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Abstract

We discuss a number of conceptual issues that arise in attempt-
ing to capture, in dynamic games, the notion that there is “common
understanding” among the players that they are all rational.
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1 Introduction

Game theory provides a formal language for the representation of interactive

situations, that is, situations where several “entities” - called players - take

actions that affect each other. The nature of the players varies according to

the context in which the game theoretic language is invoked: in evolutionary

∗This is the first draft of a chapter for a book on Modeling strategic reasoning edited
by Johan van Benthem, Sujata Ghosh and RinekeVerbrugge.
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biology (see, for example, [40]) players are non-thinking living organisms;1

in computer science (see, for example, [39]) players are artificial agents; in

behavioral game theory (see, for example, [24]) players are “ordinary” human

beings, etc. Traditionally, however, game theory has focused on interaction

among intelligent, sophisticated and rational individuals. For example Au-

mann describes game theory as follows:

“Briefly put, game and economic theory are concerned with
the interactive behavior of Homo rationalis - rational man. Homo
rationalis is the species that always acts both purposefully and
logically, has well-defined goals, is motivated solely by the de-
sire to approach these goals as closely as possible, and has the
calculating ability required to do so.” ([3], p. 35.)

This chapter is concerned with the traditional interpretation of game the-

ory and, in particular, with what is known as the epistemic foundation pro-

gram, whose aim is to characterize, for any game, the behavior of rational and

intelligent players who know the structure of the game and the preferences

of their opponents and who recognize each other’s rationality and reasoning

abilities. The fundamental problem in this literature is to answer the follow-

ing two questions: (1) under what circumstances can a player be said to be

rational? and (2) what does ‘mutual recognition’ of rationality mean? While

there seems to be agreement in the literature that ‘mutual recognition’ of

rationality is to be interpreted as ‘common belief’ of rationality, the issue

of what it means to say that a player is rational is not settled. Everybody

agrees that the notion of rationality involves two ingredients: choice and be-

1Evolutionary game theory has been applied not only to the analysis of animal and
insect behaviour but also to study the “most successful strategies” for tumor and cancer
cells (see, for example, [30]).
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liefs. However, the precise nature of their relationship involves subtle issues

which will be discussed below, with a focus on dynamic games.

There is a bewildering collection of notions and results in the literature

concerning the implications of rationality in dynamic games with perfect in-

formation: Aumann [4] proves that common knowledge of rationality implies

the backward induction solution, Ben Porath [11] and Stalnaker [43] prove

that common belief/certainty of rationality is not sufficient for backward in-

duction, Samet [38] proves that what is needed for backward induction is

common hypothesis of rationality, Feinberg [29] shows that common confi-

dence of rationality logically contradicts the knowledge implied by the struc-

ture of the game, etc. The purpose of this chapter is not to review this

literature2 but to highlight some of the conceptual issues that have emerged.

In Section 2 we start with a brief exposition of one of the essential com-

ponents of a definition of rationality, namely the concept of belief and we

review the notions of model of a game and of rationality in the context of si-

multaneous games. We also discuss the role of counterfactuals in the analysis

of simultaneous games. In the context of dynamic games there is a new issue

that needs to be addressed, namely what it means to choose a strategy and

what the proper interpretation of strategies is. This is addressed in Section 3

where we also discuss the subtle issues that arise when attempting to define

rationality in dynamic games. In Section 4 we turn to the topic of belief

revision in dynamic games and Section 5 concludes. The analysis is carried

out entirely from a semantic perspective.3

2Surveys of this literature can be found in [9, 23, 28, 35].
3For a synactic analysis see [17, 25, 26, 27].
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2 Belief, common belief and models of games

For simplicity we shall restrict attention to a qualitative notion of belief, thus

avoiding the additional layer of complexity associated with probabilistic or

graded beliefs. An interactive belief structure (or multi-agent Kripke struc-

ture) is a tuple
〈
N,Ω, {Bi}i∈N

〉
where N is a finite set of players, Ω is a set

of states and, for every player i, Bi is a binary relation on Ω representing

doxastic accessibility: Bi(ω)
def
= {ω′ ∈ Ω : ωBiω

′} is the set of states that are

compatible with player i’s beliefs at state ω.4 We assume that each Bi is

serial (Bi(ω) �= ∅, ∀ω ∈ Ω), transitive (if ω′ ∈ Bi(ω) then Bi(ω
′) ⊆ Bi(ω))

and euclidean (if ω′ ∈ Bi(ω) then Bi(ω) ⊆ Bi(ω
′)). Seriality captures the

notion of consistency of beliefs, while the last two properties correspond to

the notions of positive and negative introspection of beliefs.5 A subset E

of Ω is called an event. Associated with the binary relation Bi is a belief

operator on events Bi : 2
Ω → 2Ω defined by BiE = {ω ∈ Ω : Bi(ω) ⊆ E}.

Thus BiE is the event that player i believes E. Figure 1a shows an interac-

tive belief structure with two players, where each relation Bi is represented

by arrows: ω′ ∈ Bi(ω) if and only if there is an arrow from ω to ω′. In

this structure we have, for example, that B1{γ} = {β, γ}, that is, at both

states β and γ Player 1 believes event {γ}. Let B∗ be the transitive closure of
⋃

i∈N
Bi

6 and define the operator B∗ : 2Ω → 2Ω by B∗E = {ω ∈ Ω : B∗(ω) ⊆

E}. B∗ is called the common belief operator and when ω ∈ B∗E then at ω

4Thus Bi can also be viewed as a function from Ω into 2Ω (the power set of Ω). Such
functions are called possibility correspondences in the game-theoretic literature.

5For more details see the survey in [9].
6That is, ω′ ∈ B∗(ω) if and only if there is a sequence 〈ω1, ..., ωm〉 in Ω and a sequence

〈j1, ..., jm−1〉 in N such that (1) ω1 = ω, (2) ωm = ω′ and (3) for all k = 1, ...,m − 1,
ωk+1 ∈ Bjk(ωk).
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every player believes E and every player believes that every players believes

E, and so on, ad infinitum. Figure 1a shows the relation B∗ (the transitive

closure of B1 ∪ B2): in this case we have that, for example, B∗{γ} = {γ}

but B1B
∗{γ} = {β, γ}, that is, event {γ} is commonly believed only at state

γ but at state β Player 1 erroneously believes that it is common belief that

{γ} is the case.

 

α β γ

α β γ

B  :

B  :2

B  :1

*

 

l r

t 2 , 1 0 , 0

b 1 , 2 1 , 2

Player  2

Player

1

(a) An interactive belief structure (b) A strategic-form game

Figure 1

When the relations Bi (i ∈ N) are also assumed to be reflexive (ω ∈ Bi(ω),

∀ω ∈ Ω), then they become equivalence relations and thus each Bi gives rise

to a partition of Ω. In partitional models, beliefs are necessarily correct

and one can speak of knowledge rather than belief. As Stalnaker [42] points

out, it is methodologically preferable to carry out the analysis in terms of

(possibly erroneous) beliefs and then - if desired - add further conditions that

are sufficient to turn beliefs into knowledge. The reason why one should not

start with the assumption of necessarily correct beliefs (that is, reflexivity of

Bi) is that such an assumption has strong intersubjective implications:

“The assumption that Alice believes (with probability one) that
Bert believes (with probability one) that the cat ate the canary
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tells us nothing about what Alice believes about the cat and the
canary themselves. But if we assume instead that Alice knows
that Bert knows that the cat ate the canary, it follows, not only
that the cat in fact ate the canary, but that Alice knows it, and
therefore believes it as well.” ([42] p. 153.)

One can locally (that is, at a state ω) transform belief into knowledge

by adding the hypothesis that at least one player has correct beliefs (for

some i ∈ N , ω ∈ Bi(ω)) and that there is common belief that nobody has

erroneous beliefs (for all ω′ ∈ B∗(ω) and for all i ∈ N , ω′ ∈ Bi(ω
′)). Adding

such a hypothesis introduces strong forms of agreements among the players

(see [22]) and is, in general, not realistic.

Interactive belief structures can be used to model particular contexts in

which a game is played. Let us take, as a starting point, strategic-form

games (also called normal-form games), where players make their choices

simultaneously (an example is a sealed-bid auction). A strategic-form game

is a tuple
〈
N, {Si,�i}i∈N

〉
where N is a set of players and, for every i ∈

N , Si is a set of choices or strategies available to player i and �i is i’s

preference relation over the set of strategy profiles S = ×
i∈N

Si.
7 We shall

throughout focus on ordinal preferences (rather than cardinal preferences

with associated expected utility comparisons) for two reasons: (1) since the

7A preference relation over a set S is a binary relation � on S which is complete
or connected (for all s, s′ ∈ S, either s � s′ or s′ � s, or both) and transitive (for all
s, s′, s′′ ∈ S, if s � s′ and s′ � s′′ then s � s′′). We write s ≻ s′ as a short-hand for s � s′

and s′ �� s and we write s ∼ s′ as a short-hand for s � s′ and s′ � s. The interpretation
of s �i s

′ is that player i considers s to be at least as good as s′, while s ≻i s
′ means that

player i prefers s to s′ and s ∼i s
′ means that she is indifferent beween s and s′.

The interpretation is that there is a set Z of possible outcomes over which every player
has a preference ralation. An outcome function o : S → Z associates an outcome with
every startegy profile, so that the preference relation over Z induces a preference relation
over S.
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game is usually hypothesized to be common knowledge among the players,

it seems far more realistic to assume that each player knows the ordinal

rankings of her opponents rather than their full attitude to risk (represented

by a cardinal utility function) and (2) our aim is to point out some general

conceptual issues, which are independent of the notion of expected utility.

The definition of strategic-form game specifies the choices available to the

players and what motivates those choices (their preferences over the possible

outcomes); however, it leaves out an important factor in the determination of

players’ choices, namely what they believe about the other players. Adding a

specification of the players’ beliefs determines the context in which a particu-

lar game is played and this can be done with the help of an interactive belief

structure. Fix a strategic-form game G =
〈
N, {Si,�i}i∈N

〉
. A model of G is

a tuple
〈
N,Ω, {Bi, }i∈N , {σi, }i∈N

〉
, where

〈
N,Ω, {Bi, }i∈N

〉
is an interactive

belief structure and, for every i ∈ N , σi : Ω → Si is a function that assigns

to each state ω a strategy σi(ω) ∈ Si of player i. Let σ(ω) = (σi(ω))i∈N

denote the strategy profile associated with state ω. The function σ : Ω→ S

gives content to the players’ beliefs. If ω ∈ Ω, x ∈ Si and σi(ω) = x then

the interpretation is that at state ω player i “chooses” strategy x. The exact

meaning of ‘choosing’ is not elaborated further in the literature: does it mean

that player i has actually played x, or that she is committed to playing x,

or that x is the output of her deliberation process? Whatever the answer,

the assumption commonly made in the literature is that player i has correct

beliefs about her chosen strategy, that is, she chooses strategy x if and only

if she believes that her chosen strategy is x. This can be expressed formally

as follows. For every x ∈ Si, let [σi = x] be the event that player i chooses
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strategy x, that is, [σi = x] = {ω ∈ Ω : σi(ω) = x}. Then the assumption is

that

[σi = x] = Bi [σi = x] . (1)

We will return to this assumption later on, in our discussion of dynamic

games. Figure 1b shows a strategic-form game in the form of a table, where

the preference relation �i of player i is represented numerically by an ordinal

utility function ui : S → R, that is, a function satisfying the property that

ui(s) ≥ ui(s
′) if and only if s �i s

′. In each cell of the table the first number

is the utility of Player 1 and the second number the utility of Player 2. A

model of this game can be obtained by adding to the interactive belief frame

of Figure 1a the following strategy assignments:

σ1(α) = b, σ1(β) = σ1(γ) = t

σ2(α) = σ1(β) = r, σ2(γ) = l.
(2)

How can rationality be captured in a model? Consider the following -

rather weak - definition of rationality: player i is rational at state ω̂ if -

letting ŝi = σi(ω̂) ∈ Si - there is no other strategy si ∈ Si which player i

believes to be better than ŝi. This can be stated formally as follows. First

of all, for every state ω, denote by σ−i(ω) the strategy profile of the players

other than i, that is, σ−i(ω) = (σ1(ω), ..., σi−1(ω), σi+1(ω), ..., σn(ω)) (where

n is the cardinality of N). Then (recall that, by (1) - since σi(ω̂) = ŝi - for

all ω ∈ Bi(ω̂), σi(ω) = ŝi):
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Player i is rational at ω̂ if, ∀si ∈ Si, it is not the case

that, ∀ω ∈ Bi(ω̂), ui (si, σ−i(ω)) > ui (ŝi, σ−i(ω)) .
(3)

Equivalently, let [ui(si) > ui(ŝi)] = {ω ∈ Ω : ui (si, σ−i(ω)) > ui (ŝi, σ−i(ω))} .

Then (recall that σi(ω̂) = ŝi)

Player i is rational at ω̂ if, ∀si ∈ Si, ω̂ /∈ Bi [u(si) > ui(ŝi)] . (4)

For example, in the model of the strategic-form game of Figure 1b ob-

tained by adding to the interactive belief structure of Figure 1a the strategy

assignments given above in (2), we have that both players are rational at

every state and thus there is common belief of rationality at every state. In

particular, there is common belief of rationality at state β, even though the

strategy profile actually chosen there is (t, r) (with payoffs (0, 0)) and each

player would do strictly better with a different choice of strategy. Note also

that, in this model, at every state it is common belief between the players

that each player has correct beliefs,8 although at state β neither player does

in fact have correct beliefs.

It is well known that, in any model of any finite strategic-form game, a

strategy profile s = (si)i∈N is compatible with common belief of rationality

if and only if, for every player i, the strategy si survives the iterated deletion

of strictly dominated strategies.9

8∀ω ∈ Ω, ∀ω′ ∈ B∗(ω), ω′ ∈ B1(ω′) and ω′ ∈ B2(ω′).
9That is, if at a state ω there is common belief of rationality then, for every player i,

σi(ω) survives the iterated deletion of strictly dominated strategies. For a proof and more
details see [17].
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What is the conceptual content of the definition given in (4)? It is widely

claimed that the notion of rationality involves the (implicit or explicit) use

of counterfactual reasoning. For example Aumann writes:

“[. . . ] one really cannot discuss rationality, or indeed decision
making, without substantive conditionals and counterfactuals.
Making a decision means choosing among alternatives. Thus one
must consider hypothetical situations - what would happen if one
did something different from what one actually does. [. . . ] In in-
teractive decision making - games - you must consider what other
people would do if you did something different from what you ac-
tually do.” ([4], p. 15.)

Yet the structures used so far do not incorporate the tools needed for

counterfactual reasoning. The definition of rationality given in (4) involves

comparing the payoff of a strategy different from the one actually chosen with

the payoff of the chosen strategy. Can this counterfactual be made explicit?

First we review the standard semantics for counterfactuals introduced

by Stalnaker [41]. Given a set of states Ω and a set E ⊆ 2Ω\∅ of events

interpreted as admissible hypotheses, a counterfactual selection function is

a function f : Ω × E → Ω that satisfies the following properties: ∀ω ∈ Ω,

∀E,F ∈ E ,

1. f(ω,E) ∈ E,

2. if ω ∈ E then f(ω,E) = ω,

3. if f(ω,E) ∈ F and f(ω,F ) ∈ E then f(ω,E) = f(ω, F ).

(5)
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If ω′ = f(ω,E) then the interpretation is that ω′ is the state closest (or

most similar) to ω where hypothesis E is true.10 Condition 1 is a consistency

condition that says that the state closest to ω where E is true is indeed a

state where E is true. Condition 2 says that if E is true at ω then the state

most similar to ω where E is true is ω itself. Condition 3 says that, if the

closest E-state to ω is in F and the closest F -state to ω is in E, then two

states must coincide.

Given a hypothesis E ∈ E and an event F ⊆ Ω, a counterfactual state-

ment of the form “if E were the case then F would be the case”, which

we denote by E ⇉ F , is considered to be true at state ω if and only if

f(ω,E) ∈ F , that is, if F is true in the closest world to ω where E is true.

Correspondingly, one can define the operator ⇉ : E → 2Ω as follows:

E ⇉ F = {ω ∈ Ω : f(ω,E) ∈ F}. (6)

Adding a counterfactual selection function to an interactive belief struc-

ture allows one to consider complex statements of the form “if E were the

case then player i would believe F” (corresponding to the event E ⇉ BiF ),

or “player i believes that if E were the case then F would be the case” (cor-

responding to Bi(E ⇉ F )), or “Player 1 believes that if E were the case then

Player 2 would believe F” (corresponding to B1(E ⇉ B2F )), etc.

Now, returning to models of strategic-form games and the definition of

rationality given in (4), the addition of a counterfactual selection function

10We chose the simpler version of the theory, due to Stalnaker, where f(ω,E) is a single
element of Ω. The approach was later generalized by Lewis [34] by allowing f(ω,E) to be
a subset of E. For a review of the general approach see [32]. For the conceptual points
that we want to highlight there is no loss of generality in adopting Stalnaker’s approach.
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to a model allows one to compare player i’s payoff at a state ω̂ where he

has chosen strategy ŝi with her payoff at the state closest to ω̂ where she

chooses a strategy si �= ŝi. Implicit in (4) is the assumption that in that

counterfactual world player i’s beliefs about her opponents’ choices are the

same as in ω̂. This is an assumption: it may be a sensible one to make (indeed

Stalnaker [43, 44] argues that it would be conceptually wrong not to make

this assumption) but nonetheless it may be worthwhile bringing it to light

in a more complete analysis where counterfactuals are explicitly modeled.

Within the context of strategic-form games, this is done in [14, 48], where

counterfactuals are invoked explicitly in the definition of rationality.

3 Models of dynamic games

In dynamic (or extensive-form) games players make choices sequentially hav-

ing some information about the moves previously made by their opponents.

If information is partial, the game is said to have imperfect information, while

the case of full information is referred to as perfect information. An example

of the latter is shown in Figure 2a in the form of a tree (the players’ prefer-

ences over outcomes have been omitted). Each node in the tree represents

a history of prior moves and is labeled with the player whose turn it is to

move. For example, at history a2c2 it is Player 1’s turn to move (after his

initial choice of a2 followed by Player 2’s choice of c2) and he has to choose

between two actions: d1 and d2. The terminal histories (the leaves of the

tree, denoted by zj, j = 1, ..., 5) represent the possible outcomes and each

player i is assumed to have a preference relation �i over the set of terminal
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histories.

In their seminal book, von Neumann and Morgenstern [47] showed that a

dynamic game can be reduced to a normal-form game by defining strategies

as complete, contingent plans of action. In the case of perfect-information

games a strategy for a player is a function that associates with every history

assigned to that player one of the choices available there. For example, a

possible strategy of Player 1 in the game of Figure 2a is (a1, d2). A profile

of strategies (one for each player) determines a unique path from the null

history (the root of the tree) to a terminal history (a leaf of the tree). Figure

2b shows the strategic-form corresponding to the extensive form of Figure

2a.

 1

2 2

1

1a 2a

2b1b 1c 2c

2
d

1
d

1z 2z 3z

4z 5z

 Player 2

P
la
y
e
r 
 1

1 1a d

1 2a d

2 2
a d

2 1
a d

1 1b c 1 2b c 2 1b c 2 2b c

1z 1z 2z 2z

1z 1z 2z 2z

3z 4z 3z 4z

3z 5z 3z 5z

(a) A perfect-information game (b) The corresponding strategic form

Figure 2

How should a model of a dynamic game be constructed? One approach

in the literature (see, for example, [4]) has been to consider models of the

corresponding strategic-form (the type of models considered in Section 2).

However, there are several conceptual issue that arise in this context. Recall
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that the interpretation of si = σi(ω) suggested in Section 2 is that at state ω

player i “chooses” strategy si. Now consider a model of the game of Figure

2a and a state ω where σ1(ω) = (a1, d2). What does it mean to say that

Player 1 “chooses” strategy (a1, d2)? The first part of the strategy, namely

a1, can be interpreted as the decision by Player 1 to play a1, but the second

part of the strategy, namely d2, has no such interpretation: if Player 1 in fact

plays a1 then he knows that he will not have to make any further choices and

thus it is not clear what it means to “choose” to play d2 in a situation that

is made impossible by his decision to play a1. Thus it does not seem to make

sense to interpret σ1(ω) = (a1, d2) as ‘at state ω Player 1 chooses (a1, d2)’.

Perhaps the correct interpretation is in terms of a more complex sentence

such as ‘Player 1 chooses to play a1 and if - contrary to this - he were to

play b1 and Player 2 were to follow with c2 then Player 1 would play d2’.

Thus while in a simultaneous game the association of a strategy of player i

to a state can be interpreted as a description of player i’s behavior at that

state, in the case of dynamic games this interpretation is no longer valid,

since one would end up describing not only the actual behavior of player i

but also his counterfactual behavior at a different state. Methodologically

this is not a satisfactory choice: if it is necessary to specify what a player

would do in situations that do not occur in the state under consideration,

then one should model the counterfactual explicitly. But why should it be

necessary to specify at state ω (where Player 1 is playing a1) what he would

do at the counterfactual history a2c2? Perhaps what matters is not so much

what Player 1 would actually do there but what Player 2 believes that Player

1 would do: after all, Player 2 might not know that Player 1 has decided to
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play a1 and needs to consider what to do in the eventuality that Player 1

actually ends up playing a2. So perhaps, the strategy of Player 1 is to be

interpreted not as a description of Player 1’s behavior but as a conjecture

in the mind of Player 2 about what Player 1 would do. This interpretation

of strategies has in fact been put forward in the literature for the case of

mixed strategies (which we will not consider in this chapter, given our non-

probabilistic approach).11

In order to clarify these issues it seems that, in the case of dynamic games,

one should not adopt the models of Section 2 and instead consider a more

general notion of model, where states are described in terms of players’ actual

behavior and any relevant counterfactual propositions are modeled explicitly.

For simplicity we will focus on perfect-information games. Fix a dynamic

game Γ with perfect information and consider the following candidate for

a definition of a model of Γ: a model of Γ is a tuple
〈
N,Ω, {Bi}i∈N , f, ζ

〉

where
〈
N,Ω, {Bi}i∈N

〉
is an interactive belief structure, f : Ω × E → Ω is a

counterfactual selection function and ζ : Ω→ Z is a function that associates

with every state ω ∈ Ω a terminal history (Z denotes the set of terminal

histories in Γ).12 Given a history h in the game, we denoted by [h] the set of

states where h is reached, that is, [h] = {ω ∈ Ω : h is a prefix of ζ(ω)}. We

take the set of admissible hypotheses E (the domain of f(ω, ·)) to be the set

of propositions of the form “history h is reached”, that is, E = {[h] : h ∈ H}

(where H is the set of histories in the game). We now discuss a number of

issues that arise in such models.

11See, for example, [6] and the references given there in Footnote 7.
12Samet [38] was the first to propose models of perfect-information games where states

are described not in terms of strategies but in terms of terminal histories.
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In the models of Section 2 it was assumed that a player always knows his

own strategy (see (1) above). Should a similar assumption be made within

the context of dynamic games? That is, suppose that at state ω player i

takes action a; should we assume that player i believes that she takes action

a? For example, consider a model of the game of Figure 2a and two states,

ω and ω′ such that B2(ω) = {ω, ω
′} and ζ(ω) = a1b1. Then at state ω Player

2 takes action b1. Should we require that Player 2 take action b1 also at

ω′ (since ω′ ∈ B2(ω))? The answer is negative: Player 2 may be uncertain

as to whether Player 1 will play a1 or a2 and plan to play herself b1 in the

former case and c1 in the latter case. Thus it makes perfect sense to have

ζ(ω′) = a2c1. If we want to rule out uncertainty by a player about her action

at a decision history of hers, then we need to impose the following restriction:

If h is a decision history of plater i, a an action at h

and ha a prefix of ζ(ω) then, ∀ω′ ∈ Bi(ω),

if h is a prefix of ζ(ω′) then ha is a prefix of ζ(ω′).

(7)

The above definition can be stated more succinctly in terms of events.

If E and F are two events, we denote by E → F the event ¬E ∪ F . Thus

E → F captures the material conditional. Recall that, given a history h in

the game, [h] = {ω ∈ Ω : h is a prefix of ζ(ω)}. Let Hi denote the set of

decision histories of player i and A(h) the set of choices available at h. Then

(7) can be stated as follows:13

13Note that, if at state ω player i believes that history h will not be reached (∀ω′ ∈ Bi(ω),
ω′ /∈ [h]) then Bi(ω) ⊆ ¬[h] ⊆ [h] → [ha], so that ω ∈ Bi ([h]→ [ha]) and therefore (8) is
satisfied even if ω ∈ [ha].
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∀h ∈ Hi,∀a ∈ A(h),

[ha] ⊆ Bi([h]→ [ha]).
(8)

In words: if at a state player i takes action a at her decision history h, then

she believes that if h is reached then she takes action a.

A more subtle issue is whether we should require (perhaps as a condition

of rationality) that a player have correct beliefs about what she would do

in a situation that she believes will not arise. Consider, for example, the

(part of a) model of the game of Figure 2a illustrated in Figure 3. The first

line gives B2, the doxastic accessibility relation of Player 2, the second line

the function ζ (which associates with every state a terminal history) and

the third line is a partial illustration of the counterfactual selection function:

in particular we have that f(β, {α, δ}) = α and f(γ, {α, δ}) = δ. Note

that the event that Player 1 plays a2 is [a2] = {α, δ}. Recall that E ⇉ F

denotes the counterfactual conditional ‘if E were the case then F would be

the case’. Now, [a2] ⇉ [a2c1] = {γ, δ} and [a2] ⇉ [a2c2] = {α, β}. Thus

β ∈ [a2] ⇉ [a2c2] and β ∈ B2 ([a2]⇉ [a2c1]).
14 That is, at state β it is

actually the case that if Player 1 were to play a2 then Player 2 would respond

with c2, but Player 2 erroneously believes that (if Player 1 were to play a2)

she would respond with c1.

14Recall that the material conditional ‘if E is the case then F is the case’ is captured
by the event ¬E ∪ F , which we denote by E → F . Then [a2] → [a2c1] = {β, γ, δ} and
[a2] → [a2c2] = {α,β, γ}, so that we also have, trivially, that β ∈ B2 ([a2]→ [a2c1]) and
β ∈ B2 ([a2]→ [a2c2]).
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Part of a model of the game of Figure 2a

Figure 3

As a condition of rationality, should one rule out situations like the one

illustrated in Figure 3? Shouldn’t a rational player have introspective access

to what she would do in all the relevant hypothetical situations? The answer

is negative, since - in general - what a player would do may depend on

external circumstances (e.g. the actions of other players) and no amount

of introspection can aid the player in forming correct beliefs about these

external circumstances. This is illustrated in the following example (inspired

by Example 5.1 in [31], p. 325).

Example 1 Players 1 and 2 are in a dark room, facing a wall which is

painted either blue or red (since the light is off, neither player knows what

the color of the wall is). Player 1 has to choose between turning the light on

(action N) or leaving the light off (action F). If Player 1 chooses F, the game

ends; if he chooses N, then Player 2 - who has a box with two buttons, one

blue and one red - has to press one of the two buttons. Payoffs are as follows:

Player 1 gets a payoff of 1 if the light stays off, and a payoff of 0 if he turns

the light on (no matter what Player 2 does). Player 2 gets a payoff of 1 if the
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light is turned on and she presses the button whose color matches the color

of the wall, and a payoff of 0 in every other case. Consider a state, call it

β, where the wall is red and Player 1 leaves the light off. What would player

2 do if the light were on? The counterfactual selection function must select

a state, call it α, where the wall is still red (turning the light on does not

change the color of the wall) and in that state Player 2 - if rational - would

press the red button. Suppose also that at state β Player 2 is certain that the

wall is blue and that Player 1 is going to leave the light off: B2(β) = {γ} and

at γ the wall is blue and Player 1 leaves the light off. At state γ what would

Player 2 do if the light were on? In this case the counterfactual selection

function must select a state, call it δ, where the wall is still blue and in that

state Player 2 - if rational - would press the blue button. Hence at state β

we have that both of the following propositions are true: (1) if the light were

on, Player 2 would press the red button and (2) Player 2 believes that, if the

light were on, she would press the blue button.

The above remarks highlight the subtleties involved in defining rationality

in dynamic games. However, there are further issues. Consider, for example,

the perfect-information game of Figure 2a, a model of this game and a state

α where Player 1 plays a2 (α ∈ [a2]). Is a2 a rational choice for Player 1?

Answering this question requires answering the following two questions:

Q1. What will Player 2 do next?

Q2. What would Player 2 do if, instead, a1 had been chosen?

Let us start with Q1. Suppose that at α the play of the game is a2c2d1

(that is, ζ(α) = a2c2d1) and that Player 1 has correct beliefs about this:
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B1(α) = {α}. If there is “common recognition” of rationality, Player 1 will

ask himself how a rational Player 2 will respond to his initial choice of a2.

In order to determine what would be rational for Player 2 to do, we need to

examine Player 2’s beliefs. Suppose that Player 2 mistakenly believes that

Player 1 will play a1 (α ∈ B2[a1]): for example, B2(α) = {β} and β ∈ [a1b1].

Furthermore, suppose that f(β, [a2]) = γ and γ ∈ [a2c2d2]. Then at α Player

2 believes that if it were the case that Player 1 played a2 then the play of

the game would be a2c2d2 (α ∈ B2([a2] ⇉ [a2c2d2])), in particular, Player 1

would end the game by playing d2. Since, at state α, Player 1 in fact plays

a2, Player 2 will be surprised: she will be informed that Player 1 played

a2 and that she herself has to choose between c1 and c2. What choice she

will make depends on her beliefs after she learns that (contrary to her initial

expectation) Player 1 played a2, that is, on her revised beliefs. In general, no

restrictions can be imposed on Player 2’s revised beliefs after a surprise: for

example, it seems perfectly plausible to allow Player 2 to become convinced

that the play of the game will be a2c2d1; in particular, that Player 1 will end

the game by playing d1. The models that we are considering do not provide

us with the tools to express such a change of mind for Player 2: if one takes

as her revised beliefs her initial beliefs about counterfactual statements that

have a2 as an antecedent, then - since α ∈ B2([a2]⇉ [a2c2d2]) - one is forced

to ruled out the possibility that after learning that Player 1 played a2 Player

2 will believe that the play of the game will be a2c2d1. Stalnaker argues

that imposing such restrictions is conceptually wrong, since it is based on

confounding causal with epistemic counterfactuals:

“Player 2 has the following initial belief: Player 1 would choose d2
on his second move [after his initial choice of a2] if he had a second

20



move. This is a causal ‘if’ — an ‘if’ used to express 2’s opinion
about 1’s disposition to act in a situation that she believes will
not arise. [...] But to ask what Player 2 would believe about
Player 1 if she learned that she was wrong about 1’s first choice
is to ask a completely different question — this ‘if’ is epistemic;
it concerns Player 2’s belief revision policies, and not Player 1’s
disposition to act.” ([43], p. 48; with small changes to adapt the
quote to the game of Figure 1a.)

Let us now turn to question Q2 and continue the above example, where

α ∈ [a2c2d1] ∩B1([a2c2d1]) ∩ B2([a1b1]) ∩ B1B2([a1b1]). (9)

Thus at α Player 1 plays a2. Is this a rational choice? The answer depends on

how Player 2 would respond to the alternative choice of a1. However, since

the rationality of playing a2 has to be judged relative to Player 1’s beliefs,

what matters is not what Player 2 would actually do at state α if a1 were to

be played, but what Player 1 believes that Player 2 would do. How should we

model such beliefs of Player 1? Again, one possibility is to refer to Player 1’s

beliefs about counterfactuals with [a1] as antecedent. If we follow this route,

then we restrict the possible beliefs of Player 1; in particular, it cannot be the

case that Player 1 believes that if he were to play a1 then Player 2 would play

b2, that is, we cannot have α ∈ B1([a1] ⇉ [a1b2]). The reason is as follows.

The counterfactual selection function is meant to capture causal relationships

between events. As Stalnaker points out, in the counterfactual world where

a player makes a choice different from the one that he is actually making,

the prior beliefs of the other players must be the same as in the actual world

(by changing his choice he cannot cause the prior beliefs of his opponents to

change):
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“I know, for example, that it would be irrational to cooperate in
a one-shot prisoners’ dilemma because I know that in the coun-
terfactual situation in which I cooperate, my payoff is less than
it would be if I defected. And while I have the capacity to in-
fluence my payoff (negatively) by making this alternative choice,
I could not, by making this choice, influence your prior beliefs
about what I will do; that is, your prior beliefs will be the same,
in the counterfactual situation in which I make the alternative
choice, as they are in the actual situation.” ([45], p. 178)

We claimed that it canot be the case that α ∈ B1([a1] ⇉ [a1b2]). To see

this, suppose that α ∈ B1([a1]⇉ [a1b2]) and fix an arbitrary ω ∈ B1(α). By

(9), since α ∈ B1([a2]), ω ∈ [a2]; furthermore, if δ = f(ω, [a1]) then, since

α ∈ B1([a1] ⇉ [a1b2]), δ ∈ [a1b2]. Since ω ∈ B1(α) and α ∈ B1B2([a1b1]),

ω ∈ B2([a1b1]). By the above remark, at δ the initial beliefs of Player 2 must

be the same as at ω. Hence δ ∈ B2([a1b1]). But this, together with δ ∈ [a1b2],

violates (8).15

One approach followed in the literature (see, for example, [2, 7, 8, 12,

19, 20, 26, 31, 38] is to do without an “objective” counterfactual selection

function f and introduce in its place “subjective” counterfactual functions

fi, one for each player i ∈ N , representing the players’ dispositions to revise

their beliefs under various hypotheses.16 This is the topic of the next section.

15By definition, δ ∈ B2([a1b1]) if and only if B2(δ) ⊆ [a1b1]. Thus, since [a1b1] ⊆
¬[a1] ∪ [a1b1] = [a1] → [a1b1], B2(δ) ⊆ [a1] → [a1b1], that is, δ ∈ B2([a1] → [a1b1]). Now,
(8) requires that, since δ ∈ [a1b2], δ ∈ B2([a1]→ [a1b2]), yielding a contradiction.

16In [26] there is also an objective counterfactual selection function, but it used only to
encode the structure of the game in the syntax.
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4 Belief revision

We will now consider models of dynamic games defined as tuples
〈
N,Ω, {Bi}i∈N , {Ei, fi}i∈N , ζ

〉
where - as before -

〈
N,Ω, {Bi}i∈N

〉
is an in-

teractive belief structure, ζ : Ω→ Z is a function that associates with every

state ω ∈ Ω a terminal history and, for every player i ∈ N , Ei ⊆ 2Ω\∅ is

a set of events representing potential items of information or admissible hy-

potheses for player i 17 and, fi : Ω×Ei → 2Ω is a function such that, ∀ω ∈ Ω,

∀E,F ∈ Ei,

1. fi(ω,E) �= ∅,

2. fi(ω,E) ⊆ E,

3. if Bi(ω) ∩ E �= ∅ then fi(ω,E) = Bi(ω) ∩ E,

4. if E ⊆ F and fi(ω, F ) ∩E �= ∅ then fi(ω,E) = fi(ω,F ) ∩ E.

(10)

The interpretation of fi(ω,E) is the set of states that player i would

consider possible under the supposition that (or if informed that) E is true.

Condition 1 requires these suppositional beliefs to be consistent. Condition

2 requires that E be indeed considered true. Condition 3 says that if E is

compatible with the initial beliefs then the suppositional beliefs coincide with

the initial beliefs conditioned on event E.18 Condition 4 is an extension of

17For example, in a perfect-information game one can take Ei = {[h] : h ∈ Hi}, that is,
the set of propositions of the form “decision history h of player i is reached” or Ei = {[h] :
h ∈ H}, the set of propositions corresponding to all histories (in which case Ei = Ej for
any two players i and j).

18Note that it follows from Conditions 1 and 3 (and seriality of Bi) that, for every
ω ∈ Ω, fi(ω,Ω) = Bi(ω), so that one could simplify the definition of model by dropping
the relations Bi and recovering the initial beliefs from the set fi(ω,Ω). We have chosen
not to do so in order to maintain continuity in the exposition.
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3: if E implies F and E is compatible not with player i’s prior beliefs but

with the posterior beliefs that she would have if she supposed (or learned)

that F were the case (let’s called these her posterior F -beliefs), then her

beliefs under the supposition (or information) that E must coincide with her

posterior F -beliefs conditioned on even E.19

Remark 2 If Ei = 2
Ω\∅ then Conditions 1-4 in (10) imply that, for every

ω ∈ Ω, there exists a “plausibility” relation Qωi on Ω which is complete

(∀ω1, ω2 ∈ Ω, either ω1Q
ω
i ω2 or ω2Q

ω
i ω1 or both) and transitive (∀ω1, ω2, ω3 ∈

Ω, if ω1Q
ω
i ω2 and ω2Q

ω
i ω3 then ω1Q

ω
i ω3) and such that, for every E ⊆ Ω with

E �= ∅, fi(ω,E) = {x ∈ E : xQ
ω
i y, ∀y ∈ E}. The interpretation of αQωi β is

that - at state ω and according to player i - state α is at least as plausible as

state β. Thus fi(ω,E) is the set of most plausible states in E (according to

player i at state ω). If Ei �= 2
Ω\∅ then Conditions 1-4 in (10) are necessary

but not sufficient for the existence of such a plausibility relation. The exis-

tence of a plausibility relation that rationalizes the function fi(ω, ·) : Ei → 2Ω

is necessary and sufficient for the belief revision policy encoded in fi(ω, ·) to

be compatible with the theory of belief revision introduced in [1], known as

the AGM theory (see [18]).

One can associate with each function fi an operator ⇉i : Ei × 2
Ω → 2Ω

as follows:

E ⇉i F = {ω ∈ Ω : fi(ω,E) ⊆ F}. (11)

19Although widely accepted, this principle of belief revision is not uncontroversial (see
[36, 46]).
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Possible interpretations of the event E ⇉i F are “according to player i, if E

were the case, then F would be true” ([31]) or “if informed that E, player i

would believe that F” ([43]) or “under the supposition that E, player i would

believe that F” ([2]).20

Thus the function fi can be used to model the full epistemic state of

player i: in particular, how player i would revise her prior beliefs if she

acquired information that contradicted those beliefs. It is important to note,

however, that even with the addition of the functions fi, the models remain

static in nature: they represent only the players’ beliefs at a fixed point in

time (before the game is played), together with their dispositions to revise

those beliefs. Thus these models do not represent any actual revisions that

are made when new information is actually received.

Condition (8) rules out the possibility that a player may be uncertain

about her own choice of action at decision histories of hers that are not ruled

out by her initial beliefs. Does a corresponding restriction hold for revised

beliefs? That is, suppose that at a state ω player i erroneously believes that

her decision history h will not be reached (ω ∈ [h] but ω ∈ Bi¬[h]); suppose

also that a is the action that she will choose at h (ω ∈ [ha]). Is it necessarily

the case that, according to her revised beliefs on the suppositions that h is

reached, she believes that she takes action a? That is, is it the case that

[h] ⇉i [ha]? In general, the answer is negative. For example, consider the

game of Figure 2a and states α, β and γ such that α ∈ [a1b1], B2(α) = {β},

20Equivalently, one can think of ⇉i as a conditional belief operator Bi(·|·) with the
interpretation of Bi(F |E) as ‘player i believes F given information/supposition E′. An
alternative notation that can be found in the literature for Bi(F |E) is B

E
i (F ) (see, for

example, [13]).
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β ∈ [a2c1], f2(α, [a1]) = {γ} and γ ∈ [a1b2]. Then we have that at state α

Player 2 will in fact take action b1 (after being surprised by Player 1’s choice

of a1) and yet, according to her revised beliefs on the supposition that Player

1 plays a1, she does not believe that she would take action b1 (in fact she

believes that she would take action b2): α /∈ [a1] ⇉i [a1b1]. In order to rule

this out we need to impose the following strengthening of (8):21

∀h ∈ Hi, ∀a ∈ A(h), [ha] ⊆ ([h]⇉i [ha]) . (12)

Can (12) be considered a necessary component of a definition of ratio-

nality? Perhaps so if the revised beliefs are interpreted as the actual beliefs

of player i when she is actually informed (to her surprise) that her decision

history h has been reached. In that case it seems reasonable to assume that -

as the player makes up her mind about what to do - she forms correct beliefs

about what she is going to do. However, we stressed above that the above

models are static models: they represent the initial beliefs and disposition

to revise those beliefs at the beginning of the game. Given this interpre-

tation of the revised beliefs as hypothetical beliefs conditional on various

suppositions, it seems that violations of (12) might be perfectly rational. To

21 (12) is implied by (8) whenever player i’s initial beliefs do not rule out h. That is, if
ω ∈ ¬Bi¬[h] (equivalently, Bi(ω) ∩ [h] �= ∅) then, for every a ∈ A(h),

if ω ∈ [ha] then ω ∈ ([h]⇉i [ha]) . (F1)

In fact, if Bi(ω) ∩ [h] �= ∅ then by Condition 3 of (10),

fi(ω, [h]) = Bi(ω) ∩ [h]. (F2)

Let a ∈ A(h) be such that ω ∈ [ha]. Then, by (8), ω ∈ Bi([h] → [ha]), that is, Bi(ω) ⊆
¬[h]∪ [ha]. Thus Bi(ω)∩ [h] ⊆ (¬[h] ∩ [h])∪([ha] ∩ [h]) = ∅∪ [ha] = [ha] (since [ha] ⊆ [h])
and therefore, by (F2), fi(ω, [h]) ⊆ [ha], that is, ω ∈ [h]⇉i [ha].
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illustrate this point, consider the above example with the following modifi-

cation: f2(α, [a1]) = {α, γ}. It is possible that if Player 1 plays a1, Player

2 is indifferent between playing b1 or b2 (she gets the same payoff). Thus

she can coherently form the belief that if - contrary to what she expects -

Player 1 were to play a1, then she might end up choosing either b1 or b2:

α ∈ [a1]⇉i ([a1b1] ∪ [a1b2]). Of course, when she will actually be faced with

the choice between b1 and b2 she will have to break her indifference and pick

one action (perhaps by tossing a coin): in this case she will pick b1 (perhaps

because the outcome of the coin toss will be Heads: something she will know

then but cannot know at the beginning).

How can rationality of choice be captured in the models that we are

considering? Various definitions of rationality have been suggested in the

literature, most notably material rationality and substantive rationality ([4,

5]). The former notion is weaker in that a player can be found to be irrational

only at decision histories of hers that are actually reached. The latter notion,

on the other hand, is more stringent since a player can be judged to be

irrational at a decision history h of hers even if she knows that h will not be

reached. We will focus on the weaker notion. We want to define a player’s

rationality as a proposition, that is, an event. Let ui : Z → R be player i’s

ordinal utility function (representing her preferences over the set of terminal

histories Z) and define πi : Ω → R by πi(ω) = ui(ζ(ω)). For every x ∈ R,

let [πi ≤ x] be the event that player i’s payoff is not greater than x, that

is, [πi ≤ x] = {ω ∈ Ω : πi(ω) ≤ x} and, similarly, let [πi > x] = {ω ∈ Ω :

πi(ω) > x}. Then we say that player i is rational at a state if, for every

decision history of hers that is actually reached at that state and for every
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real number x, it is not the case that she believes that her payoff is not

greater than x and it would be greater than x if she were to take an action

different from the one that she is actually taking (at that history in that

state). Formally this can be stated as follows (recall that Hi denotes the set

of decision histories of player i and A(h) the set of actions available at h):

Player i is rational at ω ∈ Ω if, ∀h ∈ Hi,∀a ∈ A(h)

if ha is a prefix of ζ(ω) then, ∀b ∈ A(h), ∀x ∈ R,

([ha]⇉i [πi ≤ x])→ ¬ ([hb]⇉i [πi > x]) .

(13)

Note that, in general, we cannot replace the antecedent [ha]⇉i [πi ≤ x]

with Bi([ha] → [πi ≤ x]), because at state ω player i might initially believe

that h will not be reached, in which case it would be trivially true that

ω ∈ Bi([ha] → [πi ≤ x]); however, if decision history h is actually reached

at ω then player i will be surprised and will have to revise her beliefs, given

the information that h has been reached. Thus, in general, her rationality is

judged on the basis of her revised beliefs. Note, however, that if ω ∈ ¬Bi¬[h],

that is, if at ω she does not rule out the possibility that h will be reached

and a ∈ A(h) is the action that she actually takes at ω (ω ∈ [ha]), then, for
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every event F , ω ∈ Bi([ha]→ F ) if and only if ω ∈ ([ha]⇉i F ).
22 Note also

that, according to (13), a player is trivially rational at any state at which

she does not take any actions.

Does initial common belief that all the players are materially rational

imply backward induction in perfect-information games? The answer is neg-

ative; in fact, common belief of material rationality does not even imply

a Nash equilibrium outcome. To see this, consider the perfect-information

game shown in Figure 4a and the model of it shown in Figure 4b.23 First

of all, note that the common belief relation B∗ is obtained by adding to B2

the pair (β, β); thus, in particular, B∗(β) = {β, γ}. We want to show that

both players are materially rational at both states β and γ, so that at state

β it is common belief that both players are materially rational, despite that

fact that the play of the game at β is a1a2d3, which is not sustained by any

22Proof. Suppose that ω ∈ [ha] ∩ ¬Bi¬[h]. As shown in Footnote 21 (see (F2)),

Bi(ω) ∩ [h] = fi(ω, [h]). (G1)

Since [ha] ⊆ [h],

Bi(ω) ∩ [h] ∩ [ha] = Bi(ω) ∩ [ha] (G2)

As shown in Footnote 21, fi(ω, [h]) ⊆ [ha] and, by Condition 1 of (10), fi(ω, [h]) �= ∅.
Thus fi(ω, [h]) ∩ [ha] = fi(ω, [h]) �= ∅.Hence, by Condition 4 of (10),

fi(ω, [h]) ∩ [ha] = fi(ω, [ha]). (G3)

By intersecting both sides of (G1) with [ha] and using (G2) and (G3) we get that
Bi(ω) ∩ [ha] = fi(ω, [ha]).

23In Figure 4a, for every terminal history, the top number associated with it is Player 1’s
utility and the bottom number is Player 2’s utility. In Figure 4b we have only represented
parts of the functions f1 and f2.
Similar examples can be found in [13, 26, 37, 43].
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Nash equilibrium. Clearly, Player 1 is materially rational at state β (since he

obtains his largest possible payoff); he is also rational at state γ because he

knows that he plays d1, obtaining a payoff of 1, and believes that if he were

to play a1 Player 2 would respond with d2 and give him a payoff of zero: this

belief is encoded in f1(γ, [a1]) = {δ}, where [a1] = {α, β, δ}. Player 2 is triv-

ially materially rational at state γ since she does not take any actions there.

Now consider state β. Player 2 initially erroneously believes that Player 1

will end the game by playing d1; however, Player 1 is in fact playing a1 and

thus Player 2 will be surprised. Her initial disposition to revise her beliefs on

the supposition that Player 1 plays a1 is such that she would believe that she

herself would play a2 and Player 1 would follow with a3, thus giving her the

largest possible payoff. Hence she is rational at state β, according to (13).
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(a) A perfect-information game (a) A model of the game

Figure 4

Thus, in order to obtain the backward-induction solution, one needs to

go beyond common initial belief of material rationality. Proposals in the
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literature include the notions of epistemic independence ([43]), strong belief

([10]), stable belief ([7]), substantive rationality ([4, 33]). For an overview of

this literature the reader is referred to [23, 35].

In the models considered above, strategies do not play any role: states

are described in terms of the players’ actual behavior along a play of the

game. One could view a player’s strategy as her (revised) beliefs about

what she would under the supposition that each of her decision histories

is reached. However, the models considered so far do not guarantee that a

player’s revised beliefs select a unique action at each of her decision histories.

For example, consider the game of Figure 2a and states α, β and γ such that

α ∈ [a2c1], B2(α) = {α}, β ∈ [a1b1], γ ∈ [a1b2] and f2(α, [a1]) = {β, γ}. Then

at state α Player 2 knows that she will take action c1 and, according to her

revised beliefs on the supposition that Player 1 plays a1, she is uncertain

as to whether she would respond to a1 by playing b1 or b2 (perhaps she

is indifferent between b1 and b2, because she would get the same payoff in

either case). One could rule this possibility out by imposing the following

restriction;

∀h ∈ Hi, ∀a, b ∈ A(h),∀ω, ω
′, ω′′ ∈ Ω, if ω′, ω′′ ∈ fi(ω, [h])

and ha is a prefix of ζ(ω′) and hb is a prefix of ζ(ω′′) then a = b.
(14)

If (14) is imposed then one can associate with every state a unique strategy

for every player. As Samet points out ([38], p. 232) in this setup strategies

are cognitive constructs rather than objective counterfactuals about what a

player would actually do at each of her decision histories.
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5 Conclusion

Roughly speaking, a player’s choice is rational if, according to what the

player believes, there is no other choice which is better for her. Thus, in

order to be able to assess the rationality of a player one needs to be able to

represent both the player’s choices and her beliefs. The notion of model of a

game does precisely this. We have discussed a number of conceptual issues

that arise in attempting to represent not only the actual beliefs but also the

counterfactual or hypothetical beliefs of the players. These issues highlight

the complexity of defining the notion of rationality in dynamic games and

of specifying an appropriate interpretation of the hypothesis that there is

“common recognition” of rationality.

The models of dynamic games considered above are not the only possibil-

ity. Instead of modeling the epistemic states of the players in terms of their

prior beliefs and prior dispositions to revise those beliefs, one could model the

actual belief revision taking place during the play of the game (for example,

by using the structures introduced in [21]). Alternatively, one could model

(conditional) beliefs using the notion of prediction in branching-time frames

introduced in [15, 16]. Because of space limitations we do not pursue these

possibilities here.

The focus of this chapter has been on the issue of modelling the notion

of rationality and “common recognition” of rationality in dynamic games.

Alternatively one can use the AGM theory of belief revision to provide foun-

dations for refinements of Nash equilibrium in dynamic games. This is done

in [19, 20] where a general notion of perfect Bayesian equilibrium is proposed

for general dynamic games (thus allowing for imperfect information). Perfect
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Bayesian equilibria constitute a refinement of subgame-perfect equilibria and

are a superset of sequential equilibria.
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