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Abstract

The analysis of rational play in dynamic games is usually done within
a static framework that specifies a player’s initial beliefs as well as his
disposition to revise those beliefs conditional on hypothetical states of
information. We suggest a simpler approach, where the rationality of a
player’s choice is judged on the basis of the actual beliefs that the player
has at the time he has to make that choice. We propose a dynamic frame-
work where the set of “possible worlds” is given by state-instant pairs
(ω, t). Each state ω specifies the entire play of the game and, for every in-
stant t, (ω, t) specifies the history that is reached at that instant (in state
ω). A player is said to be active at (ω, t) if the history reached in state
ω at date t is a decision history of his. At every state-instant pair (ω, t)
the beliefs of the active player provide an answer to the question “what
will happen if I take action a?”, for every available action a. A player is
said to be rational at (ω, t) if either he is not active there or the action he
ends up taking at state ω is optimal given his beliefs at (ω, t). We provide
a characterization of backward induction in terms of the following event:
the first mover (i) is rational and has correct beliefs, (ii) believes that the
active player at date 1 is rational and has correct beliefs, (iii) believes
that the active player at date 1 believes that the active player at date 2 is
rational and has correct beliefs, etc. Thus our epistemic characterization
does not rely on dispositional belief revision or on (objective or subjective)
counterfactuals.

Keywords: perfect-information game, backward induction, dynamic inter-
active beliefs, rationality, Kripke frame
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1 Introduction

The analysis of rational play in dynamic games is usually done within a sta-
tic framework that specifies, for every player, his initial beliefs as well as his
disposition to revise those beliefs conditional on hypothetical states of informa-
tion that the player might find himself in. This is done by means of interactive
structures which model a rather complex web of beliefs: for example, Player 2
might initially believe that Player 1 will end the game right away and yet have
very detailed beliefs about what Player 1 would believe about Player 2’s revised
beliefs if Player 1 were instead to give the move to Player 2. I these models
each player is assumed to have not only a disposition to revise his own beliefs,
should he be faced with unexpected information, but also to have (conditional)
beliefs about the disposition of the other players to revise their beliefs. This
seems to constitute a rather “heavy weight” approach to modeling the players’
states of mind in a dynamic game. It is shown in this literature ([6, 8, 13, 15])
that common initial belief of rationality does not imply a backward induction
outcome in perfect-information games.

In this paper we suggest an alternative and simpler approach, where the
rationality of a player’s choice is judged on the basis of the actual beliefs that
the player has at the time he has to make that choice. We propose a dynamic
analysis of perfect-information games where the set of “possible worlds” is given
by state-instant pairs (ω, t). Each state ω specifies the entire play of the game
and, for every instant t, (ω, t) specifies the history that is reached at that instant
(in state ω). A player is said to be active at (ω, t) if the history reached in state
ω at date t is a decision history of his. At every state-instant pair (ω, t) the
beliefs of the active player provide an answer to the question “what will happen
if I take action a?”, for every available action a. A player is said to be rational at
(ω, t) if either he is not active there or the action he ends up taking at state ω is
“optimal” given his beliefs at (ω, t). We provide a characterization of backward
induction in terms of the following event: the first mover (i) is rational and has
correct beliefs, (ii) believes that the active player at date 1 is rational and has
correct beliefs, (iii) believes that the active player at date 1 believes that the
active player at date 2 is rational and has correct beliefs, etc.

This can be stated more precisely as follows. First we define a time-t be-
lief operator Bt which captures the beliefs of the active player and enables us
to express a player’s belief that the next player will respond rationally to his
choice. Let Tt be the set of states where the active player at date t (if there
is any) has correct beliefs and let Rt be the set of states where the choice of
the active player at date t is rational. In keeping with the literature, we fo-
cus on perfect-information games with no relevant ties where there is a unique
backward-induction solution. We prove the following characterization. If ω ∈
(T0 ∩R0)∩B0 (T1 ∩R1)∩B0B1 (T2 ∩R2)∩...∩ B0B1...Bm−2 (Tm−1 ∩Rm−1)
(where m is the depth of the game) then the play associated with ω is the
backward-induction play. Conversely, if z is the backward-induction play then
there is a model and a state ω such that ω ∈ (T0 ∩R0) ∩ B0 (T1 ∩R1) ∩
... ∩ B0B1...Bm−2 (Tm−1 ∩Rm−1) and the play associated with ω is z. Thus
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we obtain an epistemic characterization of backward induction that does not rely
on (objective or subjective) counterfactuals or on dispositional belief revision .

2 Perfect-information games and models

We use the history-based definition of extensive-form game. If A is a set, we
denote by A∗ the set of finite sequences in A. If h = 〈a1, ..., ak〉 ∈ A∗ and
1 ≤ j ≤ k, the sequence 〈a1, ..., aj〉 is called a prefix of h. If h = 〈a1, ..., ak〉 ∈ A∗

and a ∈ A, we denote the sequence 〈a1, ..., ak, a〉 ∈ A∗ by ha.

A finite extensive form with perfect information (without chance moves) is
a tuple 〈A,H,N, ι, 〉 whose elements are:

• A finite set of actions A.

• A finite set of histories H ⊆ A∗ which is closed under prefixes (that is, if
h ∈ H and h′ ∈ A∗ is a prefix of h, then h′ ∈ H). The null history 〈〉 ,
denoted by ∅, is an element of H and is a prefix of every history. A history
h ∈ H such that, for every a ∈ A, ha /∈ H, is called a terminal history.
The set of terminal histories is denoted by Z. D = H\Z denotes the set of
non-terminal or decision histories. For every history h ∈ D, we denote by
A(h) the set of actions available at h, that is, A(h) = {a ∈ A : ha ∈ H}.

• A finite set N = {1, ..., n} of players.

• A function ι : D→ N that assigns a player to each decision history. Thus
ι(h) is the player who moves at history h. For every i ∈ N , let Di = ι−1(i)
be the set of histories assigned to player i.

Given an extensive form, one obtains an extensive game by adding, for every
player i ∈ N , a utility ( or payoff ) function Ui : Z → R (where R denotes the
set of real numbers; recall that Z is the set of terminal histories).

Given a history h ∈ H, we denoted by ℓ(h) the length of h, which is defined
recursively as follows: ℓ(∅) = 0 and if h ∈ D and a ∈ A(h) then ℓ(ha) = ℓ(h)+1.
Thus ℓ(h) is equal to the number of actions that appear in h; for example, if
h = 〈∅, a1, a2, a3〉 then ℓ(h) = 3. We denote by ℓmax the length of the maximal
history in H: ℓmax = maxh∈H ℓ(h). Clearly, if ℓ(h) = ℓmax then h ∈ Z (that
is, maxh∈H ℓ(h) = maxh∈Z ℓ(h)). Given a history h ∈ H and an integer t with
0 ≤ t ≤ ℓmax, we denote by ht the prefix of h of length t. For example, if
h = 〈∅, a, b, c, d〉, then h0 = ∅, h2 = 〈∅, a, b〉 , etc.

From now on histories will be denoted more succinctly by listing the corre-
sponding actions, without angled brackets and without commas: thus instead
of writing 〈∅, a1, a2, a3, a4〉 we will simply write a1a2a3a4.

Let Ω be a set of states and T a set of instants or dates. We call the set
Ω× T the set of state-instant pairs. If E ⊆ Ω× T and t ∈ T , we denote by Et
the set of states {ω ∈ Ω : (ω, t) ∈ E}.
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Definition 1 Given an extensive form with perfect information G = 〈A,H,N, ι, 〉,
a state-time representation of G is a triple 〈Ω, T, ζ〉 where Ω is a set of states,
T = {0, 1, ..., ℓmax} and ζ : Ω → Z is a function that assigns to every state a
terminal history. Given a state-instant pair (ω, t) ∈ Ω× T , let

ζt(ω) =

{
the prefix of ζ(ω) of length t if t < ℓ(ζ(ω))

ζ(ω) if t ≥ ℓ(ζ(ω)).

Interpretation: the play of the game unfolds over time; the first move is
made at date 0, the second move at date 1, etc. A state ω ∈ Ω specifies a
particular play of the game (that is, a complete sequence of moves leading to
terminal history ζ(ω)); ζt(ω) denotes the “state of play at time t” in state ω,
that is, the partial history of the play up to date t [if t is less than the length of
ζ(ω), otherwise - once the play is completed - the state of the system remains at
ζ(ω)]. Figure 1 shows an extensive form with perfect information and a state-
time representation of it. For every ω ∈ Ω = {α, β, γ} and t ∈ T = {0, 1, 2, 3}
we have indicated the (partial) history ζt(ω) (recall that ∅ denotes the empty
history).

 
1a 2a 3a

1d 2d 3d

121

α

1 2 3a a a 1 2a d1dζ :

state:

time:

β γ

0

1

2

3

1d

1d

1d

1a

1 2a d

1 2a d

1a

1 2a a

1 2 3a a a

∅          ∅         ∅ 

Figure 1: An extensive form with perfect
information and a state-time representation of it

We want to define the notion of rational behavior in a game and examine
its implications. Player i chooses rationally at a decision history of his, if the
choice he makes there is “optimal” given the beliefs that he holds at the time
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at which he makes that choice. These beliefs might be different from his initial
beliefs about what would happen in the game and thus might be revised beliefs
in light of the information he has at the moment. However, his prior beliefs are
not relevant in assessing the rationality of his choice: what counts is what he
believes at the time he makes the decision. The beliefs (prior or revised) of the
other players are also irrelevant. Thus in order to assess the rationality of the
actual behavior of the players all we need to specify at a state-instant pair (ω, t)
are the actual beliefs of the active player. This can be done within a state-time
representation of the game. Given a state ω and an instant t, there will be a
unique player who makes a decision at (ω, t) (unless the play of the game has
already reached a terminal history, in which case there are no decisions to be
made). If ζt(ω) is a decision history, the active player is ι (ζt(ω)); denote ζt(ω)
by h and ι (ζt(ω)) by i. Then player i has to choose an action from the set
A(h). In order to make this choice he will form some beliefs about what will
happen if he chooses action a, for every a ∈ A(h). These beliefs will be used to
assess the rationality of the choice that the player ends up making at state ω.
We will describe a player’s beliefs about the consequences of taking alternative
actions by means of an accessibility relation. Thus we use Kripke frames and
represent qualitative, rather than probabilistic, beliefs. In order to simplify the
notation, we will assign beliefs also to the non-active players, but in a trivial
way by making those players believe everything.

We recall the following facts about Kripke frames. If Ω is a set of states
and Bi ⊆ Ω × Ω a binary relation on Ω (representing the beliefs of individual
i), for every ω ∈ Ω we denote by Bi(ω) the set of states that are reachable
from ω using Bi, that is, Bi(ω) = {ω

′ ∈ Ω : ωBiω
′}. Bi is serial if Bi(ω) �= ∅,

for every ω ∈ Ω; it is transitive if ω′ ∈ Bi(ω) implies Bi(ω′) ⊆ Bi(ω) and it is
euclidean if ω′ ∈ Bi(ω) implies Bi(ω) ⊆ Bi(ω

′). Subsets of Ω are called events.
If E ⊆ Ω is an event, we say that at ω ∈ Ω individual i believes E if and only
if Bi(ω) ⊆ E. Thus one can define a belief operator Bi : 2

Ω → 2Ω as follows:
BiE = {ω ∈ Ω : Bi(ω) ⊆ E}. Hence BiE is the event that individual i believes
E. It is well known that seriality of Bi corresponds to consistency of beliefs
(if the individual believes E then it is not the case that he believes not E :
BiE ⊆ ¬Bi¬E, where, for every event F , ¬F denotes the complement of F in
Ω), transitivity corresponds to positive introspection (if the individual believes
E then he believes that he believes E : BiE ⊆ BiBiE) and euclideanness
corresponds to negative introspection (if the individual does not believe E then
he believes that he does not believe E : ¬BiE ⊆ Bi¬BiE).

1

Definition 2 Given an extensive form with perfect information G, a model

of G is a tuple
〈
Ω, T, ζ, {Bi,t}i∈N,t∈T

〉
where 〈Ω, T, ζ〉 is a state-time repre-

sentation of G (see Definition 1) and, for every player i ∈ N and instant
t ∈ T , Bi,t ⊆ Ω × Ω is a binary relation on the set of states (represent-
ing the beliefs of player i at time t) that satisfies the following properties:
∀i ∈ N,∀t ∈ T,∀ω, ω′, ω′′ ∈ Ω,

1For more details see [5].
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1. If i �= ι(ζt(ω)), that is, if ζt(ω) is not a decision history of player i,
then Bi,t(ω) = ∅.

2. If i = ι(ζt(ω)), that is, if ζt(ω) is a decision history of player i, then

2.1. Bi,t is locally serial, transitive and euclidean,2

2.2. If ω′ ∈ Bi,t(ω) then ζt(ω
′) = ζt(ω),

2.3. For every a ∈ A(ζt(ω)) there exists an ω′ ∈ Bi,t(ω) such that
ζt+1(ω

′) = ζt(ω
′)a.

Condition 1 says that a player has trivial beliefs (that is, he believes every-
thing) at all the state-instant pairs where he is not active. We impose this
condition only for notational convenience, to eliminate the need to keep track,
at every state-instant pair, of who the active player is.3 To understand Con-
dition 2, fix a state-instant pair (ω, t), let h = ζt(ω) and suppose that h is a
decision history of player i (thus i = ι(ζt(ω))) where he has to choose an action
from the set A(h). Condition 2.1 says that player i has beliefs with standard
properties (consistency, positive and negative introspection). Condition 2.2 says
that every state ω′ which is accessible from ω by Bi,t (that is, every state that
player i considers possible) is such that the history associated with (ω′, t) is still
h; in other words, player i at time t knows that his decision history h has been
reached. Condition 2.3 says that for every action a available at h, there is a
state ω′ that player i considers possible (ω′ ∈ Bi,t(ω)) where he takes action a,
that is, the truncation of ζ(ω′) at time t + 1 (namely ζt+1(ω

′)) is equal to ha
(recall that, by Condition 2.2, ζt(ω

′) = h). This means that, for every available
action, player i has a belief about what will happen if he chooses that action.

Remark 3 It is worth noting that this way of modeling beliefs is a departure
from the standard (static) approach in the literature, where it is assumed that if a
player takes a particular action at a state then he knows that he takes that action.
The standard approach thus requires the use of either objective or subjective
counterfactuals in order to represent a player’s beliefs about the consequences
of taking alternative actions. In our approach a player’s beliefs refer to the
deliberation or pre-choice stage, where the player considers the consequences of
all his actions, without pre-judging his subsequent decision. The state encodes
the player’s actual choice which can be judged to be rational or irrational by
relating it to his pre-choice beliefs. Thus it is possible for a player to have the
same beliefs in two different states, say α and β, and be labeled as rational at
state α and irrational at state β, because the action he ends up taking at state
α is optimal given those beliefs, while the action he ends up taking at state β is
not optimal given those same beliefs.

2That is, Bi,t(ω) �= ∅ and if ω′ ∈ Bi,t(ω) then Bi,t(ω′) = Bi,t(ω).
3As explained below, by defining Bt =

⋃
i∈N Bi,t, we can take the relation Bt to be a

description of the beliefs of the active player at date t (whose identity can change from state
to state).
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Figure 2: A perfect-information game
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1 2b d 1 2b e1 2a b

∅           ∅           ∅           ∅           ∅           ∅ 

α β γ δ ε η

time:

1a
1b

1 2a a 1 2a a
1 2b c

1 2 3a a b

state:

1 2b c 1 2b d 1 2b eζ :

0

1

2

3

1b1b1a

1 2b d 1 2b e1 2a b1 2 3a a a 1 2 3a a b 1 2b c

Figure 3: A model of the game of Figure 2

Figure 2 shows a perfect information game and Figure 3 a model of it. We
represent a belief relation B as follows: for any two states ω and ω′, ω′ ∈ B(ω)
if and only if either ω and ω′ are enclosed in the same rounded rectangle or
there is an arrow from ω to the rounded rectangle containing ω′.4 The relations
shown in Figure 3 are those of the active players: the relation at date 0 is that
of Player 1 (B1,0), the relation at date 1 for states α, β and γ is that of Player 2
(B2,1), the relation at date 1 for states δ, ε and η is that of Player 3 (B3,1) and
the relation at date 2 for states α and β is that of Player 3 (B3,2).5 Consider a

4 In other words, for any two states ω and ω′ that are enclosed in a rounded rectangle,
{(ω,ω), (ω,ω′), (ω′, ω), (ω′, ω′)} ⊆ B (that is, the relation is total on the set of states contained
in the rectangle) and if there is an arrow from a state ω to a rounded rectangle then, for every
ω′ in the rectangle, (ω,ω′) ∈ B.

5Thus B1,0(ω) = {γ, δ, ε} for every ω ∈ Ω, B2,1(ω) = {β, γ} for every ω ∈ {α, β, γ},
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state, say α. Then α describes the following beliefs: at date 0 Player 1 believes
that if she takes action a1 then Player 2 will follow (at date 1) with b2 (state
γ) and if she takes action b1 then Player 3 will follow (at date 1) with either
c2 (state δ) or d2 (state ε); at date 1 Player 2 (knows that Player 1 played a1
and) believes that if he takes action a2 then Player 3 will follow (at date 2) with
b3 (and if he takes action b2 the game will end). At state α Player 1 ends up
playing a1, Player 2 ends up playing a2 and Player 3 ends up playing a3.

It is worth noting that the notion of model that we are using allows for
erroneous beliefs. Indeed, in the model of Figure 3, at state α Player 1 has
incorrect beliefs about the subsequent move of Player 2 if she herself plays a1.

3 Rationality and backward induction

We say that at a state-instant pair (ω, t) a player is rational if either she is not
active at ζt(ω) (that is, ζt(ω) is not a decision history of hers) or the action that
she ends up choosing at ω is “optimal” given her beliefs at date t, in the sense
that it is not the case that - according to her beliefs - there is another action
of hers that yields higher utility.6 Thus a player is irrational at a state-instant
pair (ω, t) if she is active at history ζt(ω), she ends up taking action a at ω
and she believes that her maximum utility if she takes action a is less than the
minimum utility that she gets if she takes some other action a′.

Definition 4 Fix an arbitrary player i and an arbitrary state-instant pair (ω, t).
We say that player i is rational at (ω, t) if either

(1) ζt(ω) is not a decision history of player i, or

(2) ζt(ω) is a decision history of player i and if a is the action chosen by
player i at ω (that is, ζt+1(ω) = ζt(ω)a) then, for every a′ ∈ A(ζt(ω)), it is
not the case that minω′∈A′ Ui(ζ(ω′)) > maxω′∈A Ui(ζ(ω′)) where A′ = {ω′ ∈
Bi,t(ω) : ζt+1(ω

′) = ζt(ω
′)a′} and A = {ω′ ∈ Bi,t(ω) : ζt+1(ω

′) = ζt(ω
′)a}

(recall that Ui : Z → R is player i’s utility function on the set of terminal
histories).

For example, in the model of Figure 3, Player 1 is rational at state α and
date 0, because she believes that if she takes action a1 then her payoff will be 1
(she believes that Player 2 will follow with b2) and if she takes action b1 then her
payoff will be either 3 or 0 (she believes that Player 3 will follow with either c2
or d2) and she actually ends up taking action a1. Similarly, Player 2 is rational
at state α and date 1 and Player 3 is rational at state α and date 2. On the
other hand, Player 2 is not rational at state γ and date 1 (he believes that if he
takes action a2 his payoff will be 1 and if he takes action b2 his payoff will be 0

B3,1(ω) = {δ, ε, η} for every ω ∈ {δ, ε, η} and B3,2(ω) = {α, β} for every ω ∈ {α, β}. For
any remaining state ω and date t, Bi,t(ω) = ∅, for every player i. Thus, for example,
B1,1(ω) = B1,2(ω) = B1,3(ω) = ∅, for every state ω.

6This notion of rationality has been referred to in the literature as “material rationality”
(see, for example, [2, 6]).
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and yet ends up taking action b2). Thus, since γ ∈ B1,0(α), at state α and date
0 it is not the case that Player 1 believes that Player 2 will choose rationally at
date 1.

We denote by Rt ⊆ Ω the event that (i.e. the set of states at which) the
active player (if there is one) is rational at date t.7 Thus ω ∈ Rt if and only if
either ζt(ω) is a terminal history (that is, ζt(ω) = ζ(ω)) or ζt(ω) is a decision
history and the active player at ζt(ω) is rational at (ω, t). Of course, the identity
of the active player can vary across states, that is, the active player at (ω, t) can
be different from the active player at (ω′, t). In the model of Figure 3 we have
that R0 = Ω, R1 = {α, β, ε}, R2 = {α, γ, δ, ε, η} and R3 = Ω.

Let Bi,t : 2
Ω → 2Ω be the belief operator of player i at date t. Thus, for

every event E ⊆ Ω, Bi,tE = {ω ∈ Ω : Bi,t(ω) ⊆ E}. By (1) of Definition 2, if
player i is not active at (ω, t) then Bi,t(ω) = ∅ and thus ω ∈ Bi,tE for every
event E. Let Bt : 2

Ω → 2Ω be the operator defined by BtE =
⋂
i∈N Bi,tE (thus

ω ∈ BtE if and only if
⋃
i∈N Bi,t(ω) ⊆ E). Then BtE is the event that “the

active player believes E at date t” (which is trivially equivalent to the event
that “everybody believes E at date t”). For example, in the model of Figure 3,
we have that α /∈ B0R1 (since γ ∈ B0(α) and γ /∈ R1), that is, it is not the
case that the active player at date 0 (Player 1) believes that the active player
at date 1 will choose rationally. Indeed, Player 1 believes that if she plays a1
then the active player at date 1 (Player 2) will not choose rationally (given the
date-1 beliefs that Player 1 ascribes to Player 2) and if she plays b1 then the
active player at date 1 (Player 3) might or might not choose rationally (Player
3 chooses rationally at ε but not at δ).

Note that the models we are considering allow for the possibility that a
player may ascribe to a future mover beliefs that are different from the beliefs
that that player will actually have. In other words, a player may have erroneous
beliefs about the future beliefs of other players (or even about her own future
beliefs).

Let Tt be the set of states where the beliefs of the active player (if there is
one) are correct: Tt = {ω ∈ Ω : if Bt(ω) �= ∅ then ω ∈ Bt(ω)}. For exam-
ple, in the model of Figure 3 we have that T0 = {γ, δ, ε}, T1 = {β, γ, δ, ε, η}
and T2 = T3 = Ω. Thus if ω ∈ Tt and ζt(ω) is a decision history, then, for
every event E, if the active player believes E (that is, if Bt(ω) ⊆ E) then E is
indeed the case (that is, ω ∈ E).

The following two propositions provide a characterization of backward in-
duction8 in terms of the following event (wherem is the depth of the game, that
is, the length of its maximal histories):

(T0 ∩R0)∩B0 (T1 ∩R1)∩B0B1 (T2 ∩R2)∩...∩ B0B1...Bm−2 (Tm−1 ∩Rm−1)

In keeping with the literature, we restrict attention to games without relevant
ties.

7By Definition 4 inactive players are always rational; thus Rt can also be described as the
event that “every player is rational at date t”.

8The definition of backward-induction solution is reviewed in the Appendix.
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Definition 5 A perfect-information game has no relevant ties if, ∀i ∈ N , ∀h ∈
Di, ∀a, a′ ∈ A(h) with a �= a′, ∀z, z′ ∈ Z, if ha is a prefix of z and ha′ is a
prefix of z′ then Ui(z) �= Ui(z

′).

For example, the game shown in Figure 2 has no relevant ties. If a game has
no relevant ties, then it has a unique backward-induction solution.

The proofs of the following propositions are given in the Appendix.

Proposition 6 Fix a perfect-information game G without relevant ties and let
m be its depth. Fix an arbitrary model of G and an arbitrary state ω. If ω ∈
(T0 ∩R0)∩B0 (T1 ∩R1)∩B0B1 (T2 ∩R2)∩...∩ B0B1...Bm−2 (Tm−1 ∩Rm−1)
then ζ(ω) is the backward-induction terminal history.

Proposition 7 Fix a perfect-information game G without relevant ties and let
m be its depth. Let z be the backward-induction terminal history. Then there
is a model of G and a state ω such that (1) ζ(ω) = z and (2) ω ∈ (T0 ∩R0) ∩
B0 (T1 ∩R1) ∩ ... ∩ B0B1...Bm−2 (Tm−1 ∩Rm−1) .
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Figure 4: A perfect-information game and a model of it

The condition in Proposition 6 that beliefs be locally correct is essential. For
example, if ω /∈ T0 then it may happen that ζ(ω) is not the backward-induction
terminal history, as shown in Figure 4. Here we have that R0 = {α, β}, R1 =
{β, γ}, T0 = {β, γ}, T1 = Ω, B0R1 = B0T1 = Ω. Hence α ∈ R0∩B0 (T1 ∩R1)
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(in this game m = 2) and yet ζ(α) = a1a2 which is not the backward-induction
play. At state α Player 1 is rational, believes that after his move Player 2 will
be rational and will have correct beliefs and yet the play associated with α is
not the backward-induction play (because Player 1 is wrong in her belief that
Player 2 will play rationally at date 1). Similar examples can be constructed
to show that in Proposition 6 the condition ω ∈ B0T1 is necessary and so is
ω ∈ B0B1T2, etc.

4 Comparison with the literature

There is a large literature on the epistemic foundations of backward induction,
which was recently reviewed in [9, 11]. In what follows we shall try to highlight
the important differences between our approach and the existing literature.

We have focused on a purely behavioral framework, where a state describes
the actual play of the game at the histories that are actually reached in that
state. Thus, contrary to a well-established literature ([1, 2, 3, 8, 10, 12, 15]),
strategies (or plans of action) do not play any role in our analysis. Indeed
the use of strategies in models of dynamic games involves the implicit use of
counterfactuals.9 Methodologically, this is not satisfactory: if it is necessary
to specify what a player would do in situations that do not occur in the state
under consideration, then one should model the counterfactual explicitly.

The purely behavioral point of view that we have adopted (consisting in as-
sociating with every state a play of the game rather than a strategy profile) was
first introduced in [13]. Unlike the other papers that take a purely behavioral
point of view ([4, 6, 7, 13]), our analysis does not make use of objective or sub-
jective counterfactuals and belief revision plays no role. The use of subjective
counterfactuals or dispositional belief revision is made necessary in that liter-
ature by two characteristics of the models used. First of all, the static nature
of the framework makes it impossible to model explicitly the beliefs of players
over time; one thus needs to do so indirectly by representing simultaneously the
initial beliefs and the disposition to revise those beliefs subject to conceivable
items of information that one might receive during the play of the game. This is
done either probabilistically by means of conditional probability systems ([6, 7])
or by means of qualitative belief revision structures ([4]). As pointed out by
Stalnaker,

”It should be noted that even with the addition of the belief
revision structure to the epistemic models ..., they remain static
models. A model of this kind represents only the agent’s beliefs at
a fixed time, together with the policies or dispositions to revise her
beliefs that she has at that time. The model does not represent

9While in a simultaneous game the association of a strategy of player i to a state can
be interpreted as a description of player i’s behavior at that state, in the case of dynamic
games this interpretation is no longer valid, since one would end up describing not only the
actual behavior of player i but also his counterfactual behavior at a different state (that is, at
decision histories that are not reached in the actual state).
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any actual revisions that are made when new information is actually
received.” ([16], p. 198.)10

The second characteristic of the models that use subjective counterfactuals is
that they impose the constraint that if at a state a player takes action a then she
knows that she takes action a; that is, at every state that the player considers
possible, she takes action a. Thus one needs to use either objective or subjective
counterfactuals in order to represent a player’s beliefs about the consequences
of taking an action different from a.

As pointed out in Remark 3, in our approach a player’s beliefs refer to the
deliberation or pre-choice stage, where the player considers the consequences of
all his actions, without pre-judging his subsequent decision. Thus the beliefs
of the active player at a state-instant pair are truly open to the possibility of
taking any of the available actions: one cannot reason towards a choice if one
already knows what that choice will be.

The characterization of backward induction that we have provided is in terms
of the forward beliefs of the active player at date 0 (the first mover): she believes
in the rationality of future movers and believes that they, too, will believe in the
rationality of future movers. That this type of condition is central to backward
induction is now well understood ([3, 4, 12, 15]). The novelty if our approach
lies in (1) the switch to a dynamic framework for beliefs, (2) showing that the
notion of backward induction does not require the use of (objective or subjective)
counterfactuals and (3) pointing out the need for “knowledge”, interpreted -
locally - as true belief.11

5 Appendix

We provide below the proofs of Propositions 6 and 7. First we recall the de-
finition of backward induction solution. The backward induction solution of a
perfect-information game without relevant ties is unique and is given by the
output of the following algorithm:

10The author goes on to say that “The models can be enriched by adding a temporal
dimension to represent the dynamics, but doing so requires that the knowledge and belief
operators be time indexed...” In our models the belief operators are indeed time indexed and
represent the actual beliefs of the players when actually informed that it is their turn to move.

11A strand in the literature ([?, 1, 2, 3]) assumes that each belief relation is refelexive
averywhere, so that it gives rise to a partition. In such cases it is common to speak of
knowledge rather than belief. As Stalanker points out, it is methodologically preferable to
carry out the analysis in terms of (possibly erroneous) beliefs and then - if desired - add further
conditions, such as the local correctness of beliefs. The reason why one should not start with
the assumption of necessarily correct beliefs (that is, global reflexivity of the belief relations)
is that such an assumption has strong intersubjective implications:

“The assumption that Alice believes (with probability one) that Bert believes (with prob-
ability one) that the cat ate the canary tells us nothing about what Alice believes about the
cat and the canary themselves. But if we assume instead that Alice knows that Bert knows
that the cat ate the canary, it follows, not only that the cat in fact ate the canary, but that
Alice knows it, and therefore believes it as well.” ([14], p. 153.)
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1. Start at a decision history h whose immediate successors are only terminal
histories, that is, for every a ∈ A(h), ha ∈ Z (e.g. history b1 in the game
of Figure 2) and select the choice that maximizes the utility of player ι(h)
(in the game of Figure 2, at b1 player 3’ utility-maximizing choice is d2).
Delete the successors of h, thus turning h into a terminal history, and
assign to h the payoff vector associated with the selected choice.

2. Repeat Step 1 in the reduced game until all the decision histories have
been exhausted.

The output of the backward-induction algorithm can be written in terms of
a profile of strategies, where a strategy of player i is defined as a list of choices,
one for each decision history of player i. For example, the backward induction
solution of the game of Figure 2 can be written as (a1, a2, (a3, d2)).

In order to prove Proposition 6 we need the following definition.

Definition 8 Fix a perfect-information game and a model of it. Let α, β ∈ Ω.
We say that β is reachable from α with s steps (s ≥ 1) if there is a sequence of
state-instant pairs 〈(ω0, 0), (ω1, 1), ..., (ωs, s)〉 such that:

1. ω0 = α,
2. ωs = β,
3. ∀k = 1, ..., s, ωk ∈ Bk−1(ωk−1).

For example, in the model of Figure 3 β is reachable from η with 2 steps
with the sequence 〈(η, 0), (γ, 1), (β, 2)〉.12

Remark 9 Let E be an event, α a state and suppose that α ∈ B0B1...Bs−1E.
Then for every β ∈ Ω, if β is reachable from α with s steps then β ∈ E. 13

Proof of Proposition 6. Fix a perfect-information game with no relevant
ties, so that there is a unique backward induction (BI) solution. Let fBI : H →
Z be the following function: if h is a decision history then fBI(h) is the terminal
history that is reached from h by following the backward-induction choices and
if z is a terminal history then fBI(z) = z. Recall that if z ∈ Z and t ∈ T , we
denote by zt the prefix of z of length t (see Definition 1). Fix a model of the
game and suppose that α is a state such that α ∈ (T0 ∩R0) ∩B0 (T1 ∩R1) ∩
B0B1 (T2 ∩R2) ∩ ... ∩ B0B1...Bm−2 (Tm−1 ∩Rm−1) (where m is the depth
of the game). We need to show that ζ(α) = fBI(∅) (recall that ∅ denotes the
empty history). First we show that,

12Note that, if β is rachable from α with s steps, then ζs−1(β) is a decision history. In
fact, we have that β = ωs ∈ Bs−1(ωs−1) and thus Bs−1(ωs−1) �= ∅, so that ζs−1(ωs−1) is a
decision history. (Note also that, by Definition 2, ζs−1(β) = ζs−1(ωs−1).)

13Proof. Let 〈(ω0, 0), (ω1, 1), ..., (ωs, s)〉 be a sequence that satisfies the properties of Defi-
nition 8. Then, since α ∈ B0B1B2...Bs−1E, B0(α) ⊆ B1B2...Bs−1E; thus, since ω1 ∈ B0(α),
ω1 ∈ B1B2...Bs−1E. Thus B1(ω1) ⊆ B2...Bs−1E, etc. Thus Bs−1(ωs−1) ⊆ E and hence,
since β = ωs and ωs ∈ Bs−1(ωs−1), β ∈ E.
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For every t with 1 ≤ t ≤m− 1 and for every β ∈ Ω,
if β is reachable from α with t steps then ζ(β) = fBI(ζt(β)).

(1)

We prove this by induction.
Base step: t =m−1. Fix an arbitrary β which is reachable from α withm−1

steps. If ζm−1(β) is a terminal history, then ζm−1(β) = ζ(β) (see Definition 1)
and, by definition of fBI(·), fBI(ζ(β)) = ζ(β). Thus ζ(β) = fBI(ζm−1(β)).
Suppose, therefore, that ζm−1(β) is a decision history. Let i be the active
player, that is, the player who moves at ζm−1(β). Fix an arbitrary ω ∈ Bm−1(β)
(recall that, by Definition 2, Bm−1(β) �= ∅). Then, by Definition 2, ζm−1(ω) =
ζm−1(β). Since the depth of the game ism, after player i’s move at ζm−1(ω) the
game ends and thus ζm(ω) = ζ(ω). Since α ∈ B0B1...Bm−2Rm−1, by Remark
9 β ∈ Rm−1, that is, player i is rational at state β and time m − 1. Hence,
the choice made by player i at state β and time m− 1 is the payoff-maximizing
choice there, that is, ζ(β) = fBI(ζm−1(β)).

Induction step: suppose that (1) is true for t = k with 1 < k ≤ m− 1. We
want to show that it is true for t = k− 1. Fix an arbitrary β which is reachable
from α with k − 1 steps.

First we show that,

∀ω ∈ Bk−1(β), ζ(ω) = fBI(ζk(ω)) (2)

If ζk−1(β) is a terminal history, there is nothing to prove, since Bk−1(β) = ∅.
Suppose, therefore, that ζk−1(β) is a decision history. Let i be the active player,
that is, the player who moves at ζk−1(β). Fix an arbitrary ω ∈ Bk−1(β). Then,
by Definition 8, ω is reachable from α with k steps (since, by hypothesis, β
is reachable from α with k − 1 steps). By the induction hypothesis ζ(ω) =
fBI(ζk(ω)). Thus (2) holds. Since α ∈ B0B1...Bk−2Tk−1, by Remark 9 β ∈
Tk−1; thus, since Bk−1(β) �= ∅,

β ∈ Bk−1(β). (3)

Since α ∈ B0B1...Bk−2Rk−1, by Remark 9 β ∈ Rk−1, that is, player i is rational
at state β and time k − 1. By (2) at state β and time k − 1 player i believes
that after his move the play will continue according to the BI solution. Hence
the action chosen by i at ζk−1(β) is the optimal action there given those beliefs
(i.e. the action dictated by the BI solution), that is,

ζk(β) is a prefix of fBI(ζk−1(β)). (4)

By (2) and (3), ζ(β) = fBI(ζk(β)). It follows from this and (4) that ζ(β) =
fBI(ζk−1(β)). This completes the proof of (1).

Next we show that

∀ω ∈ B0(α), ζ(ω) = fBI(ζ1(ω)). (5)
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Fix an arbitrary ω ∈ B0(α). Then ω is reachable from α with 1 step and thus,
by (1), ζ(ω) = fBI(ζ1(ω)). Thus the active player at state α and date 0 believes
that after her move the play will continue according to the BI solution. Since
a ∈ R0, it follows that the action chosen by the active player at ζ0(α) = ∅ is
the optimal action there given those beliefs, that is,

ζ1(α) is a prefix of fBI(∅). (6)

Since B0(α) �= ∅ and α ∈ T0, α ∈ B0(α). Thus, by (5), ζ(α) = fBI(ζ1(α)). It
follows from this and (6) then ζ(α) = fBI(∅).
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Figure 5
A model of the game of Figure 2.

Proof of Proposition 7. Fix a perfect-information game G and define the
following model of it: Ω = Z (recall that Z is the set of terminal histories),
T = {0, 1, ...,m = ℓmax} (recall that ℓmax is the depth of the game, that is, the
length of its maximal histories) and ζ is the identity function (that is, ζ(z) = z,
for every z ∈ Z). Let fBI : H → Z be the function defined in the proof of Propo-
sition 6. Fix an arbitrary player i, an arbitrary z ∈ Z and an arbitrary t ∈ T . If
zt is not a decision history of player i, then we set Bi,t(z) = ∅; if zt is a decision
history of player i then we set Bi,t(z) =

{
z′ ∈ Z : z′t = zt and z

′ = fBI(z
′
t+1)

}
,

that is, Bi,t(z) is the set of terminal histories that (i) coincide with z up to date
t and (ii) are reached by following the backward-induction choices from date
t + 1. For example, for the game of Figure 2 (whose backward-induction solu-
tion is (a1, a2, (a3, d2)) with corresponding terminal history a1a2a3) the model
just described is shown in Figure 5.

By construction of the belief relations and by definition of backward-induction
solution, at any state z and date t, if player i is active at zt then he is ratio-
nal there if and only if the action he takes there is the one prescribed by the
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backward-induction solution, that is, z ∈ Rt if and only if zt+1 = (fBI(zt))t+1.
14

Let ẑ be the terminal history reached by the backward-induction solution , that
is, ẑ = fBI(∅). Then we have that ẑ ∈ Bt(ẑ) for every date t ∈ T such that
Bt(ẑ) �= ∅ and thus ẑ ∈ Tt (that is, for every date t, the beliefs of the ac-
tive player at ẑ are locally correct). Thus ẑ ∈ (T0 ∩R0) ∩ B0 (T1 ∩R1) ∩
B0B1 (T2 ∩R2) ∩ ... ∩ B0B1...Bm−2 (Tm−1 ∩Rm−1).
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