta Web Query

	On the Expressive Power of Meta Web Queries

	Conclusions
	References

