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Abstract

I add endogenous bargaining possibilities do develop criteria to determine
which statements are credible in a three-player model with complete informa-
tion where pairs, in a sequential order, can formulate simultaneous negotiation
statements. Joint plans are credible if they are the outcome of a plan Nash bar-
gaining problem−the pair bargains cooperatively over the equilibrium payoffs
induced by tenable and reliable plans−unless one or both bargainers are indif-
ferent to bargaining. Then, a credible plan is up to the future-request by the
oldest pair ("of friends") among the past pairs that successfully cooperated and
included one of the indifferent players. I interpret this model as an almost non
cooperative (ANC) modification of the three-player Aumann-Myerson (1988)
sequential network formation game. Whenever discussing a link two players
can bargain non cooperatively out of the sum of their Myerson values (1977)
in the prospective network and enunciate simultaneous negotiation statements.
The disagreement plan suggests link rejection. Sequentially Nash (1950) coher-
ent plans can be defined and exist. Analytical payoffs are unique. In strictly
superadditive cooperative games the complete graph never forms.
Keywords: Credible Simultaneous Negotiation; Nash Bargaining; Sequen-

tial network formation
∗Thanks for comments to Leonid Hurwicz, Maria Montero, Roger Myerson, Jun Wako. Ricardo

Nieva is a visiting assistant professor at University of New Brunswick Saint John.
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1 Introduction

Cooperation and bargaining should be studied using non cooperative models because
rational decision making can be analyzed clearly. However, non-cooperative bar-
gaining models result in multiple Nash equilibria. Myerson (1989) addressed this
problem by adding negotiation in models with sole sequential negotiators. When the
sole negotiator uses statements that can be credibly used−based on Myerson’s credi-
bility criteria−according to their literal meanings, a reduced set of Nash equilibria is
obtained.
It is useful to ask if a similar result extends to models with simultaneous nego-

tiators, in particular, network formation models with simultaneous non cooperative
bargaining. One problem with standard models is that players evaluate prospective
networks according to analytical payoff allocation rules that are fixed or static in the
sense that they depend only on the fixed network structure. Potential network payoffs
should depend on the possibilities of players forming other networks. To achieve this,
fixed payoff allocation rules are disregarded while allowing non cooperative bargaining
over the total payoffs a network can achieve. However, it may be empirically relevant
to consider such fixed rules if there is the possibility of pairs of players "bargaining
non cooperatively over the sum of their implied fixed payoffs".
In its first part, this paper introduces two features in order to develop criteria to

determine which statements can be credibly used according to their literal meanings in
a three-player model with complete information where pairs, in a sequential order, can
formulate simultaneous negotiation statements. First, simultaneous joint "similar"
negotiation statements, a joint plan (plan1), are credible "in most cases" if they
are the solution outcome of an "endogenous" plan bargaining problem solved with
the Nash (1950) bargaining rule (NBR). Each pair bargains cooperatively over the
equilibrium payoffs induced by "tenable and reliable" plans. In reality, players often
cooperate to improve outcomes. Second, one or both players in the pair of negotiators
may be indifferent to suggesting any plan with individually rational feasible (IRF )
payoffs as individual payoffs for one or both of them may be the same as the ones
obtained if agreement is not reached. A credible plan is then one with IRF payoffs and
"future-requested" in the negotiation statement by the "oldest pair" among the past
pairs that included one of the indifferent players (Assumption one: Oldest Friend (O-
F) Focal Effect) and that "successfully" cooperated (Assumption two). This mirrors
reality as one often observes loyalty to oldest friends.
In its second part, this paper interprets this negotiation model as a modification of

the three-player Aumann-Myerson (1988) (A-M) sequential network formation game
where prospective networks are evaluated based on a fixed payoff allocation rule, that
implied by the players’ Myerson values (1977). Whenever pairs are deciding to form
a bilateral communication link and thus a new communication network, I allow them
instead to bargain non cooperatively out of the sum of their Myerson values, in the

1My plans should be distinguished from Myerson’s (1989) plans.
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prospective network. They can also enunciate simultaneous negotiation statements
about the non cooperative bargaining process even if they don’t have a communication
link. I assume they have a partial communication technology, an initial phone call,
for example.
I then prove by construction that all possible plan bargaining problems are well

defined in the modified A-M game and credible plans exist at the beginning of the
game; these are defined as sequentially Nash coherent plans. Payoff predictions are
unique and analytical. Link structures are also predicted for strictly superadditive
cooperative games.
Negotiations, modelled as a communication game, can influence selection among

different Nash equilibria provided one assumes that players understand the negotia-
tor’s statements and negotiators are committed to follow through. For example, in
the battle of the sexes game with complete information and communication, there is
a Nash equilibrium in which players ignore the male’s suggestion to both go to the
football game, but both players choose to go to the ballet concert. There are also
equilibria where players don’t ignore suggestions. Schelling (1960) would argue that
players would focus on the equilibrium that has both players following the male’s
suggestion to attend the football game if the male is committed to his literal words.
When commitments are not guaranteed, Farrel (1993) andMyerson (1989) develop

criteria to evaluate the credibility of different literal meanings in order to narrow
down the number of Nash equilibria in games with sole negotiators. Players will
play a Nash equilibrium strategy profile suggested, provided the suggestion passes a
credibility test. Credible literal meanings will not be understood and then ignored,
but understood and believed.
Whenever the male negotiates and suggests both going to the football game, his

suggestion is tenable, because it is optimal for the female to go there if she believes he
will go there. His suggestion is reliable because it is best for him to go if he expects
her to follow his suggestion. His suggestion is credible or coherent, informally, "he
means what he says", because it is the best for him out of all tenable and reliable
suggestions. In particular, it is better for him than suggesting both going to the ballet
concert.
If both players are allowed to formulate negotiation statements simultaneously,

then in the associated communication game, there is a Nash equilibrium, where the
most preferred suggestion by the male is followed and the female’s most preferred one
is ignored and vice versa. Even if they mean what they say, when statements conflict,
neither Nash equilibrium can be focal because both players would not know what to
focus on. Statements with similar suggestions that coincide may be the exception.
I argue that if "bargaining over tenable and reliable similar suggestions" is possible,
then players would focus on the equilibrium associated with the bargained suggestion.
Such suggestion will be credible.
I adopt the latter informal argument to develop criteria for the credibility of state-

ments in a more general environment that is susceptible to conflicting statements. I
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consider three sequential negotiators that negotiate in pairs, where these pairs formu-
late negotiation statements "represented" by suggestions about actions to be played
in an immediate payoff relevant game, a "promise-request in a correlated strategy".
A correlated strategy is a randomization over action profiles. Representations of nego-
tiation statements also consist of suggestions about actions in future payoff relevant
contingencies in a three-player game after the immediate game, a "future-request in
a vector of correlated strategies".
Assume that past negotiation statements by other players have no influence and

that pairs of negotiators face a well defined tenability correspondence given a nego-
tiation statement. This correspondence represents the set of all correlated strategies
that could be rationally implemented by the players in "future contingencies of the
communication game associated to the payoff relevant game" if they believe the ne-
gotiation statement by a player in the pair who is the sole negotiator. The associated
negotiation statement is defined as tenable.
An individual’s negotiation statement is reliable if given that the sole negotiator

believes that players will obey her future-request, the promise-request in a correlated
strategy is tenable and reliable. In this more general set up, reliability entails both
players finding it rational to play according to the correlated strategy.
As part of assuming the availability of endogenous cooperative negotiation pos-

sibilities, players are able to formulate similar joint statements, ones with identical
promise-requests and future-requests (a plan). Plans are tenable and reliable if any
of the associated individual similar statements is tenable and reliable. The current
pair of negotiators bargain over payoffs that would result if players play according
to tenable and reliable plans. The payoffs obtained in case of disagreement, the out-
side options, are the ones induced by a given tenable and reliable disagreement plan.
Cooperation is endogenous as not all pairs may end up cooperating. Plans are Nash
coherent if the bargained payoffs are those predicted by the non transferable utility
(NTU) NBR.
Assume instead that past negotiation statements by other players are influential.

If assumptions one and two hold, I show that O-F (Nash coherent) plans can be
defined and exist provided that the current plan bargaining problem is well defined.
This the case if the plan bargaining problem in each contingency that follows the pair’s
negotiation statements and, thus, the tenability correspondence are well defined. O-
F plans at the beginning of the game, sequentially Nash coherent plans, would then
exist.
For interpreting this sequential negotiation model as a modification of the A-M

model, I first elaborate on "tedious" notation in the original A-M model.
The Myerson values induce an ad hoc payoff allocation rule for N-player games

where cooperation is incomplete as only players that have bilateral communication
links or "friendship relationships" can coordinate actions and cooperate. These values
have intuitive appeal as players with more friends get more payoffs in a given graph,
defined as a set of links. However, Myerson values ignore the effects on payoffs

4



of a situation where players may prefer to cooperate in different coalition structures
and act strategically when thinking of forming them (See Aumann and Dreze (1974)).
Note that a coalition structure is induced by the communication structure represented
in a given graph. The A-M game is an attempt to predict more reasonable payoffs in
such games by endogenizing communication links and thus coalition structures.
In A-M, pairs of players propose indestructible bilateral communication links fol-

lowing a bridge-like rule order and evaluate induced communication structures using
the Myerson values. Links are formed if the pair agrees. As in bridge, after the last
link has been formed, each of the pairs must have a last chance to form an additional
link. If then every pair rejects, the game ends. This game is of perfect information.
Hence, it has subgame perfect equilibria in pure strategies. Each equilibrium has a
unique graph formed at the end of play.
Next, I propose a second model, a multistage game with observed payoff relevant

actions. This is interpreted as a non cooperative variation (a cooperative transforma-
tion in Myerson (1991 pp. 371)) of the original A-M model. It is useful to associate
to histories in A-M, a sequence of links acceptances and rejections, an immediate
prospective graph, the graph that will form if the corresponding pair proposing ac-
cepts its link.
The initial history in the first stage of the modified game has each player in the

same pair as in A-M select a non-negative payoff proposal for each pair member.
The third player proposes nothing. Any action profile selected has a link and a next
prospective graph outcome. If payoff proposals match the link is formed and the
immediate prospective graph results, otherwise, the link does not form. In any case,
a next prospective graph follows according to the A-M rule of order. In order to
match, proposals have to "coincide" and be feasible. To be feasible, payoffs proposed
for each player have to add up the sum of the pairs’ Myerson values in the immediate
prospective graph.
Histories in stage two are the payoff proposal pairs chosen in stage one and have

action sets that depend on histories because action sets are different depending on
which next prospective graph resulted that in turns depends on whether a proposal
match occurred or not. Each player in the new pair proposing according to the re-
sulting next prospective graph, the new immediate prospective graph, selects, as in
the initial history, a non negative payoff proposal pair. The third player proposes
nothing. Link, next prospective graph outcomes and feasibility are derived analo-
gously as in the initial history and so on in future histories except in the case where
the A-M game would end after link decisions occur. In particular, if the immediate
prospective graph is the one that has everyone linked, the complete graph, the only
feasible proposal pair is the pair’s Myerson values in the complete graph, the pair’s
Shapley (1953) values.
With respect to payoff outcomes, if the immediate prospective graph does not

form and the game ends, payoffs in the last proposal match−the one that led to the
formation of the last graph−are realized. The third player gets her Myerson value in
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such last graph. Otherwise stage payoffs are zero unless the complete graph forms,
in which case, the Shapley values are realized.
To formulate plan bargaining problems, I assume that each pair can formulate

negotiation statements in the associated communication game represented by a cor-
related strategy in the immediate and future payoff relevant proposal games. The
disagreement plan suggests "given unilateral link rejections"−for example suggesting
both to propose given not feasible payoff proposals−in the immediate payoff proposal
game.
This paper can be seen as an extension of Myerson’s (1989) coherent plans for

sole sequential negotiators to the case of pairs of sequential simultaneous negotiators
whenever cooperative negotiation possibilities are endogenous (in Myerson (1984-85),
bilateral cooperation is not endogenous) and, however, there is complete information.
In a broader perspective, in contrast to Aumann and Hart (2003) and the literature
reviewed in their paper that studies strategic information transmission as expanding
the set of outcomes, my work emphasizes its study as restricting the set of outcomes.
In particular, I focus on long bounded cheap talk whereas the authors focus on long
cheap talk.
As my modification of the A-M model addresses the problem of the fixed nature of

payoff allocation rules by allowing bargaining over sums of Myerson values, it may be
situated and contrasted with the network formation bargaining literature (See Jack-
son (2004) for a review). Bargaining over what the network can achieve−disregarding
fixed payoff allocation rules−in the form of proposals, occur multilaterally and simul-
taneously in Slikker and Van de Noweland (2001). Currarini and Morelli (2000) have
instead a sequential model. Navarro and Perea (2001) use a bilateral sequential model,
however, the latter authors’ goal objective is to implement the Myerson value.2

This model can be seen also as predicting payoffs in an almost non cooperative
way (ANC) whenever players think strategically in forming coalition structures (See
Aumann and Dreze (1974)).
In section two, I solve a three-player simple majority game with A-M and then

I illustrate how my assumptions induce unique payoff predictions by computing se-
quentially Nash coherent plans using the same game. In section three, I define plan
bargaining problems, Nash coherent plans and O-F Nash coherent plans. In section
four, notation for graphs is given and Myerson values are described. In section five,
histories in the A-M model are defined and the multistage payoff relevant game is set
up. Next, cooperative negotiation is added. In section six, existence of sequentially
Nash coherent plans is proved by constructing recursively well defined plan bargain-
ing problems. My predictions are partially characterized for strictly superadditive
games. Conclusions follow.

2The reader may be interested in a related paper by Jackson (2005) which addresses the problem
instead axiomatically by proposing payoff allocation rules that account for simultaneous possibilities
of extra link formation.
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2 An Example

Consider the three-player simple majority game given by:
v(1) = 0, v(2) = 0, v(3) = 0,
v(13) = 1 v(23) = 1 v(12) = 1,
v(123) = 1.
where, for example, v(13) is the total wealth players 1 and 3 can assure if they

collude and cooperate.
Graph gij is the one that only has a link between player i and j, ij. Graph gij+jl

is the one that would result if links jl is added to graph gij for i 6= j 6= l, where
i, j, l ∈ {1, 2, 3}. Graph gN denotes the complete graph where all players are linked.
Also, if I write that some values for player i and j are (x, y), the first (second) value
component refers to player i (j). Myerson values for different graphs are given in the
following table (the first, second third component in the triplet corresponds to player
1,2, and 3 respectively):

One-link Values Two-Link Values Complete Values
g13 (3

6
, 0, 3

6
) g13+32 (1

6
, 1
6
, 4
6
) gN (2

6
, 2
6
, 2
6
)

g23 (0, 3
6
, 3
6
) g12+23 (1

6
, 4
6
, 1
6
)

g12 (3
6
, 3
6
, 0) g21+13 (4

6
, 1
6
, 1
6
)

Note how the player who has relatively more links or friends gets more.
In the rest of the paper, I assume that links 12, 23 and 13 are proposed in that

order.
Claim 1: The A-M solution has three subgame perfect equilibrium outcomes

in which either of the one link graph is the last to form.
Proof:
From any two link graph the complete graph follows as the players not linked get

more if they link, 2
6
instead of 1

6
. A one link graph is last to form as any player in

that link would reject a second link as the complete graph would follow next in which
case her payoff would go down from 3

6
to2
6
.

Suppose links 12 and 23 have been rejected. Link 13 would form as players 1
and 3 would expect to get half instead of zero payoffs in case the game would end
after rejection. One stage backwards, player 3 is indifferent between linking or not
with player 2. One more stage backwards, player 2 is indifferent between linking or
not with player 1 if players expect link 23 to form. On the other hand, player 1 is
indifferent between linking or not with 2 if players expect link 23 not to form and
instead link 13 to form. Thus, depending on the decision of the indifferent player,
there are several subgame perfect equilibria outcomes in which either of the one link
graph forms.

Claim 2: In the three-player simple majority game, the unique sequen-
tially Nash coherent plan has the first pair suggesting "half-each" payoffs and future-
requesting plans that suggest consecutive rejection of the next two links in the order.
Proof:
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Let the first two links in the rule of order 12 and 23 be rejected in stage 1 and 2
of the game respectively. Next to propose in stage 3 is pair (1, 3).3

Part 1
I. Suppose that players 1 and 3 have a candidate for a tenable plan that suggests4

a half-each payoff proposal match, that is, it recommends each one to propose (3
6
, 3
6
),

a payoff for player 1 and another one for player 3. Say such a match occurs and link
13 is accepted, link 12 is rejected in stage 4 and link 32 is being discussed in stage 5.
I want to find out, to begin with, what are all the tenable future-request for players
1 and 3 on players 3 and 2 in this contingency.
First, note that players 3 and 2 could enunciate a tenable plan that suggests a

proposal match such that player 2 is offered (out of the sum of their Myerson values
in the immediate prospective graph g13+32, 4

6
+ 1

6
) less than what she would get in

the complete graph, 2
6
. If link 32 forms with this match, this tenable plan would have

to future-request players 1 and 2 to enunciate their unique O-F plan that suggests a
proposal match (both propose their Shapley values) and thus form the third link 12.
This is the case as the latter players’ plan bargaining problem would be "essential",
both gain by linking (Note that any plan for players 1 and 2 that suggests either uni-
lateral rejections−say suggest both proposing not feasible payoff pairs proposals−or
a proposal match are tenable and reliable as any of the corresponding payoff pair
proposals profile is a Nash equilibrium of the last simultaneous proposal game). The
expected payoffs for player 3 and 2 associated to their tenable plan (Plan a) would
be (2

6
, 2
6
), their Myerson values in the complete graph. Note also that whenever de-

scribing link or payoff outcomes, it is implicit that I am assuming that players are
obedient to tenable plans (one is on "the equilibrium path").
Second, if instead players 3 and 2 can enunciate a tenable plan that suggests a

proposal match such that player 2 is offered strictly more than 2
6
, this plan has to

future-request players 2 and 1 to enunciate the unique O-F plan that suggests both
unilaterally rejecting the third link (any pair of unilateral rejections could be chosen
and held fixed for these purposes). Link 32 would be the last to form (Plan of type
b). The associated expected payoffs pair (x53, x

5
2) for players 3 and 2 would lie on the

diagonal in figure 1 (See section 6) to the northwest of β
5

32 = (
3
6
, 2
6
).

Third, if instead players 3 and 2’s tenable plan suggests a proposal match that
offers exactly 2

6
to player 2, proposal match β5 such that β532 = (

3
6
, 2
6
) = β

5

32 in figure
1, player 2 would be indifferent between forming or not the third link. As player 3
and 2 are the only relevant oldest pair of friends, there are three types of tenable
plans if β532 = β

5

32. One type of plan would future-request an O-F plan that suggests
link 12 to be formed (Plan d1). The other one would future-request an O-F plan that

3Note that if pair (1, 3) rejects the game ends with zero payoffs. If it accepts, pair (1, 2) follows;
in turn, if (1, 2) rejects, pair (2, 3) is next; because every not linked pair must have a last opportunity
to propose (as in bridge). If link 23 does not form the game ends, and so on.

4In the language of section 3, this plan has a promise-request in a degenerated correlated strategy
that puts probability 1 on both proposing ( 36 ,

3
6).
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suggests link 12 to be rejected (Plan d2). The third one consist of mixes (Plans d3).
The associated expected payoffs (x53, x

5
2) for players 3 and 2 would be respectively

(2
6
, 2
6
), β

5

32 = (
3
6
, 2
6
) and convex combinations of the latter pairs of payoffs..

As outside options for players 3 and 2 are (3
6
, 0), plan d2 with payoffs (3

6
, 2
6
) is the

only tenable and reliable one that has "strong Pareto efficient" payoffs (Note that
the plan that suggests link 32 rejection is also tenable and reliable. On the other
hand, plans d1, d3, a and b are tenable but not reliable!, as player 3 would gain by
unilaterally rejecting). Thus, d2 is the unique Nash coherent plan for players 3 and
2. Player 1 would get in the latter case her Myerson value in graph g13+32, 1

6
. See

figure 1, however, set the ouside options for players 3 and 2
¡
ψ53, ψ

5
2

¢
= (3

6
, 0).

Back to players’ 1 and 3’s discussion, as player 3 gets the same independently of
link 32 forming or not, the O-F focal effect assumption implies that O-F plans when-
ever link 32 is being discussed are up to the oldest friends 1 and 3. Tenable plans for
players 1 and 3 vary if the O-F plan they future-request either suggest link 32 rejec-
tion (type 1 plans), a proposal match (3

6
, 2
6
)−and thereafter link 12 rejection−(plan

2) or mixes (type 3 plans). Associated expected payoffs for players 1, 2 and 3 would be
respectively (3

6
, 0, 3

6
), (1

6
, 2
6
, 3
6
) and convex combinations between (3

6
, 0, 3

6
) and (1

6
, 2
6
, 3
6
).

One stage backwards, as of link 12 discussions in stage 4, one can now characterize
all possible type 1 plans for players 1 and 3. As the outside option pair for players 1
and 2 is (3

6
, 0), using analogous reasons as in bargaining among players 3 and 2 above,

such a tenable plan for players 1 and 3 would have to future-request an O-F plan that
suggests either unilaterally rejecting link 12 (type 1.1 plan) or a proposal match with
proposals (3

6
, 2
6
) (type 1.2 plan) or a mix.(type 1.3 plans) Expected payoffs pair for

players 1 and 3 would be respectively (3
6
, 3
6
), (3

6
, 1
6
) and convex combinations between

(3
6
, 3
6
) and (3

6
, 1
6
). On the other hand, one can characterize the unique type 2 plan

for players 1 and 3. As the outside options pair for players 1 and 2 is (1
6
, 2
6
), their

bargaining game is essential and such a tenable plan for players 1 and 3 would have
to future-request an O-F plan for players 1 and 2 that suggests a proposal match.
Also, analogously as before, an O-F plan that suggests link 23 rejection after link 12
forms would be future-requested. The NTU NBR yields payoffs of (1

6
+ 1

6
, 2
6
+ 1

6
) for

players 1 and 2. Player 3 would get her Myerson value in g13+12, 1
6
. Under any plan of

type 3, the bargaining game for players 1 and 2 is also essential, thus player 3 would
get also 1

6
and player 1 could not get more than 3

6
!

II. Suppose that players 1 and 3 have a candidate for a tenable plan that suggests
proposal matches where player 3 is offered less than half.
If link 12 is rejected then in any O-F plan for players 3 and 2, they would suggest

a proposal match as the plan bargaining game is essential (See figure 1 where player
3 is offered β3 (3) = 2

6
and hence outside options are

¡
ψ53, ψ

5
2

¢
= (2

6
, 0)). Based on

the analysis in I, link 23 would be the last link to form. In particular, if player 3’s
outside option is zero (Note that player 2’s outside option is, as in I, again zero) the
NTU NBR would give player 2 half of the sum of their Myerson values, that is, 2.5

6
.

That is the most she would get. The least she may get is, following I, 2
6
(See figure 1
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where she gets exactly that).
One stage backwards, as player 1’s outside option is 1

6
and that of 2’s is at most

2.5
6
, the plan bargaining game as of link 12 discussions is essential (as 1

6
+ 2.5

6
< 5

6
, the

sum of players 1 and 2’s Myerson values) whenever player 3 is offered less than half.
Analogously as in the case of type 2 plan in I, it can be shown that under any tenable
plan by players 1 and 3 with future-requests consistent with the previous analysis,
link 12 would form right after link 13 forms and then the third link 23 would be
rejected.
III. Now suppose player 3 is offered more than half.
If link 12 is rejected then in any O-F plan for players 3 and 2, they suggest

unilateral rejections. Note that as link 23 does not form, player 2 gets zero in g13,
and player 3 would get more than 3

6
.

One stage backwards as of link 12 discussions, as the outside option pair for players
1 and 2 is (ψ41, 0), where ψ

4
1 <

3
6
, as in II, a tenable plan for players 1 and 3 consistent

with the previous analysis would have to future-request on players 1 and 2 an O-F
plan that suggests a proposal match. Again, link 12 would be the last link to form.
Tenable plans in cases II, III and I, where in the latter case one does not include

the tenable plan for players 1 and 3 that future-requests unilateral rejections of links
12 and 32−in that order−after link 13 forms (type 1.1 plan), have expected payoffs
for players 1 and 3 that would give at least one player (either 1 or 3) less than a half
and the other one at most 3

6
.

Part 2 . Because the outside options are zero as of link 13 discussions, any plan
that suggests a proposal match and a tenable future-request is not only tenable but
reliable. Moreover, from Part 1, out of any tenable and reliable plan, type plan 1.1
is the only one that yields strong Pareto efficient payoffs, (3

6
, 3
6
), if obeyed. Thus, it

is the unique O-F plan as of link 13 discussions. Note that as of link 13 discussions
no link has formed−as cooperation has been unsuccessful−so any statement by not
linked pairs is ignored.
Part 3. One stage backwards, tenable plans for players 2 and 3 are analogous to

the one in the bargaining problem for players 1 and 3. In contrast, outside options
are zero for player 2 and a half for player 3. As players 2 and 3 have no preceding
oldest friendship pair, the unique O-F plan suggests a half-half proposal match and
future-requests consecutive rejection of the next two links in the order (it is a plan
analogous to type 1.1 plan). At the beginning of the game, a similar argument can
be applied as of link 12 discussions and the claim follows¥

3 Simultaneous Negotiation Problems

3.1 A Two-Player Negotiation Problem

I consider the problem of two players i and j, the negotiators, when they have the
opportunity to make simultaneous negotiation statements to players i, j and l in a
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payoff relevant game to follow. I assume for now that there are no past statements
that players i and j may know about at the time they negotiate.
The immediate payoff relevant action sets that negotiators i and j have available

are denoted by the infinite sets Bi and Bj. Such a set Bl for player l has as trivial
unique payoff irrelevant action a null vector. Denote by B = Bi × Bj × Bl the
associated action profile set. Also, a two-player action set of profiles for i and j is
denoted by Bij.
The set of future joint payoff relevant strategies is given by ×Z, an infinite Carte-

sian product of Žp sets, p ∈ {1, ...} . Each Žp stands for the infinite action profile set
in each future payoff relevant contingency p that may follow any of the negotiators’
immediate payoff relevant action profile.
For any (β, z), where z ∈ ×Z and β ∈ B, Um (β, z) denotes the expected utility

payoff outcome for player m = i, j, l if β and subsequently z are played.
Wlg. (See section 5.2.4), it suffices to define a correlated strategy on an infinite

strategy profile set R as a function ι from R to the Real interval [0, 1] such that
(ι (r))r∈R⊂ ∈ ∆R⊂ is a probability distribution over some finite strategy profile subset
R⊂ of R, and ι (r) = 0 if r /∈ R⊂. A given correlated strategy ι may be implemented
with a mediator that randomly chooses a profile r of pure strategies in R⊂ with
probability ι (r) . Then the mediator would recommend each player, say i, j and l,
publicly to implement the strategy ri, rj and rl respectively.
A negotiation statement in the communication game associated to the payoff rele-

vant game to follow for player i, µi, is represented on the one hand by a promise-request
of play associated to a correlated strategy σi on B. For simplicity and tractability,
her promise-request is the same for any negotiation statement µj player j may actu-
ally formulate. If the negotiator announces σi, regardless of any given statement µj
for player j that may have occurred she is requesting player j to obey her mediator
according to σi. She is also promising to obey her own mediator according to σi.
The request to player l is trivial; abusing notation, I often refer informally to σi as a
correlated strategy on Bij ignoring player l. The set of all correlated strategies on B
is denoted by fB.
On the other hand, a negotiation statement for player i, µi, consists also of future-

requests on play in "future contingencies" of the communication game. For simplicity
and tractability future-requests are assumed to be identical whenever a contingency
or "history" in the communication game "shares" the same payoff relevant contin-
gency or history of the payoff relevant game (See section 5.3 for a clarification and
application of this assumption). Thus, formally and abusing notation, these future-
requests can be represented by an infinite dimensional vector of correlated strategies
ζi derived from ×Z as follows

ζi =
Y
p

ζ i,p,

where ζ i,p is a correlated strategy on Žp. If the negotiator announces ζ i, she has
future-requests on future players in any future contingency of the communication

11



game that corresponds−in the sense above−to the future payoff relevant future con-
tingency p to obey her mediator according to the correlated strategy ζi,p, the p-th
component of ζ i. The set of all vectors of correlated strategies on ×Z is denoted by
f×Z .
A negotiation statement for player i is thus an element of f = fB × f×Z and it

is denoted by µi = (σ, ζ) ∈ f.
A promise-request in σj and future-request in ζj for player j are defined analo-

gously and it is clear that her negotiation statement µj ∈ f.
To formalize the credibility, reliability and tenability of a negotiation statement

whenever there are two simultaneous negotiators, one needs to deal first with the
problem of conflicting simultaneous negotiation statements. To set up this problem
precisely, I will define first a tenable and reliable statement for a player when she is
the sole negotiator.
Let player i be the sole negotiator with negotiation statement µi = (σi, ζ i) given

player j0s statement µj =
¡
σj, ζj

¢
, where the latter is to be regarded as noise. I assume

in this section that there exists a well defined non empty tenability correspondence Q :
f→→ f×Z , where Q (σi) represents the set of all vectors of correlated strategies that
could be rationally implemented by the players in future contingencies5 following the
negotiator’s statement in the communication game if they would believe negotiation
statement µi. A negotiation statement µi is tenable iff ζi ∈ Q (µi) . One writes then
µi ∈ f ⊂ f.
Let µi = (σi, ζi) ∈ f and wlg. noise µj =

¡
σj , ζj

¢
be given. Consider the following

strategic form game
¡
Bi ×Bj, π

µi
ij

¢
, where payoffs are given by

π
µi
ij

¡
βi, βj

¢
=

"X
z

[ζi (z) |β]Ui (β, z) ,
X
z

[ζi (z) |β]Uj (β, z)

#
,

if
¡
βi, βj

¢
is played and [ζi (z) |β] is the probability that Ui (β, z) is obtained if

play−for simplicity of exposition−in the payoff relevant game is according to the
given ζi and

¡
βi, βj

¢
is played.

Note that πµil
¡
βi, βj

¢
, the associated payoff to player l can be computed analo-

gously and πµi
¡
βi, βj

¢
would then refer to a payoff triplet for all players. Recall, βl

is trivial.
Suppose that players are expected to obey future request ζi. A request in σi by

player i is tenable if it is optimal for player j to obey player i’s mediator given that
player i is believed to fulfill his promise to obey the mediator. A promise in σi by
player i is reliable if it is optimal for player i to obey the mediator given that player
j is expected to obey the mediator. Equivalently, I will say that a promise-request in
σi by player i is tenable and reliable given µi if σiis a publicly correlated equilibrium
of
¡
Bi ×Bj, π

µi
ij

¢
. A statement µi = (σi, ζi) ∈ f is reliable if its promise-request in

σi is tenable and reliable.

5Note that this correlated strategy prescribes rational behavior in future contingencies that follow
a "mistake" that occurs whenever one player doesn’t conform to such prescribed strategy.
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Tenable and reliable statements µi will be said to belong to ef. As ¡Bi ×Bj, π
µi
ij

¢
will turn out to be a coordination game in the modification of the A-M model, µi ∈ ef
will be also self-signaling (See Farrel and Rabin (1996) for a definition).
Analogously, one defines reliability of µj for player j whenever she is the sole

negotiator and has her own mediator. Note that µi, µj ∈ f, so µi is tenable and
reliable whenever player i is the sole negotiator if and only if µj is tenable and reliable
whenever player j is the sole negotiator.
In case neither of the negotiation statements by players i and j are noise, the

tenability of one player’s statement depends on the statement of the other one. If one
has conflicting requests, who would players obey if they are willing to obey either of
the negotiators, or equivalently, if both negotiators’ statements are tenable whenever
they are the sole negotiators? The subsections that follow address this problem.
A simultaneous negotiation problem for players i and j as just described is denoted

by Φij = (B,×Z,U,Q)ij .

3.2 Nash Coherent Plans

3.2.1 Preliminary Definitions

We define for any two vectors x and y in R2
x ≥ y (x is as least as good as y) iff xi ≥ yi and xj ≥ yj, and
x > y (x is strictly better than y) iff xi > yi and xj > yj, i 6= j.
A bargaining problem for agents i and j consists of a pair (F,ψ) , where F is a

closed convex subset of R2, ψ =
¡
ψi, ψj

¢
is a vector in R2 and the set of individually

rational feasible allocations ( IRF set)
F ∩ ©(xi, xj) |xi ≥ ψi and xj ≥ ψj or xij ≥ ψij

ª
is non-empty and bounded. Here F represents the set of feasible payoff allocations

or the feasible set, and ψ represents the disagreement payoff allocation or the outside
options.
A bargaining game (F,ψ) is essential iff there exists at least one allocation x in

F that is strictly better for agents than the disagreement allocation ψ, i.e., x > ψ.
A point x in F is strongly (Pareto) efficient iff there is no other point y in F such

that y ≥ x and xw > yw for at least one player w ∈ {i, j}. A point x in F is weakly
(Pareto) efficient iff there is no other point y in F such that y > x. The feasible
frontier is the set of feasible payoffs allocations that are strongly Pareto efficient in
F . The IRF frontier is the set of points in F that are strongly Pareto efficient in
the IRF set.

3.2.2 A Plan Bargaining Problem

Before I develop a notion of credibility whenever negotiation statements are simul-
taneous by adding cooperative negotiation, I will define tenability and reliability in
this context and define a plan bargaining problem.
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Negotiation statements for both players are similar if µi = µj. A joint plan (plan)
is a negotiation statement µ ∈ f such that there exists similar statements for players
1 and 2 and µ1 = µ2 = µ. A plan is tenable and reliable iff µ is tenable and reliable
for player i or j whenever any of them is the sole negotiator.
A plan bargaining problem for players i and j derived from a simultaneous nego-

tiation problem Φij = (T,×Z,U,Q) is a bargaining problem (F, ψ) with two charac-
teristics:
1. For each (xi, xj) ∈ F, there exists an associated tenable and reliable plan

µ = (σ, ζ) ∈ ef such that
(xi, xj) =

X
β

σ (β)πµij (β).

2. If disagreement occurs on ψ = (xi, xj), then both agents commit to enunciate
the associated disagreement plan bµ ∈ ef.
Any such plan bargaining game will be denoted by (F, ψ,Φij) .

3.2.3 Nash Effective Cooperative Negotiation and Credibility

Players i and j can carry out negotiations Nash effectively and cooperatively if given
the simultaneous negotiation problem Φij, they can construct and solve coopera-
tively the associated plan bargaining game (F,ψ,Φij) , where any

¡
Bi ×Bj, π

µi
ij

¢
is

a coordination game, with the non transferable utility (NTU) Nash Bargaining Rule
(NBR). The NTU NBR solution in any bargaining game (F,ψ) solves the following
maximization problem:
argmaxx∈F (h), x≥ψ (xi − ψi)

¡
xj − ψj

¢
,

Let the payoff relevant action sets for players i and j and l be given by B together
with a payoff relevant game to follow with joint strategy set ×Z for players i, j and
l. Players i and j can cooperate Nash effectively with communication if they can
construct Φij and carry out negotiations Nash effectively and cooperatively.
A plan µ is credible or Nash coherent if the payoff solution to a plan bargaining

problem (F,Φij, ψ) where players can negotiate Nash effectively and cooperatively
has as associated plan µ.
Whenever I want to refer to players i and j’s set of Nash coherent plans in Φij

given ψ, I write η (Φij, ψ) ⊂ ef.
3.3 Oldest-Friends Nash Coherent Plans

I will be interested in developing credibility criteria for simultaneous statements in
a situation where pairs of players, out of a total of three, take turns according to a
rule of order to formulate cooperative negotiation plans in stages k of a multistage
game, where k = 1, ...K + 1, and whenever cooperation possibilities are endogenous.
Cooperation is endogenous in the sense that disagreement or unsuccessful cooperation
is possible and "meaningful".
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To formulate these criteria, I make two assumptions:
Assumption 1: Let one or both players in the pair of negotiators be indifferent

between plans with payoffs in the IRF set. A credible plan is one that has a payoff
in the IRF and that is future-requested in the negotiation statement by the oldest
pair of negotiators−according to a rule of order−among the past pairs that included
one of the indifferent players.
Assumption 2: Plans enunciated by older pairs of negotiators that did not co-

operated successfully are ignored or are not credible.
As for assumption 1, the sequence of previous plans enunciated by different pairs,

to be denoted by µk
−
, may influence the current negotiation problem, at stage k, and

the ones that follow. To indicate this influence, the tenability correspondence will be
denoted by Qµk− and the negotiation problem is instead given by Φij,µk− .
The plans that are predicted in this solution concept will be defined as oldest-

friends Nash coherent plans (O-F plans) and they will be denoted by ηf
³
Φij,µk− , ψ

k
´
.

Formally, the assumptions are made effective as follows:
Let i, j, l ∈ {1, 2, 3} , and i 6= j 6= l. Suppose players i and j successfully coop-

erated and have enunciated, as part of their future-request, the tenable and reliable
plan γ ∈ efil and only then j and l successfully cooperated and future-requested
δ ∈ efil where it maybe that γ 6= δ. Schematically, as the bargaining problem for i
and l follows, one has the following physical order:
(i, j) (j, l) (i, l) .
For all essential bargaining problems for i and l, I set
ηf
³
Φil,µk− , ψ

k
´
= η

³
Φil,µk− , ψ

k
´
.

Otherwise:
Case 1. If @ (xi, xl) ∈ IRF k s.t. xki > ψk

i , however ∃ (xi, xl) ∈ IRF k s.t. xkl > ψl,

I set ηf
³
Φil,µk− , ψ

k
´
= γ;

Case 2. If @ (xi, xl) ∈ IRF k s.t. xkl > ψk
l , however ∃ (xi, xl) ∈ IRF k s.t. xki > ψk

i

I set ηf
³
Φil,µk− , ψ

k
´
= δ;

Graphically, in the plane (xi, xl) , the IRF k set for
³
F k, ψk,Φij,µk−

´
is a straight

closed vertical and horizontal closed segment respectively.
Case 3. If @ (xi, xl) ∈ IRF k s.t. xk > ψk

I set ηf
³
Φil,µk− , ψ

k
´
= γ

In words, there are 3 cases in which the assumptions turn out to imply a not
essential

³
F k, ψk,Φij,µk−

´
to be "effectively" a singleton. As oldest friends’ are the

only statements that are credibly understood by their literal meanings, the only
possible payoff (xi, xl) ∈ IRF k and associated plan to be bargained about by players
i and l is the one that confirms the plan by the oldest pair of friends that has one of
its member, i or l, indifferent between any payoff in IRF k.
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In addition, if one only has pair (i, j) enunciating as part of its future-request
γ ∈ efil and thus one has schematically,
(i, j) (i, l) ,
then
Case 1. @

¡
xki , x

k
l

¢ ∈ IRF k s.t. xki > ψk
i , however ∃ (xi, xl) ∈ IRF k s.t . xkl > ψk

l

I set ηf
³
Φil,µk− , ψ

k
´
= γ

Case 2. @ (xi, xl) ∈ IRF k s.t. xk > ψk

I set ηf
³
Φil,µk− , ψ

k
´
= γ

Note that in non essential bargaining games in this bilateral sequential negotiation
environment an O-F plan may be the disagreement plan in which case unsuccessful
bilateral cooperation occurs. Moreover as for assumptions 1 and 2 cooperating and
thus not cooperating are both meaningful.6

In this context, players i and j can endogenously cooperate Nash effectively with
communication if they can construct Φij,µk

− , carry out negotiations Nash effectively

and cooperatively unless they have to use ηf
³
Φij,µk− , ψ

k
´
.

4 Graphs and the Myerson Value

4.1 Notation for Graphs

Denote by N = {1, 2, 3} the set of players. A graph g is a set of unordered pairs
of distinct agents belonging to N. Each pair is represented by a link (non-directed
segment) between the two players (nodes). Thus, g stands also for the set of links for
graph g.
We denote by ij ,or equivalently ji, the link that joins agents i and j, where

i 6= j 6= l, i, j, l ∈ N. If ij ∈ g, we say that i and j are directly linked in graph g. Iff
ij, jl ∈ g, we say that i and l are indirectly linked by j.
We use often ij as a superscript for referring to the graph g that contains only link

ij, say gij. In turn, the superscript ijl would refer to the graph where only player j is
directly linked to two agents. Later on, we will distinguish among different orderings
of ijl representing the order in which links have been formed.
The graph where every pair is directly linked, or linked from now on, is called the

complete graph, and is denoted by gN . The empty graph where no pair is linked is
represented by g∅.The set G of all possible graphs on N is {g : g ⊆ gN}. We use,
gθ+ij when referring to the graph that results to adding link ij to graph gθ, where
θ ∈ {∅, il, ilj} i 6= j 6= l, i, j, l ∈ {1, 2, 3}.

6In standard 2 player bargaining problems disagreement is not meaningful in the sense that in
general it does not occur and if it "would occur" only the disagreement payoffs pair is obtained.
In this paper disagreement is in contrast meaningful as different link structures and payoffs for the
third player may occur after disagreement.
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Let B ⊆ N, g ⊆ G, i ∈ B, j ∈ B be given. Agents i and j are connected in B
by g iff there is a path in g from i to j and stays within B. That is, iff i and j are
directly or indirectly linked under some g0, where g0 is such that g0 ⊆ g and g0 ⊆ G0,
and G0 is the set of all graphs of B.

4.2 Payoffs in Communication Structures as Graphs

Let a cooperative game v be given withN as the player set. GivenN , let CL be the set
of all coalitions (non-empty subsets) of N , CL = {B ⊆ N,B 6= ∅}.A characteristic
function v : CL → R associates the maximum wealth or transferable utility (TU)
payoff achievable if the coalition B ∈ CL forms and coordinates effectively (and thus
cooperates).
There are intermediate cases between N-player games that are played coopera-

tively and non-cooperatively. For predicting payoff outcomes in these cases, Myerson
(1977) assumes that effective coordination can occur if pairs of players by establishing
bilateral agreements or friendship relationships, represented by links of communica-
tion, are at least indirectly linked. In this context a set of links is denoted equivalently
as a cooperation, communication or cooperation structure. Myerson (1977) derives
axiomatically a cooperative solution for given cooperation structures, i.e., a graph g
for g ⊆ gN .
Formally, define B|g as the unique partition of B in which groups of players are

together iff they are connected in B by g. Loosely speaking, it is the collection of
smaller coalitions, or connected components of B|g, into which B would break up, if
players could only coordinate along the links in g.
Let a coalitional game v be given with N as player set and g as the cooperation

structure. For each player i and given the graph g and the characteristic function v,
the Myerson value for player i is denoted by φgi = φgi (v).
I founded this practical method by Myerson (1977) to be useful to give intuition

and to derive the Myerson values: Given v and g, define a coalitional game vg by
vg(S) :=

X
vg(Sj),

where the sum ranges over the connected components Sg
j of S|g. Then

φgi (v) = φi(v
g)

where φi denotes the ordinary Shapley (1953) value for player i.
In words the Myerson value is the Shapley value of an auxiliary cooperative game

where any given coalition gets all its worth provided all players in that coalition are
at least indirectly linked. Otherwise the payoffs in that coalition are the sum of the
worth of its subcoalitions that in contrast get all their worth (including possible trivial
singleton coalitions).
I normalize three-player cooperative games by focusing in characteristic functions

v : CL→ [0, d] with
v (1) = 0, v (2) = 0, v (3) = 0, a
v (13) = a, v (23) = b, v (12) = c, v (123) = d,
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where d = 1 and, for example, v1 is used instead of v({1}).

5 A Multistage Game with Simultaneous Negoti-
ation Statements

As negotiation statements are about a payoff relevant multistage game which in turn
is derived from the A-Mmodel, I first define useful concepts in these two base models.

5.1 The A-M Model

Consider gN , where N = 3, i.e., g = {(1, 2) , (2, 3) , (1, 3)}. The rule of order according
to which pairs of players propose links in A-M can be represented by the function
ρ∅ : g

3 → {1, 2, 3}. Wlg., I will assume a fixed ρ∅, where
ρ∅(12) = 1 ρ∅(23) = 2 ρ∅(13) = 3.
The interpretation is that pair (1, 2) in the initial history as of stage 1 discusses

the first link 12 in the game. If 12 is rejected, 23 follows, and if 23 is in turn rejected,
13 follows. If 13 is rejected the game ends
If a first link ij has just been accepted I will write that a first round of play has

been completed. Suppose that is the case. The rule of order for the left out pairs to
propose a second link in the game,

ρij : g
3\gij → {1, 2}, for i, j ∈ {1, 2, 3}, i 6= j,

is derived from ρ∅ and one has:
ρ12(23) = 1, ρ12(13) = 2,
ρ23(13) = 1, ρ23(12) = 2 or
ρ13(12) = 1, ρ13(23) = 2
depending on either link 12, 23 or 13 being the first to form respectively. The

interpretation is analogous as before. In particular, if all left out pairs reject the game
ends.
If two links have just been accepted, and thus a second round of play has been

completed, the pair not linked yet is next. If the left out pair rejects, the game ends.
If the third round of play has been completed (and thus, three links have formed) the
game ends.
Given ρ∅, an A-M-history is a sequence of links acceptances and rejections. If the

game ends, then an A-M final history is reached. Except for the latter, each history
has an immediate prospective graph−the one that would result if the associated link
being proposed forms. The immediate prospective graph that may result after link
decisions have been made is defined as the next prospective graph. Unless otherwise
stated let, for now on, θ ∈ {∅, il, ilj} i 6= j 6= l, i, j, l ∈ {1, 2, 3}. Also, let k be the
stage of the game one is at and ρ∅ be given. An immediate prospective graph will be
denoted by gθ+ij.
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I assume that the order of ijl matters. Non final histories are then denoted
uniquely by hkAM

¡
gθ+ij

¢
. For example, only h1AM (g

∅+12) stands for the initial history.
If link 12 is rejected, the next history is denoted uniquely by h2AM (g

∅+23) and so on.
History h5AM (g

13+32) , or equivalently h5AM (g
132) , corresponds to link 13 being the

first link to form, following ρ13, link 12 being rejected so that link 32 is next to be
discussed in stage 5. Analogously, h3AM (g

123+13) has third link 13 next to be proposed
in stage 3 after link 12 formed in stage 1 and link 23 was accepted in stage 2.
With respect to payoff outcomes, let gθ be the last graph to form at the end of

the game. Then each player gets her Myerson value in graph gθ. In particular, if in
history hkAM

¡
gilj+ij

¢
link ij is accepted then players get their Myerson value in the

complete graph. Otherwise payoffs are zero.

5.2 The Payoff Relevant Multistage Game

5.2.1 The Abstract model

Actions Sets and Histories I adopt a K+1-multistage game with payoff relevant
observed actions M based in Fudemberg and Tirole (1992).
In the first stage 1, all players m = 1, 2, 3 choose simultaneously from choice sets

Bm,h1 , m = 1, 2, 3. I let the initial history be h1 = ∅ at the start of play. At the end
of each stage, all players observe the stage’s action profile. Let β1 =

¡
β11, β

1
2, β

1
3

¢
be

the stage 1 action profile. At the beginning of stage 2 players know history h1 that
can be identified with β1 given that h1 is trivial. In general, actions for player m
will depend on previous actions, so I let Bm,h2 denote the action set for player m at
history h2. By iteration, histories in general are

hk =
¡
β1, β2, ..., βk−1

¢
,

and Bm,hk is the action set for player m at stage k when the history is hk. I let
K + 1 be the total number of stages in the game. By definition each hK+1 describes
an entire sequence of actions from the start of the game on. I denote HK+1 as the
set of all terminal histories that can be identified with the set of possible outcomes
when the game is played.

Pure Strategies and Payoff Outcomes A pure strategy for player i is a contin-
gent plan on how to play in each stage k for possible history hk. If one lets Hk denote
the set of all stage-k histories, and

Bi,Hk = ∪hk∈HkBi,hk ,
a pure strategy for player i is a sequence of maps {ski }Kk=1, where each ski maps

Hk to the set of player i’s feasible actions Bi,Hk (i.e., satisfies ski (h
k) ∈ Bi,hk for all

hk ∈ Hk). The set of all pure strategies for player i in the payoff relevant multistage
game is denoted by Si
A sequence of actions for a profile for such strategies s ∈ S is called the path of

the strategy profile, where S is the set of all strategy profiles: the stage 1 actions
are β1 = s1 (h1). Stage 2 actions are β2 = s2

¡
β1
¢
. The stage 3 actions are β3 =
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s3
¡
β1, β2

¢
and so on. Since the terminal histories represent an entire sequence of

play or path associated with a given strategy profile, one can represent each players’
corresponding overall’s payoff as a function ui : H

K+1 → R. Abusing notation, I
denote the payoff vector to profile s ∈ S as u(s) = u

¡
hK+1

¢
, as one can assign an

outcome in HK+1 to each strategy profile s ∈ S.

Nash Equilibrium A pure-strategy Nash equilibrium in this context is a strategy
profile s such that no player i can do better with a different strategy or, using standard
Fudemberg and Tirole’s (1992) notation, ui(si, s−i) ≥ ui(s

0
i, s−i) for all s

0
i ∈ Si.

Subgame Perfect equilibrium Since all players know the history hk, of moves
before stage k, one can view the game from stage k on with history hk as an extensive
form game in its own and denote it by M

¡
hk
¢
. To define the payoff functions in this

game, note that if the sequence of actions or path in stages k through K are βk

through βK, the final history will be hK+1 = (hk, βk, ..., βK). The payoffs for player
i will be ui(hK+1).
Strategies in M

¡
hk
¢
are defined in a way where the only histories one needs

consider are those consistent with hk. Precisely, any strategy profile s of the whole
game induces a strategy profile s|hk on anyM ¡

hk
¢
. For each i, si|hk is the restriction

of si to the histories consistent with hk. One denotes the restriction profile set by S|hk.
Let histories hK+1 be such that hK+1 = (hk, βk, .., βK) and the associated subset

of HK+1 be denoted byHK+1(hk). As one can assign an outcome inHK+1(hk) to each
restriction profile s|hk where s ∈ S, the overall payoff vector to the restriction s|hk,
will be denoted abusing notation by u(s|hk). Thus, one can speak of Nash equilibria
of M

¡
hk
¢
.

A strategy profile s of a multi-stage game with observed actions M is a subgame-
perfect equilibrium if, for every hk, the restriction s|hk toM ¡

hk
¢
is a Nash equilibrium

of M
¡
hk
¢
.

5.2.2 Interpretation

I interpret the abstract model as a modification of the A-M model. In history h1, I
define a next prospective graph stage outcome function that depends on an element
of the stage action profile set Bh1 and the initial immediate prospective graph g∅+12

as follows:
First, let the stage 1 payoff pair set for agent m = 1, 2 be
Bm,h1 = {βm = (β(1), β(2)) |β(1) ≥ 0, β(2) ≥ 0} ,
i.e., payoff pairs for agent m, are restricted to be two non-negative payoff propos-

als: one for player 1, β(1), and one for player 2, β(2).
For player 3, the choice set B3,h1 is the singleton "do nothing", which I denote as

choosing payoff proposal "(0, 0)".
Player m’s payoff pair proposal is feasible, iff
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βm(1) + βm(2) = φg
∅+12

1 + φg
∅+12

2 , m = 1, 2.
In words, proposal pairs by player m are feasible, iff they add up to the sum of

both agents’ (1 and 2) Myerson values in the immediate prospective graph g∅+12.
Proposals coincide iff β1 = β2. Proposals match for player’s 1 and 2, iff their

proposals are feasible and coincide. A payoff proposal by player m is called an uni-
lateral rejection if βm is not feasible. I define β to be a proposal match iff proposals
for player’s i and j match. Otherwise β is not a proposal match.
With these definitions, in history h1, the stage game link outcome and the next

prospective graph−as defined in the A-M model−outcome depend on proposals cho-
sen as follows. Link 12 forms if proposals match and so does graph g∅+12. The next
prospective graph is g12+23 following the A-M rule of order. If payoff proposals don’t
match, link 12 is rejected and the next pair in the rule of order ρ∅ follows, that is link
23 is proposed. The next prospective graph in this case is g∅+23.
It will be useful to index a history in the payoff relevant multistage game by its

immediate prospective graph and the complete or partial sequence of payoff proposals
that led to it as link, next prospective graph and payoff outcomes may depend on
them.
The initial history is then arbitrarily indexed as h1

g∅+12(∅). A generic history in any

stage k that had the sequence
³
β1, .., β(k−1)

´
and led to immediate prospective graph

gθ+ij is denoted by hk
gθ+ij(β1,..,β(k−1))

. Whenever much specificity is not necessary, one

writes hk
gθ+ij(β(k−1))

, hkgθ+ij(.) or even hk(.).

In general, the stage k payoff proposal pair set in history hkgθ+ij(.) for playerm = i, j
is equal to:

Bm,hk
gθ+ij(.)

= {βm = (β(i), β(j)) |β(i) ≥ 0, β(j) ≥ 0} .
For the third player l, the choice set is the singleton "do nothing", which we

denote as proposing "(0, 0).
The payoff action profile set for players i, j and l is denoted by
Bhk

gθ+ij(.)
=
n
Bm,hk

gθ+ij(.)

o
m=i,j,l

where Bl,hk
gθ+ij(.)

is trivial.

But for gθ+ij = gN , player i’s payoff pair proposal is feasible, iff
βi(i) + βi(j) = φg

θ+ij

i + φg
θ+ij

j .

If gθ+ij = gN , I define there to be only one feasible proposal pair, that associated
to the Myerson values in the complete graph. This is given by

βm = (β(i), β(j)) =
³
φg

N

i , φg
N

j

´
,m = i, j.

As before, β is a proposal match iff proposals for player’s i and j match. Some-
times, I refer to a proposal match and its components by simply β and (β(i), β(j))
instead of β and£

(βi(i), βi(j)) ,
¡
βj(i), βj(j)

¢
, βl
¤
respectively.
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In history hkgθ+ij(.), link ij forms if proposals match and so does graph gθ+ij. If
payoff proposals don’t match, link ij is rejected. If that is the case according to the
A-M game, only the next pair in the rule of order ρ∅ may follow. Analogously, a next
prospective graph may follow or not.
Following the A-M game, if the game ends, all agents move "nothing", a vector of

zeros 0, thereafter in each stage until stage K. Outcomes are non existent or trivial
as links cannot be formed anymore. If the game ends at stageK then the final history
K + 1 follows.
Payoffs outcomes are realized if the game ends. In that case, the last pair that

formed a link receives its payoff proposal match and the third player receives her
Myerson value in the resulting last graph.
Formally, the overall’s payoff function u = (u1, u2, u3) is constructed from payoff

functions ν in all possible non final histories as follows:
If the immediate prospective graph is the complete graph, that is, the associated

history hkgθ+ij(.) is such that g
θ+ij = gN , and link ij forms, then the three players get

their Myerson value in the complete graph, i.e., player m gets νm,hk
gθ+ij(.)

¡
βk
¢
= φg

N

m

for m = i, j, l,
where βk is the proposal match that leads to gN .
Suppose i 6= j 6= l, i, j, l ∈ {1, 2, 3}.
Let θ = ilj. Suppose at history hkgθ+ij(.), β

k is not a proposal match and thus link
ij does not form and hence, the game ends, then the stage payoffs for players i, j and
l are given by

νi,hk
gθ+ij(βk−1)

¡
βk
¢
= φg

θ

i ,

νj,hk
gθ+ij(βk−1)

¡
βk
¢
= βk−1 (j) and

νl,hk
gθ+ij(βk−1)

¡
βk
¢
= βk−1 (l) ,

where βk−1 is the last proposal match that occurred in stage k− 1 where the last
link lj was accepted and thus gθ formed.
Analogously, let θ = il. Suppose that βk is not a proposal match and that the

game would end in such a case, then payoffs are
νi,hk

gθ+ij(βk−2)

¡
βk
¢
= βk−2 (i) ,

νj,hk
gθ+ij(βk−2)

¡
βk
¢
= φg

θ

j and

νl,hk
gθ+ij(βk−2)

¡
βk
¢
= βk−2 (l) ,

where k − 2 is the stage where the last proposal match, βk−2, occurred.
Let θ = ∅. Suppose that βk is not a proposal match and that the game would

end in such a case, then payoffs are
νh3

g∅+13(.)

¡
β3
¢
=
³
φg

∅

1 , φg
∅

2 , φg
∅

3

´
= (0, 0, 0),

where it is clear that k = 3 and that the first (second) component in the vector
corresponds to player 1’s (2’s) payoff. In any other k = 1, ...K stage history payoffs
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are zero.
There is no discounting. Thus, player m0s, for m = 1, 2, 3, overall payoff at the

hK+1 terminal history that has as past history the outcome where the game "ends"
at stage k ≤ K with a graph gθ, where θ = ilj, is given by

um
¡
hK+1

¢
= νm,hk

gθ+ij(βk−1)

¡
βk
¢
.

For example, uj
¡
hK+1

¢
= βk−1 (j) (See above).

Analogously, if the game ends with a graph gθ, where θ = il, one has
um
¡
hK+1

¢
= νm,hk

gθ+ij(βk−2)

¡
βk
¢
.

If the game ends with a graph gθ, where θ = ∅, one has
u
¡
hK+1

¢
= νh3

g∅+13(.)

¡
β3
¢
=
³
φg

∅

1 , φg
∅

2 , φg
∅

3

´
= (0, 0, 0).

If the game ends with a graph gθ+ij = gN then
um
¡
hK+1

¢
= νm,hk

gθ+ij(.)

¡
βk
¢
= φg

N

m

where, as pointed out earlier on, βk is a proposal match.

5.2.3 Existence of Multiple Equilibria

Whenever individual action sets are continuous in an extensive form game, there is no
assurance there will be subgameperfect equilibria. In my case, one can show existence
by construction. Wlg., one can restrict the search to pure strategies as mixed action
stages, mixed payoff proposals, would have zero probability of inducing any payoff
proposal match. Once this is done, its not hard to see that this "divide-the-dollar-
like" multistage game has infinite equilibria.

5.2.4 Vectors of Correlated Strategies

I will be interested in defining negotiation statements as a vector of correlated strate-
gies. As mixed payoff proposals would have zero probability of inducing any payoff
proposal match, the following formalization that uses my definition of correlated
strategies is wlg.
A vector of correlated strategies is a sequence of maps {ωk}Kk=1, where each ωk

maps Hk to the set of correlated strategies on elements of BHk (i.e., ωk(hk) is a
correlated strategy on Bhk for all hk ∈ Hk). I denote by W |h1 the set of all vectors
of correlated strategies in history h1.
Given ω|h1 ∈ W |h1, I am interested in the probability [ω|h1] (s) of the path¡

β1, β2, ..., βK
¢
corresponding to strategy profile s ∈ S. This will be given by the

expression
[ω|h1] (s) = ω1h1

¡
β1
¢ ∗ ω2

(β1)

¡
β2
¢ ∗ ω3

(β1,β2)

¡
β3
¢ ∗, ..., ∗ωK

(β1,β2,...,βK−1)

¡
βK
¢
.

Let ω|hk ∈ W |hk be the set of all vectors of correlated strategies in the sub-
game that begins in history hk. It will be also of interest to know the probability£
ω|hk¤ ¡s|hk¢ of the path ¡hk, βk, ..., βK¢ corresponding to the restriction s|hk of s ∈ S
on M

¡
hk
¢
for any hk ∈ Hk for all k. This will be given by the expression
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£
ω|hk¤ ¡s|hk¢ = ωk

hk

¡
βk
¢ ∗ ωk+1

(hk,βk)

¡
βk+1

¢ ∗, ..., ∗ωK

(hk,βk,...,βK−1)

¡
βK
¢
.

5.3 Sequentially Nash Coherent Plans

I want to add endogenous effective Nash cooperation with communication−as defined
at the end 3.3 based on 3.2.3−each time pairs of players discuss a link in the payoff
relevant multistage game.
In order to do so, I assume that at every relevant "history" of the associated

communication game a player m = i, j, l that moves non trivially can formulate a
negotiation statement using a partial communication technology. These statements
are represented for simplicity by correlated strategies about immediate payoff pro-
posals and future joint payoff relevant strategies in "corresponding histories" in the
payoff relevant game. Different vectors of correlated strategies that are enunciated at
different stages of the communication game by the same player may be implemented
by having respectively different mediators that, at each stage, make (wlg.) a pub-
lic announcement or recommendation observed by all players. For simplicity in the
notation, the mediating technology will be "implicit".
Next, I denote the set of future joint payoff relevant strategies at stage k = K in

the histories where the immediate prospective graph is the complete one, that is, in
hKgN (.) with gN = gθ+ij, as

×ZhK
gN (.)

=
Y
βK

0·
hK
gN (.)

,βK
¸,

where βK ∈ BhK
gN (.)

. This is the Cartesian product of trivial action sets, three

dimensional 0-vectors, corresponding to all final histories hK+1(.) =
h
hKgN (.), β

K
i
that

follow if hKgN (.) would be reached and some β
K is played.

If hk(.) is a trivial history where players move nothing, and indexing by an imme-
diate prospective graph is not appropriate, and k = K, one has ×ZhK

(.)
=0. If instead

k < K then ×Zhk
(.)
= S|

h
hkgN (.),0

i
, the restriction of S to history

h
hkgN (.),0

i
.

For all other histories, one has
×Zhk

gθ+ij(.)
=
Y
βk

S|
h
hkgθ+ij(.), β

k
i
.

Let hk
0
(.)/
h
hkgθ+ij(.), β

k
i
, with k0 ≥ k, be a history induced by

h
hkgθ+ij(.), β

k
i
. Such a

induced history is one that can be reached following hkgθ+ij(.) at substage k
0 and after

βk was played, including history
h
hkgθ+ij(.), β

k
i
.

It will be useful to group the components of zk ∈ ×Zhk
gθ+ij(.)

according to all

histories induced by
h
hkgθ+ij(.), β

k
i
, where βk ∈ Bhk

gθ+ij(.)
is given. For these purposes,

I define the group component
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zk
hk
0
(.)
/

·
hk
gθ+ij(.)

,βk
¸

to be an element of
×Z

hk
0
(.)
/

·
hk
gθ+ij(.)

,βk
¸ = S|

h
hkgθ+ij(.), β

k
i
.

Such a component is an element of the Cartesian product of the action sets of all
such induced histories.
Note that

×Z
hk
0
(.)
/

·
hk
gθ+ij(.)

,βk
¸ = B·

hk
gθ+ij(.)

,βk
¸ ×

Ã
×Z·

hk
gθ+ij(.)

,βk
¸
!
.

This implies that a group component zk
hk
0
(.)
/

·
hk
gθ+ij(.)

,βk
¸ is an element of the Carte-

sian product of the immediate payoff pair proposals set in history
h
hkgθ+ij(.), β

k
i
and

this history’s set of future joint payoff relevant strategies.
Also, the component of zk ∈ ×Zhk

gθ+ij(.)
that stands for action sets in hk

0
(.) will be

denoted as zk
hk
0
(.)

.

Now one can define utility functions at earlier histories hk(.) where the arguments
are immediate payoff relevant actions and future joint payoff relevant strategies by
using:

Uhk
(.)

¡
βk, zk

¢
= u(s|hk),

where s|hk = ¡βk, zk¢ . This expression refers to the expected utilities for the three
players if βk and subsequently zk ∈ ×Zhk

(.)
are played following hk(.).

To formulate a negotiation problem, I assume that a history of the communi-
cation game (the multistage payoff relevant game with negotiation statements) h̊k(.)
includes in the subscript (.), in addition to a sequence of past payoff relevant actions,
a sequence of past statements

¡
µ1, ..., µk−1

¢
= µk

−
and a sequence of past recommen-

dations by different mediators. It is clear that any such history has a corresponding
history in the payoff relevant game. For the most (See below), the notation on rec-
ommendations is left implicit. One should set B = Bhk

(.)
and ×Z = ×Zhk

(.)
and

U = Uhk
(.)
.

The negotiation problem is trivial in histories where players move nothing.
Wlg., and as a way of illustration, assume link ij is accepted, and the rule of order

has next links il, and jl being proposed in that order, link il is rejected and link jl
is accepted. One defines O-F plans in histories h̊k

gijl+il(.).
The set of future joint strategies×Zh̊k

gijl+il(.)

= ×Zhk
gijl+il(.)

is the Cartesian product

of infinitely many one point sets (Note that Bh̊k
gijl+il(.)

= Bhk
gijl+il(.)

). So the tenability

correspondence in a history h̊k
gijl+il(.) of the communication game is trivially defined

as

Qh̊k
gijl+il(.)

¡
µk
¢
= f

×Z
h̊k
gijl+il(.) .
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Mostly, I will write only f×Zk , in this case a singleton, an infinite Cartesian
product of functions that put probability one on the unique element of the trivial
action set profiles at each future history of the game without communication (This
latter game is used for simplicity in the notation. See below). One should set the
tenability correspondence Qµk− (µ), in section 3, equal to Qh̊k

gijl+il(.)

¡
µk
¢
.

For any associated given strategic form game
³
Bk
i ×Bk

j , π
µk
´
, where µk =

¡
σk, ζk

¢ ∈
fk, to be well defined, one sets for any given βk ∈ Bhk

gθ+ij(.)
(or Bh̊k

gijl+il(.)

) and the

unique trivial zk ∈ ×Zk£
ζk
¡
zk
¢ |βk¤ = 1.

Recall that
£
ζk
¡
zk
¢ |βk¤ is the probability that Uk

¡
βk, zk

¢
is obtained if play is

according to a given ζ and
¡
βi, βj

¢
is played.

The ouside options in the associated plan bargaining problem are ψk =
¡
xki , x

k
l

¢
that has as associated degenerate disagreement plan bµk = ³bσbβk ,bζk´ where bσkbβk is a
degenerate correlated strategy that puts probability 1 on bβk which is composed by
given (wlg.) unilateral rejections. As deviating yields the same expected payoffs, bβkil
is a Nash equilibrium of

³
Bk
i ×Bk

l , π
bµk´, so bµk is tenable and reliable and hence the

outside options belong to the feasible set.
One completes the formulation of the negotiation problem in the notation of sec-

tion 3 in history h̊k
gijl+il(.), if the sequence of past statements is given by µ

k− , by setting
Φil,µk− = Φh̊k

gijl+il(µk−),
or simply Φk.

Recall that to each history in the communication game h̊kgijl+il(.), there are associ-
ated future-requests by pairs ij and jl that formed in that order. By assumption 2,
the ones of pair (i, l) that rejected its link are ignored. Suppose that (F,Φ, ψ)̊hk

gijl+il(.)

is well defined. Assumption 1 and 2 ensure that ηf
h̊k
gijl+il(.)

¡
Φk, ψk

¢
can be defined and

exists for any such possible history.
In general, suppose that one has inductively defined a non empty O-F plan set

in any h̊kgθ+ij(.), denoted by ηf
h̊k
gθ+ij(.)

¡
Φk, ψk

¢ 6= ∅, for all θ ∈ {∅, il, ilj} i 6= j 6= l,

i, j, l ∈ {1, 2, 3}.
Let µk =

¡
σk, ζk

¢
. As it was done with zk ∈ ×Zhk

gθ+ij(.)
, one groups the components

of ζk ∈ f×Zk according to all histories induced by
h
hkgθ+ij(.), β

k
i
, where βk ∈ Bhk

gθ+ij(.)
is

given. Formally, one lets ζk be an element ofY
βk∈B

hk
gθ+ij(.)

W | £hk, βk¤
and denotes the βk-component of ζk by
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ζk
hk
0
(.)
/

·
hk
gθ+ij(.)

,βk
¸ ∈W | £hk, βk¤ ,

where W | £hk, βk¤ is the set of vectors of correlated strategies in the subgame in
history

£
hk, βk

¤
. Also the component of ζk associated to a correlated in the action

profile set in hk
0
(.) will be denoted as ζ

k
hk
0
(.)

.

Let µk =
¡
σk, ζk

¢
have ζk ∈ Qh̊k

gθ+ij(.)

¡
µk
¢
, that is, µk is tenable. The future-

request ζk should be such that for any βk ∈ Bhk
gθ+ij(.)

ζk
hk
0
(.)
/

·
hk
gθ+ij(.)

,βk
¸ ∈ ηf

h̊k+1
(.)

¡
Φk+1, ψk+1

¢
,

where h̊k+1(.) =
h̊
hkgθ+ij(.), β

k, µk, rk
i
, for all recommendations rk ∈ Bhk

gθ+ij(.)
. That

is, any group component of ζk, should equal the identical O-F plans in the histories
that follow h̊kgθ+ij(.), or better yet h̊

k
gθ+ij(µk−)

, after players i and j formulated plan µk,

and actions played were βk and any recommendation occurred. Such O-F plans are
required to be identical because the assumption is that correlated strategies in future
contingencies as of history h̊k

gθ+ij(µk−)
in the communication game may only differ

depending on past sequences of payoff relevant actions, that is, they are the same
irrespective of past recommendations by different mediators and these recommenda-
tions’ corresponding past negotiation statements by pairs different and younger than
the current pair in h̊k

gθ+ij(µk−)
.7 From now on, to save on notation, I will ignore in-

dexing histories in the communication game explicitly by past recommendations and
write instead

h̊
hk
gθ+ij(.)

, βk, µk
i
, whenever indexing by µk

−
is not relevant.

It is implicit that if one of such histories h̊k+1(.) may be such that the game ends if

link ij is rejected, ηf
h̊k+1
(.)

¡
Φk+1, ψk+1

¢
= fk, a trivial plan, as the set of stage actions

thereafter is a vector of zeros. The same is done for other trivial histories where
players move nothing.
By the inductive assumption Qh̊k

gθ+ij(.)

¡
µk
¢ 6= ∅.

For any associated given strategic form game
³
Bk
i ×Bk

j , π
µk

ij

´
, where µk =

¡
σk, ζk

¢ ∈
fk, to be well defined, one sets for any given βk ∈ Bhk

gθ+ij(.)
and zk ∈ ×Zk£

ζk
¡
zk
¢ |βk¤ = £ω|hk¤ ¡s|hk¢,

where the vector of correlated strategies ω|hk = µ̈k =
³
σ̈k
βk
, ζk
´
puts probability

1 on βk in the immediate proposal game and is consistent with ζk thereafter. Also,
s|hk = ¡βk, zk¢ .
As before, the ouside options in the associated plan bargaining problem are ψk =

7It is clear that correlated strategies may be different depending on the µk
−
associated to

h̊k
gθ+ij(µk−)

.
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¡
xki , x

k
j

¢
that has as an associated tenable and reliable bµk = ³bσbβk ,bζk´ , i.e., bµk ∈ efk,

where bβk is composed, wlg., by given unilateral rejections.
In general, history h̊kgθ+ij(.) has future-requests by pairs corresponding to links

in θ that formed in a given order. The ones of pairs that rejected a link are ig-
nored. Assume that (F,Φ, ψ)̊hk

gθ+ij(.)

is well defined. Assumption 1 and 2 ensure that

ηf
h̊k
gθ+ij(.)

(Φ, ψ) exists for any possible history.

Suppose O-F plans exist for all histories, only then our inductive assumption is
justified. Then, one says that sequentially Nash coherent plans exist at the beginning
of play.
Basically, to check for existence of sequentially Nash coherent plans, it suffices to

show that the feasible set in plan bargaining games in all histories is closed. The
proof in section 6 is by construction.

6 Existence Theorem

In each history h̊kgθ+ij(.), it will be useful to distinguish tenable expected payoffs
that are feasible by matching payoff proposals and hence forming a link. Formally,¡
xki , x

k
j

¢ ∈ PMF k, the proposal match payoff feasible set in h̊kgθ+ij(.), if there exists a

payoff proposal match βk ∈ Bhk
gθ+ij

and µk =
³
σk
βk
, ζk
´
∈ fk, i.e., µk is tenable, such

that πµ
k

ij

¡
βkij
¢
=
¡
xki , x

k
j

¢
. The set of strong Pareto efficient points of PMF k is the

frontier of PMF k.
Plan bargaining problems (F,Φ, ψ)̊hk

gθ+ij(.)

are classified in two types. In type 1,

there exists a better payoff proposal match.
There exists a better payoff proposal match if some element of PMF k is as least as

good as the outside options, that is,
¡
xki , x

k
j

¢ ≥ πbµkij
³bβkij´, for some ¡xki , xkj¢ ∈ PMF k.

Note that the βkij associated to a better payoff proposal match is a Nash equi-

librium of
³
Bk
i ×Bk

j , π
µk
´
and so the plan µk =

³
σk
βk
, ζk
´
is tenable and reliable.

By definition, such
¡
xki , x

k
j

¢
belongs to the feasible set. Any other action profile β̈

k

type not analyzed so far has β̈
k

ij that is not a Nash equilibrium of
³
Bk
ij ×Bk

j , π
µ̈k
´
.

Thus, feasible sets are convex combinations of ouside options and payoffs associated
to better payoff proposal matches. Such convex combinations have corresponding non
degenerate tenable and reliable plans.
In type 2, there are not better payoff proposal matches and the only feasible payoff

pair is the one associated to the disagreement plan, hence the associated link will not
form. Payoff proposal matches associated to elements in PMF k don’t induce Nash
equilibria in their associated

³
Bk
i ×Bk

j , π
µk
´
as it is always better to unilateral reject.
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As it will become clearer in the construction proof, the existence of these two
types imply that feasible and IRF sets in each history coincide.

Theorem 1: Sequentially Nash coherent plans exist for three-player nor-
malized cooperative games with the Myerson value as a payoff allocation rule.
Proof:
As feasible and IRF sets coincide, for the O-F bargaining game to be well defined

at the initial history it suffices to show that the IRF sets are closed in any possible
future history.
1. The Plan Bargaining Problem in h̊6g132+12(.)
Outside options in histories with the same last proposal match β5, h̊6

g132+12(β5)
, are¡

ψ61, ψ
6
2

¢
=
¡
φ1321 , β5 (2)

¢
. The PMF 6 consists only of payoffs in the complete graph³

φg
N

1 , φg
N

2

´
.

Note that player 1 can in general do better in the complete graph because φ1321 ≤
φg

N

1 ⇔ 0 ≤ c, (See diagram in Appendix). Recall that β5 (3) + β5 (2) = φg
132

3 + φg
132

2 .
Denote φg

132

3 + φg
132

2 − φg
N

2 = 2d+a+b−c
6

> 0 by β
5
(3) and φg

N

2 by β
5
(2) .

Thus, the bargaining game is of type 2 iff β5 (2) > β
5
(2) = φg

N

2 . The IRF 6

consists just of ψ612. Otherwise, the IRF
6 contains the unique element of the PMF 6,³

φg
N

1 , φg
N

2

´
, that now is associated to a better proposal match, the one that leads

to link 12 forming and hence the complete graph. The IRF 6 consists of convex
combinations of the outside options

¡
ψ61, ψ

6
2

¢
and

³
φg

N

1 , φg
N

2

´
.

In any case, the IRF 6 is closed, thus, assumption 1 and 2 ensure that for any
h̊6g132+12(.) one can compute η

f

h̊6
g132+12(.)

¡
Φ6, ψ6

¢
.

2. The Plan Bargaining Problem in h̊5g13+32(.)

Outside options in histories h̊5
g13+32(β3)

are
¡
ψ53, ψ

5
2

¢
=
³
β3 (3) , φg

13

2 = 0
´
.

It suffices to check that the IRF 5 is closed in bargaining games of type 1. In what
follows of (2) I assume that β3 (3)) induces such type. Let µ̆5 =

³
σ̆5
β̆
5, ζ̆

5
´
∈ ef5, where

µ̆k stands for a tenable and reliable plan in stage k. Assume history h̊6
g132+12

³
µ̆5,β̆

5
,β3
´

is reached.
From 1, whenever β̆

5
(2) > β

5
(2) , µ̆6 ∈ ηf

h̊6
g132+12(µ̆5,β̆5,β3)

¡
Φ6, ψ6

¢
is a disagreement

plan, i.e., µ̆6 = bµ6. By assumption, player 3 and 2’s µ̆5 = ³
σ̆5
β̆
5 , ζ̆

5
´
has to future-

request bµ6, formally, ζ̆5
hk

0
(.)
/

·
h5
g13+32(β3)

,β̆
5
¸ = bµ6.Associated payoffs πµ̆5

32,̊h5
g13+32(β3)

³
β̆
5

32

´
=

β̆
5

32 are illustrated in figure 1 by the segment in bold not including β
5

32 (Note that in
the simple majority game c > 0 and β

5
(2) = φg

N

2 = 2
6
).

Assume that c = 0 (See theorem 2 for the case c > 0) and hence player 1 in
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such h̊6 is indifferent to further linking. If µ̆5 has β̆
5
(2) ≤ β

5
(2), the bargaining

game in h̊6
g132+12

³
µ̆5,β̆

5
,β3
´ is of type 1, however, it is not essential. By assumption 1,

future-requests in µ̆5 of O-F plans in h̊6
g132+12

³
µ̆5,β̆

5
,β3
´ depend on µ3, so it is useful to

write h̊6
g132+12

³
µ3,µ̆5,β̆

5
,β3
´. If µ̆6 is an O-F plan, then its promise-request σ̆6 may entail

a payoff proposal match, the given unilateral rejection or a "mix".
At first glance, there may be a jump in payoffs whenever β̆

5
(2) = β

5
(2) de-

pending on µ3. However, in any case, payoffs are always πµ̆
5

32,̊h5
g13+32(µ3,β3)

³
β̆
5

32

´
=³

β
5
(3) , β

5
(2)
´
.

If β̆
5
(2) < β

5
(2) payoffs πµ̆

5

32,̊h5
g13+32(µ3,β3)

³
β̆
5

32

´
are equal to convex combinations

between
³
β
5
(3) , β

5
(2)
´
and

³
β̆
5
(3) , β̆

5
(2)
´
depending on µ3.

It follows that in any h̊5
g13+32(µ3,β3)

, the IRF 5 is closed. Also, the IRF 5 frontier

has right side endpoint
³
x
5
3, x

5
2

´
in the plane (x53, x

5
2)equal to or to the southeast of

β
5

32 (depending on µ3). Thus, ηf
h̊5
g13+32(µ3,β3)

¡
Φ5, ψ5

¢
can be computed.

3. Plan Bargaining Problem in h̊4g13+12(.)
The outside options in any h̊4g13+12(.) depend on β3 and µ3 (See 2) as follows:

ψ412 = πbµ4
12,̊h4

g13+12(β3,µ3)

³bβ412´ =X
β5

σ̆5
¡
β5
¢
πµ̆

5

12,̊h5
g13+32(β3,µ3,bµ4,bβ4)

¡
β532
¢

(∗)

where µ̆5 = bζ4
hk
0
(.)
/

·
h4
g13+12(β3)

,bβ4¸, the group component of bζ4 that contains correlated
strategies in histories induced by

·
h4
g13+12(β3)

, bβ4¸ . Also, as bµ4 is tenable, µ̆5 is O-F
in h̊5

g13+32
³
β3,µ3,bµ4,bβ4´, i.e.,

µ̆5 ∈ ηf
h̊5
g13+32(β3,µ3,bµ4,bβ4)

¡
Φ5, ψ5

¢
.

Analogously as in h̊5g13+32(.), one can prove (not straightforward) that the IRF
4

set is always closed in any h̊4g13+12(.), assuming now b = 0. Hence, one can compute

ηf
h̊4
g13+12(.)

¡
Φ4, ψ4

¢
.

4. The Plan Bargaining Problem in h̊3g∅+13(.)

Players 1 and 2s’ outside options are ψ313 =
³
φg

∅

1 , φg
∅

3

´
= (0, 0) . As for (1), (2)

and (3), ef3 can be derived. I argue that the IRF 3 set and frontier are closed if
payoffs in the IRF 3 set are continuous on "appropriate subsets" of the tenable and
reliable set ef3 composed of degenerate plans µ̆3 = ³σ̆3

β̆
3 , ζ̆

3
´
. It can be shown that all
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associated payoffs in such subsets correspond to all what is achievable by degenerate
elements of ef3. Assume ef3 is known.
Back to h̊5

g13+32
³
µ̆3,β̆

3
,bµ4,bβ4´

As x53 ≥ β
5
(3) > 0 and β̆

3
(1) + β̆

3
(3) = φg

13

1 + φg
13

3 = a ≥ 0, different µ̆3 ∈ ef3
that differ in β̆

3
induce a total of three classes of bargaining games (See figure 1,

albeit c > 0):

Class 1: If β̆
3
is such that ψ53 = β̆

3
(3) = x

5
3, player 3 will be indifferent between

forming or not link 32. The bargaining game in h̊5
g13+32

³
µ̆3,β̆

3
,bµ4,bβ4´ will be not essential

but it is of type 1.
Class 2: If β̆

3
is such that β̆

3
(3) < x

5
3, then the bargaining game is of type 1 and

agent 3 is better off if link 32 forms.
Class 3: If β̆

3
is such that β̆

3
(3) > x

5
3, then the bargaining game is of type 2.

The case a = x
5
3 exhibits the first two classes of bargaining games. If a < x

5
3 then

only the second class results. The case a > x
5
3 exhibits the three classes.

Depending on these three ranges of a, one needs to consider at most two "types of
families" of subsets of ef3. Wlg., I focus on the case a > x

5
3 where one can distinguish

two types of families.
Consider the expected payoff function associated to the O-F plan
µ̆5 =

³
σ̆5, ζ̆

5
´
∈ ηf

h̊5
g13+32(µ̆3,β̆3,bµ4,bβ4)

¡
Φ5, ψ5

¢
.

This is given byX
β5

σ̆5
¡
β5
¢
πµ̆

5

12,̊h5
g13+32(µ̆3,β̆3,bµ4,bβ4)

¡
β532
¢

(∗∗) .

As ef3 is known, one can redefine µ̆5 (including σ̆5) and β̆
3
, wlg., as some given

auxiliary function of degenerate plans µ̆3 =
³
σ̆3
β̆
3, ζ̆

3
´
∈ ef3, where ζ̆3 future-requests

µ̆5, and bµ4 and bβ4 are redefined as constant functions of µ̆3. Reinterpret from now on
this payoff function as a function of only µ̆3.

Denote a generic subset of a first type of family of subsets of ef3 by −→ef 3 (Q5). For

any
−→ef 3 (Q5) , if µ́3 6= µ̆3 and µ́3, µ̆3 ∈

−→ef 3 (Q5) , the respective induced tenability
correspondences are such that Q́5 = Q̆5 = Q5. Respective future-requests have O-F
plans µ́5 and µ̆5 with ζ́

5
= ζ̆

5
= ζ5 (Q5) , a function of Q5, and with promise-requests

that may be mixes over proposal matches only , that is, any β ∈ Bh5
g13+32(.)

that has

σ́5 (β) > 0
¡
σ̆5 (β) > 0

¢
is a proposal match. Also, β́

3
(3) 6= β̆

3
(3) belong to the

closed interval
h
0, x

5
3

i
. Recall from 2 that Q5 depends on µ̆3, hence there is a family

of subsets of the first type. Each subset in the family is indexed by Q5. Assume for

now that appropriate subsets of
−→ef 3 (Q5) exist with an appropriate metric. One can
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show (See below) that the payoff function above in equation (∗∗) is continuous on
any appropriate subset of

−→ef 3 (Q5) .
As player 1’s payoff is always constant and equal to ϕg132 , one has also thatX
β5

σ̆5
¡
β5
¢
πµ̆

5

h̊5
g13+32(µ̆3,β̆3,bµ4,bβ4)

¡
β532
¢
,

with range on R3, is continuous on any appropriate subset of
−→ef 3 (Q5).

By analogous arguments, this latter payoff function is continuous on any appro-

priate subset of
←−ef 3

³
Q̈5
´
in a second type of family that is derived almost identically

as before: Any such
←−ef 3

³
Q̈5
´
has instead σ́5

β́
5 = σ̆5

β̆
5 = bσ5bβ5, that is, future-requests

in µ́3 and µ̆3 have O-F plans µ́5 and µ̆5 that promise-request the disagreement plan.
Also, β̆

3
(3) 6= β́

3
(3) ∈

h
x
5
3, a
i
.

Graphically, as long as β̆
3
(3) 6= β́

3
(3) different plans, µ́3 and µ̆3, in any given

appropriate subset of
−→ef 3 (Q5)

µ←−ef 3
³
Q̈5
´¶

induce bargaining games with the same

PMF 5 frontier but with different outside options that move along the horizontal axis
in the plane (x53, x

5
2). (See figure 1, albeit c > 0)

Back to h̊4
g13+12

³
µ̆3,β̆

3
´

Using equation (∗) , one obtains
ψ412 = πbµ4

12,̊h4
g13+12(µ̆3,β̆3)

³bβ412´ =X
β5

σ̆5
¡
β5
¢
πµ̆

5

12,̊h5
g13+32(µ̆3,β̆3,bµ4,bβ4)

¡
β532
¢

As the last expression in this equation is now a function of µ̆3, outside options

ψ412 are continuous on any appropriate subset of
−→ef 3 (Q5)

µ←−ef 3
³
Q̈5
´¶

.

I proceed by constructing appropriate subsets of
−→ef 3 (Q5) . Player 2’s outside op-

tion, ψ42 weakly increases (while ψ
4
1 ≤ β

4
(1) is constant, where β

4
is defined analo-

gously as β
5
is) whenever µ̆3 ∈

−→ef 3 (Q5) has a lower β̆
3
(3) ∈

h
0, β

5
(3)
i
. Thus, there

may exist some β̆
3
(3) where player 1 is indifferent between linking or not with agent

2. As before one may distinguish 3 classes of bargaining games depending on parame-
ter cases. Also, one may have to distinguish two different sub-types of conditional (on

Q5) families of subsets of
−→ef 3 (Q5), where subsets in these sub-types of conditional

families are denoted by either
−→ef 3.1 (Q5, Q4) or

−→ef 3.2 (Q5, Q4) . These subsets will have

elements µ̆3 ∈
−→ef 3 (Q5) that future-request on players 1 and 2 a mix over proposal

matches and a disagreement plan respectively and are defined as appropriate subsets

of
−→ef 3 (Q5) .
Consider payoffs associated to O-F plan µ̆4 ∈ ηf

h̊4
g13+12(µ̆3,β̆3)

¡
Φ4, ψ4

¢
32
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X
β5

σ̆4
¡
β4
¢
πµ̆

4

12,̊h4
g13+12(µ̆3,β̆3)

³
β̆
4

12

´
.

As before, after reinterpreting the payoff expression, one can show that this is

continuous on any appropriate
−→ef 3.1 (Q5, Q4) or

−→ef 3.2 (Q5, Q4). Informally, the outside
options ψ412 are continuous on the latter appropriate sets and the NBR payoffs in the
associated bargaining games are continuous on the outside options for a fix PMF 4

frontier (Recall, composition of continuous functions are continuous). So isX
β5

σ̆4
¡
β4
¢
πµ̆

4

h̊4
g13+12(µ̆3,β̆3)

³
β̆
4

12

´
with range in R3.
Analogously, this payoff function is continuous, if necessary, on any element

of two sub-types of conditional families of subsets of
←−ef 3

³
Q̈5
´
, denoted either by

←−ef 3.1
³
Q̈5, Q̈4

´
or
←−ef 3.2

³
Q̈5, Q̈4

´
. (Figure 2, where

³
x
4
1, x

4
2

´
= β

4
, is useful to illus-

trate this claim’s proof).
It follows that πµ̆

3

13,̊h3
g∅+13(.)

¡
β3
¢
is continuous if necessary on any element on these

four conditional families of subsets, for any possible Q5
³
Q̈5
´
.

Note that as β̆
3
varies along a closed interval associated with any given such appro-

priate subset, the only components of µ̆3 =
³
σ̆3
β̆
3 , ζ̆

3
´
that vary are σ̆3

β̆
3 , ζ̆

3

h4
g13+12(β̆3)

=

µ̆4 and ζ̆
3

h5
g13+32(β̆3,bβ4) = µ̆5. It can be shown that any such appropriate subset, now

completely characterized, is a metric space (See a metric in the Appendix) and my
earlier claims on continuity can be justified.
In any h̊3g∅+13(.), convex combinations over the payoffs associated to plans in any

given appropriate subset and the outside options ψ313 yield a closed IRF 3 set and
frontier. So, O-F plans exist.
In turn, the ouside options in any h̊2g∅+23(.) can be derived and the IRF

2 set and
frontier are closed by similar arguments−now assuming, whenever appropriate and
in that order a = 0 and c = 0. O-F plans exist. The same is the case for h̊1g∅+12(.),
assuming whenever appropriate and in that order b = 0 or a = 0. After using the
results in theorem 2, the theorem follows for all parameter values.¥

Theorem 2: If a, b, c > 0, the complete graph never forms.
Proof:
In contrast to part 2 in theorem 1, if β̆

5
has β̆

5
(2) ≤ β

5
(2) , player 1 gains by

forming link 12 and O-F plans don’t depend on µ3 anymore. Bargaining games in
h̊6
g132+12

³
µ̆5,β̆

5
,β3
´ are of type 1.

In particular, if β̆
5
(2) = β

5
(2) the bargaining game in such h̊6 is not essential and
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given that player 2 is indifferent, the bargaining outcome depends on µ̆5. A µ̆5 may
have players 2 and 3 future-request an O-F plan that promise-requests a disagreement
plan in h̊6

g132+12
³
µ̆5,β̆

5
,β3
´, a payoff proposal match or a mix. In the first case, payoffs

πµ̆
5

32,̊h5
g13+32(β3)

³
β̆
5

32

´
would be "assured" to be

³
β
5
(3) , β

5
(2)
´
. In the second case

payoffs are
¡
φN3 , φ

N
2

¢ 6= ³β5 (3) , β5 (2)´ . Note that as φN3 < β
5
(3) and φN2 = β

5
(2) ,

this payoff pair is not in the PMF 5 frontier. These payoffs are not strongly Pareto
efficient. The same is the case if a mix would be future-requested.
If β̆

5
(2) < β

5
(2) , the bargaining game is essential and µ̆5 future-requests in

h̊6
g132+12

³
µ̆5,β̆

5
,β3
´ a proposal match, in which case payoffs are again ¡φN3 , φN2 ¢ .

Thus, the IRF 5 set and frontier are closed in the bargaining game in any h̊5
g13+32(β3)

.

Moreover, it is never credible to have µ̆5 that future-requests a plan that promise-
requests a proposal match in h̊6

g132+12
³
µ̆5,β̆

5
,β3
´ with positive probability as the Nash

Bargaining solution predicts strong Pareto efficient payoffs. Theorem 2 follows as the
analysis for the cases a, b > 0 are similar.¥
As a corollary of theorem 2, the complete graph never forms in strictly superaddi-

tive games. Also, note that any sequentially Nash coherent plan is a subgameperfect
publicly correlated equilibrium (Myerson 1991, pp. 334).

7 Conclusions

This paper adds effective endogenous cooperation possibilities (See end of section 3)
to a modification of the A-M model, where pairs of players bargain non cooperatively
over the sum of their Myerson values in the prospective network. Negotiation state-
ments at each history of the communication game are credible, in most cases, if they
are the outcome of a plan bargaining problem where feasible payoffs are those induced
by tenable and reliable plans. The disagreement tenable and reliable plan promise-
requests link rejection. If one or both bargainers are indifferent to any IRF plan, a
credible plan is the one future-requested by the oldest pair among the past pairs that
successfully cooperated and included one of the indifferent players. Credible state-
ments or sequentially Nash coherent plans, exist and analytical payoffs predicted are
unique.
In a slightly different communication environment, in a preliminary version of this

paper, among other results, it is shown that all payoff predictions in that model are
efficient. I conjecture that the same results hold in the model of this paper.
A first natural future work is that of a non cooperative implementation of my plan

bargaining problem as then the credibility of a plan would not rely on some binding
or commitment element.
It should be relevant to check if sequentially Nash coherent plans can be defined
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and exists whenever payoff allocation rules different than the Myerson value are used
or whenever N players are allowed.

8 Appendix

An Appropriate Metric

Let µ̆3 =
³
σ̆3
β̆
3, ζ̆

3
´
be an element of any given appropriate subset of

−→ef 3 (Q5)µ←−ef 3
³
Q̈5
´¶

. Given σ̆3
β̆
3 define γ ∈ [0, 1] so as to satisfy

γ
¡
φ131 + φ133 , 0

¢
+ (1− γ)

¡
0, φ131 + φ133

¢
= β̆

3

13.

Let ζ̆
3

p =
³
σ̆k, ζ̆

k
´
be the component of ζ̆

3
that corresponds to a history hkgθ+ij(.)

that follows h3g13(.). For each correlated strategy ζ̆
3

p define γ ∈ [0, 1] so as to satisfy
γ
³
φg

θ+ij

i + φg
θ+ij

j , 0
´
+ (1− γ)

³
0, φg

θ+ij

i + φg
θ+ij

j

´
=X

βk∈B
h̊k
gθ+ij(.)

σ̆k
¡
βk
¢
π
ζ̆
3
p

ij,̊hk
gθ+ij(.)(µ̆3,β̆3,...)

³
β̆
k

ij

´
.

Define the vector of gammas associated to µ̆3 as
µ
γ
¡
σ̆3
¢
,
n
γ
³
ζ̆
3

p

´o
p

¶
. The dis-

tance between two different µ̆3 could be given by any standard infinite dimensional
distance between their associated vector of gammas. Such a weird metric is necessary
specially as for the complex IRF frontiers of histories h̊5g13+32(.) and h̊

4
g13+12(.) whenever

c = 0 and b = 0 respectively.
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Diagram: Myerson Values for Normalized Games
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