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Giacomo Bonanno

1.1 Introduction

Game theory provides a formal language for the representation of interactive
situations, that is, situations where several “entities” - called players - take ac-
tions that affect each other. The nature of the players varies depending on the
context in which the game theoretic language is invoked: in evolutionary biol-
ogy players are non-thinking living organisms; in computer science players are
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4 CHAPTER 1. EPISTEMIC FOUNDATIONS OF GAME THEORY

artificial agents; in behavioral game theory players are “ordinary” human be-
ings, etc. Traditionally, however, game theory has focused on interaction among
intelligent, sophisticated and rational individuals. The focus of this chapter is
a relatively recent development in game theory, namely the so-called epistemic
foundation program. The aim of this program is to characterize, for any game,
the behavior of rational and intelligent players who know the structure of the
game and the preferences of their opponents and who recognize each other’s
rationality and reasoning abilities. The two fundamental questions addressed
in this literature are: (1) Under what circumstances can a player be said to be
rational? and (2) What does ‘mutual recognition’ of rationality mean? Since
the two main ingredients of the notion of rationality are beliefs and choice and
the natural interpretation of ‘mutual recognition’ of rationality is in terms of
common belief, it is clear that the tools of epistemic logic are the appropriate
tools for this program. In Sections 1.2 and 1.3 we begin with the semantic ap-
proach to rationality in simultaneous games with ordinal payoff. In Sections 1.4
and 1.5 we turn to the syntactic approach and explore the difference between
common belief and common knowledge of rationality. In Section 1.6 we briefly
discuss probabilistic beliefs and cardinal preferences. In Sections 1.7, 1.8 and
1.9 we turn to a semantic analysis of rationality in dynamic games with perfect
information, based on dispositional belief revision or subjective counterfactuals.
Section 1.10 points to the most important contributions in the literature for the
topics discussed in this chapter.

1.2 Epistemic Models of Strategic-Form Games

Traditionally, game-theoretic analysis has been based on the assumption that
the game under consideration is common knowledge among the players. Thus
not only is it commonly known who the players are, what choices they have
available and what the possible outcomes are, but also how each player ranks
those outcomes. While it is certainly reasonable to postulate that a player knows
his own preferences over the possible outcomes, it is much more demanding to
assume that a player knows the preferences of his opponents. If those prefer-
ences are expressed as ordinal rankings of the outcomes, this assumption is less
troublesome than in the case where preferences also incorporate attitudes to
risk (that is, the payoff functions that represent those preferences are Bernoulli,
or von Neumann Morgenstern, utility functions: see Section 1.6). We will thus
begin by considering the case where preferences are expressed by ordinal rank-
ings.

We first consider games where each player chooses in ignorance of the choices
of the other players (as is the case, for example, in simultaneous games).

Definition 1
A finite strategic-form game with ordinal payoffs is a quintuple

G =
〈
Ag, {Si}i∈Ag , O, z, {%i}i∈Ag

〉
where
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Ag is a finite set of players,
Si is a finite set of strategies (or choices) of player i ∈ Ag,
O is a finite set of outcomes,
z : S → O (where S = S1 × ...× Sn) is a function that associates with every

strategy profile s = (s1, ..., sn) ∈ S an outcome z(s) ∈ O,
%i is player i’s ranking of O, that is, a binary relation on O which is complete

(for all o, o′ ∈ O, either o %i o
′ or o′ %i o) and transitive (for all o, o′, o′′ ∈ O, if

o %i o
′ and o′ %i o

′′ then o %i o
′′). The interpretation of o %i o

′ is that player
i considers outcome o to be at least as good as outcome o′. The corresponding
strict ordering, denoted by �i, is defined as usual: o �i o

′ if and only if o %i o
′

and not o′ %i o. The interpretation of o �i o
′ is that player i strictly prefers

outcome o to outcome o′.

Remark 1
Games are often represented in reduced form by replacing the triple

〈
O, z, {%i}i∈Ag

〉
with a set of payoff functions {πi}i∈Ag where πi : S → R is any real-valued
function that satisfies the property that, ∀s, s′ ∈ S, πi(s) ≥ πi(s′) if and only if
z(s) %i z(s

′). In the following we will adopt this more succinct representation
of strategic-form games. It is important to note that, with the exception of
Section 1.6, the payoff functions are taken to be purely ordinal and one could
replace πi with any other function obtained by composing πi with an arbitrary
strictly increasing function on the reals. a

Part a of Figure 1.1 shows a two-player strategic-form game where the sets of
strategies are S1 = {A,B,C,D} and S2 = {e, f, g, h}. The game is represented
as a table where the rows are labeled with the possible strategies of Player 1
and the columns with the possible strategies of Player 2. Each cell in the table
corresponds to a strategy-profile, that is, an element of S = S1 × S2; inside
each cell the first number is the payoff of Player 1 and the second number is the
payoff of Player 2; thus, for example, π1(A, e) = 6 and π2(A, e) = 3.

A strategic-form game provides only a partial description of an interactive
situation, since it does not specify what choices the players make, nor what
beliefs they have about their opponents’ choices. A specification of these missing
elements is obtained by introducing the notion of an epistemic model of the
game, which represents a possible context in which the game is played.

Definition 2
Given a strategic-form game with ordinal payoffs G =

〈
Ag, {Si, πi}i∈Ag

〉
an

epistemic model of G is a tuple
〈
W, {Ri}i∈Ag, {σi}i∈Ag

〉
where 〈W, {Ri}i∈Ag〉 is

a KD45 Kripke frame1 and, for every player i ∈ Ag, σi : W → Si is a function
that satisfies the following property: if w′ ∈ Ri(w) then σi(w

′) = σi(w). a
1Thus W is a set of states or possible worlds and, for every player i ∈ Ag, Ri is a binary

relation on W which is serial (∀w ∈ W, Ri(w) 6= ∅, where Ri(w) denotes the set {w′ ∈ W :
wRiw

′}), transitive (if w′ ∈ Ri(w) then Ri(w
′) ⊆ Ri(w)) and euclidean (if w′ ∈ Ri(w) then

Ri(w) ⊆ Ri(w
′)).
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e f g h
A 6 , 3 4 , 4 4 , 1 3 , 0
B 5 , 4 6 , 3 0 , 2 5 , 1
C 5 , 0 3 , 2 6 , 1 4 , 0
D 2 , 0 2 , 3 3 , 3 6 , 1

Player  2

Player 1

(a) A strategic-form game G

1 :R

2 :R

:R +

1 2 3 4 5                                                     w w w w w

1 2 3 4 5                                                     w w w w w

1 :σ

2 :σ

B           A            A            D           D

e           e             g            g            h

(b) An epistemic model of game G

Figure 1.1: A strategic-form game and an epistemic model of it

The interpretation of σi(w) = si ∈ Si is that, at state w, player i chooses
strategy si and the requirement that if w′ ∈ Ri(w) then σi(w

′) = σi(w) expresses
the assumption that a player is always certain about what choice he himself
makes. On the other hand, a player may be uncertain about the choices of the
other players.

Remark 2
In an epistemic model of a game the function σ : W → S defined by σ(w) =
(σi(w))

i∈Ag
associates with every state a strategy profile. Given a state w and a
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player i, we will often denote σ(w) by (σi(w), σ−i(w)), where σ−i(w) ∈ S−i =
S1× ...×Si−1×Si+1× ...×Sn. Thus σ−i(w) is the strategy profile of the players
other than i at state w. a

Part b of Figure 1.1 shows an epistemic model for the game of Part a. The
relations Ri (i = 1, 2) are represented by arrows: there is an arrow for player i
from state w to state w′ if and only if w′ ∈ Ri(w). The relation R+, which is
discussed below, is the transitive closure of R1 ∪R2.

In the game-theoretic literature individual beliefs and common belief are
typically represented by means of semantic operators on events. Given a KD45
Kripke frame 〈W, {Ri}i∈Ag〉, an event is any subset of W and one can associate
with the doxastic accessibility relation Ri of player i a semantic belief operator
Bi : 2W → 2W and a semantic common belief operator CB : 2W → 2W as
follows:

BiE = {w ∈W : Ri(w) ⊆ E}, and

CBE = {w ∈W : R+(w) ⊆ E}
(1.1)

where R+ is the transitive closure of
⋃

i∈AgRi.
2 BiE is interpreted as the event

that (that is, the set of states at which) player i believes event E and CBE as
the event that E is commonly believed.

The analysis of the consequences of common belief of rationality in strategic-
form games was first developed in the game-theoretic literature from a semantic
point of view. We will review the semantic approach in the next section and
turn to the syntactic approach in Section 1.4.

1.3 Semantic Analysis of Common Belief of Ra-
tionality

A player’s choice is considered to be rational if it is “optimal”, given the player’s
beliefs about the choices of the other players. When beliefs are expressed prob-
abilistically and payoffs are taken to be von Neumann-Morgenstern payoffs, a
choice is “optimal” if it maximizes the player’s expected payoff. We shall discuss
the notion of expected payoff maximization in Section 1.6. In this section we
will focus on the non-probabilistic beliefs represented by the qualitative Kripke
frames introduced in Definition 2.

Within the context of an epistemic model of a game, a rather weak notion
of rationality is the following.

2Thus the operator Bi satisfies the following properties: ∀E ⊆W ,
(i) Consistency: if E 6= ∅ then BiE 6= ∅ , (because of seriality of Ri),
(ii) Positive introspection: BiE ⊆ Bi (BiE) (because of transitivity of Ri),
(iii) Negative introspection: ¬BiE ⊆ Bi (¬BiE) (because of euclideanness of Ri, where ¬F

denotes the complement of event F ). Among the properties of the common belief operator CB
we highlight one that we will use later, which is a consequence of transitivity of R+: CBE ⊆
CB (CBE) .
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Definition 3
Fix a strategic-form game G and an epistemic model of G. At state w player i’s
strategy si = σi(w) is rational if it is not the case that there is another strategy
s′i ∈ Si of player i which yields a higher payoff than si against all the strategy
profiles of the other players that player i considers possible, that is, if
{s′i ∈ Si : πi (s′i, σ−i(w

′)) > πi (σi(w), σ−i(w
′)) , ∀w′ ∈ Ri(w)} = ∅

[recall that, by Definition 2, the function σi(·) is constant on the set Ri(w)].
Equivalently, si = σi(w) is rational at state w if, for every s′i ∈ Si, there exists a
w′ ∈ Ri(w) such that σi(w) is at least as good as s′i against the strategy profile
σ−i(w

′) of the other players, that is, πi (σi(w), σ−i(w
′)) ≥ πi (s′i, σ−i(w

′)). a

Given an epistemic model of a strategic-form game G, using Definition 3 one
can determine the event that player i’s choice is rational. Denote that event by
RATi. Let RAT =

⋂
i∈AgRATi. Then RAT is the event that (the set of states

at which) the choice of every player is rational. One can then also compute the
event CBRAT , that is, the event that it is common belief among the players
that every player’s choice is rational. For example, in the epistemic model of
Part b of Figure 1.1, RAT1 = {w2, w3, w4, w5} and RAT2 = {w1, w2, w3, w4},
so that RAT = {w2, w3, w4}. Hence B1RAT = {w2, w3}, B2RAT = {w3, w4}
and CBRAT = ∅. Thus at state w3 each player makes a rational choice and
believes that also the other player makes a rational choice, but it is not com-
mon belief that both players are making rational choices (indeed we have that
B1 (B2RAT ) = B2 (B1RAT ) = ∅, that is, neither player believes that the other
player believes that both players are choosing rationally).

Remark 3
It follows from Definition 2 (in particular, from the requirement that a player
always knows what choice he is making) that, for every player i, BiRATi =
RATi, that is, the set of states where player i makes a rational choice coincides
with the set of state where she believes that her own choice is rational.

The central question in the literature on the epistemic foundations of game
theory is: What strategy profiles are compatible with common belief of ratio-
nality? The question can be restated as follows.

Problem 4
Given a strategic-form game G, determine the subset S̃ of the set of strategy
profiles S that satisfies the following properties:

(A) given an arbitrary epistemic model of G, if w is a state at which there
is common belief of rationality, then the strategy profile chosen at w belongs to
S̃: if w ∈ CBRAT then σ(w) ∈ S̃, and

(B) for every s ∈ S̃, there exists an epistemic model of G and a state w such
that σ(w) = s and w ∈ CBRAT . a

A set S̃ of strategy profiles that satisfies the two properties of Problem 4 is
said to characterize the notion of common belief of rationality in game G.

In order to obtain an answer to Problem 4 we introduce the notion of strictly
dominated strategy and an algorithm known as the Iterated Deletion of Strictly
Dominated Strategies.
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Definition 4
Given a strategic-form game with ordinal payoffs G =

〈
Ag, {Si, πi}i∈Ag

〉
we say

that strategy si ∈ Si of player i is strictly dominated in G if there is another
strategy ti ∈ Si of player i such that – no matter what strategies the other
players choose – player i prefers the outcome associated with ti to the outcome
associated with si, that is, if, for all s−i ∈ S−i, πi(ti, s−i) > πi(si, s−i). a

For example, in the game of Figure 1.1a, for Player 2 strategy h is strictly
dominated (by g).

Let G =
〈
Ag, {Si, πi}i∈Ag

〉
and G′ =

〈
Ag′, {S′i, π′i}i∈Ag

〉
be two games. We

say that G′ is a subgame of G if Ag′ = Ag and, for every player i, S′i ⊆ Si (so
that S′ ⊆ S) and π′i is the restriction of πi to S′ (that is, for every s′ ∈ S′,
π′i(s

′) = πi(s
′)).

Definition 5
The Iterated Deletion of Strictly Dominated Strategies (IDSDS) is the following

procedure. Given a game G =
〈
Ag, {Si, πi}i∈Ag

〉
let
〈
G0, G1, ..., Gm, ...

〉
be the

sequence of subgames of G defined recursively as follows. For all i ∈ Ag,
1. Let S0

i = Si and let D0
i ⊆ S0

i be the set of strategies of player i that are
strictly dominated in G0 = G;

2. For m ≥ 1, let Sm
i = Sm−1

i \Dm−1
i and let Gm be the subgame of G with

strategy sets Sm
i . Let Dm

i ⊆ Sm
i be the set of strategies of player i that are

strictly dominated in Gm.

Let S∞i =
⋂

m∈N
Sm
i (where N denotes the set of non-negative integers) and

let G∞ be the subgame of G with strategy sets S∞i . Let S∞ = S∞1 × ...×S∞n .3a

Figure 1.2 shows the application of the IDSDS procedure to the game of
Figure 1.1a. In the initial game strategy h of Player 2 is strictly dominated by
g; deleting h we obtain game G1 where S1

1 = {A,B,C,D} and S1
2 = {e, f, g}.

In G1 strategy D of Player 1 is strictly dominated by C; deleting D we obtain
game G2 where S2

1 = {A,B,C} and S2
2 = {e, f, g}. In G2 strategy g of Player 2

is strictly dominated by f ; deleting g we obtain game G3 where S3
1 = {A,B,C}

and S3
2 = {e, f}. In G3 strategy C of Player 1 is strictly dominated by A;

deleting C we obtain game G4 where S4
1 = {A,B} and S4

2 = {e, f}. In G4 there
are no strictly dominated strategies and, therefore, the procedure stops, so that
G∞ = G4; thus S∞1 = {A,B} and S∞2 = {e, f}.

The following proposition states that the answer to Problem 4 is provided
by the IDSDS procedure.

Proposition 1
Fix a strategic-form game with ordinal payoffs G =

〈
Ag, {Si, πi}i∈Ag

〉
and

let S∞ ⊆ S be the set of strategy profiles obtained by applying the IDSDS
algorithm. Then:

3Note that, since the strategy sets are finite, there exists an integer r such that G∞ =
Gr = Gr+k for every k ∈ N.
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delete  D
(dominated by C)

delete  g
(dominated by f)

delete  h
(dominated by g) delete  C

(dominated by A)

e f g h
A 6 , 3 4 , 4 4 , 1 3 , 0
B 5 , 4 6 , 3 0 , 2 5 , 1
C 5 , 0 3 , 2 6 , 1 4 , 0
D 2 , 0 2 , 3 3 , 3 6 , 1

Player  2

Player 
1

e f g
A 6 , 3 4 , 4 4 , 1
B 5 , 4 6 , 3 0 , 2
C 5 , 0 3 , 2 6 , 1
D 2 , 0 2 , 3 3 , 3

Player 
1

Player  2

e f g
A 6 , 3 4 , 4 4 , 1
B 5 , 4 6 , 3 0 , 2
C 5 , 0 3 , 2 6 , 1

Player  2

Player 
1

e f
A 6 , 3 4 , 4
B 5 , 4 6 , 3
C 5 , 0 3 , 2

Player 
1

Player  2

e f
A 6 , 3 4 , 4
B 5 , 4 6 , 3

Player  2

Player 
1

0G G=

1G

2G

3G

4G G∞=

Figure 1.2: Application of the IDSDS procedure to the game of Figure 1.1a

(A) given an arbitrary epistemic model of G, if w is a state at which there
is common belief of rationality, then the strategy profile chosen at w belongs to
S∞: if w ∈ CBRAT then σ(w) ∈ S∞, and

(B) for every s ∈ S∞, there exists an epistemic model of G and a state w
such that σ(w) = s and w ∈ CBRAT . a

Proof: (A) Fix a game G, an epistemic model of it and a state w0 and suppose
that w0 ∈ CBRAT . We want to show that σ(w0) ∈ S∞.

First we prove by induction that

∀w ∈ R+(w0),∀i ∈ Ag,∀m ≥ 0, σi(w) /∈ Dm
i (1.2)

(recall that R+ is the transitive closure of
⋃

i∈AgRi and Dm
i is the set of strate-

gies of player i that are strictly dominated in game Gm: see Definition 5).
1. Base step (m = 0). Fix an arbitrary w ∈ R+(w0) and an arbitrary

player i. If σi(w) ∈ D0
i , then there is a strategy ŝi ∈ Si such that, for all

s−i ∈ S−i, πi(σi(w), s−i) < πi(ŝi, s−i); thus, in particular, for all w′ ∈ Ri(w),
πi(σi(w), σ−i(w

′)) < πi(ŝi, σ−i(w
′)). Hence, by Definition 3, w /∈ RATi so

that, since RAT ⊆ RATi, w /∈ RAT , contradicting - since w ∈ R+(w0) - the
hypothesis that w0 ∈ CBRAT .

2. Inductive step: assume that (1.2) holds for all k ≤ m; we want to show
that it holds for k = m + 1. Suppose that ∀w ∈ R+(w0),∀i ∈ Ag,∀k ≤ m,
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σi(w) /∈ Dk
i . Then (see Definition 5)

∀w ∈ R+(w0), σ(w) ∈ Sm+1. (1.3)

Fix an arbitrary w ∈ R+(w0) and an arbitrary player i and suppose that σi(w) ∈
Dm+1

i . Then, by definition of Dm+1
i (see Definition 5) there is a strategy ŝi ∈ Si

such that, for all s−i ∈ Sm+1
−i , πi(σi(w), s−i) < πi(ŝi, s−i). By transitivity

of R+, since w ∈ R+(w0), R+(w) ⊆ R+(w0). Thus, by (1.3) and the fact
that Ri(w) ⊆ R+(w), we have that πi(σi(w), σ−i(w

′)) < πi(ŝi, σ−i(w
′)) for all

w′ ∈ Ri(w), so that, by Definition 3, w /∈ RATi, contradicting the hypothesis
that w0 ∈ CBRAT .

Thus (1.2) holds and therefore, by Definition 5,

∀w ∈ R+(w0),∀i ∈ Ag, σi(w) ∈ S∞i . (1.4)

The proof is not yet complete, since it may be the case that w0 /∈ R+(w0).
Fix an arbitrary player i and an arbitrary w ∈ Ri(w0) (recall the assumption
that Ri is serial). By definition of epistemic model (see Definition 2) σi(w0) =
σi(w). By (1.4) σi(w) ∈ S∞i . Thus σi(w0) ∈ S∞i and hence σ(w0) ∈ S∞.

(B) Construct the following epistemic model of game G: W = S∞ and,
for every player i and every s ∈ S∞ let Ri(s) = {s′ ∈ S∞ : s′i = si}. Then
Ri is an equivalence relation (hence serial, transitive and euclidean). For all
s ∈ S∞, let σi(s) = si. Fix an arbitrary s ∈ S∞ and an arbitrary player i.
By definition of S∞, it is not the case that there exists an ŝi ∈ Si such that,
for all s−i ∈ S∞−i, πi(si, s−i) < πi(ŝi, s−i). Thus, since - by construction - for
all s′ ∈ Ri(s), σ−i(s

′) ∈ S∞−i, s ∈ RATi (see Definition 3). Since i was chosen
arbitrarily, s ∈ RAT ; hence, since s ∈ S∞ was chosen arbitrarily, RAT = S∞.
It follows that s ∈ CBRAT for every s ∈ S∞.

1.4 Syntactic Characterization of Common Be-
lief of Rationality

We now turn to the syntactic analysis of rationality in strategic-form games.
In order to be able to describe a game syntactically, the set of propositional
variables (or atoms) At will be taken to include:

• Strategy symbols s1i , s2i , ... The intended interpretation of ski is “player i
chooses her kth strategy ski ”.4

• Atoms of the form s`i �i s
k
i , whose intended interpretation is “strategy

s`i of player i is at least as good, for player i, as her strategy ski ”, and
atoms of the form s`i �i s

k
i , whose intended interpretation is “for player i

strategy s`i is better than strategy ski ”.

4Thus, with slight abuse of notation, we use the symbol ski to denote both an element of
Si, that is, a strategy of player i, and an element of At, that is, an atom whose intended
interpretation is “player i chooses strategy ski ”.
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Fix a strategic-form game with ordinal payoffs G =
〈
Ag, {Si, πi}i∈Ag

〉
and

let Si = {s1i , s2i , ..., s
mi
i } (thus the cardinality of Si is mi). We denote by KD45G

the KD45 multi-agent logic without a common belief operator that satisfies the
following additional axioms: for all i ∈ Ag and for all k, ` = 1, ...,mi, with k 6= `,(

s1i ∨ s2i ∨ ... ∨ s
mi
i

)
(G1)

¬(ski ∧ s`i) (G2)
ski → Bis

k
i (G3)(

ski �i s
`
i

)
∨
(
s`i �i s

k
i

)
(G4)(

s`i �i s
k
i

)
↔
((
s`i �i s

k
i

)
∧ ¬

(
ski �i s

`
i

))
(G5)

Axiom G1 says that player i chooses at least one strategy, while axiom G2
says that player i cannot choose more than one strategy. Thus G1 and G2
together imply that each player chooses exactly one strategy. Axiom G3, on
the other hand, says that player i is conscious of his own choice: if he chooses
strategy ski then he believes that he chooses ski . The remaining axioms state
that the ordering of strategies is complete (G4) and that the corresponding
strict ordering is defined as usual (G5).

Proposition 2
The following is a theorem of logic KD45G: Bis

k
i → ski . That is, every player

has correct beliefs about her own choice of strategy.5 a

Proof: In the following PL stands for ‘Propositional Logic’ and RK denotes
the inference rule “from ψ → χ infer �ψ → �χ”, which is a derived rule of
inference that applies to every modal operator � that satisfies axiom K and the
rule of Necessitation. Fix a player i and k, ` ∈ {1, ...,mi} with k 6= `. Let ϕ
denote the formula

(s1i ∨ ... ∨ s
mi
i ) ∧ ¬s1i ∧ ... ∧ ¬s

k−1
i ∧ ¬sk+1

i ∧ ... ∧ ¬smi
i .

1. ϕ→ ski tautology
2. ¬(ski ∧ s`i) axiom G2 (for ` 6= k)
3. ski → ¬s`i 2, PL
4. Bis

k
i → Bi¬s`i 3, rule RK

5. Bi¬s`i → ¬Bis
`
i axiom Di

6. s`i → Bis
`
i axiom G3

7. ¬Bis
`
i → ¬s`i 6, PL

8. Bis
k
i → ¬s`i 4, 5, 7, PL (for ` 6= k)

9. s1i ∨ ... ∨ s
mi
i axiom G1

10. Bis
k
i → (s1i ∨ ... ∨ s

mi
i ) 9, PL

11. Bis
k
i → ϕ 8 (for every ` 6= k), 10, PL

12. Bis
k
i → ski 1, 11, PL.

5Note that, in general, logic KD45G allows for incorrect beliefs. In particular, a player
might have incorrect beliefs about the choices made by other players. By Proposition 2,
however, a player cannot have mistaken beliefs about her own choice.
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Given a game G, let FG denote the set of epistemic models of G (see Defi-
nition 2).

Definition 6
Given a game G and an epistemic model F ∈ FG a syntactic model of G based
on F is obtained by adding to F any propositional valuation V : W → (At →
{true, false}) that satisfies the following restrictions (we write w |= p instead
of V (w)(p) = true):

• w |= shi if and only if σi(w) = shi ,

• w |= (ski �i s
`
i) if and only if πi(s

k
i , σ−i(w)) ≥ πi(s`i , σ−i(w)),

• w |= ski �i s
`
i if and only if πi(s

k
i , σ−i(w)) > πi(s

`
i , σ−i(w)).

Thus, in a syntactic model of a game, at state w it is true that player i
chooses strategy shi if and only if the strategy of player i associated with w
(in the semantic model on which the syntactic model is based) is shi (that is,
σi(w) = shi ) and it is true that strategy ski is at least as good as (respectively,
better than) strategy s`i if and only if ski in combination with σ−i(w) (the profile
of strategies of players other than i associated with w) yields an outcome which
player i considers at least as good as (respectively, better than) the outcome
yielded by s`i in combination with σ−i(w).

For example, a syntactic model of the game shown in Part a of Figure 1.1
based on the semantic model shown in Part b satisfies the following formula at
state w1:

B ∧ e ∧ (A �1 B) ∧ (A �1 C) ∧ (A �1 D) ∧ (B �1 C) ∧ (C �1 B) ∧ (B �1 D)
∧(C �1 D) ∧ (e �2 f) ∧ (e �2 g) ∧ (e �2 h) ∧ (f �2 g) ∧ (f �2 h) ∧ (g �2 h).

Remark 5
Let MG denote the set of all syntactic models of game G. It is straightforward
to verify that logic KD45G is sound with respect to MG.6 a

We now provide an axiom that, for every game, characterizes the output of
the IDSDS procedure (see Definition 5), namely the set of strategy profiles S∞.
The following axiom says that if player i chooses strategy ski then it is not the
case that she believes that a different strategy s`i is better for her:

ski → ¬Bi(s
`
i �i s

k
i ). (WR)

6It follows from the following observations: (1) axioms G1 and G2 are valid in every
syntactic model because, for every state w, there is a unique strategy ski ∈ Si such that

σi(w) = ski and, by the validation rules (see Definition 6), w |= ski if and only if σi(w) = ski ;
(2) axiom G3 is an immediate consequence of the fact (see Definition 2) that if w′ ∈ Ri(w)
then σi(w

′) = σi(w); (3) axioms G4 and G5 are valid because, for every state w, there is a
unique profile of strategies σ−i(w) of the players other than i and the payoff function πi of
player i restricted to the set Si × {σ−i(w)} induces a complete and transitive ordering of Si.
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Proposition 3
Fix a strategic-form game with ordinal payoffs G =

〈
Ag, {Si, πi}i∈Ag

〉
. Then

(A) IfM =
〈
W, {Ri}i∈Ag, {σi}i∈Ag

, V
〉

is a syntactic model ofG that validates
axiom WR, then σ(w) ∈ S∞, for every state w ∈W .

(B) There exists a syntactic model M of G that validates axiom WR and
is such that (1) for every s ∈ S∞, there exists a state w such that w |= s, and
(2) for every s ∈ S and for every w ∈W , if w |= s then σ(w) ∈ S∞. a

Proof: (A) Fix a game and a syntactic model of it that validates axiom WR.
Fix an arbitrary state w0 and an arbitrary player i. By Axioms G1 and G2 (see
Remark 5) w0 |= ski for a unique strategy ski ∈ Si. Fix an arbitrary s`i ∈ Si, with
s`i 6= ski . Since the model validates axiom WR, w0 |= ¬Bi(s

`
i �i s

k
i ), that is,

there exists a w1 ∈ Ri(w0), such that w1 |= ¬(s`i �i s
k
i ). Hence, by Definition

6, σi(w0) = ski and πi(s
k
i , σ−i(w1)) ≥ πi(s

`
i , σ−i(w1)), so that, by Definition

3, w0 ∈ RATi. Since w0 and i were chosen arbitrarily, RAT = W and thus,
CBRAT = W , that is, for every w ∈ W , w ∈ CBRAT . Hence, by Part A of
Proposition 1, σ(w) ∈ S∞.

(B) Let F be the semantic epistemic model constructed in the proof of Part
B of Proposition 1 and let M be a syntactic model based on F that satisfies the
validation rules of Definition 6. First we show that M validates axiom WR.
Recall that, in F , W = S∞, s′ ∈ Ri(s) if and only if si = s′i and σ is the
identity function. Fix an arbitrary player i and an arbitrary state ŝ. We need
to show that, for every s`i ∈ Si, ŝ |= ¬Bi(s

`
i �i ŝi). Suppose that, for some

s`i ∈ Si, ŝ |= Bi(s
`
i �i ŝi), that is, for every s′ ∈ Ri(ŝ), s

′ |= (s`i �i ŝi). Then, by
Definition 6, for every s′ ∈ Ri(ŝ), πi(s

`
i , s
′
−i) > πi(ŝi, s

′
−i), so that, by Definition

3, ŝ /∈ RATi. But, as shown in the proof of Proposition 1, RAT = S∞ so that,
since RAT ⊆ RATi, RATi = S∞, yielding a contradiction. Thus M validates
axiom WR. Now fix an arbitrary s ∈ S∞. Then, by Definition 6, s |= s; thus
(1) holds. Conversely, let s |= s; then, by construction of F , σ(s) = s and
s ∈ S∞. Thus (2) holds.

Remark 6
Since, by Proposition 1, the set of strategy-profiles S∞ characterizes the se-
mantic notion of common belief of rationality, it follows from Proposition 3 that
axiom WR provides a syntactic characterization of common belief or rationality
in strategic-form games with ordinal payoffs. a

Remark 7
Note that axiom WR provides a syntactic characterization of common belief of
rationality in a logic that does not involve the common belief operator. However,
since WR expresses the notion that player i chooses rationally, by the Necessi-
tation rule every player believes that player i is rational [that is, from WR we
obtain that, for every player j ∈ Ag, Bj

(
ski → ¬Bi(s

`
i �i s

k
i )
)

is a theorem], and

every player believes this [from Bj

(
ski → ¬Bi(s

`
i �i s

k
i )
)
, by Necessitation, we

get that BrBj

(
ski → ¬Bi(s

`
i �i s

k
i )
)

is a theorem, for every player r ∈ Ag] and
so on, so that - essentially - the rationality of every player’s choice is commonly
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believed. Indeed, if one adds the common belief operator CB to the logic, then,
by Necessitation, CB

(
ski → ¬Bi(s

`
i �i s

k
i )
)

becomes a theorem. a

Remark 8
There appears to be an important difference between the result of Section 1.3
and the result of this section: Proposition 1 gives a local result, while Proposition
3 provides a global one. For example, Part A of Proposition 1 states that if at
a state there is common belief of rationality, then the strategy profile played
at that state belongs to S∞, while Part A of Proposition 3 states that in a
syntactic model that validates axiom WR the strategy profile played at every
state belongs to S∞. As a matter of fact, the result of Section 1.3 is also “global”
in nature. To see this, fix an epistemic model and a state w0 and suppose that
w0 ∈ CBRAT . By transitivity of R+ (see Footnote 2) CBRAT ⊆ CB (CBRAT ).
Thus, for every w ∈ R+(w0), w ∈ CBRAT . Hence, by Proposition 1, σ(w) ∈
S∞. That is, if at a state there is common belief of rationality, then at that
state, as well as at all states reachable from it by the common belief relation
R+, it is true that the strategy profile played belongs to S∞. This is essentially
a global result, since from the point of view of a state w0, the “global” space is
precisely the set R+(w0). a

1.5 Common Belief versus Common Knowledge

In the previous two sections we studied the implications of common belief of
rationality in strategic-form games. What distinguishes belief from knowledge is
that belief may be erroneous, while knowledge is veridical: if I know that ϕ then
ϕ is true, while it is possible for me to believe that ϕ when ϕ is in fact false. In a
game a player might have erroneous beliefs about the choices of the other players
or about their beliefs. Perhaps one might be able to draw sharper conclusions
about what the players will do in a game if one rules out erroneous beliefs.
Thus a natural question to ask is: If we replace belief with knowledge, what can
we infer from the hypothesis that there is common knowledge of rationality?
Is the set of strategy profiles that is compatible with common knowledge of
rationality a proper subset of S∞? The answer is negative as can be seen
from the epistemic model constructed in the proof of Part B of Proposition 1:
that model is one where each accessibility relation is an equivalence relation and
thus the underlying frame is an S5 frame. Hence the set of strategy profiles that
are compatible with common knowledge of rationality coincides with the set of
strategy profiles that are compatible with common belief of rationality, namely
S∞. However, it is possible to obtain sharper predictions by replacing belief
with knowledge and, at the same time, by introducing a mild strengthening
of the notion of rationality. Given a strategic-form game with ordinal payoffs

G =
〈
Ag, {Si, πi}i∈Ag

〉
we will now consider epistemic models of G of the form〈

W, {∼i}i∈Ag, {σi}i∈Ag

〉
where 〈W, {∼i}i∈Ag〉 is an S5 Kripke frame, that is, the

accessibility relation ∼i of each player i ∈ Ag is an equivalence relation. Since
we are dealing with S5 frames, instead of belief we will speak of knowledge and
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denote the semantic operators for individual knowledge and common knowledge
by Ki and CK, respectively. Thus Ki : 2W → 2W and CK : 2W → 2W are given
by:

KiE = {w ∈W : ∼i (w) ⊆ E}, and

CKE = {w ∈W : ∼∗ (w) ⊆ E}
(1.5)

where, as before, ∼i (w) = {w′ ∈W : w ∼i w
′} and ∼∗ is the transitive closure

of
⋃

i∈Ag ∼i.
7 KiE is interpreted as the event that (that is, the set of states

at which) player i knows event E and CKE as the event that E is commonly
known.

We now consider a stronger notion of rationality than the one given in Def-
inition 3, which we will call s-rationality (‘s’ stands for ‘strong’).

Definition 7
Fix a strategic-form game G and an S5 epistemic model of G. At state w
player i’s strategy σi(w) is s-rational if it is not the case that there is another
strategy s′i ∈ Si which (1) yields at least as high a payoff as σi(w) against all
the strategy profiles of the other players that player i considers possible and
(2) a higher payoff than σi(w) against at least one strategy profile of the other
players that player i considers possible, that is, if

there is no strategy s′i ∈ Si such that
(1) πi (s′i, σ−i(w

′)) ≥ πi (σi(w), σ−i(w
′)) , ∀w′ ∈ ∼i (w), and

(2) πi (s′i, σ−i(w̃)) > πi (σi(w), σ−i(w̃)), for some w̃ ∈ ∼i (w).
[recall that, by Definition 2, the function σi(·) is constant on the set ∼i (w)].
Equivalently, σi(w) is s-rational at state w if, for every s′i ∈ Si, whenever there
is a w′ ∈ ∼i (w) such that πi (s′i, σ−i(w

′)) > πi (σi(w), σ−i(w
′)) then there is

another state w′′ ∈ ∼i (w) such that πi (σi(w), σ−i(w
′′)) > πi (s′i, σ−i(w

′′)). a

Denote by SRATi the event that (i.e. the set of states at which) player i’s choice
is s-rational and let SRAT =

⋂
i∈Ag SRATi. Then SRAT is the event that the

choice of every player is s-rational.
As we did in Section 1.3 for the weaker notion of rationality and for common

belief, we will now determine, for every game G, the set of strategy profiles that
are compatible with common knowledge of s-rationality. Also in this case, the
answer is based on an iterated deletion procedure. However, unlike the IDSDS
procedure given in Definition 5, the deletion procedure defined below operates
not at the level of individual players’ strategies but at the level of strategy
profiles.

Definition 8
Given a strategic-form game with ordinal payoffs G =

〈
Ag, {Si, πi}i∈Ag

〉
, a

subset of strategy profiles X ⊆ S and a strategy profile x ∈ X, we say that x is

7Thus, in addition to the properties listed in Footnote 2, the operator Ki satisfies the
veridicality property KiE ⊆ E,∀E ⊆ W (because of reflexivity of ∼i). Since reflexivity
is inherited by ∼∗, also the common knowledge operator satisfies the veridicality property:
CKE ⊆ E.
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inferior relative to X if there exists a player i and a strategy si ∈ Si of player i
(thus si need not belong to the projection of X onto Si) such that:

1. πi(si, x−i) > πi(xi, x−i), and

2. for all s−i ∈ S−i, if (xi, s−i) ∈ X then πi(si, s−i) ≥ πi(xi, s−i).
The Iterated Deletion of Inferior Profiles (IDIP) is defined as follows. For
m ∈ N define Tm ⊆ S recursively as follows: T 0 = S and, for m ≥ 1, Tm =
Tm−1\Im−1, where Im−1 ⊆ Tm−1 is the set of strategy profiles that are inferior
relative to Tm−1. Let T∞ =

⋂
m∈N

Tm.8 a

d e f d e f
A 2 , 1 0 , 1 2 , 1 A 2 , 1 0 , 1 2 , 1
B 1 , 0 1 , 0 1 , 1 B 1 , 0 1 , 1
C 1 , 4 1 , 3 0 , 3 C 1 , 4 1 , 3

T0 T1

d e f d e f
A 2 , 1 0 , 1 2 , 1 A 2 , 1 0 , 1 2 , 1
B B
C C 1 , 4

T = T3 T2

Player
1

Player  2

Player
1

Player  2

Player
1

Player  2

Player
1

Player  2

Figure 1.3: Illustration of the IDIP procedure

The IDIP procedure is illustrated in Figure 1.3, where
T 0 = S = {(A, d), (A, e), (A, f), (B, d), (B, e), (B, f), (C, d), (C, e), (C, f)},
I0 = (B, e), (C, f) (the elimination of (B, e) is done through Player 2 and strat-
egy f , while the elimination of (C, f) is done through Player 1 and strategy B);

T 1 = {(A, d), (A, e), (A, f), (B, d), (B, f), (C, d), (C, e)}, I1 = {(B, d), (B, f), (C, e)}
(the elimination of (B, d) and (B, f) is done through Player 1 and strategy A,
while the elimination of (C, e) is done through Player 2 and strategy d);

T 2 = {(A, d), (A, e), (A, f), (C, d)}, I2 = {(C, d)} (the elimination of (C, d) is
done through Player 1 and strategy A);

T 3 = {(A, d), (A, e), (A, f)}, I3 = ∅; thus T∞ = T 3.

The following Proposition is the counterpart to Proposition 1, when ra-
tionality is replaced with s-rationality, belief with knowledge and the IDSDS
procedure with the IDIP procedure.

8Since the strategy sets are finite, there exists an integer r such that T∞ = T r = T r+k

for every k ∈ N.
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Proposition 4
Fix a strategic-form game with ordinal payoffs G =

〈
Ag, {Si, πi}i∈Ag

〉
and let

T∞ ⊆ S be the set of strategy profiles obtained by applying the IDIP procedure.
Then:

(A) given an arbitrary S5 epistemic model of G, if w is a state at which
there is common knowledge of s-rationality, then the strategy profile chosen at
w belongs to T∞: if w ∈ CKSRAT then σ(w) ∈ T∞, and

(B) for every s ∈ T∞, there exists an S5 epistemic model of G and a state
w such that σ(w) = s and w ∈ CKSRAT . a

Proof: (A) Fix an S5 epistemic model of G and a state w0 and suppose that
w0 ∈ CKSRAT . We want to show that σ(w0) ∈ T∞.

First we prove by induction that

∀w ∈W such that w ∼∗ w0,∀m ≥ 0, σ(w) /∈ Im. (1.6)

1. Base step (m = 0). Fix an arbitrary w1 ∈ W such that w1 ∼∗ w0. If
σ(w1) ∈ I0 (that is, σ(w1) is inferior relative to the entire set of strategy profiles
S) then there exist a player i and a strategy ŝi ∈ Si such that, πi(ŝi, σ−i(w1)) >
πi(σi(w1), σ−i(w1)), and, for every s−i ∈ S−i, πi(ŝi, s−i) ≥ πi(σi(w1), s−i);
thus, in particular, for all w′ such that w1 ∼i w

′, πi(ŝi, σ−i(w
′)) ≥ πi(σi(w1), σ−i(w

′)).
Furthermore, by reflexivity of ∼i, w1 ∼i w1. It follows from Definition 7 that
w1 /∈ SRATi, so that, since SRAT ⊆ SRATi, w1 /∈ SRAT , contradicting the
hypothesis that w0 ∈ CKSRAT (since w1 ∼∗ w0).

2. Inductive step: assume that (1.6) holds for all k ≤ m; we want to show
that it holds for k = m+ 1. Suppose that ∀w ∈W such that w ∼∗ w0,∀k ≤ m,
σ(w) /∈ Ik. Then

∀w ∈W such that w ∼∗ w0, σ(w) ∈ Tm+1. (1.7)

Fix an arbitrary w1 ∈ W such that w1 ∼∗ w0 and suppose that σ(w1) ∈
Im+1, that is, σ(w1) is inferior relative to Tm+1. Then, by definition of Im+1,
there exist a player i and a strategy ŝi ∈ Si such that, πi(ŝi, σ−i(w1)) >
πi(σi(w1), σ−i(w1)) and, for every s−i ∈ S−i, if (ŝi, s−i) ∈ Tm+1 then πi(ŝi, s−i) ≥
πi(σi(w1), s−i). By Definition 2, for every w such that w ∼i w1, σi(w) = σi(w1)
and by (1.7), for every w such that w ∼∗ w0, (σi(w), σ−i(w)) ∈ Tm+1. Thus,
since ∼i (w1) ⊆ ∼∗ (w1) ⊆ ∼∗ (w0), we have that, for every w such that
w ∼i w1, (σi(w1), σ−i(w)) ∈ Tm. By reflexivity of ∼i, w1 ∼i w1; hence, by
Definition 7, w1 /∈ SRATi and thus w1 /∈ SRAT (since SRAT ⊆ SRATi).
This, together with the fact that w1 ∼∗ w0, contradicts the hypothesis that
w0 ∈ CKSRAT .

Thus, we have shown by induction that, ∀w ∈ W such that w ∼∗ w0,
σ(w) ∈

⋂
m∈N

Tm = T∞. It only remains to establish that σ(w0) ∈ T∞, but this

follows from reflexivity of ∼∗.
(B) Construct the following epistemic model of game G: W = T∞ and,

for every player i and every s, s′ ∈ T∞ let s ∼i s
′ if and only if s′i = si



1.5. COMMON BELIEF VERSUS COMMON KNOWLEDGE 19

Then ∼i is an equivalence relation and thus the frame is an S5 frame. For
all s ∈ T∞, let σ(s) = s. Fix an arbitrary s̃ ∈ T∞ and an arbitrary player
i. By definition of T∞, it is not the case that there exists an ŝi ∈ Si such
that, πi(ŝi, s̃−i) > πi(s̃i, s̃−i) and, for every s′−i ∈ S−i, if (ŝi, s

′
−i) ∈ T∞ then

πi(ŝi, s
′
−i) ≥ πi(s̃i, s

′
−i). Thus s̃ ∈ SRATi; hence, since player i was chosen

arbitrarily, s̃ ∈ SRAT. Since s̃ was chosen arbitrarily, it follows that SRAT =
T∞ and thus CKSRAT = T∞.

Given a strategic-form game with ordinal payoffs G =
〈
Ag, {Si, πi}i∈Ag

〉
,

let S5G be the S5 multi-agent logic without a common knowledge operator that
satisfies axioms G1-G5 of Section 1.4. Clearly, S5G is an extension of KD45G.
Let MS5

G denote the set of all syntactic models of game G (see Definition 6)
based on S5 epistemic models of G. It is straightforward to verify that logic
S5G is sound with respect to MS5

G .
In parallel to the analysis of Section 1.4, we now provide an axiom that, for

every game, characterizes the output of the IDIP procedure, namely the set of
strategy profiles T∞. The following axiom is a strengthening of axiom WR of
Section 1.4: it says that if player i chooses strategy ski then it is not the case
that (1) she believes that a different strategy s`i is at least as good for her as ski
and (2) she considers it possible that s`i is better than ski :

ski → ¬
(
Bi(s

`
i �i s

k
i ) ∧ ¬Bi¬(s`i �i s

k
i )
)
. (SR)

The following proposition confirms that axiom SR is a strengthening of ax-
iom WR: the latter is derivable in the logic obtained by adding SR to KD45G.

Proposition 5
Axiom WR is a theorem of KD45G + SR. a

Proof:
1. ski → ¬

(
Bi(s

`
i �i s

k
i ) ∧ ¬Bi¬(s`i �i s

k
i )
)

Axiom SR
2. (s`i �i s

k
i )↔ (s`i �i s

k
i ) ∧ ¬(ski �i s

`
i) Axiom G5

3. (s`i �i s
k
i )→ (s`i �i s

k
i ) 2, PL

4. Bi(s
`
i �i s

k
i )→ Bi(s

`
i �i s

k
i ) 3, RK

5. Bi(s
`
i �i s

k
i )→ ¬Bi¬(s`i �i s

k
i ) Axiom Di

6. Bi(s
`
i �i s

k
i )→

(
Bi(s

`
i �i s

k
i ) ∧ ¬Bi¬(s`i �i s

k
i )
)

4, 5, PL
7. ¬

(
Bi(s

`
i �i s

k
i ) ∧ ¬Bi¬(s`i �i s

k
i )
)
→ ¬Bi(s

`
i �i s

k
i ) 6, PL

9. ski → ¬Bi(s
`
i �i s

k
i ) 1, 7, PL

The following proposition is the counterpart to Proposition 3: it shows that
- when belief is replaced with knowledge - axiom SR provides a syntactic char-
acterization of the output of the IDIP procedure (namely, the set of strategy-
profiles T∞) and thus, by Proposition 4, provides a syntactic characterization of
common knowledge of s-rationality in strategic-form games with ordinal payoffs.

Proposition 6
Fix a strategic-form game with ordinal payoffs G =

〈
Ag, {Si, πi}i∈Ag

〉
. Then

(A) If M =
〈
W, {∼i}i∈Ag, {σi}i∈Ag

, V
〉

is an S5 syntactic model of G that
validates axiom SR, then σ(w) ∈ T∞, for every state w ∈W .
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(B) There exists an S5 syntactic model M of G that validates axiom SR and
is such that (1) for every s ∈ T∞, there exists a state w in M such that w |= s,
and (2) for every s ∈ S and for every w ∈W , if w |= s then σ(w) ∈ T∞. a

Proof:
To stress the fact that we are dealing with S5 models, we shall use the

operator Ki (knowledge) instead of Bi (belief).
(A) Fix a game and an S5 syntactic model of it that validates axiom SR.

Fix an arbitrary state w0 and an arbitrary player i. By Axioms G1 and
G2 (see Remark 5) w0 |= ski for a unique strategy ski ∈ Si. Fix an arbi-
trary s`i ∈ Si, with s`i 6= ski . Since the model validates axiom SR, w0 |=
¬
(
Ki(s

`
i �i s

k
i ) ∧ ¬Ki¬(s`i �i s

k
i )
)
, that is,

w0 |= ¬Ki¬(s`i �i s
k
i )→ ¬Ki(s

`
i �i s

k
i ). (1.8)

If, for every w such that w0 ∼i w, πi(s
k
i , σ−i(w)) ≥ πi(s

`
i , σ−i(w)), then, by

Definition 7, w ∈ SRATi. If, on the other hand, there is a w1 such that w0 ∼i w1

and πi(s
`
i , σ−i(w1)) > πi(s

k
i , σ−i(w1)), then, by Definition 6, w1 |= (s`i �i s

k
i )

and thus w0 |= ¬Ki¬(s`i �i s
k
i ). Hence, by (1.8), w0 |= ¬Ki(s

`
i �i s

k
i ), that

is, there exists a w2 such that w0 ∼i w2 and w2 |= ¬(s`i �i s
k
i ), so that, by

Axioms G4 and G5, w2 |= ski �i s
`
i ; that is, by Definition 6, πi(s

k
i , σ−i(w2)) >

πi(s
`
i , σ−i(w2)). Hence, by Definition 7, w ∈ SRATi. Since w0 and i were

chosen arbitrarily, it follows that SRAT = W and thus CKSRAT = W. Hence,
by Proposition 4, σ(w) ∈ T∞ for every w ∈W .

(B) Let F be the S5 epistemic model constructed in the proof of Part B
of Proposition 4 and let M be a syntactic model based on F that satisfies the
validation rules of Definition 6. First show that M validates axiom SR. Recall
that in F , W = T∞, s′ ∈ ∼i (s) if and only if si = s′i and σ is the identity
function. Fix an arbitrary player i and an arbitrary state ŝ. We need to show
that, for every s`i ∈ Si, ŝ |= ¬

(
Ki(s

`
i �i ŝi) ∧ ¬Ki¬(s`i �i ŝi)

)
. Suppose that,

for some s`i ∈ Si, ŝ |=
(
Ki(s

`
i �i ŝi) ∧ ¬Ki¬(s`i �i ŝi)

)
, that is, for every s such

that ŝ ∼i s (recall that ŝ ∼i s if and only if ŝi = si), ŝ |= s`i �i ŝi and there
exists an s̃ such that ŝ ∼i s̃ (that is, ŝi = s̃i) and s̃ |= s`i �i ŝi. Then, by
Definition 6, for all s such that ŝ ∼i s, πi(s

`
i , s−i) ≥ πi(ŝi, s−i) and ŝ ∼i s̃ and

πi(s
`
i , s̃−i) > πi(ŝi, s̃−i). Then by Definition 7, ŝ /∈ SRATi. But, as shown

in the proof of Proposition 4, SRAT = T∞ so that, since SRAT ⊆ SRATi,
SRATi = T∞, yielding a contradiction. Thus M validates axiom SR. Now fix
an arbitrary s ∈ T∞. Then, by Definition 6, s |= s; thus (1) holds. Conversely,
let s |= s; then, by construction of F , σ(s) = s and s ∈ T∞. Thus (2) holds.

As noted in Section 1.4 for the case of axiom WR (see Remark 7), axiom
SR provides a syntactic characterization of common knowledge of s-rationality
in a logic that does not involve the common knowledge operator. However, since
SR expresses the notion that player i chooses s-rationally, by the Necessitation
rule every player knows that player i is s-rational and every player knows this,
and so on, so that essentially the s-rationality of every player is commonly
known. Indeed, if one adds the common knowledge operator CK to the logic,
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then, by Necessitation, CK
(
ski → ¬

(
Bi(s

`
i �i s

k
i ) ∧ ¬Bi¬(s`i �i s

k
i )
))

becomes
a theorem.

It is also worth repeating (see Remark 8), that the difference between the
local character of Proposition 4 and the global character of Proposition 6 is only
apparent: the characterization of Proposition 4 can in fact be viewed as a global
characterization.

Note that neither Proposition 4 nor Proposition 6 is true if one replaces
knowledge with belief, as illustrated in the game of Part a of Figure 1.4 and
corresponding KD45 frame of Part b. In the corresponding model we have
that, according to the stronger notion of s-rationality (Definition 7), SRAT =
{w1, w2} so that w1 ∈ CBSRAT , despite the fact that σ(w1) = (b, d), which is an
inferior strategy profile (relative to the entire game).9 In other words, common
belief of s-rationality is compatible with the players collectively choosing an
inferior strategy profile. Thus, unlike the weaker notion expressed by axiom
WR, with axiom SR there is a crucial difference between the implications of
common belief and those of common knowledge of rationality.

1 :R

2 :R

:R +

1 :σ

2 :σ

b             b 

d             c 

1 , 1

1 , 1

1 , 0

0 , 1

a

c d

b

Player
     1

Player  2

(b) A KD45 epistemic model of game G(a) A strategic-form game G

1w

1w

2w

2w

Figure 1.4: A model with common belief of s-rationality at every state

1.6 Probabilistic Beliefs and von Neumann Mor-
genstern Payoffs

So far we have assumed that each player has an ordinal ranking of the possible
outcomes; furthermore, we restricted attention to qualitative beliefs, represented
by Kripke frames. In such a framework one can express the fact that, say, Player

9In the game of Figure 1.4 we have that, while S∞ = S = {(a, c), (a, d), (b, c), (b, d)},
T∞ = {(a, c), (b, c)}.
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1 is uncertain as to whether Player 2 will choose strategy c or strategy d but one
cannot express graded forms of beliefs, such as “Player 1 believes that it is twice
as likely that Player 2 will play c rather than d ”. The predominant approach in
the game-theoretic literature is to endow players with probabilistic beliefs and
to assume that the players’ beliefs can be represented by a Bernoulli (also called
von Neumann-Morgenstern) utility function. In this section we briefly describe
this approach.

Consider the strategic-form game-frame shown in Figure 1.5 (a game-frame
is a game without the players’ ranking of the outcomes), where o1, o2, o3 and o4
are the possible outcomes:

Player 2
c d

Player A o1 o2
1 B o3 o4

Figure 1.5: A strategic-form game-frame

and suppose that Player 1 assigns subjective probability 1
3 to the possibility

that Player 2 will choose c and probability 2
3 to Player 2 choosing d. What

choice should Player 1 make? If he chooses A, then the outcome will be o1
with probability 1

3 and o2 with probability 2
3 ; similarly, choosing B will yield

outcome o3 with probability 1
3 and o4 with probability 2

3 . Thus comparing A to

B amounts to comparing the lottery

(
o1 o2
1
3

2
3

)
to the lottery

(
o3 o4
1
3

2
3

)
. An

ordinal ranking of the set of basic outcomes {o1, o2, o3, o4} is no longer sufficient
to determine what is rational for Player 1 to do. Thus we need to modify the
models that we have been using so far in two ways: we need to enrich our
structures so that we can express probabilistic beliefs and we need to go beyond
ordinal rankings of the outcomes.

Definition 9
A probabilistic frame is a tuple 〈W, {Ri}i∈Ag, {pi}i∈Ag〉 where 〈W, {Ri}i∈Ag〉 is a
KD45 Kripke frame and, for every agent i ∈ Ag, pi : W → ∆(W ) (where ∆(W )
denotes the set of probability measures over W ) is a function that satisfies the
following properties (we use the notation pi,w instead of pi(w)):10 ∀w,w′ ∈W
1. supp(pi,w) = Ri(w), and
2. if w′ ∈ Ri(w) then pi,w′ = pi,w. a

Thus pi,w ∈ ∆(W ) is agent i’s subjective probability measure at state w.
Condition 1 says that the agent assigns positive probability only to states that
she considers possible (according to her accessibility relation Ri) and Condition
2 says that the agent knows her own probabilistic beliefs.

10If µ is a probability measure over W , we denote by supp(µ) the support of µ, that is, the
set of states to which µ assigns positive probability.
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The semantic belief operator Bi : 2W → 2W of player i (obtained from the
doxastic accessibility relation Ri) is defined as in Section 1.2 (see 1.1) and so is
the common belief operator CB : 2W → 2W . In this context, the interpretation
of BiE is “the event that player i assigns probability 1 to event E”.

As noted above, the ordinal ranking of the set of outcomes O that we have
postulated so far is not sufficient to determine whether one lottery is better
than another. Traditionally, game theorists have assumed that every player has
a complete ranking over the set of lotteries over the set of basic outcomes O.
The theory of expected utility, developed by the founders of game theory, namely
John von Neumann and Oscar Morgenstern, provides a list of “rationality” or
“consistency” axioms for how lotteries should be ranked and yields the following
representation theorem. Given a finite set O of basic outcomes, we denote by
∆(O) the set of probability distributions or lotteries over O. A von Neumann-
Morgenstern ranking of ∆(O) is a binary relation %vnm on ∆(O) that satisfies
a number of properties, known as the von Neumann-Morgenstern axioms or
expected utility axioms.11 If L,L′ ∈ ∆(O), the interpretation of L %vnm L′ is
that lottery L is considered to be at least as good as lottery L′.

Theorem 9
[von Neumann and Morgenstern [46]]. Let O = {o1, ..., om} be a set of basic
outcomes and %vnm a von Neumann-Morgenstern ranking of ∆(O). Then there
exists a function U : O → R, called a Bernoulli (or von Neumann-Morgenstern)

utility function such that, given any two lotteries L =

(
o1 ... om
p1 ... pm

)
and

L′ =

(
o1 ... om
q1 ... qm

)
, L %vnm L′ if and only if

∑m
j=1 U(oj)pj ≥

∑m
j=1 U(oj)qj .

The number
∑m

j=1 U(oj)pj is called the expected utility of lottery L. a

Definition 10
A finite strategic-form game with cardinal (or von Neumann Morgenstern) pay-

offs is a quintuple G =
〈
Ag, {Si}i∈Ag , O, z, {%vnm

i }i∈Ag
〉

, where Ag, Si, O and

z are as in Definition 1 and, for every player i ∈ N , %vnm
i is a von Neumann-

Morgenstern ranking of ∆(O). Such ganes are often represented in reduced form

by replacing the triple
〈
O, z, {%vnm

i }i∈Ag
〉

with a set of cardinal payoff functions

{πi}i∈Ag where πi : S → R is defined by πi(s) = Ui(z(s)), where Ui : O → R is
a Bernoulli utility function that represents the ranking %vnm

i (whose existence
is guaranteed by Theorem 9). a

Going back to the above example based on Figure 1.5, where Player 1 assigns
subjective probability 1

3 to Player 2 will choosing c and probability 2
3 to Player

2 choosing d, if Player 1 has a von Neumann-Morgenstern ranking %vnm
1 of

∆({o1, o2, o3, o4}), then it is rational for him to choose A if and only if 1
3U1(o1)+

2
3U1(o2) ≥ 1

3U1(o3) + 2
3U1(o4), where U1 is a Bernoulli utility function that

represents %vnm
1 .

11Because of space limitations we shall not list those axioms. The interested reader is
referred to [34].
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It is worth stressing that the move from games where players have ordi-
nal rankings of the basic outcomes to games where they have von Neumann-
Morgenstern rankings of lotteries (over basic outcomes) is not an innocuous
move. The reason is not only that much more is assumed about each individual
player’s preferences, but also that - since the game is implicitly assumed to be
common knowledge among the players - each player is assumed to know the
cardinal rankings of his opponents (how they rank all possible lotteries, what
their attitude to risk is, etc.).

The definition of an epistemic model of a game (Definition 2) can be straight-
forwardly extended to games with von Neumann-Morgenstern payoffs.

Definition 11
Given a strategic-form game with von Neumann Morgenstern payoffs G =〈
Ag, {Si}i∈Ag , {πi}i∈Ag

〉
, an epistemic-probabilistic model of G is a tuple

〈W, {Ri}i∈Ag, {pi}i∈Ag, {σi}i∈Ag〉 where 〈W, {Ri}i∈Ag, {pi}i∈Ag〉 is a probabilis-
tic frame (see Definition 9) and σi : W → Si is - as before - a function that
associates, with every state, a strategy of player i, satisfying the property that
if w′ ∈ Ri(w) then σi(w

′) = σi(w). a

As before, given a state w and a player i, we denote by σ−i(w) the strategy
profile of the players other than i at state w. The definition of rationality
(Definition 3) can now be sharpened, as follows.

Definition 12
Fix a strategic-form game with von Neumann Morgenstern payoffs G and an
epistemic-probabilistic model of G. At state w player i’s strategy si = σi(w) is
rational if it maximizes player i’s payoff, given his beliefs at w, that is, if∑

x∈Ri(w) pi,w(x) πi(si, σ−i(x)) ≥
∑

x∈Ri(w) pi,w(x) πi(s
′
i, σ−i(x)), ∀s′i ∈ Si.

a

[Recall that, by Definition 11, the function σi(·) is constant on the set Ri(w)].
What are the implications of common belief of rationality in this framework?

It turns out that a result similar to Proposition 1 holds in this case too: common
belief of rationality is characterized by a strengthening of the IDSD procedure
(Definition 5).12 Because of space limitations we omit the details. Similarly, a
result along the lines of Proposition 4 holds in this case too for a strengthening
of the IDIP procedure.

1.7 Dynamic Games with Perfect Information

So far we have restricted attention to strategic-form games, where the players
make their choices simultaneously or in ignorance of the other players’ choices.
We now turn to dynamic games, where players make choices sequentially, having

12The modified procedure allows the deletion of strategies that are strictly dominated by a
mixed strategy, that is, by a probability distribution over the set of strategies.
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some information about the moves previously made by their opponents. If
information is partial, the game is said to have imperfect information, while the
case of full information is referred to as perfect information. Because of space
limitations we shall restrict attention to perfect-information games.

1a 2a

2d1d

1 12
3a

3d

1
0

0
2

3
1

2
4

Figure 1.6: A dynamic game with perfect information

An example of a dynamic game with perfect information is shown in Figure
1.6 in the form of a tree. Each node in the tree represents a history of prior
moves and is labeled with the player whose turn it is to move. For example, at
history a1a2 it is Player 1’s turn to move (after his initial choice of a1 followed
by Player 2’s choice of a2) and he has to choose between two actions: a3 and d3.
The terminal histories (the leaves of the tree) represent the possible outcomes
and each player i is assumed to have an ordinal preference relation %i over
the set of terminal histories (in Figure 1.6 the players’ preferences over the
terminal histories have been represented by means of ordinal utility functions,
as explained below).

The formal definition of a perfect-information game is as follows. If A is a
set, we denote by A∗ the set of finite sequences in A. If h = 〈a1, ..., ak〉 ∈ A∗ and
1 ≤ j ≤ k, the sequence 〈a1, ..., aj〉 is called a prefix of h. If h = 〈a1, ..., ak〉 ∈ A∗
and a ∈ A, we denote the sequence 〈a1, ..., ak, a〉 ∈ A∗ by ha.

Definition 13
A finite extensive game with perfect information and ordinal payoffs is a tuple〈
A,H,Ag, ι, {%i}i∈Ag

〉
whose elements are:

• A finite set of actions A.

• A finite set of histories H ⊆ A∗ which is closed under prefixes (that is, if
h ∈ H and h′ ∈ A∗ is a prefix of h, then h′ ∈ H). The null history 〈〉 ,
denoted by ∅, is an element of H and is a prefix of every history. A history
h ∈ H such that, for every a ∈ A, ha /∈ H, is called a terminal history.
The set of terminal histories is denoted by Z. D = H\Z denotes the set of
non-terminal or decision histories. For every history h ∈ D, we denote by
A(h) the set of actions available at h, that is, A(h) = {a ∈ A : ha ∈ H}.
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• A finite set Ag of players.

• A function ι : D → Ag that assigns a player to each decision history. Thus
ι(h) is the player who moves at history h. For every i ∈ Ag, let Di = ι−1(i)
be the set of histories assigned to player i.

• For every player i ∈ Ag, %i is an ordinal ranking of the set Z of terminal
histories. a

The ordinal ranking of player i is normally represented by means of an
ordinal utility ( or payoff ) function Ui : Z → R satisfying the property that
Ui(z) ≥ Ui(z

′) if and only if z %i z
′. In the game of Figure 1.6, associated with

every terminal history is a pair of numbers: the top number is the utility of
Player 1 and the bottom number is the utility of Player 2.

Histories will be denoted more succinctly by listing the corresponding ac-
tions, without angled brackets and without commas; thus instead of writing
〈∅, a1, a2, a3, a4〉 we simply write a1a2a3a4.

In their seminal book von Neumann and Morgenstern [46] showed that a
dynamic game can be reduced to a strategic-form game by defining strategies
as complete, contingent plans of action. In the case of perfect-information games
a strategy for a player is a function that associates with every decision history
assigned to that player one of the choices available there. For example, a possible
strategy of Player 1 in the game of Figure 1.6 is (d1, d3). A profile of strategies
(one for each player) determines a unique path from the null history (the root
of the tree) to a terminal history (a leaf of the tree). Figure 1.7 shows the
strategic-form corresponding to the extensive form of Figure 1.6.

2 , 4 0 , 2

3 , 1 0 , 2

1 , 0 1 , 0

1 , 0 1 , 0

Player 1

Player  2

1 3a a

1 3a d

1 3d a

1 3d d

2a 2d

 

Figure 1.7: The strategic-form of the game of Figure 1.6

How should a model of a dynamic game be constructed? One approach in the
literature has been to consider models of the corresponding strategic-form (the
type of models considered in Section 1.2). However, there are several conceptual
issues that arise in this context. The interpretation of si = σi(w) is that at state
w player i “chooses” strategy si. Now consider a model of the game of Figure
1.6 and a state w where σ1(w) = (d1, a3). What does it mean to say that Player
1 “chooses” strategy (d1, a3)? The first part of the strategy, namely d1, can be
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interpreted as a description of Player 1’s actual choice to play d1, but the second
part of the strategy, namely a3, has no such interpretation: if Player 1 in fact
plays d1 then he knows that he will not have to make any further choices and
thus it is not clear what it means for him to “choose” to play a3 in a situation
that is made impossible by his decision to play d1.13 Thus it does not seem to
make sense to interpret σ1(w) = (d1, a3) as ‘at state w Player 1 chooses (d1, a3)’.
Perhaps the correct interpretation is in terms of a more complex sentence such
as ‘Player 1 chooses to play d1 and if - contrary to this - he were to play a1
and Player 2 were to follow with a2, then Player 1 would play a3’. Thus while
in a simultaneous game the association of a strategy of player i to a state can
be interpreted as a description of player i’s actual behavior at that state, in the
case of dynamic games this interpretation is no longer valid, since one would
end up describing not only the actual behavior of player i at that state but
also his counterfactual behavior at a different state. Methodologically, this is
not satisfactory: if it is considered to be necessary to specify what a player
would do in situations that do not occur in the state under consideration, then
one should model the counterfactual explicitly. But why should it be necessary
to specify at state w (where Player 1 is playing d1) what he would do at the
counterfactual history a1a2? Perhaps what matters is not so much what Player
1 would actually do there but what Player 2 believes that Player 1 would do:
after all, Player 2 might not know that Player 1 has decided to play d1 and
needs to consider what to do in the eventuality that Player 1 actually ends up
playing a1. So, perhaps, the strategy of Player 1 is to be interpreted as having
two components: (1) a description of Player 1’s behavior and (2) a conjecture
in the mind of Player 2 about what Player 1 would do. If this is the correct
interpretation, then one could object - from a methodological point of view -
that it would be preferable to disentangle the two components and model them
explicitly.

An alternative - although less common - approach in the literature dispenses
with strategies and considers models of games where (1) states are described
in terms of players’ actual behavior and (2) players’ conjectures concerning the
actions of their opponents (as well as their own actions) in various hypothetical
situations are modeled by a generalization of the Kripke frames considered so
far. The generalization is obtained by encoding not only the initial beliefs of the
players (at each state) but also their dispositions to revise those beliefs under
various hypothesis. These structures are reviewed in the next section.

1.8 The Semantics of Belief Revision

A KD45 Kripke frame 〈W, {Ri}i∈Ag〉 represents the actual beliefs of the agents
at every state w. In order to capture the agents’ disposition to revise their beliefs

13For this reason, some authors, instead of using strategies, use the weaker notion of “plan
of action ” introduced by [38]. A plan of action for a player only contains choices that are not
ruled out by his earlier choices. For example, the possible plans of action for Player 1 in the
game of Figure 1.6 are d1, (a1, a3) and (a1, d3).
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under various hypotheses, we need to consider extensions of those frames.

Definition 14
A belief revision frame is a triple 〈W, {Ri}i∈Ag, {Ei, fi}i∈Ag〉, where 〈W, {Ri}i∈Ag〉
is a KD45 Kripke frame and, for every agent i ∈ Ag, Ei ⊆ 2W \∅ is a set of ad-
missible hypotheses (or potential items of information) and fi : W × Ei → 2W

is a function that satisfies the following properties: ∀w ∈W , ∀E,F ∈ Ei,

1. fi(w,E) 6= ∅,
2. fi(w,E) ⊆ E,
3. if Ri(w) ∩ E 6= ∅ then fi(w,E) = Ri(w) ∩ E,
4. if E ⊆ F and fi(w,F ) ∩ E 6= ∅ then fi(w,E) = fi(w,F ) ∩ E.

(1.9)

The event fi(w,E) is interpreted as the set of states that player i would
consider possible under the supposition that (or if informed that) E is true.
Condition 1 requires these suppositional beliefs to be consistent. Condition
2 requires that E be indeed considered true. Condition 3 says that if E is
compatible with the initial beliefs then the suppositional beliefs coincide with
the initial beliefs conditioned on event E.14 Condition 4 is an extension of
Condition 3: if E implies F and E is compatible not with player i’s prior beliefs
but with the posterior beliefs that she would have if she supposed (or learned)
that F were the case (let’s call these her posterior F -beliefs), then her beliefs
under the supposition (or information) that E must coincide with her posterior
F -beliefs conditioned on even E.

Thus the function fi can be used to model the full epistemic state of player
i; in particular, how player i would revise her prior beliefs if she contemplated
information that contradicted those beliefs.

Remark 10
If Ei = 2W \∅ then Conditions 1-4 in (1.9) imply that, for every w ∈ W , there
exists a “plausibility” relation Qw

i on W which is complete (∀w1, w2 ∈W , either
w1Q

w
i w2 or w2Q

w
i w1 or both) and transitive (∀w1, w2, w3 ∈ W , if w1Q

w
i w2

and w2Q
w
i w3 then w1Q

w
i w3) and such that, for every E ⊆ W with E 6= ∅,

fi(w,E) = {x ∈ E : xQw
i y, ∀y ∈ E}. The interpretation of xQw

i y is that -
at state w and according to player i - state x is at least as plausible as state
y. Thus fi(w,E) is the set of most plausible states in E (according to player
i at state w). If Ei 6= 2W \∅ then Conditions 1-4 in (1.9) are necessary but
not sufficient for the existence of such a plausibility relation. The existence of a
plausibility relation that rationalizes the function fi(w, ·) : Ei → 2W is necessary
and sufficient for the belief revision policy encoded in fi(w, ·) to be compatible
with the syntactic theory of belief revision introduced in [1], known as the AGM
theory.

14Note that it follows from Condition 3 and seriality of Ri that, for every w ∈W , fi(w,W ) =
Ri(w), so that one could simplify the definition by dropping the relations Ri and recover the
initial beliefs from the set fi(w,W ). We have chosen not to do so in order to maintain
continuity in the exposition.



1.9. COMMONBELIEF OF RATIONALITY IN PERFECT-INFORMATIONGAMES29

One can associate with each function fi a conditional belief operator
Bi : 2W × Ei → 2W as follows:

Bi(F |E) = {w ∈W : fi(w,E) ⊆ F}. (1.10)

Possible interpretations of the event Bi(F |E) are “according to player i, if
E were the case, then F would be true” or “if informed that E, player i would
believe that F” or “under the supposition that E, player i would believe that
F”.

The unconditional belief operator Bi : 2W → 2W remains as defined in
Section 1.5 and represents the initial beliefs of agent i.15 Similarly, the common
belief operator CB remains as defined in Section 1.5 and captures what is initially
common belief among the agents.

1.9 Common Belief of Rationality in Perfect-
Information Games

We can now return to dynamic games with perfect information. First we define
an algorithm, known as backward induction, which is meant to capture the
“rational” way of playing these games and explore the possibility of providing
an epistemic foundation for it.

The backward induction algorithm starts at the end of the game and pro-
ceeds backwards towards the root:

1. Start at a decision history h whose immediate successors are only terminal
histories (e.g. history a1a2 in the game of Figure 1.6) and select a choice
that maximizes the utility of player ι(h) (in the example of Figure 1.6, at
a1a2 Player 1’s optimal choice is d3 (since it gives her a payoff of 3 rather
than 2, which is the payoff that she would get if she played a3). Delete the
immediate successors of history h (that is, turn h into a terminal history)
and assign to h the payoff vector associated with the selected choice.

2. Repeat Step 1 until all the decision histories have been exhausted.

For example, the choices selected by the backward-induction algorithm in
the game of Figure 1.6 are d3, d2 and d1.16

A question that has been studied extensively in the literature is whether
initial common belief of rationality can provide an epistemic justification for
the backward-induction solution. In order to answer this question we need to
introduce the notion of an epistemic model of a perfect-information game.

15Note that, for every event F , Bi(F ) = Bi(F |W ).
16The backward induction algorithm may yield more than one solution: multiplicity arises

if there is at least one player who has more than one utility-maximizing choice at a decision
history of his.
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Definition 15
Given a dynamic game with perfect information and ordinal payoffs

Γ =
〈
A,H,Ag, ι, {%i}i∈Ag

〉
, an epistemic model of Γ is a tuple

〈W, {Ri}i∈Ag, {Ei, fi}i∈Ag, ζ〉 where 〈W, {Ri}i∈Ag, {Ei, fi}i∈Ag〉 is a belief revision
frame (Definition 14) and ζ : W → Z is a function that associates with every
state a terminal history and satisfies the following property: ∀w,w′ ∈ W, ∀i ∈
Ag,∀h ∈ H,∀a ∈ A,

If h is a decision history of plater i, a an action at h

and ha a prefix of ζ(w) then, ∀w′ ∈ Ri(w),

if h is a prefix of ζ(w′) then ha is a prefix of ζ(w′).

(1.11)

The function ζ describes the actual behavior of the players at any given
state. Thus we are not associating a strategy profile with a state but a sequence
of actions leading from the null history to a terminal history. Condition (1.11)
states that if at a state the play of the game reaches decision history h of player
i, where she actually takes action a, then either player i initially believes that
history h will not be reached or, if she considers it possible that history h will
indeed be reached, then she has correct beliefs about what action she will take
(namely a) if h is reached.

Condition (1.11) can be stated more succinctly in terms of events. If E
and F are two events, we denote by E → F the event ¬E ∪ F . Thus E → F
captures the material conditional. Given a history h in the game we denote by
[h] the event that h is reached, that is, [h] = {w ∈ W : h is a prefix of ζ(w)}.
Recall that Hi denotes the set of decision histories of player i and A(h) the set
of choices available at h. Then (1.11) can be stated as follows:17

∀h ∈ Hi,∀a ∈ A(h),

[ha] ⊆ Bi([h]→ [ha]).
(1.12)

In words: if, at a state, player i takes action a at her decision history h, then
she believes that if h is reached then she takes action a.

Condition (1.12) rules out the possibility that a player may be uncertain
about her own choice of action at decision histories of hers that are not ruled
out by her initial beliefs. In general, a corresponding restriction for revised
beliefs might not hold. That is, suppose that at state w player i erroneously
believes that her decision history h will not be reached (w ∈ [h] but w ∈ Bi¬[h]);
suppose also that a is the action that she will choose at h (w ∈ [ha]). It may
be the case that, according to her revised beliefs on the supposition that h is
reached, she believes that she takes an action b different from the action that
she actually takes, namely a. In order to rule this out we need to impose the

17Note that, if at state w player i believes that history h will not be reached (∀w′ ∈ Ri(w),
w′ /∈ [h]) then Ri(w) ⊆ ¬[h] ⊆ [h] → [ha], so that w ∈ Bi ([h]→ [ha]) and therefore (1.12) is
satisfied even if w ∈ [ha].
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following strengthening of (1.12):18

∀h ∈ Hi, ∀a ∈ A(h),

[ha] ⊆ Bi([ha]|[h]).
(1.13)

How can rationality be captured in the models that we are considering?
Various definitions of rationality have been suggested in the literature, most
notably material rationality and substantive rationality . The former notion is
weaker in that a player can be found to be irrational only at decision histories
of hers that are actually reached. The latter notion, on the other hand, is more
stringent since a player can be judged to be irrational at a decision history h of
hers even if she correctly believes that h will not be reached. We will focus on
the weaker notion of material rationality. We shall define a player’s rationality
as a proposition, that is, an event. Recall that Z denotes the set of terminal
histories and ui : Z → R is player i’s ordinal utility function (representing her
preferences over the set Z). Define πi : W → R by πi(w) = ui(ζ(w)). For every
x ∈ R, let [πi ≤ x] be the event that player i’s payoff is not greater than x,
that is, [πi ≤ x] = {w ∈ W : πi(w) ≤ x} and, similarly, let [πi > x] = {w ∈
W : πi(w) > x}. Then we say that player i is materially rational at a state if,
for every decision history of hers that is actually reached at that state and for
every real number x, it is not the case that she believes that (1) her payoff is
not greater than x and (2) it would be greater than x if she were to take an
action different from the one that she is actually taking (at that history in that
state).19

Formally this can be stated as follows (recall that Hi denotes the set of
decision histories of player i and A(h) the set of actions available at h):

Player i is materially rational at w ∈W if, ∀h ∈ Hi,∀a ∈ A(h)

if ha is a prefix of ζ(w) then, ∀b ∈ A(h), ∀x ∈ R,

Bi([πi ≤ x] |[ha])→ ¬Bi([πi > x] |[hb]).
(1.14)

18 (1.13) is implied by (1.12) whenever player i’s initial beliefs do not rule out h. That is,
if w ∈ ¬Bi¬[h] (equivalently, Ri(w) ∩ [h] 6= ∅) then, for every a ∈ A(h),

if w ∈ [ha] then w ∈ Bi([ha]|[h]). (F1)

In fact, by Condition 3 of (1.9) (since, by hypothesis, Ri(w) ∩ [h] 6= ∅),

fi(w, [h]) = Ri(w) ∩ [h]. (F2)

Let a ∈ A(h) be such that w ∈ [ha]. Then, by (1.12), w ∈ Bi([h] → [ha]), that is, Ri(w) ⊆
¬[h] ∪ [ha]. Thus Ri(w) ∩ [h] ⊆ (¬[h] ∩ [h]) ∪ ([ha] ∩ [h]) = ∅ ∪ [ha] = [ha] (since [ha] ⊆ [h])
and therefore, by (F2), fi(w, [h]) ⊆ [ha], that is, w ∈ Bi([ha]|[h]).

19This definition is a “local ” definition in that it only considers, for every decision history
of player i, a change in player i’s choice at that decision history and not also at later decision
histories of hers. One could make the definition of rationality more stringent by simultaneously
considering changes in the choices at a decision history and subsequent decision histories of
the same player (if any).
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Note that, in general, we cannot replace the antecedent Bi([πi ≤ x] |[ha])
with Bi([ha] → [πi ≤ x]), because at state w player i might initially believe
that h will not be reached, in which case it would be trivially true that w ∈
Bi([ha]→ [πi ≤ x]); however, if decision history h is actually reached at w then
player i will be surprised and will have to revise her beliefs. Thus her rationality
is judged on the basis of her revised beliefs. Note, however, that if w ∈ ¬Bi¬[h],
that is, if at w she does not rule out the possibility that h will be reached and
a ∈ A(h) is the action that she actually takes at w (w ∈ [ha]), then, for every
event F , w ∈ Bi([ha] → F ) if and only if w ∈ Bi(F |[ha]).20 Note also that,
according to (1.14), a player is trivially rational at any state at which she does
not take any actions.

Does initial common belief that all the players are materially rational (ac-
cording to 1.14) imply backward induction in perfect-information games? The
answer is negative.21 To see this, consider the perfect-information game shown
in Figure 1.6 and the model of it shown in Figure 1.8.22

First of all, note that the common belief relation R+ is obtained by adding
to R2 the pair (w2, w2); thus, in particular, R+(w2) = {w2, w3}. We want to
show that both players are materially rational at both states w2 and w3, so
that at state w2 it is initially common belief that both players are materially
rational, despite that fact that the play of the game at w2 is a1a2d3, which is
not the backward-induction play. Clearly, Player 1 is rational at state w2 (since
he obtains his largest possible payoff); he is also rational at state w3 because he
knows that he plays d1, obtaining a payoff of 1, and believes that if he were to
play a1 Player 2 would respond with d2 and give him a payoff of zero: this belief
is encoded in f1(w3, [a1]) = {w4}, where [a1] = {w1, w2, w4} and ζ(w4) = a1d2.
Player 2 is trivially rational at state w3 since she does not take any actions
there. Now consider state w2. Player 2 initially erroneously believes that Player
1 will end the game by playing d1: R2(w2) = {w3} and ζ(w3) = d1. However, at
state w2, Player 1 is in fact playing a1 and thus Player 2 will be surprised. Her

20Proof. Suppose that w ∈ [ha] ∩ ¬Bi¬[h]. As shown in Footnote 18 (see (F2)),

Ri(w) ∩ [h] = fi(w, [h]). (G1)

Since [ha] ⊆ [h],

Ri(w) ∩ [h] ∩ [ha] = Ri(w) ∩ [ha]. (G2)

As shown in Footnote 18, fi(w, [h]) ⊆ [ha] and, by Condition 1 of (1.9), fi(w, [h]) 6= ∅. Thus
fi(w, [h]) ∩ [ha] = fi(w, [h]) 6= ∅. Hence, by Condition 4 of (1.9),

fi(w, [h]) ∩ [ha] = fi(w, [ha]). (G3)

By intersecting both sides of (G1) with [ha] and using (G2) and (G3) we get that Ri(w)∩[ha] =
fi(w, [ha]).

21in fact, common belief of material rationality does not even imply a Nash equilibrium
outcome.

22In Figure 1.8 we have only represented parts of the functions f1 and f2. In particular, we
have that f1(w3, {w1, w2, w4}} = {w4}, f2(w2, {w1, w2, w4}} = f2(w3, {w1, w2, w4}} = {w1}.
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Figure 1.8: A model of the game of Figure 1.6

initial disposition to revise her beliefs on the supposition that Player 1 plays a1
is such that she would believe that she herself would play a2 and Player 1 would
follow with a3, thus giving her the largest possible payoff: this belief is encoded
in f2(w2, [a1]) = {w1} and ζ(w1) = a1a2a3. Hence she is rational at state w2,
according to (1.14).

In order to obtain the backward-induction solution, one needs to go beyond
common initial belief of material rationality. Proposals in the literature include
the notions of epistemic independence, strong belief, stable belief and substan-
tive rationality. Space limitations prevent us from discussing these topics.

It is worth stressing that in the models considered above, strategies do not
play any role: states are described in terms of the players’ actual behavior along
a play of the game. One could view a player’s strategy as her (conditional)
beliefs about what she would do under the supposition that each of her decision
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histories is reached. However, the models considered so far do not guarantee that
a player’s revised beliefs select a unique action at each of her decision histories.
One could impose such a restriction on the players’ dispositions to revise their
beliefs.23 However, in this setup strategies would then be cognitive constructs
rather than objective counterfactuals about what a player would actually do at
each of her decision histories.

1.10 Literature

In this section we point to the main references in the areas reviewed in this
chapter.

The birth of game theory. The beginning of game theory is normally
associated with the publication, in 1944, of the book Theory of games and
economic behavior by von Neumann and Morgenstern [46], although Cournot
[26] provided an analysis of simultaneous games among firms as early as 1838.
Cournot’s analysis of competition was later elaborated on by Bertrand [14], von
Stackelberg [47] and Hotelling [33]. Other notable precursors of the book by
von Neumann and Morgenstern are a 1913 article by Zermelo [48] (where he
proved that in the game of chess either White has a strategy that guarantees
him a win, or Black has a strategy that guarantees her a win, or both players
have a strategy that guarantees a draw) and a 1928 article by von Neumann
[45] (where he proved the existence of a value in every finite zero-sum game).
For a brief history of the first forty years of the development of game theory see
[3].

The birth of the epistemic foundation program. The origins of the
literature on the epistemic foundations of solution concepts in non-cooperative
games can be traced to two seminal papers by Bernheim [13] and Pearce [35],
both published in 1984. The purpose of these two articles was to capture the
notion of “common recognition of rationality ”in games. The analysis, however,
was not developed explicitly in terms of epistemic notions: the idea of common
belief of rationality was captured indirectly through the notion of rationalizabil-
ity, which is an iterative procedure of elimination of strategies that are never a
best response. Extensive surveys of the literature on the epistemic foundation
program are provided in [9], [28] and [37].

Epistemic models of strategic-form games. There are two types of
epistemic models of strategic-form games used in the game-theoretic literature:
the “state-space ”models and the “hierarchy of beliefs ”models. The qualitative
Kripke models considered in Sections 1.2 and 1.3 and their probabilistic coun-
terparts considered in Section 1.6 are known in the game-theoretic literature as
state-space models. The first such model was proposed by Aumann [2] to obtain
a characterization of the notion of correlated equilibrium in terms of common
knowledge of rationality. Aumann used S5 frames. Stalnaker [40, 41] provided

23The relevant restriction is as follows: ∀h ∈ Hi, ∀a, b ∈ A(h), ∀w,w′, w′′ ∈ W, if w′, w′′ ∈
fi(w, [h]) and ha is a prefix of ζ(w′) and hb is a prefix of ζ(w′′) then a = b.
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the first systematic analysis of solution concepts in terms of KD45 epistemic
models of games.

The alternative approach in the literature uses the probabilistic hierarchy-
of-belief models and type spaces that where introduced in the seminal papers
of Harsanyi [32] that started the literature on incomplete-information games.
The first epistemic characterization of common belief of rationality in strategic-
form games using these structures was provided by Tan and Werlang [43]. They
showed that the (probabilistic version of) the iterative elimination of strictly
dominated strategies identifies the strategy profiles that are compatible with
common belief of rationality. The state-space formulation of this result is due
to Stalnaker [40], but it was implicit in Brandenburger and Dekel [23]. All these
characterizations were for games with von Neumann-Morgensters payoffs and for
probabilistic beliefs. The stronger iterative elimination procedure of Definition
8 and corresponding epistemic characterization is due to Stalnaker [40] (with a
correction by Bonanno and Nehring [21]). The qualitative characterizations of
Propositions 1 and 4 are taken from [18].

The use of logic in the analysis of games. The literature on the epis-
temic foundation program is predominantly based on a semantic approach. The
first to use formal logic in the analysis of games were Bacharach [6] (who used
first-order logic to investigate the notion of Nash equilibrium in strategic- form
games) and Bonanno [16] (who used propositional logic to investigate the notion
of backward-induction in dynamic games with perfect information). There is
now a sizeable literature that analyzes games using logic, in particular epistemic
logic (see, for example, [44, 15, 17, 24, 25, 27]). The analysis of Sections 1.4 and
1.5 is based on [18].

Epistemic foundations of backward induction. The issue of whether
the backward-induction algorithm can be given an epistemic foundation has
given rise to a large literature. The seminal paper was Ben Porath [12]. There
are two strands in this literature. One group of papers uses epistemic models
where states are described in terms of strategies (see, for example, [4, 5, 7, 11,
31, 42]. The second group of papers (see, for example, [8, 10, 39]) uses the
“behavioral ” models discussed in Section 1.9 which were introduced by Samet
[39]. There is a bewildering collection of claims in the literature concerning
the implications of rationality in dynamic games with perfect information: [4]
proves that common knowledge of rationality implies the backward induction
solution, [12] and [42] prove that common belief / certainty of rationality is not
sufficient for backward induction, [39] proves that what is needed for backward
induction is common hypothesis of rationality, [29] shows that common confi-
dence of rationality logically contradicts the knowledge implied by the structure
of the game, etc. Surveys of this literature can be found in [22] and [36].

It is worth noting that the models of dynamic games considered in Section
1.9 are not the only possibility. Instead of modeling the epistemic states of the
players in terms of their prior beliefs and prior disposition to revise those beliefs
in a static framework, one can model the actual beliefs that the players hold at
the time at which they make their choices. In such a framework the players’
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initial belief revision policies (or dispositions to revise their initial beliefs) can
be dispensed with: the analysis can be carried out entirely in terms of the actual
beliefs at the time of choice. This alternative approach is put forward in [20],
where an epistemic characterization of backward induction is provided that does
not rely on (objective or subjective) counterfactuals.

Belief revision. The semantics for belief revision described in Section 1.8
has its roots in the well-known AGM theory which was introduced by Alchourrn,
Grdenfors and Makinson [1]. The AGM theory is a syntactic theory, whose
semantic counterpart was first explored by Grove [30]. There is a vast literature
on AGM belief revision. For a recent overview see the special issue of the
Journal of Philosophical Logic on 25 Years of AGM Theory (Volume 40 (2),
April 2012). The conditions under which there is a precise correspondence
between the subjective counterfactual functions fi described in Section 1.8 and
the syntactic AGM theory are explored in [19].
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