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Abstract
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1 Introduction

In standard Bayesian games, every player is able to conceive of all players, actions, states,
types, and payoff functions. Players may be uncertain only about which of the conceived
types of players they actually face, i.e., which state obtains. Yet, in real life people are
not just uncertain about which states obtain but some contingencies may be completely
out of their mind when taking decisions. Consequently, when forming beliefs and beliefs
about beliefs of other players etc., those unforeseen contingencies are left out entirely
and people may not even realize that those contingencies are left out. Moreover, since
several players may be involved, players may also form beliefs about the unawareness of
other players, beliefs about beliefs of other players about the unawareness of yet other
players etc. Standard type spaces are not adequate for capturing unawareness (Modica
and Rustichini, 1994, Dekel, Lipman, and Rustichini, 1998). In this paper, we apply type
spaces with unawareness, so called unawareness belief structures introduced in Heifetz,
Meier, and Schipper (2012), to develop Bayesian games with unawareness.

Heifetz, Meier, and Schipper (2012) showed how an unawareness belief structure
consisting of a lattice of spaces is adequate for modeling mutual unawareness. Every space
in the lattice captures one particular collection of contingencies. Higher spaces capture
richer collections of contingencies, in which states correspond to situations described by
a larger set of contingencies. The join of several spaces — the lowest space at least as high
as every one of them — corresponds to the union of contingencies expressible in these
spaces. For every player, a type mapping associates with each state w a probabilistic
belief over states in some space that might not contain w. Conditions are imposed to
relate beliefs across different spaces of the lattice. Thus, at each state, a player has a
belief over all underlying uncertainties describable in the space on which this belief is
concentrated. But she may be unaware regarding other uncertainties not expressible in
that space. Moreover, at each state each player has beliefs about the other players’ beliefs
and awareness, their beliefs about other players’ beliefs and awareness etc.

Unawareness belief structures capture unawareness and beliefs, beliefs about beliefs
(including beliefs about unawareness), beliefs about that etc. in a parsimonious way
familiar from standard type spaces. That is, hierarchies of beliefs are captured implicitly
by states and type mappings. A construction of unawareness belief structures from
explicit hierarchies of beliefs is complicated by the multiple awareness levels involved. A
player with a given awareness level may believe that another player has a lower awareness
level and believes that the first player has yet a lower awareness level etc. Yet, in Heifetz,
Meier, and Schipper (2012) we also present such a hierarchical construction and show
the existence of a universal unawareness type space that contains all belief hierarchies.

In this paper, we complement the unawareness belief structure with a set of actions
and a utility function for each player. This defines Bayesian games in which players may
not just be uncertain about events but also unaware of some events. We extend this

'Heinsalu (2011) independently proves the existence of a universal unawareness type space. However,
he does not present an explicit construction of hierarchies of beliefs.



definition to allow also for uncertainty about and unawareness of the existence of some
actions, outcomes, and players.

The definition of a strategy in Bayesian games with unawareness is not obvious.
Consider a type 7 who is aware of few contingencies only, and two other types 7/, 7”7 with
a richer awareness that agree with the quantitative beliefs of 7 regarding the aspects of
reality of which 7 is aware; the beliefs of 7/ and 7" differ only concerning dimensions of
the reality that 7 does not conceive. Should the action taken by 7 necessarily be some
average of the actions taken by 7/ and 7”7 We believe that conceptually, the answer to
this question is negative. When the player conceives of more parameters (e.g. motives for
saving) as relevant to her decision, her optimal action (e.g. “invest in bonds” or “invest
in stocks”) need not be related to her optimal decision (e.g. “go shopping”) when these
parameters are not part of the vocabulary with which she conceives the world.?

The next step is to define Bayesian equilibrium. Analogous to standard Bayesian
games, an equilibrium in a Bayesian game with unawareness is a Nash equilibrium among
types. Unawareness, however, introduces a new aspect to the construction of equilibrium:
A type who conceives of only few dimensions of reality does not have in mind types of
other players with a wider horizon, so the optimal action of this type does not depend
on the actions of these wider-horizon types. Those types, however, who assign a pos-
itive probability to this narrow-minded type, must take its action into account when
optimizing. With finitely many states, existence follows from Nash (1950).

We apply Bayesian games with unawareness and Bayesian Nash equilibrium to analyze
the robustness of equilibrium to small uncertainty about players’ awareness of actions in
strategic games. We introduce a Nash equilibrium refinement, called Unawareness Perfect
Equilibrium, and prove existence in finite strategic games. For any finite strategic game
we consider a sequence of Bayesian games with unawareness over actions that converge
to the finite strategic game. This represents the players’ uncertainty over the opponents’
awareness of actions. An Unawareness Perfect Equilibrium is the limit of equilibria of
this sequence as uncertainty over opponents’ awareness of actions goes to zero. It turns
out that our refinement characterizes undominated Nash equilibrium. At a first glance,
such a characterization may look somewhat surprising because the underlying assumption
of undominated Nash equilibrium is that every player’s equilibrium strategy should be
robust to slight mistaken choices by opponents. Every player should be cautious or
prudent with respect to the rationality of opponents, which leads him to believe that no
opponents’ actions can be excluded from being played. This is different from our idea
that there is a slight chance that due to opponents’ unawareness of some actions any
opponents’ action may be excluded from being played. If a player is unaware of some
actions, then she perceives a partial game in which these actions are missing. We assume
that players are cautious or prudent in the sense of not excluding such partial games when
considering the possible unawareness of opponents. An Unawareness Perfect Equilibrium
strategy is robust to misperceptions or more aptly “partial perceptions” of the game by

2This is a crucial point in which our definition of a strategy differs from the one in the parallel work
of Sadzik (2006).



opponents.

The most prominent equilibrium concept ruling out dominated Nash equilibrium is
Trembling Hand Perfect Equilibrium by Selten (1975). Every Trembling Hand Perfect
Equilibrium is undominated but the converse applies to two-player games only (see van
Damme, 1991). Selten (1975, p. 35) remarks that there is an inconsistency in the in-
terpretation of Trembling Hand Perfect Equilibrium: “There cannot be any mistakes if
the players are absolutely rational. Nevertheless, a satisfactory interpretation of equi-
librium points in extensive games seems to require that the possibility of mistakes is
not completely excluded.” That is, Selten assumes that players are irrational with a
small probability. A player is irrational if she chooses a strategy that does not maxi-
mize her payoff given her beliefs. Note that in an Unawareness Perfect Equilibrium, a
player still chooses a strategy that maximizes her payoff given her beliefs but her beliefs
may be constrained by her limited awareness. So, in this sense our characterization al-
lows us to provide a justification for undominated Nash equilibrium without resorting
to irrationality of players. Replacing irrational actions of opponents (i.e., trembles) by
uncertainty about opponents’ unawareness is of conceptional significance because choices
are endogenous but unawareness and beliefs are mostly involuntary and thus exogenously
specified in a Bayesian game. The reinterpretation of undominated Nash equilibrium as
equilibrium robust to “partial perceptions” of the game may be of interest to applied
game theorists when contemplating which equilibrium refinement to apply in a context
involving possible inattention by players.

The paper is organized as follows: In the remaining subsections of the introduction,
we discuss the related literature and provide a simple example illustrating the concept
of unawareness perfection. In Section 2 we present our interactive unawareness belief
structure. Bayesian games with unawareness are developed in Section 3. In Section 4
we introduce the concept of unawareness perfection for strategic games, prove existence,
and characterize it by undominated Nash equilibrium. In an appendix, we discuss the
relationship between standard Bayesian games and Bayesian games with unawareness.
All proofs are relegated to an appendix as well.

1.1 A Simplified Illustration of Unawareness Perfection

In this section we briefly discuss a simplified illustration of unawareness perfection. Al-
though the precise construction in Section 4 is more involved, we believe that the sketched
exposition put forward in this section conveys the main idea.

Consider for instance the strategic game «° given by

WY1 L | R
U 1,120
D 0,2]22

There are two pure equilibria, (U, L) and (D, R). (Actually, these are all the equilibria.
There is no mixed equilibrium in this game.) Which equilibrium of game ~° is robust to

4



player’s uncertainty that the opponent may be unaware of some action?

Given the game 7°, derive a partially ordered set of restricted games by considering
the set of all subsets of actions for all players partially ordered by set inclusion:

1 2
?J 1L1 7] 2R0 | L|R V| LR
5 To R U 1,120 D0,2]22
v | L | L 7| R ¥R
U 1,1 D 0,2 U 2,0 D[22

For instance, a player in game ' is unaware of column player’s action R. Hence, she is
unaware of games 7°, 72,73, 7%, ~7, and ®. However, she can envision that her opponent
may be unaware of some action in 4! and may view the game to be 7°. A player being
unaware of action R only is said to have awareness level 7.

Consider now the system of completely mixed beliefs over all restricted games includ-
ing 7° in Table 1. Each row describes a completely mixed belief over games given the

Table 1: System of Completely Mixed Beliefs

Games 7o 71 72 73 74 75 76 77 78
Belief
o [T-¢ : & & & 3§ 3 5 3
t2 1-— E . 5 5 . ]
t —¢€ s =
3 1—¢ £ E
4 1—¢ e 7o
s . 2 2
t
16 1
7 1
18 1

awareness level associated with that row. E.g., t¥ denotes the completely mixed belief
over games for a player with awareness level 4°. Such player may believe with probability
t%(y') that the opponent’s awareness level is ¥'. Such an opponent’s belief about the
player’s awareness level is then given in turn by t'. A player with awareness level 4 who
believes with probability t°(y!) that his opponent has awareness level 7! also believes
that such an opponent is unaware of 7° and believes with probability ¢'(v°) that the
player himself has awareness level 4°. Etc. Essentially this corresponds to a Bayesian
game with unawareness of actions.

We are interested to find out which equilibrium of the game ~° is robust to such
beliefs about opponent’s unawareness in the limit as € goes to zero, assuming that at



each awareness level and for each e considered, players play Bayesian Nash equilibrium.
Such equilibria we call Unawareness Perfect Equilibria. To construct such an equilibrium,
consider the games at the lowest levels v°, 75, 47, and 78. Since the set of outcomes is
a singleton, for any ¢ the Bayesian equilibria are trivial in those games. Now at any
higher awareness level, players must take the Bayesian equilibria of the lower games into
account. Thus we can define inductively Bayesian equilibria with unawareness. When
we consider games 7% to 4! in our example, this yields a unique outcome for all games
except 72 and 7*. In latter two games any mixtures of the row and column players,
respectively, are allowed. Since t° is completely mixed over all lower games, every action
of the opponent is assigned some strict positive weight in equilibrium at awareness level
7? as long as € > 0. The best reply of the type t° is always to play U as row player
and L as column player. Taking € to zero selects uniquely the equilibrium (U, L) as
the Unawareness Perfect Equilibrium of ~°. This corresponds to the undominated Nash
equilibrium. In the paper, we show that this equivalence holds more generally. Every
Unawareness Perfect Equilibrium of a finite strategic game is an undominated equilibrium
and vice versa. Section 4 develops this in a general framework.

1.2 Related Literature

There is a growing literature on unawareness both in economics and computer science.?

The independent parallel work of Sadzik (2006) is closest to ours. Building to a certain
extent on our earlier work, Heifetz, Meier, and Schipper (2006), he presents a framework
of unawareness with probabilistic beliefs in which the common prior on the upmost space
is a primitive. In contrast, we take types as primitives and a prior may be defined on
the entire unawareness belief structure as a convex combination of the type’s beliefs
(see Heifetz, Meier, and Schipper, 2012). Sadzik (2006) also considers Bayesian games
with unawareness, but his definition of Bayesian strategy and consequently the notion
of equilibrium differs from ours. As argued above, we do not confine actions of a type
with a narrow horizon to be some average of actions of the corresponding types with a
wider horizon, a restriction made in Sadzik (2006). As a result, in our notion of Bayesian
equilibrium every type maximizes and is certain that every other type that she is aware
of maximizes as well, while in the equilibrium of actions proposed in Sadzik (2006) a type
may believe that another player is irrational. Sadzik (2006) does not allow for players to
be unaware of other players, while we do.

A purely syntactic framework with unawareness is presented by Feinberg (2005) which
he applies to games with unawareness of actions but complete information. In Section 3.2,
we discuss an interesting example due to Feinberg (2005) and demonstrate that higher
order awareness of unawareness in Feinberg (2005) corresponds to higher order belief
of unawareness in our model. Feinberg (2009) discusses games with unawareness by
modeling games and many views thereof, each (mutual) view being a finite sequence of
player names iy, ..., 4, with the interpretation that this is how ¢; views how .... how 1,

3See http://www.econ.ucdavis.edu/faculty /schipper /unaw.htm for a bibliography.



views the game. This differs from our unawareness belief structures in which each state
“encapsulates” the views of the players, their views about other players’ views etc. in a
parsimonious way familiar from standard structures.

In a framework similar to Feinberg (2005, 2009), Copi¢ and Galeotti (2006) study
two-player games with either unawareness of actions or unawareness of types (with a
prior as a primitive). Yet, their notion of equilibrium differs from Bayesian equilibrium
because the authors require that in equilibrium beliefs over actions and payoffs must
correspond to the true joint distribution over own payoffs and the opponent’s actions.

Halpern and Régo (2006), Régo and Halpern (2012), Li (2006), Ozbay (2007), Heifetz,
Meier, and Schipper (2011a, b), Meier and Schipper (2012), and Feinberg (2009) present
models of extensive-form games with unawareness and discuss solution concepts for them.

Bayesian games with unawareness allow both for unawareness and probability zero
beliefs. This raises the question about the differences between probability zero events
and events that an agent is unaware of. In Appendix A, we show how to “flatten” a
Bayesian game with unawareness by taking the union of all spaces and assigning zero
probability to all states of which the individual is unaware. The “flattened” game is a
standard Bayesian game with a standard type space; thus the Dekel-Lipman-Rustichini
(1998) critique applies and unawareness becomes trivial. “Flattening” does not “change”
the set of Bayesian Nash equilibria though but equilibria in the “flattened” game cannot
be interpreted anymore with unawareness. At an epistemic level, unawareness has very
different properties from probability zero belief. For instance, one property that is sat-
isfied by unawareness is symmetry (see Heifetz, Meier, and Schipper, 2012, Proposition
5). An agent is unaware of an event if and only if she is unaware of its negation. Clearly,
such a property cannot be satisfied by probability zero belief because if an agent assigns
probability zero to an event, then she must assign probability one to its complement.
Schipper (2012) shows that this feature captures also behavioral differences between un-
awareness and probability zero belief. Let’s say a decision maker chooses among different
contracts for buying a firm. The seconds contract may differ from a first contract only in
a consequence for an event E that is disadvantageous to the buyer. If the decision maker
is indifferent between both contracts, then this is consistent with £ being Savage null.
Yet, if the decision maker is also indifferent between the first and a third contract that
differs from the first only in assigning this disadvantageous consequence to the negation
of the event FE instead the event E itself, then this behavior is inconsistent with the
negation of the event E or the event E itself being Savage null. The decision maker
behaves as if both the event F and its negation are Savage null, which is impossible but
consistent with unawareness of the E and of its negation. Thus, when the primitives of
a decision model are fixed, unawareness has behavioral implications distinct from zero
probability.

The literature on unawareness is related to the recent work in behavioral economics,
finance, and macroeconomics that discusses the economic relevance of peoples inattention
for various economic outcomes such as retirement savings, choice of health care plans, etc.
Apart from the questions of how to design optimally economic policies to “nudge” people’s



attention (Thaler and Sunstein, 2008) or of how to optimally allocate (voluntary) inat-
tention (e.g. Sims, 2010, Van Nieuwerburgh and Veldkamp, 2010), it should be of interest
to study more generally which outcomes of strategic interaction are robust to inattention
of players. While the notions of inattention discussed in behavioral economics, finance,
and macroeconomics may not correspond exactly to the well-defined epistemic notion of
unawareness and may additionally involve biases and features of bounded rationality, we
believe that unawareness may be one component of those notions of inattention.

2 Model

2.1 State-Spaces

2.2 State-Spaces

Let S = {Sa},c4 be a complete lattice of disjoint state-spaces, with the partial order
= on §. A complete lattice is a lattice such that each subset has a least upper bound
(i.e., supremum) and a greatest lower bound (i.e., infimum). If S, and S are such that
So = Sp we say that “S, is more expressive than Sg — states of S, describe situations
with a richer vocabulary than states of Sz”.* Denote by Q = |J, 4 Sa the union of these
spaces. Each S € § is a measurable space, with a o-field Fgs.

Spaces in the lattice can be more or less “rich” in terms of facts that may or may not
obtain in them. The partial order relates to the “richness” of spaces.

2.3 Projections
For every S and S’ such that S’ > S, there is a measurable surjective projection 73 :
S" — S, where 7§ is the identity. (“rg (w) is the restriction of the description w to the
more limited vocabulary of S.”) Note that the cardinality of S is smaller than or equal
to the cardinality of S’. We require the projections to commute: If S” = S’ = S then
rg =rg org . Ifwe S, denote wg =g (w). If D C S, denote Dg = {ws : w € D}.
Projections “translate” states from “more expressive” spaces to states in “less expres-
sive” spaces by “erasing” facts that can not be expressed in a lower space.

2.4 Events

Denote g(S) = {S": S = S}. For D C S, denote D" = g, (rﬁ’)fl

extensions of descriptions in D to at least as expressive vocabularies.”)

(D). (“All the

4Here and in what follows, phrases within quotation marks hint at intended interpretations, but we
emphasize that these interpretations are not part of the definition of the set-theoretic structure.



An event is a pair (E,S), where E = D' with D C S, where S € S. D is called
the base and S the base-space of (E,S), denoted by S(F). If E # (), then S is uniquely
determined by E and, abusing notation, we write E for (FE,S). Otherwise, we write ()
for (0, S). Note that not every subset of € is an event.

Some fact may obtain in a subset of a space. Then this fact should be also “express-
ible” in “more expressive” spaces. Therefore the event contains not only the particular
subset but also its inverse images in “more expressive” spaces.

To illustrate the definition of event, consider Figure 1. The event [p| is the union of
dotted areas.

Let X be the set of measurable events of 2, i.e., DT such that D € Fg, for some state-
space S € §. Note that unless S is a singleton, ¥ is not an algebra because it contains
distinct 0° for all S € S. The event (}° should be interpreted as a “logical contradiction
phrased with the expressive power available in S”. It is quite natural to have distinct
vacuous events since contradictions can be phrased with differing expressive powers.

2.5 Negation

If (D1,S) is an event where D C S, the negation —(DT,S) of (D',9) is defined by
(D", 8) := ((S\ D)',S). Note, that by this definition, the negation of a (measurable)
event is a (measurable) event. Abusing notation, we write =D' := —(D", S). Note that
by our notational convention, we have ~ST = (¥ and —()° = ST, for each space S € S.
— D" is typically a proper subset of the complement Q\ D'. That is, (S\ D)" G Q\ D"

Intuitively, there may be states in which the description of an event D' is both
expressible and valid — these are the states in D'; there may be states in which its
description is expressible but invalid — these are the states in —=D'; and there may be
states in which neither its description nor its negation are expressible — these are the
states in

Q\ (D'u-D") =\ s (D).

Thus our structure is not a standard state-space model in the sense of Dekel, Lipman,
and Rustichini (1998).

2.6 Conjunction and Disjunction

If {(D;, SA>} is a collection of events (with Dy C Sy, for A € L), their conjunc-
AEL

-
tion A, (DI\,S,\> is defined by A, <D;,S,\> = ((ﬂ/\eL D;) ,SUP e, S,\>. Note,
that since S is a complete lattice, sup,c; Sy exists. If S = sup,.; Sx, then we have
_ 0
(ﬂ/\eL DI\) = (ﬂ/\eL ((rgk) ! (D,\)>> . Again, abusing notation, we write A, D! =

Mrer DT\ (we will therefore use the conjunction symbol A and the intersection symbol N
interchangeably).



Intuitively, to take the intersection of events (D;, Sx)xer, We express them “most eco-
nomically in the smallest language” in which they are all expressible S = sup,.; S, take

the intersection, and then the union of inverse images obtaining the event (¢, ((rg, )~ (D ,\)))
that is based in S.

We define the relation C between events (E,S) and (F,S"), by (E,S) C (F,5") if
and only if £ C F as sets and S < S. If E # (), we have that (E S) C (F,5) if and
only if E C F as sets. Note however that for E = ()° we have (E,S) C (F,S’) if and
only if S" < S. Hence we can write £ C F instead of (£, S) C (F,S’) as long as we keep
in mind that in the case of E = ()° we have () C F if and only if S = S(F). It follows
from these definitions that for events £ and F', E C F' is equivalent to =F C —FE only
when E and F have the same base, i.e., S(E) = S(F).

Intuitively, to say “F implies F” we must be able to express F' in the “language”
used to express E. Hence, it must be that S(F) < S(E). The inclusion is then just
ENS(E)CFNS(E).

The disjunction of {D;} is defined by the de Morgan law \/, ., DI\ = </\>\6L - (DI) ) .

AeL
Typically V,.,. D; S User DI\, and if all Dy are nonempty we have that \/,_, D; =
User D/T\ holds if and only if all the D/T\ have the same base-space. Note, that by these

definitions, the conjunction and disjunction of (at most countably many measurable)
events is a (measurable) event.

Apart from the measurability conditions, the event-structure outlined so far is anal-
ogous to Heifetz, Meier, and Schipper (2006, 2008). An example is shown in Figure 1.
It depicts a lattice with four spaces and projections. As mentioned previously, the event
that p obtains is indicated by the dotted areas. The grey areas illustrate the event that
not p obtains. S, U .S, is for instance not an event in our structure.

2.7 Probability Measures

Here and in what follows, the term ‘events’ always refers to measurable events in ¥ unless
otherwise stated.

Let A (S) be the set of probability measures on (S, Fs). We consider this set itself as a
measurable space endowed with the o-field Fa(s) generated by the sets {u € A (S) : p (D) > p},
where D € Fg and p € [0, 1].

2.8 Marginals

For a probability measure 1 € A ('), the marginal jig of p on S < S is defined by
N -1
s (D) = i (( g <D>) . DeFs
Let S, be the space on which y is a probability measure. Whenever S, = S(E) then

10



Figure 1: Event Structure
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we abuse notation slightly and write
W(E) = u(ENS,).

If S(E) £ S, then we say that p(E) is undefined.

2.9 Types

I is the nonempty set of individuals. For every individual, each state gives rise to a
probabilistic belief over states in some space.

Definition 1 For each individual i € I there is a type mapping t; : Q@ — J e A (Sa),
which is measurable in the sense that for every S € S and Q € Fas) we have t; (Q)NS €
Fs. We require the type mapping t; to satisfy the following properties:®

(0) Confinement: If w € S" then t;(w) € A(S) for some S <X 5.
(1) ]f S” t SI t S, w € S//, and tl(w) S A(S) then ti(wS/) = tZ(CU)
(2) If " = S" =S, we S, and t;(w) € A(S') then ti(wsg) = t;(w))s.

5Recall that S, is the space on which y is a probability measure. Thus, S, () is the space on which
t;(w) is a probability measure.
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(3) ]f S = 5" - S} W E S”; and ti(bds/) € A(S) then Sti(w) >~ S.

ti(w) represents individual i’s belief at state w. Properties (0) to (3) guarantee the
consistent fit of beliefs and awareness at different state-spaces. Confinement means that
at any given state w € (2 an individual’s belief is concentrated on states that are all
described with the same “vocabulary” - the “vocabulary” available to the individual at
w. This “vocabulary” may be less expressive than the “vocabulary” used to describe
statements in the state w.”

Properties (1) to (3) compare the types of an individual in a state w € S and its
projection to wg, for some S < S’. Property (1) and (2) mean that at the projected state
wg the individual believes everything she believes at w given that she is aware of it at
wg. Property (3) means that at w an individual cannot be unaware of an event that she
is aware of at the projected state wgr.

Remark 1 Property (1) of the type mappings in Definition 1 is implied by the Properties

(0),(2), and (3).

For a proof, see Heifetz, Meier, and Schipper (2012).

Define®
Ben; (w) == {“l € 2 tiw s, ) = ti(w)} '

This is the set of states at which individual i’s type or the marginal thereof coincides
with her type at w. Such sets are events in our structure (see Heifetz, Meier, and Schipper,
2012, for a proof):

Remark 2 For any w € Q, Ben;(w) is an St (w)-based event, which is not necessarily

1

a
measurable.” We have Ben,;(w) = {w' € Sy,(w) : ti(w') = ti(w)}T = {Ben;(w) N Sy }-

Recall that by definition ¢;(w)(E) = t;(w)(£ NSy, (w)). Moreover, recall that with event
we mean measurable event in our event structure unless otherwise stated; both facts will
be used throughout the paper.

Assumption 1 If Ben;(w) C E, for an event E, then t;(w)(F) = 1.
This assumption implies introspection (Property (va)) in Proposition 4 in in Heifetz,

Meier, and Schipper (2012). Note, that if Ben;(w) is measurable, then Assumption 1 is
equivalent to t;(w)(Ben;(w)) = 1.

5The name “Ben” is chosen analogously to the “ken” in knowledge structures, see Samet (1990, p.
193).

"Even in a standard type-space, if the o-algebra is not countably generated, then the set of states
where a player is of a certain type might not be measurable.
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Definition 2 We denote by S := <S, (r?;‘) ,(ti)ie[> an interactive unawareness
Sﬁjsa

belief structure.

So far, the model outlined in this section corresponds to unawareness belief structures
introduced in Heifetz, Meier, and Schipper (2012). In that paper, we also provide an
explicit hierarchical construction and show the existence of a universal unawareness type
space.

3 Bayesian Games with Unawareness

In this section, we generalize strategic games with incomplete information a la Harsanyi
(1967/68) and Mertens and Zamir (1985, Section 5) to include also unawareness. For
notational convenience, we restrict ourselves in this section to a finite set of players,
finite sets of actions, and finite unawareness belief structures. A finite unawareness
belief structure is an unawareness belief structure, where S is finite, each S € S is finite,
and for all S € §, Fg is the set of all subsets of S.

3.1 Unawareness of Payoff Relevant Events

For simplicity, we consider first Bayesian games with unawareness of payoff relevant
events only, in which every player is aware of all of her and other’s actions, and of all the
players.

Definition 3 A Bayesian game with unawareness of events consists of an unawareness
belief structure S = <S, <r§;‘)sﬁ<s : (ti)i61> that is augmented by a tuple ((M;),cr , (i) ;cr)
defined as follows: For each player 1 € I, there is

(1) a finite nonempty set of actions M;, and

(it) a utility function u; : ([T,c; M;) x Q — R.

The interpretation is as follows: At the beginning of a game, a state w € € is realized.
Player i does not observe the state but receives a signal ;(w) that provides her with some
information about the state or projections thereof to lower spaces. I.e., if w obtains, player
i is of type t;(w). This signal is a belief about the likelihood of events on a certain space.
A player’s utility depends on her action, the actions chosen by other players as well as
the state. Since players may be uncertain about the state w, we assume below that the
player’s preference is represented by the expected value of the utility function on action-
profiles of players and states, where the expectation is taken with respect to the player i’s
type t;(w) and the types’ mixed strategies. This game allows for unawareness of payoff
relevant events.
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Note that we allow unawareness to affect payoffs in an arbitrary way. One may
consider letting u;(-,w) be a convex combination of all u;(-,w’), ' € (r3) ' (w), for
w € Sand S’ = S. While this may be natural in some applications such as the speculation
example in Heifetz, Meier, and Schipper (2012, Section 1.1), it would preclude situations
in which the mere awareness of an event may reduce expected payoffs.

Let A(M;) be the set of mixed strategies for player i € I, that is, the set of probability
distributions on the finite set M;.

Definition 4 A strategy of player i in a Bayesian game with unawareness of events
is a function o; : Q@ — A(M;) such that for all w,w' € Q, t;(w) = t;(W') implies
ai(w) = O'i(a)/).

A strategy specifies for each player and state a probability distribution over her set
of actions. In standard Bayesian games without unawareness, one interpretation of a
strategy assumes an ex-ante point of view of the player before she knows her type. This
interpretation is misleading in a game with unawareness, since if a player is aware of
all her types ex-ante she should be also aware of all types interim, i.e., after learning
her type (and her awareness). Hence, in the case of unawareness, the ex-ante notion of
strategy is a construct for the game theorist rather than an object of choice for a player.

In Bayesian games with unawareness we subscribe to a second interpretation of
Bayesian strategy from an interim point of view: Given a player i and type ¢;(w), she has
an “awareness level” Sy, ,) € S. That is, she can consider strategies of her opponents in
[(St(w)), where [(S) :={S" € § : §" X S} is the complete sublattice of S with S being
the upmost space. This interpretation is sound precisely because of Proposition 2 and
Remark 3 below: To best-respond to the strategies of the other player-types, a type of
a player needs only to reason about the strategies of player-types that she is aware of.
Only strategies of these player-types enter in her utility maximization problem.

Denote o, , = ((aj (WI))j€I>w'est.(w>' A component o;(w') of the strategy profile
05, 18 the strategy of the player-type l(j, ti(W)). 08, 15 the profile of all player-types’
strategies in Sy,(.). (Recall that for some w' € Sy, () and j € I, ¢;(w’) might have a lower
awareness level than Sy, (..)

The expected utility of player-type (i,t;(w)) from the strategy profile os, , is given
by

Ut (05,0 = / > (Ha] {mj}) i (m);e10) diti() ().

€5, (w) me[l;er M; \Jj€I
(1)

o;(w")({m;}) is the probability with which the player-type (j,t;(w’)) plays the action
m; € Mj. [[;c;o;5(w') ({m;}) is the joint probability with which the action profile m =
(m;)jer is played by the players. This action profile gives the utility u; ((m;);er, w’)

to player i in state w’. The term Zmeng M (H]EI o;(w) ({mj})) C U <(m]~)jg ,w’) is
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player i’s expected utility from the strategy profile (o;(w’)),.; at the state w'. However,
at a state w, the player, in general, does not know the state, but only his type ¢;(w), and
so he evaluates his utility with the expectation with respect to the probability measure

ti (OJ)
Definition 5 (Equilibrium) Given a Bayesian game with unawareness of events

<S, (rﬁg)sﬁjsa (i) ier s (My)ier, (ui)i€1>, define the associated strategic game by:

(1) {(i,t;(w)) : w € Q and i € I} is the set of players,
and for each player (i,t;(w)),

(ii) the set of mized strategies is A(M;), and
(111) the utility function is given by Equation (1).

A profile (0;)icr is an equilibrium of the Bayesian game with unawareness of events if
and only if the following is an equilibrium of the associated strategic game: (i,t;(w)) plays
oi(w), foralli e I and w € Q.

An equilibrium of a Bayesian game with unawareness is a Nash equilibrium of a
strategic game in which types of players are the “players”. The actions available to the
type of player i at state w are the actions of player ¢. The utility function of the type of
player ¢ at w is the expected utility function, given player i’s awareness and belief over
states at w. In an equilibrium of a Bayesian game with unawareness of events, the type
of every player chooses an optimal mixture of actions, given her awareness, belief and the
choices of the types of the other players she is aware of. This is analogous to equilibrium
in Bayesian games without unawareness of actions.

3.2 Allowing for Unawareness of Actions

Bayesian games with unawareness of events in Definition 3 do not allow us to model
properly unawareness of actions. In standard Bayesian game theory, ignorance of actions
is modeled by the assumption that players will never use such actions, because extremely
low payoffs (i.e., highly negative) are assigned to those actions (see the discussion in
Harsanyi, 1967, p. 168). We do not follow this convention here. Even in standard
Bayesian games this convention is questionable, because it applies only to rational players.
If there is lack of common belief of rationality then a player’s type being ignorant of an
action is indeed different from her obtaining a very low payoff from playing this action
(see Hu and Stuart, 2001, for a discussion). In this subsection we introduce unawareness
of actions, and discuss the notion of strategy in Bayesian games with unawareness.

Denote [t;(w)] :== {w" € Q: t;(w') = t;(w)}. This is the set of states at which player i
has the same type as in state w.
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Definition 6 A Bayesian game with unawareness of events and actions consists of

a unawareness belief structure <S, <r§;> ,(ti)iel> that is augmented by a tuple
S5=Sa

<(Mi)iel s (Mi)ier s (ui)iel> defined as follows:

(1) a finite nonempty set of actions M;, for i € I, and a correspondence M; : Q@ —
2Mi \ {0}, for i € I, such that for any nonempty subset of actions M C M;,
[M]] .= {w € Q: M C M;(w)} is an event (in the unawareness belief structure),
and W', w" € [t;(w)] N Syw) tmplies M;(W') = M;(W"), for all w € Q,

(ii) for everyi € I, a utility function u; : |J,cq (H]EI Mj(W)) x {w} — R.

This definition allows for unawareness of events as well as actions. Which actions a
player ¢ has available at what state is described explicitly by the correspondence M;. Any
set of available actions is associated with an event in our unawareness belief structure.
We require that, for each type of each player, the sets of available actions are identical
across states in the space on which this type is defined and at which the player’s type
coincides with this type. Note, that if w ¢ Si,(.), then it is possible that M;(w’) is a
proper subset of M;(w), for w’ € [t;(w)] NSy, ). This allows in addition to unawareness of
other players’ actions also for unawareness of a player’s own actions. Note that we exclude
that at a state, a player considers it possible that she has an action available, which, in
fact, is not available to her in this state. This is to avoid the conceptional problem of
defining what should happen if a player is to take an action that is not available to her.
Finally, observe that since outcomes consist of profiles of actions, players in a Bayesian
game with unawareness of actions may also be unaware of outcomes in the game.

Definition 7 A strategy of player i in a Bayesian game with unawareness of actions is
a function o; : Q — A(M;) such that for all w € Q,

(1) o;(w) € A <Mi(w5ti(w))>, and

(i1) t;(W') = t;(w) implies o;(w') = o;(w).

Example 1 (Feinberg, 2005) The following interesting game due to Feinberg (2005)
is an example of unawareness of actions. It allows us also to compare our unawareness
belief structures with the work by Feinberg (2005). Consider the strategic 3x3 game

Colin

b1 bQ bg
a 10,2(3,3(0,2
as | 2,212,1]2,1
az | 1,0 4,0]0,1

Rowena
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This game has a unique dominance solvable Nash equilibrium, (ag, b;). Consider now a
game with unawareness: The set of players remains unchanged, Rowena, R, and Colin,
C'. There are two state-spaces, S and S’ with S > S’. In particular, S = {w;,ws} and
S” = {ws}. The information structure is given by the type mappings

tr(wi)({w2}) = tr(ws)({wa}) = tr(ws)({ws}) = 1,
to(w)({wi}) = to(wz)({ws}) = te(ws)({ws}) = 1.

Actions are specified by
MR(Wl) = MR(wz) = {&1702&3},/\41%(%) = {a17a2}7
Mc(wl) = Mc(w2) = Mc(wg) = {bl, b2>b3}-

The information structure is depicted in Figure 2. The solid arrows and ellipses represent
Rowena’s information structure, while Colin’s information structure is depicted with
intermitted arrows and ellipses. At states w; and wq, payoffs are given by the above
payoff matrix. At state ws, payoffs are given by the sub-matrix spanned by rows a; and
as and columns by, by, and b3 in the above matrix, i.e.,

Colin

by | by | b3
Rowena |a;|0,2|3,31]0,2
as [2,212,112,1

We claim that
(CL3, b3) if w= w1

(op(w),0c(w)) =< (asz,by) if w=ws
(a1,b2) if w=uws

is an equilibrium. To see this, note that the game at ws has two pure equilibria, (az, b;)
and (aq,by) in the S’-partial game, where the latter is payoff dominant. At ws, both
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players are unaware of action a3 in ws. The unique dominance solvable Nash equilibrium
(ag,by) of the original game (without unawareness of actions) remains an equilibrium
because none of the players is unaware of an equilibrium action and equilibrium actions
remain best responses if some other actions are deleted. Moreover, after deleting action
a3 (the action both players are unaware of at state ws in S’), the game has another Nash
equilibrium (aq,by). At wy, both players are aware of all actions but Rowena believes
that Colin is unaware of action az. Hence Rowena believes that Colin thinks that (ay, bs)
is a Nash equilibrium. Rowena’s best response to Colin playing by is a3. Moreover, since
at wy; Colin is aware of all actions and he believes that Rowena believes that Colin is
unaware of action ag, his best response to Rowena playing az is b3. Note that in this
equilibrium at wy, both receive a low payoff (compared to the Nash equilibria discussed
previously).

Feinberg (2005) obtains (ag,bs) as an equilibrium if both players are aware of all
actions, Rowena is ‘unaware’ that Colin is aware of all of her actions, and Colin is
‘aware’ that Rowena is ‘aware’ of Colin being unaware of as.® That is, in Feinberg (2005)
a player can be aware of an event but unaware that somebody else is aware of it. This
is in contrast to our unawareness belief structure, where according to Proposition 8, 1.,
in Heifetz, Meier, and Schipper (2008) a player is aware of an event if and only if she
is aware that somebody else could be aware of it. That is, if a player can reason about
some issue then she can also reason that somebody else can reason about that issue. We
obtain (as, b3) as an equilibrium if both players are aware of all actions, Rowena does not
believe that Colin is aware of a3, and Colin believes that Rowena believes that Colin is
unaware of az. The example suggests, that higher order ‘awareness’ in Feinberg (2005)
operates like belief in our unawareness belief structure. Note however, that Feinberg
(2005) does not define a notion of belief in his framework. O

3.3 Allowing for Unawareness of Players

So far, we did not allow for unawareness of players. In standard Bayesian game theory,
ignorance of players is modeled by dummy players. This is distinct from being unable
to conceive of a player at all. In this subsection we allow for unawareness of players.
This requires that we generalize our interactive unawareness belief structure such that a
player may exist only at some states but not at others.

Definition 8 A Bayesian game with unawareness is a tuple
- Sa
r(S) = <3, (v

defined as follows:

E (ti)ier» (Mi)cr s (Miier, (ui)iel>

)ngsa ’

8When writing ‘...", we indicate that those notions differ from our notions used in this paper.
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(0) S = {Sa}aca is as before a complete lattice of spaces with surjective and commuting
projections (ng), for Sg =<'S, (see Section 2).

(i) €: 1 — X is the “existence” correspondence that assigns to each player i € I an
event in which she exists. Moreover, S; := {S € S : £(i) NS # 0} is the complete
sublattice of spaces with states in which player i exists.

(ii) For every player i € I, t; : E(i) —> Uges, A (S) is a type mapping that satisfies
Properties (0) to (3) (see Section 2) such that for every w € E(i), t;(w)(E(7)) = 1.

(iii) For everyi € I, M; is a finite nonempty set of actions. M; : (i) — 2Mi\ {0} is
a correspondence, for i € I, with the following properties:

a.) For every M| with ) # M, C M;: If there is a state w with w € E(i), then the
set {w' € Q: M] C M;(w')} is an event.

b.) Foriel: Ifwe E(i) and w',w” € Sy, N [ti(w)], then M;(w') = M;(w").

(vi) Further, we impose introspection as follows: For w € &(i), t;(w)(Ben;(w)) = 1,
where Ben;(w) == {w’ € £(i) : ti(w')s,, ., = ti(w)}-

(v) Fori € I, w; : Ugeeq <Hje[(w) Mj(W)) x {w} — R is the utility function of i,
where I(w) :={i€l:we &(i)}.

This game allows for unawareness of events, actions, outcomes, and players. For every
player i € I, the “existence” correspondence £ assigns to ¢ the event in which she exists.
Consequently we restrict player ¢’s type mapping to states at which she exists. Moreover,
player i’s type is concentrated only on states in which she exists. A player can not assign
strict positive probability to states at which she does not exist. The correspondence M;
assigns a non-empty set of actions for player ¢ only to the set of states in which player 4
exists. The dimension of the domain of a utility function may vary from state to state,
since players may exist in some states but not in others, and each players utility at a
state depends on the actions of all the players that exist in that state.

Note that if £(i) = Q for all i € I, then we obtain an unawareness belief structure
and a Bayesian game with unawareness of events and actions as defined before.

Note further that if w € £(i), then [t;(w)] := {w' € Q: (W) = ti(w)} C E(F).

Definition 9 A strategy of player i in a Bayesian game with unawareness is a function

o;: E(1) — A(M;) such that for all w € E(7),

(i) oi(w) € A (Mi(ws,, w)))-

(i1) t;(W') = t;(w) implies o;(W') = oy(w).
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3.4 Equilibrium

In this section we define Bayesian equilibrium, prove existence and some properties for
the most general games defined so far, Bayesian games with unawareness of players and
actions.

Denote o, = <(aj (w’))jd(w,)> . The ezpected utility of player-type (i, t;(w))
' W'€S4;(w)
from the strategy profile og, 5 is given by
Utits()(95,,)) = (2)

/w’esf,.(u) Z H o;(w) ({m;}) | - wi ((mj)jej (W), W )dt( J(W).

, Jel(w)
mGHjej(w/) Mj wst ()
J

Definition 10 (Equilibrium) Given a Bayesian game with unawareness I'(S), define
the associated strategic game by

(1) {(1,ti(w)) :w € Q and i € I(w)} is the set of players,
and for each player (i,t;(w)),
(i) the set of mized strategies is A(M;(ws, (), and
(111) the utility function is given by Equation (2).
A profile (0;)icr is an equilibrium of the Bayesian game with unawareness of events if

and only if the following is an equilibrium of the associated strategic game: (i,t;(w)) plays
oi(w), for alli € I(w) and w € L.

Proposition 1 (Existence) LetI'(S) = <S, (r?;‘)s . JE () ier s (M) ey s (Mi)ier, (Ui>i6]>
B2P«

be a Bayesian game with unawareness. If I, Q, and (M;);c; are finite, then there exists
an equilibrium.

ProOOF. By Nash’s (1950) theorem. O

Recall [(S) := {S" € § : 8" < S}. I(5) is a sublattice with S as the least upper
bound.

Definition 11 Given a Bayesian game with unawareness

F(é) - <S (ng 757 (ti)iel ) (Mi)iel ) (Mi>ielv (ui)z'el> ’

) S=<Sa
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we can define an S'-partial Bayesian game with unawareness

F(l(S')) = l(S’), ng , 75/7 (ti)iel(fl’) ) (Mi)ieI(Q’) ) (Mé)z‘el(ﬂ’)a (ui)iel(Q’) J
Sg=89a=S

in which £'(1) = E(i) N, where Q' = Ugr¢ysr) S”, and for any i € I(V) := J o [ (w),
M is M; restricted to E'(i).

Note that contrary to an ordinary Bayesian game, the game is not “common knowl-
edge” among the players. Let I'(S) = <S, <7’§Z)S . JE () ier s (Mi)er >, (Miier, (ui)iel>
Bj a
be a Bayesian game with unawareness. At w € {2, the game conceived by player j is
F(Z(Stj(w))) = <Z(S’), (ng) & (ti>ieI(Q’) ) (Mi)iel(ﬂf) ) (M;)iel(ﬂ’% (ui>iel(ﬂ’) )

where the lattice of spaces is replaced with the sublattice [ (Stj (w)) With St;(w) as the up-
most space, and £ (and hence the domains of ; and u;) is restricted to €2 = (g

Sp25a=S; (w)

S
St (w))
Type t;(w) of player j can conceive of all events expressible in the spaces of the subi;t)tice
(St (w))-
The following proposition shows that we can naturally extend equilibria from “lower
awareness levels to higher awareness levels” by taking the equilibrium strategies at the
“lower awareness levels” fixed and looking for a fixed point at “higher awareness levels”.

Proposition 2 (“Upwards Induction”) Given a Bayesian game with unawareness
S, (7"?;)56{5 s (ti)ier s (M) iep s (Miier, (ui)i€]>, consider for S, S" € § with S" <

S” the S'-partial (resp. S" -partial) Bayesian game with unawareness. If I, Q, and
(M;)ier are finite, then for every equilibrium of the S’-partial Bayesian game, there is
an equilibrium of the S”-partial Bayesian game in which equilibrium strategies of player-
types in {(i,ti(w)) : w € &' = Uggysn S and 1 € I(Q')} are identical with the equilibrium
strategies in the S’-partial Bayesian game.

This proposition suggests a procedure for constructing equilibria in Bayesian games
with unawareness. We start with an equilibrium in the S-partial Bayesian game with
unawareness, where S denotes the greatest lower bound (the meet) of the lattice, and
extend it step-by-step to higher spaces by finding a fixed-point taking the strategies of
player-types in the lower spaces as given.

For some strategic situations, Proposition 2 suggests that players which are unaware
may have commitment power (although they do not understand that they are committed)
compared to players with a “higher awareness level”. This is so because types with
“lower awareness levels” do not react to types of which they are unaware. Types with
“higher awareness” must take strategies of types with “lower awareness” as given. It
is easy to construct examples of Bayesian games with unawareness in which the “value
of awareness” may be negative. For instance, in a simultaneous-move linear Cournot
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duopoly, a player who is unaware of his opponent can obtain the Stackelberg leader
profit if the opponent knows that the first player is unaware of him.

We can also restrict an equilibrium from higher awareness levels to lower awareness.
This is so, because if player-types play an equilibrium in a game that allows for “higher
awareness levels”, then those player-types still play optimally at “lower awareness levels
given that they exist there”. This is stated more formally in Remark 3.

Remark 3 Let <S7 (rg;;)SB{S 787 (ti)iej ) (Mi)iej ) (Mi)i€I7 (ui)i61> be a BayeSian game
with unawareness. Consider for S, S” € S with S" < S” the S’-partial (resp. S”-partial)

Bayesian game with unawareness. Then for every equilibrium of the S”-partial Bayesian
game there is a unique equilibrium of the S’'-partial Bayesian game in which the equi-
librium strategies of player-types in {(i,t;(w)) : w € Q" = Uggysn S and i € I(Q)} are
identical to the equilibrium strategies of the S”-partial Bayesian game.

4 Unawareness Perfection

In this section, we apply our framework to analyze Nash equilibria of strategic games that
are robust to small uncertainty about awareness of actions. The main idea is to associate
with a strategic game a sequence of Bayesian games with unawareness of actions and then
consider the limit of equilibria of these games as uncertainty over awareness of actions
vanishes.

We start by defining a sequence of specific Bayesian games with unawareness of ac-
tions. Let 7 = (I, (M;)icr, (0:)ier) be a finite strategic game with a finite set of players
I = {1,...,n}, for each player i € I a finite nonempty set of actions M; and a payoff

function ¥; : M — R, where M :=[[,.; M;.

Given such a strategic game, we append for each player ¢ € I a “default” action d; and
extend the payoff functions such that any player’s default action is strictly dominated
by every of her other actions. Moreover, whenever some player + € I takes her default
action, all other players are indifferent among their actions (except their default action).
Le., for all i € I, let M; = M; U {d;}. For all i € I, define v; : M — R with
v;(m) = v;(m) for all m € M and vi(d;,m_;) < vi(my,m_;) for all m; € M; and all
m_; € M_; = Hje]\{i} 4, and v;(m;,m_;) = v;(m},m_;) for all m;,m; € M; and
m_; = (M, .o, Mi—1, Miy1, ..., My) € M_; with m; = d; for some j € I\ {i}. We write
v = (I, (M,;), (v;)) for the strategic game with the default actions. The default action is
a technical device to obtain a unique “lowest” game. Intuitively, a player should always
have some action available even if this action just amounts to “do nothing”.

We call a subset L’ of a lattice L a meet-sublattice if it is a lattice with respect to
the order induced by L and the meet of any two elements of L’ is the meet of the two
elements in the lattice L. (Note that we do not require the join of any two elements of
L’ to be the join in L.)
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Given the strategic game ~, we define a set of restricted games as follows: For
nonempty M, with M{ C M; and d; € M], M' := [[,.; M;, define a restricted strategic
game (I, (M!)ier, (vi|ar)icr) where v;| 5 is player ¢’s payoff function in v restricted to out-
comes in M’. Note that for each player the action set of a restricted game contains her
default action. Let L denote the trivial game in which each player just has her default ac-
tion. A set of restricted games derived from = is rich, if for all (m;);e; € M the restricted
games (I, ({ms, di})ier, (vil[1,c,{m;.a;1ier), 7, and L belong to this set of restricted games.
A partial order on the set of all restricted games is defined by set inclusion of [, ., M;.
Note that the set of all restricted games is a finite lattice. Thus, the meet is defined by
the intersection of action sets. Let G(7) denote a rich meet-sublattice of restricted games
derived from ~, and let < denote the partial order on G(v).2 If a € G(7), we denote by
G(«) the sublattice of strategic games 5 € G(v) for which 5 < a.

For notational convenience, define I° := I U {0}. For each a € G(v), we define a
space of states

Se = {w :w = (4)iep with ag = a and «; € G(a) for every i € T}.

Intuitively, a state in S, shall describe which game each player perceives together with
the index oy = « for the state space S,. In a state in S, no player can perceive a game
€ G(v) that is “more expressive than or incomparable to” a. Let S, = {Sa}aca(y)- By
definition (by the first component of the states), these spaces are disjoint. The set S, is
a lattice of disjoint state-spaces, where the partial order is defined by extending < to S,
by Sa = Ss, Sa, S € S, if and only if o > B, o, 8 € G(7). As before, the union of all
spaces is denoted by 2.

For all o, 8 € G(v) with a = 3, the projections r§ : S, — S are defined by the
following rule: If w = (;)icr0 € Sa, then 7§(w) = (Bi)iero With B; = inf{a;, 8} for all
i € I°. The inf does always exist since G(7) is a lattice. The proof of the following
remark is contained in the appendix.

Remark 4 For all o € G(7), r® = idg,. Projections commute, i.e., for any o, 5,0 €
G(vy) witha = =6, r§ = 7"? ors.

Next, we define for each player i € I a sequence of type mappings tf : Q@ —
Uacay) A(Sa) satistying the following properties: For each k = 0,1, ...,

(07) If w = (a;)jer0 € S, then tF(w) € A(S,,;). (Note that a; < a.)

(1) If w = (6;)jer0 € Sa, tF(w) € A(Ss) then tF(wg) = tF(w) for all B € G(v) s.t.
arz o

9Although G(v) is a subset of the lattice of all restricted games given 7, and although the partial
order on G(7) is the partial order of the lattice of all restricted games, G(7) is not necessarily a sublattice
of the lattice of all restricted games. This is because for example «, 8 € G(v), o V 3, might not be in
G(7), but only a game larger than « vV 8. That is, the join of o and 8 in G(y) may not coincide with
the join of o and 3 in the lattice of all restricted games given ~.

23



(2)) If w = (B))jer0 € Sas tF(w) € A(Sp,), a = fB; = 0, then tF(ws) = tF(w);s;-

These properties imply properties (0) to (3) of type mappings in Definition 1 (see the
appendix for a proof):

Lemma 1 For each k = 0,1, ..., the type mapping satisfies the properties (0) to (3) of
Definition 1. More specific, (0°) implies (0), (1°) implies (1), (2°) implies (2), and (0°)
implies (3).

Let @ := (a;)icpo with a; = a € G(7) for all i € I°. That is, a bar over « signifies a
“monomorphic” state in which all components are identical to . Note that by Property
(0°), for all a € G(v), tF(a) € A(S,) foralli € [ and k=0, 1,....

In the current context we impose additional properties. For each ¢ € I and each
k=0,1,...,

(4) If w = (q;)jero and W' = (B;)iero Wwith a; = By, then t8(w) = tF(w').

That is, for each awareness level, each agent has only one type. This together with
(27) implies that Introspection (Assumption 1) is satisfied.

(5) Uncertainty about opponents’ awareness: If t¥(w) € A(S,), then w’ = (8;)er0 € Sa
with 8; = @ and L < 8; < a, for all j € I'\ {i} implies ¢¥(w)({w'}) > 0.

(6) Certainty in the limit: For every i € I, limj_ tF(5)({w}) exists for all w € S,
and t*(7)({7}) — 1 as k — co.

Remark 5 Properties (0°) and (4) imply property (1°).

Property (4) states that if at two states player ¢ has the same awareness, then she
has the same beliefs at those two states. This assumption is not necessary but simplifies
the analysis. The next two properties are crucial for the analysis. Uncertainty about
opponents’ awareness, Property (5), requires that player ¢ considers it possible that any
opponent is unaware of any nonempty subset of (non-default) actions. In particular it
implies that for any (non-default) action and any opponent, a player does not exclude the
possibility that the opponent is unaware of this action. Finally, Property (6), certainty
in the limit, just means that in the limit at the objective true state 7 there is common
certainty that all players are aware of all actions. That is, in the limit the players at
state 4 are commonly certain that they are playing the original strategic game . Note
that properties of the type mapping imply properties analogous to Property (6) for all
“monomorphic” states a for o € G(7).

For each i € I, define a correspondence M; : Q@ — 2Mi by M;(w) = M? if w € S,
where M is player ¢’s set of actions in the game a € G(v).
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Finally, for each player i € I, define a utility function u; : (J,q <Hjel /\/lj(w)> X

{w} — R in the following manner: For all & € G(7), if w € S, then u;(-,w) = v;|pe
where M® is the action space in game «.

With these definitions we have (see the appendix for a proof):

Remark 6 For each finite strategic game v and each k = 0,1, ... we have that

F(éﬁ) = <Sw (rg)atﬁ;a,BeG(fy)a (tf)iel, (Mi)ieb (Mi)iela (ui)iel>

s a finite Bayesian game with unawareness of events and actions.
Proposition 1 and Remark 6 imply:

Corollary 1 For each finite strategic game vy and each k = 0,1, ... there exists a Bayesian
Nash equilibrium of F(§§).

Denote by o% = ((oF (w))ig)weﬂ a strategy combination in the game F(§§).

The next lemma says that the limit at state 7 of a convergent sequence of Bayesian
Nash equilibria of games F(ﬁi) as k — oo is an equilibrium of 7. (See the appendix for
a proof.)

Lemma 2 If o* € E(F(é:)) and o*(7) — v as k — oo, then v is an equilibrium of 7.

Definition 12 (Unawareness Perfect Equilibrium) An Unawareness Perfect Equi-
librium v of the strategic game v is a Nash equilibrium of v for which there exists a
sequence of Bayesian games with unawareness (F(S;)):;O (as defined above, with cer-
tainty in the limit) with Bayesian Nash equilibria o* € E(F(Sf/)), k=0,1,..., for which
o*(¥) = v as k — .

That is, an Unawareness Perfect Equilibrium of a strategic game is a Nash equilibrium
that is robust to uncertainty over unawareness of actions as this uncertainty vanishes.

Using Lemma 2 and the existence result for Bayesian Nash equilibrium (Proposi-
tion 1), we prove in the appendix the following:

Theorem 1 For every finite strategic game, an Unawareness Perfect Equilibrium exists.

It turns out that unawareness perfection is closely related to undominated actions. An
action m; € M; is weakly dominated in the strategic game ~ if there exists a mixed action
wi € A(M;) such that v;(m;,m_;) < v;(pu;, m_;) for all m_; € M_; and v;(m;,m_;) <
v; (s, m_;) for some m_; € M_;. This is the standard definition.’® An action that is not

10Note that the default action won’t change the set of undominated actions since it is strictly dominated
and payoff-neutral to opponents.
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weakly dominated is undominated. A Nash equilibrium is undominated if every player’s
(mixed) equilibrium action assigns strict positive probability to undominated actions
only. We prove in the appendix the following characterization:

Theorem 2 A Nash equilibrium of a finite strategic game is an Unawareness Perfect
Equilibrium if and only if it is undominated (i.e., not weakly dominated).

That every Unawareness Perfect Equilibrium is undominated essentially follows from
continuity of von Neumann-Morgenstern utilities and the fact that it is a limit of Bayesian
Nash equilibria in which opponents’ types may be forced to play any non-default action
due to unawareness of alternative actions. Any action played with strict positive prob-
ability in an unawareness perfect equilibrium of a strategic game must also get strict
positive probability in a Bayesian Nash equilibrium of F(Sfj) at some point during the
sequence for sufficiently large k. This implies that the action is a best reply against a full
support belief over all action profiles that do not contain the default actions. Hence, by
Pearce (1984, Lemma 4) the action is undominated in the original game. The proof of
the converse is more involved as we construct a sequence of Bayesian games in which we
mimic the full support belief that rationalizes a players undominated equilibrium strategy
by beliefs about opponents’ restricted awareness and their play restricted to actions that
they are aware of. Any undominated Nash equilibrium is a best reply against the op-
ponents’ equilibrium actions and again by Pearce (1984, Lemma 4), a full support belief
over opponents’ actions. We show that for any undominated Nash equilibrium of a finite
strategic game we can construct a sequence of Bayesian games with unawareness with a
corresponding sequence of Bayesian Nash equilibria. Any fully aware player’s Bayesian
equilibrium action is a best reply to possibly unaware opponent’s Bayesian equilibrium
strategies and, in the limit, to the mixed strategies of the others in an equilibrium of the
true strategic game.

A Connection to Standard Bayesian Games

In this section we compare standard Bayesian games to Bayesian games with unaware-
ness. In particular, we show how to derive a standard type space with zero probability
from our unawareness structure by “flattening” our lattice of spaces. “Flattening” the
game is a purely technical procedure. While we can show a correspondence between
equilibria in a Bayesian game with unawareness and equilibria in a standard Bayesian
game, the equilibrium in the standard Bayesian game cannot be interpreted anymore
under unawareness because the “language” required to identify events of which a player
could be unaware is essentially “erased”. Since a flattened structure is a standard type-
space, the “Dekel-Lipman-Modica-Rustichini critique” applies (Modica and Rustichini,
1994, Dekel, Lipman, and Rustichini, 1998). Hence unawareness is trivial in the flattened
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game.!!
Definition 13 G C Q is a measurable set if and only if for all S € S, GNS € Fg.

Note that a measurable subset of 2 is not necessarily an event in our special event
structure.

Remark 7 The collection of measurable sets forms a sigma-algebra on €.

Remark 8 Let S be at most countable and G be a measurable set, p € [0,1] and i € I.
Then {w € Q : t;(w)(G) > p} is a measurable set.

Let § be an unawareness belief structure. We define the flattened type-space associ-
ated with the unawareness belief structure S by

F(é) = <Q>‘F? (tf)i€1>,

where €2 is the union of all state-spaces in the unawareness belief structure §, F is the
collection of all measurable sets in S, and tI" : Q — A(Q, F) is defined by

tiWw)(E) = { 0 otherwise.

A standard type-space on Y for the player set [ is a tuple

Y= (Y, Py, (t)ier)

where Y is a nonempty set, Fy is a sigma-field on Y, and for 7 € I, ¢; is a Fy — Fa(y)-
measurable function from Y to A (Y, Fy), the space of countably additive probabil-
ity measures on (Y, Fy), such that for all w € Y and E € Fy : [t; (w)] € E implies
ti (w) (F) =1, where [t; (w)] :={w €Y : t; (W) =t; (w)}.

Heifetz, Meier, and Schipper (2012), Proposition 8, showed that if S is a unawareness
belief structure, then F(S) is a standard type-space. Moreover, it has the following
property: For every p > 0, measurable set £ € F and i € I: {w € Q: t;(w)(E) > p} =
{we Q:tF(w)(F) > p} (and hence {w € Q: ;(w)(E) > p} = {w € Q: tF'(w)(E) > p}.)

A flattened unawareness structure is just a standard type-space. To derive such a
type-space, one extends a player’s type mapping by assigning probability zero to mea-
surable sets that she is unaware of.

Heifetz, Meier, and Schipper (2012) also showed that the converse is not true. le.,
given a standard type space with zero probability, it is not always possible to find some
unawareness structure with non-trivial unawareness whose flattening is this standard
type space.

HUBeing able to “flatten” a Bayesian game with unawareness into a standard Bayesian game and
showing a correspondence of the equilibria does not imply that unawareness has no behavioral impli-
cations. Rather, “flattening” eliminates the primitives required to reveal those behavioral implications.
For behavioral implications of unawareness in a decision theoretic framework, see Schipper (2012).
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Definition 14 (Flattened Game) Given a Bayesian game with unawareness of events
and (possibly) actions T'(S), we can associate a standard Bayesian game F(I'(S)) played
on a standard type-space (with possibly allowing for varying action sets of the players
across different types) in the following manner:

If T(S) = (S, (M)ier, (Mi)ier, (wi)ier), where S = (S, (ng)sﬁjsa, (ti)ier) is a un-
awareness belief structure, then set F(T'(S)) = (F(S), (M;)icr, (My)ier, (ui)icr), where

F(S) is the flattened structure associated with S, and (M;)icr, (M;)icr, and (u;)icr re-
main unchanged.

The flattened game is a standard Bayesian game.

Proposition 3 Since the strategy sets and the utility functions remain unchanged, we
have that any strategy profile is a Bayesian equilibrium in I'(S) if and only if it is a
Bayesian equilibrium in F(I'(S)).

The interpretation of a flattened game may be flawed in several ways. For instance,
we can have types of players who are certain of their set of actions, but consider it possible

that they have a larger set of actions even though they don’t have a larger set of actions.
This leads to serious conceptual problems, if a player were to choose such an action.!?

B Proofs

B.1 Proof of Proposition 2

Let oj, be an equilibrium in the S’-partial Bayesian game with unawareness I'(S’). For
S" = 5" we define a strategic form game with

I(Q"\ Q) = {(,t;(w)) : w e Qi € [(w)}\{(i,t;(w)) : w e Qi € [(w)} being
the set of players,

the set of strategies of player (i,t;(w)) € I(Q"\ ) is A <Mi(w5ti(w))) =

the payoff function of player (i,¢;(w)) is given by equation (2) but fixing the strat-
egy of each (dummy) player in {(i,¢;(w)) : & € @i € I(w')} to her respective
equilibrium strategy o} (w) of the S’-partial Bayesian game with unawareness I'(S’).

Since I, 0, and (M;);c; are finite, this strategic game has an equilibrium by Nash’s
(1950) theorem. Fix one equilibrium of this game.

12A player could then “test” his own believes by trying to choose such actions.

3Note that for (i,t;(w)) € I(Q2”\ ') we have either Sy, = S’ or Sy, () and S’ are incomparable.
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Consider now the strategy profile o, in which players in {(¢, ;(w)) : w € ;i € I(w)}
play their component of the profile o}, and players in [ (Q"\ Q) play the equilibrium
strategies of the equilibrium in the above defined strategic game.

We need to show that o, is an equilibrium of the S”-partial Bayesian game with
unawareness ['(S”). Suppose not, then for some player (i,t;(w)) € I(2") = {(4,t;(w')) :
W e Qi€ I(w)} there exists o;(w) € A (/\/li(wsti(w))> with o;(w) # o (w) such that

7

for OSpw) "= (‘Ti(w)v (0; (W/))w’ESti(@JEI(w)\{i}) we have

Uit )98, 0)) > Ulita)) (95, ) )

Le., there exists a profitable deviation from oj,, for some player-type (1,t;(w)) with
w e Q" and i € I(w) given that all other player-types in (") play their equilibrium
strategy.

If (i,t;(w)) € 1(2"\ ) then her strategy is not an equilibrium strategy in the above
defined strategic game, a contradiction. If (i,¢;(w)) € {(i,t;(w)) : ' € Qi € I(W)},
then since her payoffs are identical in both games, her strategy is not an equilibrium
strategy in the S’-partial Bayesian game with unawareness I'(S’), a contradiction. Hence
Ojqr must be an equilibrium of the S"-partial Bayesian game with unawareness I'(S”). O

B.2 Proof of Remark 3

Let o7y, be an equilibrium of the S”-partial Bayesian game with unawareness I'(S").
Moreover, let oj, be a profile of strategies that is identical with o}, for all (i,¢;(w))
I(Y).

Since for each player type (i,%;(w)) with ¢ € I(w) and w € € the payoff depends
only (also in the S”-partial game) on the choices of the player types (j,¢;(w')) with
j € I(w) and W' € . Fixing the behavior of the other player types, he faces the same
maximization problem in the S’-partial game as in the S”-partial game. O

B.3 Proof of Remark 4

Let w = (o, ()ier) with ap = «, and let a = B = 6. We have to show for every
i € 1" that inf{a;,d} = inf{d,inf{ay, 8}}. Since § < B, we have inf{a;,d} < inf{w;, 5}
and hence inf{w;,0} =< inf{d,inf{a;, 5}}. We have inf{o,inf{a;, 5}} =< 0, by defini-
tion, but since inf{w;, 3} = «;, we also have inf{d,inf{c;, 5}} =< ;. This implies
inf{a inf{e;, B}} < inf{ay, d}. O
B.4 Proof of Lemma 1

We prove only the last claim, since the rest is obvious.
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Let o = B = 8, w = () jer € Sa and tF(ws) € A(S;). By definition tf(w) € A(S,,).
We have to show that a; = §. Since tF(wg) € A(S;), we have by (0°) that wg = (8;)jer0
is such that 3; = 6. By the definition of r§, we have 3; = inf{a;, 8}. Hence § < a;. O

B.5 Proof of Remark 6

We define a N S to be the restricted game such that Mmﬁ M~ N Mf, for all 7 € I.
Note that if a, 8 € G(7), then aN S = a A § since G(7) is a meet-sublattice of the lattice
of all restricted games.

Let 0 # M} C M;, where M; is the action set of player 7 in 7. We have to show that
{w e 0 : M;(w) 2 M/} is an event.

By definition, G(7) is a finite meet-sublattice of the lattice of all restricted games given
7 ordered by set inclusion of [[,., M;. Fix a player ¢ € I. Recall that M;(w) = M, for

all w € S,, where M is the action set of player 7 in the restricted game a.
Let A= {a € G(y) : M{* O M;}. Since G(v) is a finite meet-sublattice, (), ., o =:
(M’) € G(y). We have M] C Ma(MD and MZ.O‘(M{) C M;(w), for all w such that
( ) 2 M. Since for w € Sa, M;(w) = M, we have that [M]] = {w € 2 : M;(w) D
= ( M! ) which is an event. U

B.6 Proof of Lemma 2

Suppose for some ¢ € I, v; would not be a best reply to v_;. Then there exists m; € M;
such that

e <wvi(my,v_;) —vi(vi, v_y),
for some € > 0. By continuity of the utility functions in mixed strategies and in beliefs
on types there exists a k; such that

k_k €
vi(Vi, Vi) — U(i,tm))((fi NAIIES 3’
for all k¥ > k;. And likewise there exits ky such that
& €
’U(i,tf(a))(mu@i) —vi(my, v—)| < 3

for all k > k».
Let k > max{ky, k2}, then

Ut ity (M, ) = Ui sy (07, 0%5)

= U(i,t;c(:y))(mia Uﬁi) —vi(mg,v—) + yi(mi, v_i) — vi(Vi, V—il
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that is, oF is not a best reply to o”,, for sufficiently large k. This implies that o* is not
an equilibrium of the game F(§§), for sufficiently large k, a contradiction. O

B.7 Proof of Theorem 1

For every k = 0,1, ...., the Bayesian game with unawareness F(§$) has an equilibrium by
Corollary 1. Since the set of mixed strategy combinations at 7 is a closed and bounded
subset of an Euclidean space, the sequence of equilibria (¢*(%))%2, has a subsequence
that converges to some v. By Lemma 2, v is an unawareness perfect equilibrium of ~.[]

B.8 Proof of Theorem 2

“=": Let v be an unawareness perfect equilibrium of . Then there exists a sequence of
Bayesian games with unawareness ( (Sk ))Oi with corresponding Bayesian Nash equi-

libria o* € E(F(Q]j)), k=0,1,..., for which o*(¥) — v as k — .

From Pearce (1984, Lemma 4) follows that a Nash equilibrium profile v is undomi-
nated if and only if for every ¢ € N, v; is a best response to a completely mixed strat-
egy profile of opponents. Note that >_ ¢ P¥)({w})o",(w) is equivalent to a com-
pletely mixed strategy profile of opponents for any k = 0,1,..., in the game ~. Since
of(5) — v, for any m; € M; with v;(m;) > 0, there exists a sufficiently large k(m;)

7

such that for all k > k(m;), o¥(7)(m;) > 0. Since M; is finite, there is a kyax such that
o¥(7)(m;) > 0 for all ml € M; with v;(m;) > 0. Thus, any such m; € M; is a best reply
t0 > es, tH(F){w})ok,(w), for all k > kna.. Hence, v; is a best reply to the completely

mixed belief equivalent to }_ o thmex () ({w}) o™ (w).

“<": Recall that from Pearce (1984, Lemma 4) it follows that a Nash equilibrium
profile v is undominated if and only if for every ¢ € N, v; is a best response to a
completely mixed strategy profile of opponents v_;. We will use these completely mixed
strategy profiles _;, ¢ € I, to construct a sequence of Bayesian games with unawareness
(F(ﬁi));‘;o with Bayesian Nash equilibria o* € E(I‘(ﬁﬁ)), k=0,1,...,, for which o*(¥) —
vas k — oo.

Given the strategic game v, consider any restricted strategic game o with d; € M¢
for all i € I and 1 < |M?| < 2. Note that by construction in any such restricted game,
each player has at most one non-default action and if there is a non-default auction for
player i, then this non-default action is the strict dominant Nash equilibrium action of
a. Let G(7) be the set comprising of all such games, |, and = itself. Note that G(v) is
rich (see page 23) and a lattice.
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We now construct a sequence of Bayesian games with unawareness of actions by
defining for each player i € I the type mapping as follows: For m_; € M_;, define {(m_;)
to be the number of profiles (o);en iy with a; € G(y) \ {L,~}, 7 € I\ {i}, for which
{m_i} = [Lienm (M7 \ {d;}). (Note that in such a profile we have [M;7| = 2, for all
j € I\ {i}). Let £y be the number of profiles (5;);ep iy such that M;7 = {d;} for at
least one j € I\ {i}.

Fix e € (0,1). If w = (j)jer0 with a; € G(v) \ {1, 7} such that [M;7] = 2, for
j € I'\{i} and o; = ~ for j € {0,i}, let tF(7)({w}) = é(m sV—i(m—;) with {m_;} =
[jen gy (M;7 \ {d;}).

If w = (6;)jer0 such that fy = f; = v and M;” = {d;} for at least one j € I\ {i},
define tF(¥)({w}) = Ezﬁ Note that in such a state player j is only aware of d;, which
forces him to play d;. From the way we extended the players’ utility functions to the
default auctions, this makes all other players indifferent between all their non-default
actions. Hence, for equilibrium considerations, for the type of each player in state %
these states play no role, even of he assigns positive probability to them.

All the remaining probability mass, 1 —e* —&% is assigned to t¥(3)({¥}). We impose
properties (0'), (17), (2’), and (4). Property (3) is implied by Lemma 1. Properties (5)
and (6) are satisfied by construction. Beliefs of player ¢ in states different from 7 are
then completely determined by beliefs in 4 via properties (2') and (4).

Next, we construct a sequence of Bayesian Nash equilibria whose limit in state 7
is the undominated Nash equilibrium v. For any player i and any k, let of(w) = v,
for all w € S, with w = (5;);ep such that 3; = v. Moreover, set oF(L)(d;) = 1, and

ok (w)(m;) = 1 with m; # d; in any other state. (Recall that in such a state player i just

has one non-default action.) Since in the latter states, of(w) € A(Mf), for a < 7, we
extend of(w) to 6F(w) € A(M;) by setting 55 (w)(m;) = oF(w)(m;) for all w € Q. and

m; € M-a

Note that ZweS ) {w})a*,(w) = v_; for k — oo. Moreover, for any k,
> wes, th(7)({w})d*;(w) is a convex combination of #_; and v_; (and mixtures where at
least one player chooses his default action, but this can be disregarded).

To see that o* is a Bayesian Nash equilibrium for any k& = 0, 1, ..., note that o¥(w) = v;
with w = (5;);er0 such that §; = v is a best reply to v_; since v is Nash equilibrium.

Since v is an undominated Nash equilibrium, we also noted above that v; is a best reply
against v_;. Hence v; is also a best reply to any convex combination of v_; and v_;. It

follows that for any k = 0,1,..., oF is a Bayes1an Nash equilibrium mixture of player ¢ in
the Bayesian game with unawareness I'(S%). Since o¥(¥) = v; for all k and i € I, v is an
Unawareness perfect equilibrium of ~. O
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