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1 Introduction

Many zero-sum games do not have a solution without allowing for mixed strategies.

What is the class of zero-sum games possessing pure equilibria? Some answers to these

questions have been given by Shapley (1964) and Radzik (1991). For instance, Shapley

(1964) showed that a finite two-player zero-sum game has a pure equilibrium if every 2x2

submatrix of the game has a pure equilibrium. Radzik (1991) showed that a two-player

zero-sum game whose columns are quasiconcave (i.e. single-peaked) and whose rows are

quasiconvex has a pure equilibrium if and only if every submatrix “along the diagonal”

has a pure equilibrium. Although both results apply to symmetric two-player zero-sum

games, none of their results exploits the symmetry property.

In this paper we are interested in pure equilibria of symmetric two-player zero-sum

games. It is well known that for instance the rock-paper-scissors game has no pure

equilibrium. We show that this holds more generally. We say that a symmetric two-player

zero-sum game is a generalized rock-paper-scissors matrix (gRPS) if for each column

there exists a row with a strictly positive payoff. This notion allows us to characterize

symmetric zero-sum games possessing pure equilibria. A symmetric two-player zero-sum

game has a pure equilibrium if and only if it is not a gRPS. Moreover, we show that

every finite symmetric quasiconcave two-player zero-sum game has a pure equilibrium.

We also provide sufficient conditions for existence in terms of increasing and decreasing

differences, potentials, and additive separability of payoffs. It turns out that symmetric

two-player zero-sum games are a very special class of games in which increasing and

decreasing differences, the existence of an exact potential, and additively separable payoffs

coincide.

Symmetric two-person zero-sum games are often thought to be a very restricted class

that is less relevant to economics. However, in Section 3 we shall argue that they arise

naturally when relative payoffs of arbitrary symmetric two-player games are considered.1

The reason is simply that relative payoff functions give rise to zero-sum games by con-

struction. Schaffer (1988, 1989) introduced the notion of finite population evolutionary

stable strategies (fESS) and observed that a fESS of the original (arbitrary) symmetric

game coincides with the Nash equilibrium of the (zero–sum) relative payoff game.2 Thus,

1There is some experimental evidence that players consider not only their absolute payoffs but also
relative payoffs. Early experiments include Nydegger and Owen (1974) and Roth and Malouf (1979).
More recently, relative payoff concerns have been studied in behavioral economics and experimental
economics under the label of “inequity aversion”.

2This relationship between Nash equilibrium and fESS has been analyzed for competitive games by
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when we apply our equilibrium existence results to the relative payoff game, we also ob-

tain existence results for fESS of the underlying original game. This way, our results

can be applied for example to Cournot duopoly, Bertrand duopoly, public goods games,

common pool resource games, minimum effort coordination games, synergistic relation-

ships, arms race, Diamond’s search, Nash demand game, or rent seeking. We also show

that a symmetric two-player game is an exact potential game if and only if its relative

payoff game is an exact potential game. This is useful because the existence of an exact

potential of a symmetric zero-sum game is easy to verify.

The fESS of a game is of relevance when evolution operates in a finite (playing–the–

field) population. It is also important because frequently it coincides with the stochas-

tically stable states of imitate-the-best dynamics.3 Thus, when players imitate in such

games, we should expect the outcome to be a fESS. The results developed here are also

used in our companion paper, Duersch, Oechssler, and Schipper (2010). There we char-

acterize the class of games in which “imitate-the-best” can not be exploited by any other

decision rule.

In the next section, we study the existence of pure equilibria in symmetric two-player

zero-sum games. In Section 3 we apply our results to relative payoff games and the

existence of finite population evolutionary stable strategies.

2 Symmetric Zero-Sum Games

We consider a symmetric two–player game (X, π), in which both players are endowed

with the same (finite or infinite) set of pure actions X. For each player, the bounded

payoff function is denoted by π : X × X −→ R, where π(x, y) denotes the payoff to

the player choosing the first argument when his opponent chooses the second argument.

In this section we will restrict attention to zero-sum games. Symmetry and the zero-

sum property together imply then that π(x, y) = −π(y, x).4 Note that in a symmetric

zero-sum game, the payoffs on the main “diagonal” must be zero.

Definition 1 In a symmetric two-player zero-sum game (X, π), a pair of strategies (x, y)

Ania (2008) and for “weakly competitive” games by Hehenkamp et al. (2010).
3See e.g. Alós-Ferrer and Ania (2005), Hehenkamp, Leininger, and Possajennikov (2004), Leininger

(2006), Matros, Temzelides, and Duffy (2009), Possajennikov (2003), Schipper (2003), Tanaka (2000),
and Vega-Redondo (1997)

4The payoff matrix of symmetric zero-sum game is skew-symmetric.
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is a pure equilibrium if π(x, y) = maxx′∈X π(x′, y) = miny′∈X π(x, y′). A pure equilibrium

(x, y) is symmetric if x = y.

For obvious reasons, an equilibrium in two-player zero-sum games is often called a

“saddle point”. In a symmetric game, if (x, y) is a pure equilibrium, so is (y, x). By the

rectangularity of equilibria in two-player zero-sum games, we also have that (x, x) and

(y, y) are pure equilibria. This yields the following known fact (see e.g. Nash, 1951).

Remark 1 A symmetric two-player zero-sum game (X, π) has a pure equilibrium if and

only if it has a symmetric pure equilibrium.

A well known example for a symmetric zero-sum game without a pure equilibrium is

the game “Rock-Paper-Scissors”.5

R P S
R
P
S

 0 −1 1
1 0 −1
−1 1 0


This example can be generalized to the following class of games.

Definition 2 (Generalized Rock-Paper-Scissors Matrix (gRPS)) A symmetric zero-

sum game (X, π) is a generalized rock-paper-scissors matrix if in each column there exists

a row with a strictly positive payoff to the row player i.e. if for all y ∈ X there exists a

x ∈ X such that π(x, y) > 0.6

This definition allows us to provide a full characterization of pure equilibria in sym-

metric two-player zero-sum games.

Theorem 1 A symmetric two-player zero-sum game (X, π) possesses a pure equilibrium

if and only if it is not a generalized rock-paper-scissors matrix.

Proof. If (X, π) has no pure equilibrium (and in particular no pure symmetric equi-

librium), then for all y ∈ X there is x ∈ X such that π(x, y) > π(y, y) = 0. Thus, (X, π)

is gRPS. Conversely, if (X, π) has a pure equilibrium, by Remark 1 it has a symmetric

5The game was already described by von Neumann (1928, p. 303).
6In the finite strategy case, an alternative way of characterizing a gRPS game would be to say that

the game has a strictly positive minimax with respect to pure strategies i.e. if miny maxx π(x, y) > 0.
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equilibrium. Thus, there is y ∈ X such that π(x, y) ≤ π(y, y) for all x ∈ X, which implies

that (X, π) is not gRPS.7 �

A symmetric 2x2 zero-sum game cannot be a gRPS. If one of the row player’s off-

diagonal relative payoffs is a > 0, then the other must be −a violating the definition of

gRPS. “Matching pennies” is not a counter-example because it is not symmetric. Thus

we have the following corollary.

Corollary 1 Every symmetric 2x2 zero-sum game possesses a pure equilibrium.

In the following we shall study how several properties that are commonly assumed to

hold for games relate to the gRPS property.

Definition 3 (Quasiconcave) A symmetric two-player game (X, π) is quasiconcave

(or single-peaked) if there exists a total order < on X such that for each x, x′, x′′, y ∈ X
and x′ < x < x′′, we have that π(x, y) ≥ min {π(x′, y), π(x′′, y)} .

That is, a symmetric game is quasiconcave if each column has a single peak.

Theorem 2 Every finite quasiconcave symmetric two-player zero-sum game has a pure

equilibrium.

The proof follows as a corollary from Theorem 1 and the following lemma.

Lemma 1 A finite quasiconcave symmetric two-player zero-sum game is not a gRPS.

Proof. Suppose by contradiction that the finite quasiconcave symmetric zero-sum

game (X, π) is a gRPS. Note first that if π(·, y) is quasiconcave in the first argument,

i.e., if x′ < x < x′′ implies that π(x, y) ≥ min {π(x′, y), π(x′′, y)}, then by symmetry,

π(y, x) ≤ max {π(y, x′), π(y, x′′)}, i.e. π(x, ·) is quasiconvex in the second argument.

Let (xk, x`) be the left-most cell with a strictly positive entry that is above the main

diagonal, i.e. π(xk, x`) > 0, where x` := arg minx′′ {π(x′, x′′) > 0 and x′′ > x′} and xk :=

arg minx′ {π(x′, x`)}. If there are several such entries in column x`, we choose without

loss of generality the lowest one. Such an entry exists since (X, π) is a gRPS and finite

(i.e., the last column must have a strictly positive entry above the main diagonal).

7We thank the Associate Editor for suggesting this simple proof.
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By symmetry, (x`, xk) is below the main diagonal and π(x`, xk) < 0. By quasiconcav-

ity, all entries in the column xk below x` are also negative, π(x, xk) < 0, for all x > x`.

Since rows are quasiconvex, it follows that π(x`, x) ≤ 0 for all x such that xk < x < x`.

The same holds for all lower rows, π(x′, x) ≤ 0, for all x′ > x`, xk < x < x′. This defines

a “trapezoid” Πneg of payoff entries below the diagonal that does not contain any strictly

positive entries.

Now, look specifically at column x`−1. Πneg contains all entries in this column that

are below the diagonal. However, this column must have a positive entry since the game

is a gRPS. Therefore, the column has to have a positive entry above the diagonal. But

this is a contradiction to the fact that (xk, x`) is the left-most cell with a positive entry

above the main diagonal. �

Note that if the finite zero-sum game is not symmetric but quasiconcave, then it does

not need to have a pure equilibrium. A counter example is presented in Radzik (1991, p.

26). Hence, symmetry is crucial for the result.

The converse to Theorem 2 is not true as the following example shows.

Example 1 Consider the following “Rock-Paper-Scissors” game augmented by an addi-

tional strategy “B”.
R P S B

R
P
S
B


0 −1 1 −1
1 0 −1 −1
−1 1 0 −1
1 1 1 0


Clearly, it is not a gRPS since for column “B” there fails to exist a row yielding a strictly

positive payoff. Thus, the game possesses a pure equilibrium, (B,B). Yet, no matter how

strategies are ordered, the game fails to be quasiconcave. Hence, there are symmetric

two-player zero-sum games that are neither generalized rock-paper-scissors games nor

quasiconcave.

Other “second-order” conditions are commonly explored in the literature when ana-

lyzing the existence of pure equilibria. We will consider increasing and decreasing dif-

ferences, additive separability, and potentials. Surprising to us, it turns out that for

symmetric two-player zero-sum games these conditions are all equivalent.

Definition 4 (Increasing and decreasing differences) Let X be a totally ordered

set. A payoff function π has decreasing (resp. increasing) differences on X × X if

5



for all x′′, x′, y′′, y′ ∈ X with x′′ > x′ and y′′ > y′,

π(x′′, y′′)− π(x′, y′′) ≤ (≥)π(x′′, y′)− π(x′, y′).

π is a valuation if it has both decreasing and increasing differences.8

Definition 5 (Additively Separable) We say that a payoff function π is additively

separable if π(x, y) = f(x) + g(y) for some functions f, g : X −→ R.

Potential functions are often useful for obtaining results on convergence of learning

algorithms to equilibrium, existence of pure equilibrium, and equilibrium selection. The

following notion of potential games was introduced by Monderer and Shapley (1996).

Definition 6 (Exact potential games) The symmetric two-player game (X, π) is an

exact potential game if there exists an exact potential function P : X × X −→ R such

that for all y ∈ X and all x, x′ ∈ X,9

π(x, y)− π(x′, y) = P (x, y)− P (x′, y),

π(x, y)− π(x′, y) = P (y, x)− P (y, x′).

Proposition 1 Let (X, π) be an arbitrary symmetric two-player zero-sum game and X

be a totally ordered set. Then the following statements are equivalent:

(i) π has decreasing differences on X ×X,

(ii) π has increasing differences on X ×X,

(iii) π is a valuation,

(iv) π is additively separable,

(v) (X, π) has an exact potential.

8For the two-dimensional case, increasing differences are equivalent to supermodularity, so the two
terms can be used interchangeably (see Topkis, 1998, Chapter 2.6).

9Given the symmetry of (X,π), the second equation plays the role usually played by the quantifier
“for all players“ in the definition of potential games.
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Proof. Let X be a totally ordered set such that π has decreasing differences on X×X
if for all x′′′, x′′, x′, x ∈ X with x′′′ > x′ and x′′ > x,

π(x′′′, x′′)− π(x′, x′′) ≤ π(x′′′, x)− π(x′, x).

Since (X, π) is a symmetric two-player zero-sum game, π(x′, x) = −π(x, x′) for all x, x′ ∈
X. Hence, we can rewrite this inequality as

−π(x′′, x′′′) + π(x′′, x′) ≤ −π(x, x′′′) + π(x, x′). (1)

Rearranging inequality (1) yields the definition of increasing differences,

π(x′′, x′)− π(x, x′) ≤ π(x′′, x′′′)− π(x, x′′′).

Hence (i) if and only if (ii). (iii) follows from the equivalence of (i) and (ii).

By Topkis (1998, Theorem 2.6.4.), a function π(x, y) is additively separable on X×X
if and only if π(x, y) it is a valuation. Thus, (iii) if and only if (iv).

Brânzei, Mallozzi and Tijs (2003, Theorem 1) show that a zero-sum game is an exact

potential game if and only if it is additively separable. Hence, (iv) if and only if (v). �

Corollary 2 Let (X, π) be a symmetric two-player zero-sum game for which X is nonempty

compact subset of a topological space and π is upper semicontinuous. If (X, π) satisfies

any of the properties (i) to (v) of Proposition 1, then a pure equilibrium exists.

Proof. Since X is compact and π is upper semicontinuous, any player’s best response

correspondence of (X, π) is nonempty by Weierstrass’ Theorem. Since π is additively

separable under any property (i) to (v) by Proposition 1, the best response correspon-

dence is constant. Thus, a pure equilibrium of (X, π) exists. �

For the remainder of this section, we consider the relationships between the results.

Corollary 2 is implied by Theorem 2 if finite games are considered.

Remark 2 Let X be a totally ordered set. If the symmetric zero-sum game (X, π)

satisfies any of the properties (i) to (v) of Proposition 1, then (X, π) is quasiconcave.

Proof. If property (iv) holds then there are some functions f, g : X −→ R such

that π(x, y) = f(x) + g(y) for all x, y ∈ X. Then (X, π) is quasiconcave if and only

if f(x) ≥ min[f(x′), f(x′′)]. Since X is a totally ordered set, we can order it such that
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x′ ≥ x if and only if f(x′) ≥ f(x). Thus, (X, π) is quasiconcave. �

The converse is not true as the following example shows.

Example 2 Consider a symmetric two-player 3x3 zero-sum game.10

A B C
A
B
C

 0 −1 −3
1 0 −1
3 1 0


This game is quasiconcave but its payoff function is not a valuation, i.e., payoff differences

in own strategies are not constant in the opponent’s strategies.

Theorem 2 and Corollary 2 overlap in the important case of 2x2 games. It is straight-

forward to check that every symmetric 2x2 zero-sum game is quasiconcave and satisfies

all of the properties (i) to (v) of Proposition 1.

3 Application to Relative Payoff Games

Consider now more generally a symmetric two-player (not necessarily zero-sum) game

(X, π). When instead of the payoff function π the relative payoffs are considered, then

symmetric two-player games give naturally rise to the class of symmetric zero-sum games.

Definition 7 (Relative payoff game) Given a symmetric two-player game (X, π), the

associated relative payoff game is (X,∆), where the relative payoff function ∆ : X×X −→
R is defined by

∆(x, y) = π(x, y)− π(y, x).

The relative payoff of a player is the difference between his payoff and the payoff of

his opponent.

Remark 3 Every relative payoff game is a symmetric zero-sum game. Conversely, for

every symmetric zero-sum game, there is a symmetric two-player game for which the

relative payoff game is the symmetric zero-sum game.

10We thank an anonymous referee for suggesting this example.
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Proof. Note that by definition, ∆(x, y) = π(x, y) − π(y, x) = −[π(y, x) − π(x, y)] =

−∆(y, x) and hence (X,∆) is a symmetric zero-sum game. For the converse, if (X,∆) is a

symmetric zero-sum game, then (X, π) with π(x, y) = 1
2
∆(x, y) is a symmetric two-player

game for which (X,∆) is the relative payoff game. To see this, note that since (X,∆) is

a symmetric zero-sum game, we must have that (X, 1
2
∆) is a symmetric zero-sum game.

Note further that ∆(x, y) = π(x, y)−π(y, x) = 1
2
∆(x, y)− 1

2
∆(y, x) = 1

2
∆(x, y)+ 1

2
∆(x, y),

where the last equality follows from the fact that (X, 1
2
∆) is a symmetric zero-sum game.

�

The remark shows that every relative payoff game is a symmetric zero-sum game,

and that relative payoff games do not impose any restriction on the class of symmetric

zero-sum games. Every symmetric zero-sum game is a relative payoff game of some

symmetric two-player game. Note also that different symmetric two-player games may

have the same relative payoff game.

What outcomes in a symmetric two-player game correspond to pure equilibria in its

associated relative payoff game? To answer this question we introduce the notion of

finite population evolutionary stable strategy (Schaffer, 1988, 1989). This concept is

appropriate when “playing the field”, i.e. when players are matched against all other

players except themselves.

Definition 8 (fESS) A strategy x∗ ∈ X is a finite population evolutionary stable strat-

egy (fESS) of the game (X, π) if

π(x∗, x) ≥ π(x, x∗) for all x ∈ X. (2)

In terms of the associated relative payoff game, inequality (2) is equivalent to

∆(x∗, x) ≥ 0 for all x ∈ X.

Schaffer (1988, 1989) observed that x∗ is a fESS of the symmetric game (X, π) if and

only if (x∗, x∗) is a pure Nash equilibrium of the relative payoff game (X,∆).11

Our results in Section 2 provide existence results for fESS of (X, π) when conditions

are imposed on the associated relative payoff game (X,∆). That is, a symmetric game

(X, π) has a fESS if and only if its associated relative payoff game (X,∆) is not a

gRPS. In particular, every symmetric 2x2 game has a fESS. Furthermore, if the relative

11See Ania (2008) and Hehenkamp, et al. (2010) for further discussion.
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payoff function ∆ associated to a finite game (X, π) is quasiconcave, then a fESS exists.

Finally, if the relative payoff game (X,∆) associated to (X, π) satisfies the properties of

Corollary 2, then a fESS exists.

There is an interesting connection between symmetric two-player games and their

relative payoff games with regard to the existence of an exact potential function.

Theorem 3 Let (X, π) be a symmetric two-player game with the associated relative pay-

off games (X,∆). (X, π) is an exact potential game if and only if (X,∆) is an exact

potential game.

Proof. If P is an exact potential function of a symmetric two-player game (X, π),

then P is symmetric, i.e. P (x, y) = P (y, x) for all x, y ∈ X. To see this note that P

being an exact potential (X, π) implies for all x, y ∈ X

π(x, y)− π(y, y) = P (x, y)− P (y, y) and

π(x, y)− π(y, y) = P (y, x)− P (y, y)

Hence P (y, x) = P (x, y).

Adding some suitable additional terms on both sides that by symmetry of P are equal

we obtain for all x, x′, y, y′ ∈ X

(P (x′, y)− P (x, y))− (P (y, x′)− P (y′, x′)) = (P (x′, y′)− P (x, y′))− (P (y, x)− P (y′, x)).

Since P is an exact potential function of (X, π) we can rewrite this equation

(π(x′, y)− π(x, y))− (π(y, x′)− π(y′, x′)) = (π(x′, y′)− π(x, y′))− (π(y, x)− π(y′, x)).

Rearranging terms yields

(π(x′, y)− π(y, x′))− (π(x, y)− π(y, x)) = (π(x′, y′)− π(y′, x′))− (π(x, y′)− π(y′, x)).

Using the relative payoff function ∆, we obtain

∆(x′, y)−∆(x, y) = ∆(x′, y′)−∆(x, y′).

Thus ∆ is a valuation which by Proposition 1 is equivalent to (X,∆) being an exact

potential game. �

Often it is rather difficult to verify the existence of an exact potential function. Theo-

rem 3 and Proposition 1 show that it is straight forward for symmetric two-player games.
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It is easy to verify whether the relative payoff function associated with the symmetric

two-player game is a valuation.

Finally, the following two corollaries provide sufficient conditions imposed on the

payoff function π of the underlying game (X, π) for the existence of a fESS.

Corollary 3 Consider a symmetric two-player game (X, π) with a compact strategy set

X and a continuous payoff function. If (X, π) is an exact potential game, then a fESS

exists.

The corollary follows since by Theorem 3 the relative payoff game is also an exact

potential game. Hence, Corollary 2 implies the existence of a pure equilibrium of (X,∆),

which is a fESS of (X, π).

Corollary 4 Consider a symmetric two-player game (X, π) with a compact strategy set

X and a payoff function that can be written as π(x, y) = f(x) + g(y) + a(x, y) for some

continuous functions f, g : X −→ R and a symmetric function a : X × X −→ R (i.e.,

a(x, y) = a(y, x) for all x, y ∈ X). Then (X, π) has a fESS.

The corollary follows since π(x, y) = f(x) + g(y) + a(x, y) implies that in the relative

payoff game the term a(x, y) drops out, ∆(x, y) = f(x) − g(y) − f(y) + g(x). Again,

Corollary 2 implies the existence of a fESS of (X, π).

While at first glance the condition on payoffs in the last corollary looks restrictive, it

is satisfied in many well-known textbook examples of two-player games including linear

Cournot duopoly, versions of Bertrand competition, public goods games, common pool

resource games, minimum effort coordination games, synergistic relationships, Diamond’s

search, Nash demand game, and Tullock rent seeking games (for details see Duersch,

Oechssler, and Schipper, 2010). In applications, the function a is often symmetric because

it represents just the sum or the product of players’ strategies.
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