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Abstract

I consider a model of directed search in which strategic sellers advertise general
trading mechanisms. A mechanism determines the number of buyers that will get
served and the side payments as a function of ex post realized demand. After ob-
serving these advertisements buyers simultaneously visit exactly one seller. Each
buyer’s expected utility depends on the visiting decisions of other buyers. This
dependence becomes especially interesting since the buyers cannot coordinate
their visiting strategies. Despite the presence of strategic interaction among the
sellers all symmetric equilibria are constrained efficient but not payoff equivalent.
Therefore, authorities should intervene in this type of market to redistribute sur-
plus and not to improve efficiency. As markets grow infinitely large all equilibria
yield the same profit. For the large market case I provide conditions under which
only a very simple class of mechanisms is posted in equilibrium.
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1 Introduction

In many markets sellers face a stochastic demand, and buyers visit sellers without
knowing their total number of customers. If the sellers have capacity constraints,
they might not be able to serve all customers who visit their store (if too many show
up). On the other hand, if the nature of the good is such that a minimum number
of customers is required for the service to be profitable, sellers might not be willing
to serve the customers that visit their store (if too few show up). In both cases,
if the markets are characterized by frictions, in the sense that buyers pay a cost to
visit more than one seller, some buyers might not get served due to the inability to
coordinate their visiting strategies.1

To illustrate this economic problem through a concrete example, consider the
market for boat trips to the Greek islands during the low season. Ferries operated
by different companies depart every morning to the same destinations. Suppose that
a trip is profitable only if x or more passengers travel. Since demand is low, there
is a chance that some ferries will get visited by fewer than x customers. Often ferry
owners have a policy (known to the customers) of cancelling the trip in that event.
The crucial feature of this market is that once a passenger visits a ferry and is in-
formed that the trip is cancelled, it is too late to take another ferry. If there are more
than x buyers that want to travel on a certain day, they would like to coordinate
their visiting decisions so that they all travel. Clearly, coordination in this market is
difficult.

A question that arises from the preceding example is whether it is optimal to
announce in advance the cancellation of a trip. Ex post, if fewer than x customers
visit a certain location, it is obvious that the owner should dock the boat. However,
these announcements are made ex ante. If all owners follow such a strategy, one of
them might have an incentive to deviate and advertise that her company never can-
cels trips. Such a policy might be ex ante profitable, since it may induce passengers
to visit the deviant owner’s ferry in order to secure their trip. This could lead to a
situation in which all sellers advertise that they never cancel trips, which is ex post
inefficient.2

The ferry example is one of many markets with stochastic demand, lack of coor-
dination among buyers, and frictions. In some instances buyers failing to be served
is not the only economic consideration. Visiting a seller with many customers often
implies a consumption externality that might be negative or positive, depending on
the nature of the good. Hence, in this class of markets, buyers care both about the
probability of being served at a specific seller and about the utility they will obtain

1 In a frictionless market the lack of coordination is irrelevant, since buyers who do not get served
at the first store they visit can go to other stores at no cost.

2 This situation resembles the standard Prisoner’s Dilemma, in which each player’s fear that the
other player will not coordinate, leads to an inefficient equilibrium outcome.
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if they get served. Restaurants, bars, and airline companies are just a few examples
of businesses that operate in such environments. Studying the welfare properties of
these markets is important, and currently there are no models that are well suited for
this purpose.

In this paper I provide a general framework that builds upon the directed search
literature (see for example Montgomery (1991), Lagos (2000), and Burdett, Shi, and
Wright (2001)), and aims to analyze the efficiency properties, the production decisions,
and the price determination in markets with the following characteristics. There are
a few sellers who behave strategically. Each seller faces a stochastic demand, which
she can affect through a public advertisement. Frictions are captured by the fact that
once a buyer visits a seller it is technically impossible to visit another seller. The
expected utility for a buyer from visiting a specific seller depends on the total number
of buyers who visit the seller, and buyers cannot coordinate their visiting strategies.

Sellers compete with each other for customers by advertising general trading mech-
anisms. A mechanism determines, as a function of ex post realized demand, the
number of buyers that will get served and the side payments. Buyers care about net
expected utility. Therefore, sellers can increase the probability with which buyers
visit them by advertising low prices, promising buyers a high probability of getting
served, and/or guaranteeing a high utility of consumption for the buyers who will get
served. When sellers choose their advertisements they face the following trade off: ex
post, they wish to maximize profit, and ex ante, they promise to potential buyers a
high surplus in order to attract a large expected number of visitors.

Since each seller chooses her production and price advertisements strategically in
order to direct customers to her store and away from rival sellers’ stores, one might
expect inefficient outcomes to arise. However, I show that constrained efficiency is
always achieved in symmetric equilibrium. Efficiency is constrained by the lack of
coordination among buyers.3 Hence, the model predicts that ferry owners will indeed
announce that the trip will be cancelled if a small number of customers shows up.
Another interesting result is that in small markets, indeterminacy of equilibria arises
(see also Coles and Eeckhout 2003). Continua of equilibrium prices exist, which are
equally efficient, but not payoff equivalent.

In related literature, Hawkins (2006) also provides an efficiency result. In that
paper it is assumed that sellers take as given that they must offer customers a certain
level of expected surplus.4 Hence, the element of strategic interaction among sellers is
absent. This paper shows that efficiency does not result from the competitive behav-
ior of sellers as it is implied in Hawkins (2006). Prescott (1975) considers a model of

3 This means that the only way to improve upon the equilibrium allocation is to direct each buyer
to a specific seller.

4 This is assumption is often adopted in the literature, and it is known as the market utility
assumption. See Montgomery (1991), Acemoglu and Shimer (1999a),(1999b), and Galenianos and
Kircher (2008).
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the market for hotel rooms, in which sellers also have local monopoly power and face
a stochastic demand. He shows that the market will provide the efficient amount of
rooms. Prescott assumes that a buyer who does not get served at some seller can visit
other sellers without incurring any cost (no frictions). The model I consider provides
an analogous result for a market characterized by frictions.

The model is very tractable, and a closed form solution for the matching function
is found for any number of buyers and sellers. Also, equilibrium prices are character-
ized but not uniquely determined. Although sellers are allowed to advertise general
mechanisms, common practices, such as announcing a fixed price or an auction, de-
scribe equilibrium behavior.5 Consistent with findings in Virag (2008), I show that
if sellers can charge an arbitrarily large entry fee, they can extract the whole market
surplus in some equilibria. This result, along with the efficiency result, have consider-
able implications for economic policy. In particular, the authorities should intervene
in this type of market only to redistribute surplus and not to improve efficiency.

I also consider the case of large markets. I show that the indeterminacy of equi-
libria that characterizes small markets vanishes when the number of traders in the
market approaches infinity. As markets get infinitely large, the complexity of mech-
anisms available to the sellers increases dramatically.6 I present a set of fairly weak
restrictions on preferences and technology, under which only a very simple class of
mechanisms is posted in equilibrium. The model is well suited to examine the effect
of changes in supply on the number of successful matches along the intensive and the
extensive margin. Keeping the number of units per buyer fixed across economies, the
probability with which buyers get served gets bigger as we move to economies with less
sellers (and bigger production per seller). Hence, the number of successful matches
is more responsive along the intensive margin. Related results are also presented in
Burdett, Shi, and Wright (2001) and Lester (2008).

The rest of this paper is organized as follows. In Section 2 I present the basic
model and define equilibrium. Section 3 examines the benchmark case of two buyers
and two sellers. Section 4 generalizes the results of Section 3 and provides discussion
on the main findings. In Section 5 I consider the case of large markets. Section 6
provides some concluding remarks and Section 7 presents a brief discussion of possible
extensions of the model.

5 There is large literature on competing auctions when buyers have private independent values.
This includes McAfee (1993), Peters (1997), Burguet and Sakovics (1999), and Julien, Kennes, and
King (2000). Also, Epstein and Peters (1999), and Martimort and Stole (2002) provide revelation
principle related results for competing mechanisms.

6 Since sellers advertise mechanisms based on ex post realized demand, when there is an infinite
number of buyers in the market, a seller’s advertisement becomes an infinite sequence.
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2 The Model

There are n buyers and m sellers in the market. Both buyers and sellers are risk
neutral. All buyers are identical and anonymous, and each wishes to purchase one
unit of an indivisible good. Each seller can produce x ≤ ξ units of the good at cost
c(x). Unless otherwise specified, ξ = n, i.e. a seller can potentially accommodate
every buyer in the market. There is no fixed cost. Buyers’ utility from consuming the
good depends on the number of customers who get served at some specific location.
More precisely, if a seller who gets visited by y ≤ n customers serves x ≤ y of them,
the utility obtained by each customer is u(x), with u(x) ≥ 0 for every x ≤ n. At this
stage it is not necessary to place any restrictions on the functions c(x) and u(x).

The exchange process consists of two stages. At the first stage, each seller posts
an advertisement which describes the trading mechanism that will be followed at her
store, taking as given the mechanisms of her m − 1 competitors. A mechanism de-
scribes at every contingency, i.e. as a function of ex post realized demand, how many
and which buyers get served and any side payments. Sellers are allowed to post any
direct mechanism that treats the buyers symmetrically.7 At the second stage, buyers
observe all the advertisements and choose a probability of visiting each seller, tak-
ing as given the strategies of other buyers. Once buyers show up at their preferred
location, trade takes place according to the publicly advertised mechanisms. Sellers
commit to their advertisements.

Since buyers are anonymous and identical, a seller’s mechanism can be fully char-
acterized by a pair of vectors which describe prices and production at every possible
contingency. A trading mechanism for seller j is defined as M j ≡ {pj ,kj}, where
pj = (pj

1, p
j
2, ..., p

j
n, ej) and kj = (kj

1, k
j
2, ..., k

j
n). For all x = 1, 2, ..., n, kj

x ≤ x deter-
mines the number of buyers that will get served conditional on x buyers showing up
at seller j’s store. Similarly, for all x = 1, 2, ..., n, pj

x is the price paid to seller j by
all customers who get served, conditional on the fact that this seller gets visited by x
buyers. The term ej denotes the entry fee paid by all customers. I refer to pj as the
price scheme and to kj as the production plan posted by seller j.

Buyers can walk away from the trading process at any time and obtain utility
equal to zero (but due to frictions they cannot visit another seller). This assumption
has some important implications for the model. First, in order to have buyers partic-
ipate in the trading process the expected utility generated by the posted mechanisms
has to be non-negative. Second, ex-post participation constraints for the buyers have

7 In Virag (2008), the author also considers indirect mechanisms, where each seller can condi-
tion her advertisement on the advertisements posted by the other sellers. He restricts attention to
equilibria that have a very simple form and shows that sellers can extract the full surplus from the
buyers. Therefore, in order to achieve collusion, the sellers do not need to consider equilibria in more
sophisticated mechanisms.
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to be imposed. Here this requires pj
x ≤ u(kj

x).8 There is no assumption that prevents
prices from being smaller than the marginal cost or even negative. For the entry fee
to have a meaning, I assume that buyers do not know the number of customers that
visited the seller before they pay the fee. Also, buyers pay the entry fee before they
know whether they will get served or not.9

The production plan kj chosen by seller j satisfies kj ∈ K =
∏n

x=1 Kx, with
Kx = {0, ..., x} for all x ≥ 1. For all x = 1, 2, ..., n, pj

x ≤ u(kj
x) and ej ∈ R. I

consider mechanisms that lead to non-negative expected profit. If seller j advertises
M j = {pj ,kj} and gets visited by x customers, each customer obtains (ex post) utility
equal to u(kj

x)− pj
x− ej , if she gets served and −ej otherwise. In this case the seller’s

profit is given by kj
x pj

x +xej−c(kj
x). Next, consider the ex ante payoffs. Suppose that

a seller who advertises a mechanism M = {p,k}, gets visited by an arbitrary buyer
with probability θ. The expected utility of a buyer who visits that seller is given by

U (θ, M) =
n∑

i=1

(
n− 1
i− 1

)
(1− θ)n−iθ i−1 ki

i
[u(ki)− pi]− e, (1)

and the expected profit for that seller is given by

π (θ, M) =
n∑

i=1

(
n

i

)
(1− θ)n−iθ i [ki pi + ie− c(ki)] , (2)

where
(
y
x

)
denotes the number of ways with which one can choose x out of y objects

(the binomial coefficient).
As it is common in the directed search literature, I focus on symmetric equilibria

in which all buyers use the same mixed strategy.10

Definition 1. A subgame perfect equilibrium is a collection of mechanisms M j ,
j = 1, ...,m and a strategy s :

∏m
j=1 M j −→ ∆m, such that:

i) Given the posted mechanisms, the strategies si = s, i = 1, ..., n maximize
buyers’ expected utility, and

ii) Given buyers’ strategy s, M j is a best response to the mechanisms announced
by other sellers, for all j = 1, ..., m.
The term ∆m denotes the unit simplex that captures the probabilities with which
(all) buyers visit each seller.

8 Clearly, the ex post utility of a buyer that consumes the good at seller j, when that seller gets
visited by x customers, is u(kj

x) and not u(x). This means that the utility depends on realized
production, while the price that a buyer pays depends on realized ex post demand.

9 If buyers know the state of the world (the total number of customers at a specific seller) before
they pay the entry fee, they would prefer to walk away and not trade in some cases. Then, one would
have to consider mechanisms that yield non-negative utility in every state.

10 In Burdett, Shi, and Wright (2001) the authors provide a coherent explanation of why the mixed
strategy equilibrium is the natural type of equilibrium to consider in this type of models. For a detailed
discussion on pure strategy equilibria in a similar environment see Coles and Eeckhout (2003).
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Definition 2. Let σ(x) ≡ xu(x)− c(x) denote the surplus generated if a seller serves
x customers, conditional on x or more showing up at that store. Refer to σ : N→ R
as the ex post surplus function.

3 The 2× 2 Case

3.1 Exogenous k

In this section I analyze the benchmark case n = m = 2. Let the sellers be labelled
A and B. First, I assume that sellers cannot choose how many units they produce.
Thus, I derive the prices that would emerge in equilibrium for a given realization of k.
Once these prices are established, sellers can choose their production endogenously,
and it is straightforward to examine the conditions under which different values of
k survive in equilibrium. I focus on symmetric equilibria for the sellers. Assume for
simplicity that sellers always serve at least one customer.11 Then, with n = 2, we can
only have k = (1, 1) or k = (1, 2). I refer to k = (1, 1) as the rationing case (because
sellers ration one customer if two show up), and to k = (1, 2) as the no frictions case,
because any buyer who visits a seller with k = (1, 2) gets served with probability 1.

First suppose k = (1, 1). Sellers take this as given and choose a price scheme,
pj = (pj

1, p
j
2, e

j), j = A,B. Let θ be the probability with which an arbitrary buyer
visits seller A. Also, let Uj be the expected utility for a buyer that visits seller j.
Using (1) one obtains

UA = (1− θ)[u(1)− pA
1 ] +

θ

2
[u(1)− pA

2 ]− eA,

UB = θ[u(1)− pB
1 ] +

1
2
(1− θ)[u(1)− pB

2 ]− eB. (3)

The objective of seller A is to maximize profits,

πA = θ2[pA
2 + 2eA − c(1)] + 2θ(1− θ)[pA

1 + eA − c(1)],

subject to UA = UB. After some some manipulations the objective of seller A can be
written only as a function of the variable θ. In particular, seller A wishes to

max
θ

{
2θ

[
u(1)− θ

2
u(1)− UB

]
− θ(2− θ)c(1)

}
.

Taking the first-order condition with respect to θ in the problem above, yields

u(1)− θ

2
u(1)− UB + θ

[
−u(1)

2
− ∂UB

∂θ

]
− (1− θ)c(1) = 0. (4)

11 It is shown later that this is an equilibrium play if σ(1) > 0.
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Applying total differentiation with respect to θ in (3), yields ∂UB
∂θ = u(1)/2−pB

1 +pB
1 /2.

By symmetry, pA
1 = pB

1 = p1, pA
2 = pB

2 = p2, eA = eB = e, and θ = 1/2. Imposing
these conditions in (4) yields

p1 + e =
1
2
[u(1) + c(1)].

The equilibrium prices are not uniquely pinned down. There exists a continuum of
symmetric equilibria indexed by the pair of parameters (α, ε). Every triplet (p1, p2, e) =
([u(1) + c(1)]/2− ε, α, ε) that satisfies

α ≤ u(1), ε ≥ 1
2
[c(1)− u(1)], and α + 2ε ∈ [2c(1)− u(1), 2u(1)− c(1)], (5)

constitutes a symmetric equilibrium in the model with n = m = 2 and k = (1, 1).12

Figure 1 illustrates the set of all equilibrium prices.
These equilibria are not, in general, payoff equivalent. Sellers achieve maximum

expected profit when α+2ε = 2u(1)− c(1). An interesting case arises when α = u(1).
I refer to this case as the auction equilibrium, because it replicates the outcome of
an auction among identical buyers. In Coles and Eeckhout (2003) this is the unique
optimal equilibrium for the sellers. Here, the auction equilibrium is preferred by sellers
only if ε = σ(1)/2. Competition in fixed prices also describes equilibrium behavior.
Every (α, ε), with α = [u(1) + c(1)]/2− ε and ε ∈ [−σ(1)/2, 3σ(1)/2] is a symmetric
equilibrium in which p1 = p2. There exists an equilibrium in fixed prices in which
sellers extract the whole surplus, indicated by point A in Figure 1. Finally, point B
in Figure 1 represents the equilibrium studied in Burdett, Shi, and Wright (2001), i.e.
an equilibrium with a fixed price schedule and zero entry fee.

The assumption that buyers do not know the total number of visitors at the store
when they pay the entry fee is essential for the existence of some equilibria. Consider
the equilibrium price scheme (p1, p2, e) = (c(1), u(1), σ(1)/2). This scheme leads to
expected utility equal to zero, and so buyers accept to participate. If buyers know
the state of the world before they pay the entry fee, this equilibrium collapses: if the
seller gets visited by two buyers and the buyers know that, they prefer to walk away
and obtain zero utility, rather than pay a positive fee in order to enter the store and
play a mechanism that yields zero with certainty.

Next, I establish equilibrium prices for k = (1, 2). Assume for now that σ(2) > 0.13

Given the advertised price schedules, pj = (pj
1, p

j
2, e

j), j = A,B, the expected utility

12 The conditions α ≤ u(1), ε ≥ [u(1)+c(1)]/2 guarantee ex post participation of the buyer in every
possible state. The condition α + 2ε ∈ [2u(1) − c(1), 2c(1) − u(1)] guarantees that expected utility
and profit are non-negative.

13 When the production choice becomes endogenous, it is shown that one does not need to worry
about this restriction anymore. If σ(2) < 0, posting k = (1, 2) will never arise in equilibrium.
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e

a

a=u(1)

EU=0Ep=0e=[c(1)-u(1)]/2
a=[u(1)+c(1)]/2-e

2c(1)-u(1)

B

A

Figure 1: All α, ε in the shaded region are consistent with equilibrium.

that an arbitrary buyer obtains by visiting the two sellers is given by

UA = (1− θ)[u(1)− pA
1 ] + θ[u(2)− pA

2 ]− eA,

UB = θ[u(1)− pB
1 ] + (1− θ)[u(2)− pB

2 ]− eB.

The objective of seller A is to

max
θ

{
2θ [(1− θ)u(1) + θu(2)− UB]− θ2c(2)− 2θ(1− θ)c(1)

}
.

Taking the first-order condition in this problem and imposing the symmetric equi-
librium conditions, yields p1 + e = u(1) − u(2) + c(2)/2. Again, there exists a con-
tinuum of symmetric equilibria indexed by the pair (α, ε). Every triplet (p1, p2, e) =
(u(1)− u(2) + c(2)/2− ε, α, ε) that satisfies

α ≤ u(2), ε ≥ 1
2
c(2)− u(2), and α + ε ∈

[
u(2)− σ(1), 2u(2)− 1

2
c(2)

]
, (6)

constitutes a symmetric equilibrium for the model with n = m = 2 and k = (1, 2).14

The equilibrium price p1 is negatively related to u(2). Intuitively, the willingness
14 The assumption that σ(2) > 0 guarantees that the set of equilibria is non empty and that there

exists a continuum of equilibrium prices since 2u(2)− c(2)/2 = u(2) + σ(2)/2 > u(2).
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to pay a little more in order to be the only customer at a specific store increases when
u(2) falls. As above, the equilibrium price schemes are not payoff equivalent. Sellers
achieve maximum expected profit when α+ ε = 2u(2)− c(2)/2. Although α = u(2) is
part of an equilibrium, this is not an auction equilibrium, since here k = (1, 2), hence,
buyers do not have an incentive to bid against each other for the good. Finally,
competition in fixed prices does not always describe equilibrium behavior. It can
be easily verified that σ(2)/2 ≤ 2u(1) − c(1) and 3u(2) − c(2) ≥ u(1) are sufficient
conditions for this type of equilibrium to exist.

3.2 Endogenous Determination of k

So far I have analyzed the determination of prices in symmetric equilibria, assum-
ing that sellers take the value of k as given. In what follows the choice of k be-
comes endogenous. The goal is to determine the conditions under which differ-
ent values of k emerge in equilibrium. To that end, suppose that seller B posts
kB = (1, 1) and a price schedule (pB

1 , pB
2 , eB) = ([u(1) + c(1)]/2− ε, α, ε), such that

(α, ε) satisfy the conditions in (5). Denote this strategy by sB. Seller A who con-
siders deviating, has two options. The first is a deviation in prices keeping the
same k as seller B, and the second is to announce kA = kd = (1, 2) and some
pd = (pd

1, p
d
2, e

d). Clearly, no deviation in prices can be profitable if kA = (1, 1). If
such a deviation exists, that would be a contradiction to the fact that the strategies
(pA

1 , pA
2 , eA) = (pB

1 , pB
2 , eB) = ([u(1) + c(1)]/2− ε, α, ε), where (α, ε) satisfy the condi-

tions in (5), constitute a symmetric equilibrium in the model with kA = kB = (1, 1).
If there is a profitable deviation, it must involve kA = (1, 2). Let t denote the

probability with which any given buyer visits seller A if that seller deviates. The
expected payoff for a buyer from visiting sellers A and B (respectively) are

Ud = (1− t)[u(1)− pd
1] + t[u(2)− pd

2]− ed,

U = t

[
1
2
u(1)− 1

2
c(1) + ε

]
+

1
2
(1− t)[u(1)− α]− ε. (7)

The deviant seller wants to choose pd in order to maximize expected profit, subject to
the restriction that buyers are indifferent between visiting the two sellers. As above,
seller A’s objective can be written as a function of t. The maximization problem is

max
t

{
2t [(1− t)u(1) + tu(2)− U ]− 2t(1− t)c(1)− t2c(2)

}
, (8)

where U is given by (7). After some algebra, one can show that the optimal choice of
t is given by

t∗ =
u(1) + α + 2ε− 2c(1)

2 [2u(1)− 2u(2) + α + 2ε− 3c(1) + c(2)]
, (9)

10



if σ(2) < σ(1) + α + 2ε + u(1)− 2c(1) and t∗ = 1, otherwise.15

In order to find out whether the strategies kA = kB = (1, 1) and pA = pB =
([u(1) + c(1)]/2− ε, α, ε) constitute an equilibrium, one needs to compare the profit
that seller A obtains if she follows the prescribed strategy with the profit associated
with her best possible deviation. Conditional on seller B playing the strategy sB, if
seller A “follows”, her expected profit is

πf
A =

1
4
[u(1) + α + 2ε− 2c(1)].

If seller A deviates to kA = (1, 2), she can obtain profit

πd
A = 2t∗ [(1− t∗)u(1) + t∗u(2)− U ]− 2t∗(1− t∗)c(1)− t∗2c(2),

where t∗ was described above. If σ(2) < σ(1) + α + 2ε + u(1)− 2c(1),

πd
A =

1
4

[u(1) + α + 2ε− 2c(1)]2

2u(1)− 2u(2) + α + 2ε− 3c(1) + c(2)
.

Otherwise, t∗ = 1 and πd
A = σ(2) − σ(1). Comparing πf

A with the adequate expres-
sion for πd

A, implies that seller A has no incentive to deviate (in the sense that even
her best possible deviation is not good enough), if and only if σ(1) ≥ σ(2). If this
condition holds, posting kA = kB = (1, 1) and pA = pB = ([u(1) + c(1)]/2− ε, α, ε),
where (α, ε) satisfy (5), constitutes a symmetric equilibrium.

Given that kB = (1, 1), buyers know that if they visit seller B they might get ra-
tioned. One might expect seller A to have an incentive to deviate and post kA = (1, 2),
since such a strategy may be attractive to buyers who do not want to risk getting
rationed. However, seller A advertises kA = (1, 2) only if σ(1) < σ(2). If σ(1) ≥ σ(2)
we either have u(1) ≈ u(2) and c(2) is much bigger than c(1), or c(1) ≈ c(2) but u(2)
drops dramatically compared to u(1). In the first case, buyers prefer to visit seller A
if kA = (1, 2), but the cost of producing a second unit is high. In the second case,
the additional cost that seller A has to pay to produce a second unit is insignificant.
However, buyers do not value the certainty of getting served, because their utility in
the event of a double coincidence at seller A is very low.

The question that arises is whether, and under what conditions, an equilibrium
with no frictions can emerge in this environment of endogenous determination of pro-
duction. I repeat the analysis conducted above, but this time I assume that seller

15 Sufficient conditions for t∗ given by (9) to achieve an interior maximum, are α+2ε+u(1)−2c(1) >
0 and σ(2) < σ(1)+α+2ε+u(1)−2c(1), which means that the ex post surplus of serving two buyers
should not be much bigger than the analogous expression for one buyer. From (5), we know that
α+2ε+u(1)− 2c(1) ≥ 0. If α+2ε+u(1)− 2c(1) = 0 (buyers’ optimal equilibrium) and σ(2) < σ(1),
(9) still yields the correct optimal choice, which is t∗ = 0. If σ(2) ≥ σ(1) + α + 2ε + u(1)− 2c(1), the
objective function in (8) becomes an increasing (and convex) function of t for all t ∈ [0, 1], and the
optimal choice is t∗ = 1.
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B follows the (fixed) strategy kB = (1, 2) and pB = (u(1)− u(2) + c(2)/2− ε, α, ε),
where (α, ε) satisfy (6). The only possible profitable deviation for seller A involves
kA = kd = (1, 1). Comparing πf

A (the profit that seller A obtains if she follows the
strategy under consideration) with πd

A (the profit associated with the best possible
deviation), implies that πf

A ≥ πd
A if and only if σ(2) ≥ σ(1). If this conditions holds,

k = (1, 2) is posted in equilibrium.
Summarizing, if σ(1) > σ(2), sellers produce one unit of the good even if both

customers show up at their store in the symmetric equilibrium. There exists a con-
tinuum of price schemes consistent with this type of equilibrium. These are given
by p∗ = ([u(1) + c(1)]/2− ε, α, ε), where (α, ε) satisfy (5). On the other hand, if
σ(1) < σ(2), the symmetric equilibrium has both sellers choose k = (1, 2) and the
equilibrium price scheme is p∗ = (u(1)− u(2) + c(2)/2− ε, α, ε), where (α, ε) satisfy
(6). If σ(1) = σ(2), both types of equilibria coexist. For any parameter values, the
emerging equilibria are ex post efficient, in the sense that sellers set k2 = 2, only if
the ex post surplus generated by serving two buyers is greater than the analogous
expression for one buyer.

Consider now the welfare in the economy. In this model welfare is measured by the
expected total surplus, which, in symmetric equilibria, depends only on the emerging
k. If the equilibrium production plan is k = k11 = (1, 1), the total surplus in the
economy is S(k11) = 3

2σ(1). If k = k12 = (1, 2), we have S(k12) = σ(1) + 1
2σ(2).

Clearly, S(k12) ≥ S(k11), if and only if σ(2) ≥ σ(1), which is the condition under
which k12 is posted in equilibrium. Therefore, for any parameter values, the emerging
equilibrium is not only ex post efficient (in the sense described above), but also ex
ante efficient, in the sense that it involves the realization of k that maximizes the
expected total surplus. In the next section I generalize this result for any value of
n, m and provide a more detailed discussion about efficiency in this type of market.

4 The n×m case

4.1 Equilibrium in the General Model

This section establishes a general efficiency result for symmetric equilibria in the
model with finite n,m. First, I introduce some necessary definitions.

Definition 3. A production plan k = (k1, k2, k3, ..., kn) is called ex ante constrained
efficient, if it maximizes the expected total surplus,

S(k) = n
n∑

i=1

(
n− 1
i− 1

)(
1− 1

m

)n−i ( 1
m

)i−1 σ(ki)
i

. (10)
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Definition 4. A production plan k = (k1, k2, k3, ..., kn) is called ex post efficient, if
for all i = 1, 2, ..., n, ki = arg max{x≤i} σ(x). If σ(1) > 0, an ex post efficient plan
always satisfies k1 = 1.

Equation (10) follows from S(k) = nU(M) + mπ(M), where U(M) is defined as
the expected utility and π(M) as the expected profit in the symmetric equilibrium
where all sellers post the mechanism M . The expected surplus depends only on the
production plan k. I refer to a production plan that achieves the maximum surplus
as constrained (rather than unconstrained) efficient, because the Social Planner is
limited by the lack of coordination among buyers. The only way to improve upon this
allocation would be to direct each buyer to a specific seller. Regarding Definition 4,
a production plan is ex post efficient if it maximizes the total surplus, conditional on
the number of buyers that show up at a specific seller.16

The following Lemma establishes an important result regarding the sellers’ be-
havior. Let Sj denote the strategy set of seller j and s−j a strategy plan for all sellers
but j.

Lemma 1. Fix the strategy of all sellers but j to some arbitrary s−j. For any M ∈ Sj,
there exists p∗ = (p∗1, p

∗
2, ..., p

∗
n, e∗), with p∗i ≤ u(k∗i ) for all i, and k∗ an ex post efficient

plan, such that

πj (M∗, s−j) ≥ πj (M, s−j) ,

s.t. U (θj ,M) = U (θj , M
∗) = U(θh, s−j),

where πj (M, s−j) is seller j’s profit if she advertises M , given s−j, and U(θh, s−j) is
the expected utility that a buyer obtains if she visits seller h 6= j. Also, M∗ = {p∗, k∗}.

Proof. See the appendix.

Lemma 1 states that regardless of the strategy followed by other sellers, seller
j’s best response involves announcing an ex post efficient production plan. More
specifically, for a given s−j and any M ∈ Sj , seller j can always find a price scheme
p∗, which, together with the ex post efficient production k∗, leaves buyers indifferent

16 A practical way to identify the ex post efficient production is the following: if one buyer shows
up it is always efficient to serve her, since σ(1) > 0. If two buyers arrive, it is efficient to serve both
iff σ(2) ≥ σ(1). Suppose that σ(2) < σ(1), and so the seller decides to serve only one customer when
visited by two. In order to find what is the efficient thing to do in the case that three buyers show
up, one only needs to check whether σ(3) ≥ σ(1), and not whether σ(3) ≥ σ(2), since serving two
buyers was already proven inefficient. Continuing in this fashion, the process of identifying the ex
post efficient k, can be viewed as a tournament where, in round i, the term σ(i) “duels” with the
surplus that “won” in the preceding round. Then, the “winner” proceeds to round i + 1, in which it
“duels” with σ(i + 1). This process goes on until i = n.
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between visiting seller j or any other seller in the second stage and (weakly) improves
this seller’s profit.17 An interesting implication of Lemma 1, is that one does not need
to worry about sellers committing to their announced production schemes. This is not
true regarding prices. As it is outlined in Coles and Eeckhout (2003), commitment to
the announced prices is necessary in order to “rule out ex post opportunism, in which
sellers, despite the announced price, encourage Bertrand competition once several
buyers have turned up”. Unlike prices, sellers do not have an incentive to change the
advertised k∗ after observing the number of visiting customers, since this plan is ex
post efficient.

Proposition 1. Strategies M∗ = {p∗, k∗} and s∗ = (1/m, ..., 1/m), constitute a
symmetric equilibrium, if and only if k∗ is ex post efficient and p∗ solves

n∑

i=1

H

(
n,

1
m

, i

)[
1− f(n,m, i)− 1

m− 1

]
k∗i p

∗
i + e∗ =

=
n∑

i=1

H

(
n,

1
m

, i

){
m [1− f(n,m, i)]

m− 1
k∗i u(k∗i ) + f(n,m, i) c(k∗i )

}
, (11)

with p∗i ≤ u(k∗i ) for all i, and π(M∗), U(M∗) ≥ 0. I have defined f(n, m, i) ≡ i− (n−
i)/(m− 1) and H (n, 1/m, i) ≡ (

n−1
i−1

)
(1− 1/m)n−i (1/m)i−1 (1/i).

If k∗i 6= 0 for all i, a price scheme p∗ that satisfies these conditions always exists.

Proof. See the appendix.

Proposition 1 establishes indeterminacy of equilibria. There is only one equation
that characterizes the equilibrium price schedule, which implies that there are n de-
grees of freedom in the determination of the equilibrium prices and the entry fee.
Given buyers’ and rival sellers’ strategies, a seller can choose various price schemes
that leave the sharing rule of the surplus unchanged. What does change across the
various price schemes is the demand elasticity of buyers. Hence, for each price an-
nouncement of seller j, the rival sellers have a different best response correspondence.
This gives rise to a continuum of equilibria that are not payoff equivalent. Clearly,
any sharing rule of the surplus can be supported, i.e. π(M∗) ∈ [0, S(k∗)].

Another implication of Proposition 1 is that, for all possible parameter values, the
equilibria that emerge are ex post efficient. In Section 3, in order to examine whether
a strategy profile constitutes an equilibrium, I calculate the prices that emerge under
the relevant k and check for the existence of profitable deviations associated with all
alternative production plans. Clearly, this task becomes practically impossible as n

17 The profit associated with M∗ is strictly greater than the one associated with M , if k∗ is the
unique ex post efficient production plan and k 6= k∗.
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increases.18 Proposition 1 provides a simple way of identifying the equilibria in this
model. To illustrate this method, suppose that n = 4, m = 2, {u(i)}4

i=1 = {1, 1, 1, 1},
and {c(i)}4

i=1 = {0, 0.5, 1.6, 3}. The first step is to identify the ex post efficient k∗.
Here {σ(i)}4

i=1 = {1, 1.5, 1.4, 1}, hence k∗ = (1, 2, 2, 2). Using these values in (11) one
obtains 4p∗1 + 6p∗2− p∗4 + 8e∗ = 15

2 . Every (p∗1, p
∗
2, p

∗
3, p

∗
4, e

∗) that satisfies this equation
and also p∗1 + 3p∗2 + 2p∗3 + 1

2p∗4 + 8e∗ ∈ [11/8, 13], and p∗i ≤ 1 for all i, is an equilibrium
price schedule.

Two types of equilibria are particularly interesting. The first is the equilibrium
in which sellers compete in fixed prices and e∗ = 0. This type represents the class
of mechanisms studied in Burdett, Shi, and Wright (2001). Consider the numeric
example introduced above. With e∗ = 0 and p∗i = p∗ for all i, p∗ = 5/6. This price
satisfies ex post rationality of the buyers and leads to positive expected profit and
utility. Therefore, the price scheme p∗ = (5/6, 5/6, 5/6, 5/6, 0) describes equilibrium
behavior. The second type of equilibria is the one that replicates the outcome of an
auction among identical buyers. If x customers show up at a store and k∗x = x, the
buyers are not expected to bid against each other for the good, because they know
that there are enough goods everyone. Hence, a necessary condition for the auction
equilibrium to exist is ex post shortage of supply. More formally:

Definition 5. Let k∗ = (k∗1, k
∗
2, ..., k

∗
n) be the ex post efficient production schedule.

An auction equilibrium exists only if the set Z ≡ {x ∈ {1, 2, ..., n} : k∗x < x} is non
empty. If Z 6= ∅, an auction equilibrium satisfies p∗i = u(k∗i ), for all i ∈ Z.

Consider again the numeric example studied above. According to Definition 5, the
auction equilibrium has p∗3 = u(k∗3) and p∗4 = u(k∗4), implying p∗3 = p∗4 = 1. Hence,
every triplet (p∗1, p

∗
2, e

∗) that satisfies 4p∗1 + 6p∗2 + 8e∗ = 17
2 , and p∗1 + 3p∗2 + 8e∗ ∈

[−9/8, 21/2] is part of an equilibrium that replicates the outcome of an auction among
identical buyers. If e∗ = 0, sellers can never achieve full extraction of the surplus.
This result, which is also outlined in Virag (2008), can be generalized.

Proposition 2. Suppose sellers cannot charge a positive entry fee. Then, in all
symmetric equilibria U(M∗) > 0.

Proof. See the appendix.

In Coles and Eeckhout (2003) and Virag (2008) it is shown that the optimal
equilibrium for the sellers involves price schedules that are increasing in the num-
ber of visiting customers. This is not necessarily true in this model. To illustrate

18 More precisely, for a general number of buyers n and given that σ(1) > 0, there are (n/2)(n + 1)
possible values that k can obtain. Hence, in order to find the equilibrium, one would first have to
calculate the (continua of) price schemes associated with each of these values. Then, for a given k, one
would have to check for the existence of profitable deviations associated with each of the remaining
(n/2)(n + 1)− 1 values of k. This process would have to be repeated (n/2)(n + 1) times.
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this point, consider the parametric example presented above. The price scheme
(p∗1, p

∗
2, p

∗
3, p

∗
4, e

∗) = (−1/4,−5/12, 1, 1, 3/2) is part of an equilibrium that replicates
the outcome of an auction among identical buyers. Moreover, the expected utility of
a buyer in this equilibrium is equal to zero, and so this is an optimal equilibrium for
the sellers. However, this price schedule is not increasing, since p∗1 > p∗2.

Proposition 1 establishes ex post efficiency of the advertised production plans,
and provides a simple method to identify the equilibria of the model. As I show in
the following Lemma, symmetric equilibria are not only ex post, but also ex ante
(constrained) efficient.

Lemma 2. A production plan k∗ is ex post efficient if and only if it is ex ante
constrained efficient.

Proof. See the Appendix.

Corollary 1. Every equilibrium of the model is constrained efficient, in the precise
sense that it involves a production plan that maximizes the social surplus.

To summarize, for any parameter values there exists a (generically) unique pro-
duction plan that is posted in equilibrium. This plan is ex post efficient, in the sense
that it maximizes the total surplus at every possible contingency. Ex post efficiency
leads to a simple method of identifying the equilibria of the model. Once the ex post
efficient k∗ is found, one only needs to substitute the values k∗1, k

∗
2, ..., k

∗
n in (11). This

provides the equilibrium prices. Associated with k∗, is a continuum of equilibrium
price schedules, which are not, in general, payoff equivalent. However, all equilibria
are (constrained) efficient, since the ex post efficient production plan also maximizes
ex ante expected surplus. Although sellers are allowed to choose very complicated
price schemes, common practices, like a fixed price or an auction among buyers, can
describe equilibrium behavior.

Ex post efficiency of advertised production plans is a somewhat surprising result.
Consider again the case in which n = m = 2. The analysis in Section 3 implies that
if σ(1) > σ(2), k = (1, 2) is never posted in equilibrium. It is clear that if two buy-
ers show up at a store, the seller should maximize (ex post) surplus, which requires
serving only one customer. The surprising element of this result is that, ex ante, one
might expect the sellers to have an incentive to deviate and post kd = (1, 2), in order
to attract more customers who value the certainty of being served at the deviant
seller. It turns out that sellers never have an incentive to deviate to suboptimal pro-
duction plans just to attract more customers. Unlike what most oligopolistic models
would predict, sellers use their strategic variable k in such a way that efficiency in
the economy is not distorted. In terms of economic policy, this result implies that
authorities should intervene in this type of markets only to redistribute surplus, if
this is considered necessary, but not to improve efficiency.
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4.2 Efficiency and Free Entry

So far I assumed that the number of sellers in the market is exogenous. It is straight-
forward to show that if the model is extended to allow endogenous determination of
m, efficiency is still achieved in symmetric equilibrium. Suppose that a new stage is
added in the beginning of the original game, in which sellers decide whether to enter
the market or not. If they do not enter their payoff is zero. If they enter they pay
a sunk cost, ψ > 0, and they participate in the regular two stage game described
above. Regardless of the number of sellers that decide to enter, only efficient k’s will
be played in the subgame. Hence, I can determine the optimal number of sellers as
m∗ = arg max{S(m,k∗) − ψm}.19 For any finite n,m, Proposition 1 suggests that
any sharing rule of the surplus can be supported in equilibrium. The efficiency result
for the game with free entry is stated below.

Corollary 2. The following strategies constitute a subgame perfect equilibrium of the
game with free entry: in the first stage exactly m∗ sellers enter the market. In the
second stage active sellers post the mechanism

M =
{

M1 = {p1, k
∗}, if m = m∗,

M2 = {p2, k
∗}, if m 6= m∗,

where p1,p2 satisfy (11) for m = m∗ and m 6= m∗, respectively. Also, π(m∗,M1) ∈
[ψ, S(m, k∗)] and π(m,M2) ∈ [0, ψ), for all m 6= m∗. Buyers set s∗ = (1/m, ..., 1/m).

The strategies identified in Corollary 2 describe equilibrium behavior both on and off
the equilibrium path. Thus, the class of equilibria under consideration is subgame
perfect. These equilibria are not symmetric, since some sellers enter the market and
others do not. However, buyers and active sellers still play symmetric strategies.

4.3 The Matching Function

The last issue I examine in this section is the number of units sold in the economy.
The expected sales per seller are given by S(n,m) =

∑n
i=1

(
n
i

) (
1− 1

m

)n−i ( 1
m

)i
k∗i .

Therefore, in symmetric equilibrium, the number of expected sales in the economy is

M(n,m) = m S(n,m) = m

(
1− 1

m

)n n∑

i=1

(
n

i

)
k∗i

(m− 1)i
.

19 The term S(m,k∗) is the expected total surplus given by (10). When m is exogenous, I denote
surplus by S(k∗) for notational simplicity. Here m is an equilibrium object, hence, I write surplus
explicitly as a function of m. The same explanation applies for the term π(m, M) in Corollary 2.
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The function M(n,m) can be thought of as the matching function. In this setting
the matching function depends not only on the number of buyers and sellers in the
market, as it is common in the search literature, but also on the production schedule
that arises in equilibrium. Clearly, when sellers choose to serve all potential visitors at
their store, i.e. k∗i = i for all i, M(n,m) = n, and there are no frictions in the market.
At the other extreme, if k∗ = (1, 1, ..., 1), M(n,m) = m

[
1− (

1− 1
m

)]n, which is the
number of expected sales derived in Burdett, Shi, and Wright (2001).20

In that paper the authors also examine the arrival rates for buyers and sellers,
defined as AB ≡ M(n,m)/n and AS ≡ M(n,m)/m, and characterize the matching
function in terms of its returns to scale. In this setting it is more appropriate to refer to
AB as the probability with which a buyer gets served, and to AS as the expected sales
per seller. I define market tightness as b ≡ n/m. First, suppose that the production
scheme k∗ = (1, 1, ..., 1) emerges in equilibrium. For a fixed market tightness, both AB

and AS are decreasing in m, which implies that M(n,m) exhibits decreasing returns to
scale. However, as the market grows large, the matching function has approximately
constant returns. If k∗ = (1, 2, ..., n), AS = n/m and AB = 1. Therefore, in the
no frictions case, the matching function exhibits constant returns to scale even if the
market is small.

4.4 Case Study: Greek Ferries in Low Season.

A common practice of Greek ferry owners in the winter, when the demand for trips to
the islands is very low, is to advertise that if less than a certain number of passengers
show up on a specific day the trip will be cancelled. In this section I present some
hypothetical parameter values, that capture the important features of this market,
and use the results analyzed so far to show that such advertisements can be supported
as equilibrium behavior. Let m = 3, n = 600, c(0) = 0, c(1) = ... = c(500) = 200,
and u(i) = 1 for all i ≤ n. Hence, there is no consumption externality and the cost
of a trip is constant regardless of the number of passengers.21 The capacity of each
ferry is given by ξ = 500. Buyers observe all firms’ advertisements and visit only one
location. The ex post surplus function in this market is given by

σ(i) =





0, if i = 0,
i− 200, if 1 ≤ i ≤ 500,
300, if i ≥ 500.

20 In that paper k = (1, 1, ..., 1) by default. Hence, it is not surprising that the number of sales in
the two models coincide when k∗ = (1, 1, ..., 1).

21 The assumption c(0) = 0, implies that if the trip is cancelled the ferry owner does not have to
pay the cost of petrol. Also, here I do not examine whether firms should consider exiting this market.
The firms know that the low season will not last forever and profits will go up soon.

18



0

200

400

600

800

1000

y

600 800 1000 1200 1400 1600 1800

x

S(n)

n

Figure 2: Total surplus as a function of n.

The only production plan that can arise in equilibrium is one that satisfies ex post
efficiency. Here it is given by

k∗i =





0, if i ≤ 200,
i, if 200 ≤ i ≤ 500,
500, if i ≥ 500.

Hence, advertising that “the trip will be cancelled if less than two hundred passengers
show up” describes equilibrium behavior, provided that there exist prices that satisfy
the conditions described in Proposition 1.22 As pointed out earlier, this result might
be somewhat surprising. Given that two sellers play k∗i = 0, for i ≤ 200, one might
expect that the third seller would have an incentive to deviate and advertise that she
will run the service regardless of how many passengers show up. Such an advertise-
ment, although ex post inefficient, might be ex ante profitable, since it may attract
a lot of passengers who are afraid their trip will be cancelled if they visit one of the
non-deviant sellers. Lemma 1 shows that such advertisements cannot be supported
in equilibrium.

22 In the proof of Proposition 1 I explain why one should worry about existence of equilibrium
in the case where k∗i = 0 for some i. Here for simplicity I ignore equilibrium prices and focus on
production schedules.
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Figure 2 presents the total surplus in symmetric mixed strategy equilibrium as
a function of the number of buyers in the market. For n as big as 550, the co-
ordination problem is so severe that the total surplus is almost zero (because the
probability of any boat getting more than two hundred passengers is almost zero).
For n ∈ [700, 1400] the coordination problem is not important and dS/dn = 1 (ev-
ery new customer gets served with certainty). For n ∈ [1400, 1550], some ferries get
more than five hundred customers, hence, rationing starts taking place. Finally, for
n ≥ 1550, dS/dn = 0, because all ferries get five hundred passengers with probability
arbitrarily close to one.

When n = 600 the total surplus is 13.8. This is the maximum possible surplus
that can be achieved in symmetric equilibrium with m = 3. If only one ferry runs
the service, the total surplus increases to 300, because there is no coordination issue.
However, the ferry owners know that the low season will not last forever, therefore,
they do not find it optimal to exit the market. In this case the authorities could im-
prove welfare by allowing the firms to form an alliance that behaves as a monopoly.23

If firms can form such an alliance it is reasonable to assume that they can also coor-
dinate on equilibria that leave very small or zero surplus to the buyers. Therefore,
economic authorities should let firms behave as a monopoly and intervene only to re-
distribute some surplus to buyers (if this is considered necessary) and not to improve
welfare in the market.

5 Limiting Analysis

5.1 Equilibrium in Large Markets

In Section 4, it was shown that when n,m are finite there exists a continuum of equi-
libria associated with a specific production scheme. Advertising more buyer surplus
in some states and less in some others can leave expected buyer and seller payoff
unchanged. This implies that each seller has a continuum of best responses, given
buyers’ and rival sellers’ strategies. A continuum of equilibria exists that are all ef-
ficient, but not payoff equivalent. One would expect this indeterminacy to vanish as
the market becomes very large. In what follows, I show that this is indeed the case.
More specifically, as n,m → ∞, the expected profit of sellers (or equivalently the
expected utility of buyers) collapses to a single limiting value.

Proposition 3. Suppose that n,m → ∞ and b is held constant. Also, let e∗ < ∞
and p∗i > −∞, for all i. Then, the limit of expected profit for an arbitrary seller in

23 In many countries, including Greece, such a behavior is considered illegal and it is forbidden by
antitrust laws.
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this market is given by

π̄ = b lim
n→∞

{
n∑

i=1

H

(
n,

b

n
, i

)
(1 + b− i) σ(k∗i )

}
, (12)

where H(n, b
n , i) ≡ (

n−1
i−1

) (
1− b

n

)n−i ( b
n

) i−1
(1

i ).

Proof. See the appendix.

Proposition 3 implies that as the market becomes large, considering only fixed
price mechanisms, like in Burdett, Shi, and Wright (2001), or mechanisms that do not
include an entry fee, like in Coles and Eeckhout (2003), is without loss of generality.
The value of the expected profit at the limit does not depend on which price scheme
is played in equilibrium, and it is increasing in b. For given b, π̄ depends exclusively
on the sequence of ex post optimal surplus, {σ(k∗i )}∞i=1. With n →∞ it is not always
possible to assign a sequence representation to the optimal production plan k∗ and
effectively describe {σ(k∗i )}∞i=1. This issue can be resolved by placing some minor
restrictions on the functions u and c, which lead to a special and very tractable class
of efficient production schedules. The following proposition states the relevant result.

Proposition 4. Suppose σ(1) > 0. If the ex post surplus function, σ(x), is strictly
quasi concave the unique ex post efficient plan k∗ is fully characterized by the number
λ, in the sense that k∗ = (1, 2, ..., λ, λ, ...). A sufficient condition for σ(x) to be strictly
quasi concave is that c(x) is convex and xu(x) is concave, one of them strictly.

Proof. See the appendix.

Proposition 4 indicates that if σ(x) is strictly quasi concave, the equilibrium pro-
duction schedule is fully described by a single number λ, such that if λ or less buyers
show up they all get served, but if more than λ show up only λ units are sold and ra-
tioning takes place. The case in which λ = ∞ is not excluded. This is the no frictions
case. Henceforth, I restrict attention to preferences and technology that satisfy the as-
sumptions of Proposition 4. Whenever a seller posts the scheme k∗ = (1, 2, ..., λ, λ, ...),
I say that the seller chooses maximum production of λ. The sequence {σ(k∗i )}∞i=1 has
σ(k∗i ) = σ(i), for i ≤ λ and σ(k∗i ) = σ(λ), for i > λ. Next, I examine some specific
examples of {σ(k∗i )}∞i=1 and obtain closed form solutions for π̄.
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5.2 Closed Form Solutions

First, consider the case in which λ = 1, and so {σ(k∗i )}∞i=1 is the constant sequence
{σ(1), σ(1), ...}.24 One can re-write (12) as

π̄ = b σ(1) lim
n→∞

{
n∑

i=1

H

(
n,

b

n
, i

)
(1 + b− i)

}
.

After some algebra it can be shown that25

π̄ = σ(1)
(
1− e−b − be−b

)
= σ(1) π̄BSW , (13)

where π̄BSW is the limiting value of expected profit found in Burdett, Shi, and Wright
(2001). In that paper it is assumed that u(1) = 1 and c(1) = 0, therefore, the two
results coincide.

Next, consider the most realistic case of a strictly convex cost. For simplicity
let u(i) = 1 for all i and c(i) = β i2, β ∈ (0, 1). Here σ(i) = i(1 − β i). For small
values of i, σ(i) is increasing and sellers serve all visiting customers. However, as
i becomes bigger the convex cost overweighs the linear benefit and sellers do not
accommodate more than a certain number of customers. The critical number, after
which the marginal cost of serving another customer exceeds the marginal benefit of
doing so, is given by λ = min

{
l ∈ N : l > 1−β

2β

}
. It is straightforward to show that

π̄ = b lim
n→∞

{
λ∑

i=1

(
n− 1
i− 1

)(
1− b

n

)n−i ( b

n

) i−1

(1 + b− i)(1− β i)

}
+

+b λ(1− βλ) lim
n→∞

{
n∑

i=λ+1

H

(
n,

b

n
, i

)
(1 + b− i)

}
.

After using some standard results about limits, one can obtain

π̄ = λ(1− βλ)
(
1− e−b − be−b

)
+ e−b

λ∑

i=1

bi(1 + b− i)
(i− 1)!

[
1− β i− λ(1− βλ)

i

]
=

= λ(1− βλ) π̄BSW + e−b
λ∑

i=1

bi(1 + b− i)
(i− 1)!

[
1− β i− λ(1− βλ)

i

]
. (14)

24 This example coincides with the environment described in Burdett, Shi, and Wright (2001).
However, in that paper sellers have no choice over their production, while here λ = 1 because
σ(i) < σ(1), for all i > 1.

25 It is easy to prove that limn→∞
�Pn

i=1 H
�
n, b

n
, i
�	

= 1
b
(1 − e−b) and that

limn→∞
nPn

i=1

�
n−1
i−1

� �
1− b

n

�n−i � b
n

� i−1
o

= 1. Given these results the expression in (13) fol-

lows immediately.
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Figure 3: π̄ as a function of b, for β = 0.3 and β = 0.1.

In (14) π̄ is expressed as a function of the parameters β, λ and the market tightness.
The limiting profit in this example can be written as π̄ = Aπ̄BSW + B, where A ≡
λ(1 − βλ) and B is defined as the second term in equation (14). The term A is
decreasing in β. Moreover, it can be shown that as b gets very large B goes to zero,
implying that26

lim
b→∞

π̄ = A lim
b→∞

π̄BSW + lim
b→∞

B = A.

Hence, A is the upper bound of the limiting profit for sellers. In Figure 3, π̄ is plotted
as a function of b for two cases. When β = 0.3 (implying λ = 2) and when β = 0.1
(implying λ = 5).

An interesting case arises when u(i) = u for all i, and total cost is linear, c(i) = c i,
c < u. Then, σ(i) = (u − c)i.27 Since u − c > 0, efficiency requires sellers to choose
λ = ∞. This implies k∗i = i, and so equation (12) yields

π̄ = b (u− c) lim
n→∞

{
n∑

i=1

(
n− 1
i− 1

) (
1− b

n

)n−i ( b

n

) i−1

(1 + b− i)

}
=

26 As it can be seen in Figure 3, B → 0 and π̄BSW → 1 for very small values of b. For β = 0.3 this
happens for b ≈ 6.

27 Here iu(i) and c(i) are weakly concave and convex (respectively). However, σ(i) = (u − c)i is
strictly increasing and, therefore, strictly quasi concave.
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= b (u− c)

{
(1 + b) lim

n→∞

{
n∑

i=1

(
n− 1
i− 1

)(
1− b

n

)n−i ( b

n

) i−1
}
− (1 + b)

}
= 0.

This result has an intuitive explanation. When all sellers set k∗i = i, there are no
frictions in the market, since all buyers get served with probability 1 at any store
they might choose to visit. With no frictions and n,m → ∞, the model becomes
approximately perfectly competitive and equilibrium profit goes to zero at the limit.

5.3 Matching in Large Markets

Finally, consider the number of successful matches in the economy. Since the number
of buyers and sellers is infinite, I focus on the variables AS and AB introduced in
Section 4.

Proposition 5. Suppose that σ(x) is strictly quasi concave and λ denotes the max-
imum production of sellers in the symmetric equilibrium. Then, as n,m → ∞ and b
is held constant, the expected number of sales per seller is given by

ĀS,λ(b) ≡ lim
n→∞AS =





e−b
∑λ

i=1
(i−λ) bi

i! + λ(1− e−b), if λ < ∞,

b, if λ = ∞,

and the probability with which an arbitrary buyer get served is given by ĀB,λ(b) ≡
limn→∞AB = b−1Ās,λ(b).

Proof. See the appendix.

Proposition 5 implies that for any given b, if λ > λ′, ĀS,λ(b) ≥ ĀS,λ′(b) and ĀB,λ(b) ≥
ĀB,λ′(b).28 Hence, in equilibrium, higher values of λ imply a higher number of sales
for sellers and a higher probability of getting served for buyers. As b becomes very
large, ĀS,λ → λ. Figures 4 and 5 illustrate ĀS,λ and ĀB,λ for different values of
maximum production including λ = ∞, i.e. the no friction case. To see the effect
of different choices of λ on the number of successful matches, suppose that b = 2.
The expected number of sales (per seller) in a market where sellers choose λ = 1 is
ĀS,1(2) = 0.8646. If λ = 2 the number of sales is given by ĀS,2(2) = 1.4586. From the
buyer’s perspective, in a market with λ = 1 the probability of getting served is given
by ĀB,1(2) = 0.4323. But if λ = 2 this probability increases to ĀB,2(2) = 0.7293. If
b is small the probability with which an arbitrary buyer gets served in equilibrium is
very close to 1, even for values of λ as small as 3. For instance, ĀB,3(0.6) = 0.9937.

28 Also, limλ→∞ ĀS,λ(b) = b and limλ→∞ ĀB,λ(b) = 1, which are the arrival rates in a market with
no frictions.

24



b

As,l(b)
_

45
o

l=1

l=2

l=

8

1 2 3 4 5
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Figure 6: The probability ĀB for a fixed number of units per buyer.

In Figure 5, the supply of goods in the economy with λ = 2 is twice as big as the
supply in the economy with λ = 1. Therefore, the distance ĀB,2− ĀB,1, for given b, is
partly explained by the difference in the number of goods per buyer in the economy.
It would be interesting to focus only on the part of this distance that is explained
by the intensity of frictions in the economy. Figure 6, depicts the probability with
which buyers get served, as a function of the amount of goods per buyer, in economies
with λ = 1, λ = 2, and λ = 4. As the figure implies, frictions amount for a lot of
unsuccessful matches. In the market with λ = 4, a buyer gets served with probability
close to one for a value of λ/b as low as 3. For the same value of λ/b, the probability
of getting served in an economy with λ = 2 is 0.94.29 This implies that the number
of successful matches is more responsive along the intensive margin.

6 Conclusions

In this paper I provide a general framework suitable for the study of markets with
frictions, a few strategic sellers who face a stochastic demand, and buyers who cannot

29 If λ = 1 the probability of getting served when λ/b = 3 is only 0.85. This probability approaches
1 only for values of λ/b that are bigger than 50 (when λ/b = 50, ĀB,1 = 0.99).
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coordinate their visiting strategies. In contrast to the predictions of most models of
oligopolistic markets, I show that the markets under consideration will provide the
socially efficient quantity. Efficiency can be also achieved in equilibrium, in a model
with free entry and endogenous determination of the number of sellers. Efficiency is
constrained by the lack of coordination among the buyers. The only way to improve
upon the equilibrium allocations would be to direct each buyer to a specific seller.

Sellers compete with each other for customers by choosing production and price
schedules contingent on the number of visitors. In equilibrium, only ex post efficient
production schedules are advertised. Ex post efficiency is a somewhat surprising re-
sult. It is clear that once a certain number of customers have shown up at a store, the
seller should maximize ex post surplus. However, production plans are announced ex
ante. Hence, one might expect sellers to advertise production plans that are not ex
post efficient, but they attract a large number of customers, therefore, they are ex
ante profitable. It turns out that sellers never have the incentive to advertise ex post
inefficient production plans, just to attract more customers.

I show that ex post and ex ante efficiency are equivalent in this model. This im-
plies that the production schedule that is posted in symmetric equilibrium maximizes
ex ante expected surplus. Despite the element of strategic interaction among sellers,
the production decisions are such that the efficiency of the economy is not distorted.
This finding has some important implications for economic policy. More specifically,
the authorities should intervene in this type of markets only to redistribute surplus,
if this is considered necessary, but not to improve efficiency.

Other results include the existsence of a continuum of equilibrium price schemes
in small markets. These equilibria are not payoff equivalent. Although sellers are
allowed to advertise general pricing mechanisms, common practices, like posting a
fixed price or an auction, can describe equilibrium behavior. As the size of a mar-
ket becomes very large the indeterminacy of equilibria vanishes. This implies that
considering less sophisticated mechanisms, like fixed price schemes, is without loss of
generality. Finally, I show that the number of successful matches in the economy is
more responsive along the intensive margin than it is along the extensive margin.

7 Future Work

An interesting extension of the current model allows the study of overbooking. Sup-
pose that the sellers are airline companies (they could be or bus owners or even restau-
rants) and face a capacity constraint ξ ≤ n. There is a new stage in the exchange
process, in which after observing each seller’s advertisement and before showing up
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at a certain location, buyers can costlessly visit the web site of every seller30 On the
day of the trip there is a probability γ > 0 with which buyers get a random shock and
decide not to travel. Then, sellers might have an incentive to advertise a production
plan with kj > ξ, for some j > ξ: although capacity is given by ξ, sellers might find
it prudent to sell a number of tickets higher than ξ and refund passengers who end
up getting rationed (if too many decide to travel). This incentive becomes stronger
as the value of γ increases. This work is in progress.

A Appendix

Proof of Lemma 1. Define the term H(n, θ, i) ≡ (
n−1
i−1

)
(1− θ)n−i θ i−1(1/i), which is

non negative and strictly positive if θ > 0. Combining this definition with equation
(1), the expected utility for a buyer from visiting a seller who advertises M = {p,k}
and gets visited by an arbitrary buyer with probability θ can be written as

U (θ,M) =
n∑

i=1

H(n, θ, i)ki [u(ki)− pi]− e. (a.1)

The expected profit for a seller who posts M and gets visited by an arbitrary seller
with probability θ is given by (2). Using this equation together with the definition of
H(n, θ, i) and the fact that

(
n
i

)
= n

i

(
n−1
i−1

)
, implies

π (θ, M) = nθ
{ n∑

i=1

H(n, θ, i) [kipi − c(ki)] + e
}

. (a.2)

Given s−j , for any M ∈ Sj , indifference in the second stage determines the proba-
bilities with which an arbitrary buyer visits each seller, (θ1, θ2, ..., θm−1). Assume that
θj > 0 and define δ ≡ U (θj ,M) = U(θh, s−j). Clearly, δ is a finite non-negative real
number. For any parameter values it is easy to identify the ex post efficient produc-
tion schedule k∗. Then, for any M ∈ Sj , one can always find p∗ = (p∗1, p

∗
2, ..., p

∗
n, e∗),

with p∗i ≤ u(k∗i ) for all i and e∗ ∈ R, such that the equation

G(p∗) ≡ U (θj ,M
∗)− δ =

n∑

i=1

H(n, θj , i)k∗i [u(k∗i )− p∗i ]− e∗ − δ = 0, (a.3)

always has a solution.31 To see why this is true, fix the entry fee at some arbitrary
e∗ = ẽ > 0. Consider the price scheme (p∗1, p

∗
2, ..., p

∗
n, e∗) = (u(k∗1), u(k∗2), ..., u(k∗n), ẽ).

30 This new stage is not characterized by frictions. However, frictions are still present in the last
stage, i.e. after a buyer physically visits a seller’s store.

31 In words, for any choice of M one can find a price schedule p∗ such that the mechanisms
M = {p,k} and M∗ = {p∗,k∗}, where k∗ is ex post efficient, generate the same expected utility for
a buyer who visits seller j, while leaving θj unaltered.
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Then, G(u(k∗1), u(k∗2), ..., u(k∗n), ẽ) = −ẽ−δ < 0. Moreover, one can always find prices
that make G arbitrary large. Finally, the function G is continuous and decreasing in
all its arguments. Combining these observations, one can conclude that the equation
G(p∗) = 0 has at least one solution.

Next, let p̂∗ ∈ {p∗ : G(p∗) = 0}. By definition, if seller j advertises the mechanism
M̂ = (p̂∗,k∗), buyers are still indifferent between visiting her or any other seller.
Moreover, given s−j , the profit that seller j obtains if she plays this specific strategy
is

πj

(
M̂, s−j

)
= nθj

{ n∑

i=1

H(n, θj , i) [k∗i p̂
∗
i − c(k∗i )] + e∗

}
=

= nθj

{ n∑

i=1

H(n, θj , i) {k∗i u(k∗i )− c(k∗i )− ki [u(ki)− pi]}+ e
}

,

where the last equality follows from (a.3) and the definition of the term δ. Next, add
and subtract c(ki) inside every term of the sum in the last expression. This implies

πj

(
M̂, s−j

)
= nθj

{
n∑

i=1

H(n, θj , i) [σ(k∗i )− σ(ki) + piki − c(ki)] + e

}
=

= nθj

n∑

i=1

H(n, θj , i) [σ(k∗i )− σ(ki)] + πj (M, s−j) ,

where the last equality follows from (a.2). Definition 4 and the fact that k∗ is ex post
efficient conclude the proof.

Proof of Proposition 1. From Lemma 1, the equilibrium can only involve ex post ef-
ficient production schedules. Suppose that all sellers but j post the price schedule
p = (p1, ..., pn, e) together with the ex post efficient k∗. Seller j does not have an
incentive to post kd 6= k∗. Hence, consider deviations only in the price scheme. If
seller j deviates to pd = (pd

1, ..., p
d
n, ed), expected profit is given by

πj

(
t, (pd,k∗)

)
= nt

{ n∑

i=1

H(n, t, i)
[
k∗i p

d
i − c(k∗i )

]
+ ed

}
,

where t is the probability with which the deviant seller gets visited by an arbitrary
buyer, and the function H was defined above. Seller j wants to maximize this ex-
pression, subject to U

(
t, (pd,k∗)

)
= U (θ, (p,k∗)), where θ = (1 − t)/(m − 1) is the

probability with which any given buyer visits a non deviant seller. Using (a.1), the
condition for indifference of the buyers can be written as

n∑

i=1

H(n, t, i)k∗i p
d
i + ed =

n∑

i=1

H(n, t, i)k∗i u(k∗i )− U (θ, (p,k∗)) .
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The term
∑n

i=1 H(n, t, i)k∗i p
d
i + ed appears both in the objective function and in

the constraint. Hence, one can re-write the problem of seller j as

max
t

{
nt

[
n∑

i=1

H(n, t, i)σ(k∗i )− U (θ, (p,k∗))

]}
.

The first-order condition yields

n∑

i=1

H(n, t, i)σ(k∗i )− U (θ, (p,k∗)) +

+t

{
n∑

i=1

(
n− 1
i− 1

)
σ(k∗i )

i
(1− t)n−i−1 ti−2[−(n− i)t + (i− 1)(1− t)]− ∂U

∂t

}
= 0 (a.4)

To obtain an expression for ∂U/∂t, set θ = t in (a.1) and apply total differentiation
with respect to that variable. One can obtain

∂U

∂t
=

n∑

i=1

(
n− 1
i− 1

)
k∗i [u(k∗i )− pi]

i
(1− t)n−i−1 ti−2[−(n− i)t + (i− 1)(1− t)]

∂θ

∂t
,(a.5)

and ∂θ
∂t = −1

m−1 . The final step is to impose symmetry conditions. These conditions
are t = θ = 1

m , pi = pd
i = p∗i for all i, and e = ed = e∗. Combining (a.4), (a.5), and

the symmetric equilibrium conditions leads to (11).
It remains to show existence of a p∗ that satisfies the conditions described in

Proposition 1. Without loss of generality, I show existence of p∗ that leads to U(M∗) =
0.32 In this case

∑n
i=1 H (n, 1/m, i) k∗i [u(k∗i ) − p∗i ] = e∗. Using this fact in (11) and

after some algebra we have

n∑

i=1

H

(
n,

1
m

, i

) [
1− f(n,m, i)

m− 1

]
k∗i [u(k∗i )− p∗i ] =

n∑

i=1

Q(n,m, i)σ(k∗i ) ≡ η, (a.6)

where Q(n, m, i) ≡ H(n, 1/m, i)f(n,m, i).
I claim that η is strictly positive and finite. The latter follows form the definition

of H. The former is not straightforward because the function f is not always positive.
If n < m, then f(n,m, i) = (mi − n)/(m − 1) > 0 for all i. But if n > m, there
exists ν ∈ N with 1 ≤ ν < n, such that for all i ≤ n, f(n,m, i) < 0 and, therefore,
Q(n,m, i) < 0. However, one can show that

n∑

i=1

Q(n, m, i) =
ν∑

i=1

Q(n, m, i) +
n∑

i=ν+1

Q(n,m, i) =
(

m− 1
m

)n−1

> 0. (a.7)

32 Since e∗ enters (11) linearly, one can always decrease its value and achieve an equilibrium with
U(M∗) anywhere between zero and S(k∗).
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Also, since k∗ is ex post efficient, σ(k∗i ) is non-decreasing in i. Hence,

−
ν∑

i=1

Q(n,m, i)σ(k∗i ) ≤ σ(k∗ν)
ν∑

i=1

[−Q(n,m, i)] <

< σ(k∗ν)
n∑

i=ν+1

Q(n,m, i) ≤
n∑

i=ν+1

Q(n,m, i) σ(k∗i ),

where the strict inequality follows from (a.7). This verifies the claim.
Finally, define the left-hand side of (a.6) as Γ(p∗). This function is continuous

in all arguments. If p∗i = u(k∗i ) for all i, then Γ(p∗) = 0. Also, I can choose a very
large and negative p∗i in the states for which [1 − f(n,m, i)]/(m − 1) > 0, leading
to Γ(p∗) → ∞. Combining these facts proves that p∗ such that Γ(p∗) = η always
exists. This concludes the proof. A sufficient condition for existence is that k∗i 6= 0
for all i. However, even if k∗i = 0 for some i, symmetric equilibrium still exists. The
problem arises when k∗i = 0 in all states where [1 − f(n,m, i)]/(m − 1) > 0. Then
Γ(p∗) ≤ 0 < η, and the above proof does not hold.

Proof of Proposition 2. As I showed in the proof of Proposition 1, U(M∗) = 0 implies

n∑

i=1

H

(
n,

1
m

, i

)
k∗i [u(k∗i )− p∗i ] = e∗ ≤ 0. (a.8)

Ex post rationality and the definition of H, imply that the left-hand side of (a.8) is
non-negative. Therefore, U(M∗) = 0 only if e∗ = 0 and p∗i = u(k∗i ), all i. The question
is whether p̂∗ = (u(k∗1), ..., u(k∗n), 0) can be supported in equilibrium. According to
Proposition 1, this will be true if and only if p̂∗, satisfies equation (11) (p̂∗ satisfies
every other requirement described in that proposition). Plugging p̂∗ into (11) yields

n∑

i=1

Q(n,m, i) σ(k∗i ) = 0, (a.9)

where Q(n,m, i) is defined in the proof of Proposition 1. In the same proof I show
that

∑n
i=1 Q(n,m, i) σ(k∗i ) > 0, hence, I have reached a contradiction.

Proof of Lemma 2. The total surplus is given by (10). If k∗ is an ex post efficient
production schedule, it is straightforward to show that for any k 6= k∗, S(k∗) ≥ S(k),
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and so k∗ is also ex ante efficient. To prove the converse, assume that k∗ maximizes
the total surplus, i.e. S(k∗) ≥ S(k) for any k 6= k∗. One can write

∑

i∈Ik,k∗

(
n− 1
i− 1

)(
1− 1

m

)n−i ( 1
m

)i−1 1
i

[σ(k∗i )− σ(ki)] ≥ 0,

where Ik,k∗ ≡ {i : ki 6= k∗i }.
There are two possible scenarios. Either σ(k∗i ) − σ(ki) ≥ 0 for all i ∈ Ik,k∗ or

σ(k∗i ) − σ(ki) ≥ 0 for some i and σ(k∗i ) − σ(ki) < 0 for some others, but the non-
negative terms overweight the negative ones. If the former scenario is true, then by
definition, k∗ is ex post efficient and the proof is completed. Hence, one needs to
show that the latter scenario is excluded. Define Ψk,k∗ ⊂ Ik,k∗ , as Ψk,k∗ ≡ {i ∈
Ik,k∗ : σ(k∗i ) < σ(ki)}. Suppose, by a way of contradiction, that there exists k, such
that Ψk,k∗ is non empty and k is ex post efficient. Consider the plan k′, where

k′i =
{

ki, if i ∈ Ψk,k∗ ,
k∗i , otherwise.

By construction, for all i = 1, 2, ..., n, σ(k′i) ≥ σ(k∗i ), with strict inequality for some
i’s (the ones in Ψk,k∗ , which is non empty). This implies that S(k′) > S(k∗), a
contradiction to the fact that k∗ is ex ante efficient.

Proof of Proposition 3. Suppose that in the symmetric equilibrium all sellers advertise
the mechanism M∗ = {p∗,k∗}, where k∗ is ex post efficient. The profit of an arbitrary
seller is given by

π (M∗) =
n

m

{ n∑

i=1

H

(
n,

1
m

, i

)
[k∗i p

∗
i − c(k∗i )] + e∗

}
, (a.10)

Equilibrium prices in a small market satisfy equation (11). Using this fact, one can
re-write (a.10) as

n∑

i=1

H

(
n,

1
m

, i

){
k∗i p

∗
i

[
1− b

f(n,m, i)− 1
n− b

]
− c(k∗i )

}
+ e∗ =

=
n∑

i=1

H

(
n,

1
m

, i

){(
1 +

b− ib
n

1− b
n

− i

) [
1

1− b
n

k∗i u(k∗i )− c(k∗i )

]}
. (a.11)

Define Λ as the left-hand side of equation (a.11). It can be shown that

lim
n→∞ Λ = lim

n→∞

{
n∑

i=1

H

(
n,

b

n
, i

)
[k∗i p

∗
i − c(k∗i )]

}
+ e∗. (a.12)
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Using the definition of market tightness and taking the limit as n →∞ on equation
(a.10) implies that

π̄ = b lim
n→∞

{
n∑

i=1

H

(
n,

b

n
, i

)
[k∗i p

∗
i − c(k∗i )] + e∗

}
.

The limiting value of profit is equal to the right-hand side of equation (a.12) multiplied
by b. Combining this observation with equation (a.11) yields

π̄ = b lim
n→∞

{
n∑

i=1

H

(
n,

1
m

, i

) {(
1 +

b− ib
n

1− b
n

− i

)[
1

1− b
n

k∗i u(k∗i )− c(k∗i )

]}}
,

and finally

π̄ = b lim
n→∞

{
n∑

i=1

H

(
n,

b

n
, i

)
(1 + b− i) σ(k∗i )

}
.

Proof of Proposition 4. Since the domain of σ is N, quasi concavity implies that for
all h, i, j ∈ N, with h < j and h ≤ i ≤ j, we have σ(i) > min{σ(h), σ(j)}. Suppose, by
a way of contradiction, that the ex post efficient schedule k∗ does not have the form
described in Proposition 4. The contradictory statement can be re-phrased as follows.
Let λ be the smallest number for which k∗λ = λ and k∗i = λ, where i = λ+1.33 However,
there exists j > i, such that k∗j 6= λ. Since j > i > λ and k∗ is ex post efficient, k∗j 6= λ
can only imply k∗j > λ. Sellers will choose k∗j > λ only if σ(j) > σ(λ). But then,
since j > i > λ and σ is strictly quasi concave, σ(i) > min{σ(λ), σ(j)} = σ(λ), a
contradiction to the fact that k∗i = λ.

Proof of Proposition 5. The expected number of sales per seller is given by

ĀS = lim
n→∞

n∑

i=1

(
n

i

)(
1− b

n

)n−i ( b

n

)i

k∗i .

If λ = ∞, k∗i = i for all i and the result is immediate. If λ < ∞,

ĀS = lim
n→∞

{ λ∑

i=1

(
n

i

)(
1− b

n

)n−i ( b

n

)i

i + λ
n∑

i=λ+1

(
n

i

) (
1− b

n

)n−i ( b

n

)i }
,

33 If such a number does not exist, then we have the no frictions case, which is part of the class of
production schedules under consideration.
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Adding and subtracting the term λ
∑n

i=λ+1

(
n
i

)
(1− b/n)n−i (b/n)i in the last expres-

sion yields

ĀS = lim
n→∞

{ λ∑

i=1

(
n

i

) (
1− b

n

)n−i ( b

n

)i

(i− λ) + λ
n∑

i=1

(
n

i

)(
1− b

n

)n−i ( b

n

)i }

≡ lim
n→∞

{
Ω1(n, b, λ) + λΩ2(n, b)

}
. (a.13)

Using some standard results about limits, one can easily show that limn→∞Ω2(n, b) =
1− e−b. Also,

lim
n→∞Ω1(n, b, λ) =

λ∑

i=1

(i− λ)bi

i!
lim

n→∞

[
n!

(n− i)!ni

(
1− b

n

)n−i
]

.

But since i ≤ λ < ∞, limn→∞{n!/[(n− i)!ni]} = 1. Also, limn→∞(1− b/n)n−i = e−b.
Therefore,

lim
n→∞Ω1(n, b, λ) =

λ∑

i=1

(i− λ)bi

i!
e−b.

Using these observations, one can re-write (a.13) as

ĀS = e−b
λ∑

i=1

(i− λ)bi

i!
+ λ(1− e−b).
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