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Abstract 
 
This paper evaluates differential prize taxation and structural discrimination as a means of 
increasing efforts in the most widely studied contests. We establish that a designer who 
maximizes efforts subject to a balanced-budget constraint prefers dual discrimination, namely, 
change of the contestants’ prize valuations as well as bias of the impact of their efforts. 
Optimal twofold discrimination is often superior to any single mode of discrimination under 
any lottery. Surprisingly, in the general N-player contest game, under the prototypical simple 
lottery, it can yield the maximal possible efforts: the highest valuation of the contested prize. 
If a single mode of discrimination is allowed, then differential taxation is superior to 
structural discrimination. 
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1. Introduction 

In the vast contest literature that has numerous applications (internal labor market 

tournaments, promotional competitions, R&D races, rent-seeking, political and public 

policy competitions, litigation and sports), the lotteries proposed by Tullock (1980) 

are most commonly assumed as the contest success function (CSF), see Konrad 

(2009) and references therein. In two-player contests, these logit functions take the 

form 

(1)                       
 



 21

1
211 ),(

xx

x
xxp


  

Usually, 01 x  and 02 x  are interpreted as the efforts of the contestants 1 and 2 

and 1p  as the winning probability of contestant 1 (if 021  xx  then 5.01 p ). The 

winning probability of contestant 2 is equal to 12 1 pp  . The exponent   is a 

parameter that represents the effect of a real unit of investment on the winning 

probability of a contestant while the asymmetry between the impact of the 

contestants’ efforts is captured by the parameter  , 0 . One reason for the 

popularity of this CSF is that it has appealing axiomatization, see Skaperdas (1996), 

Clark and Riis (1998), Jia (2008, 2010), Corchon and Dahm (2010), Hirshleifer and 

Riley (1992), Fullerton and McAfee (1999), Baye and Hoppe (2003)1. The special 

attention given to the simple lottery CSF, where 1  and 1 , can be justified, as 

recently argued by Franke et al. (2011), on the grounds that it lends itself to a very 

appealing competitive-market interpretation.  

 In our setting, the exponent   is viewed as a given parameter and it is 

assumed that 20   , which guarantees, as is well known, see Konrad (2009) and 

references therein, that the contest game has a unique pure-strategy equilibrium. 

However, we do enable the contest designer to control the parameter  , as first 

suggested in Lien (1986), (1990) and later by Clark and Riis (2000). This means that 

the designer can apply structural discrimination that affects the contestants’ winning 

probabilities (the same efforts may yield different winning probabilities, depending on 

the value of this parameter). By (1), a reduction in   increases the bias in favor of 

contestant 1, who is assumed to be, with no loss of generality, the more motivated 

contestant (the one with the higher prize valuation). Furthermore, 10    implies a 

                                                            

1 Munster (2009) has recently generalized the axiomatic approach to group CSFs. 
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bias in favor of contestant 1, with an extreme bias when 0  (contestant 1 is the 

certain winner,   1, 211 xxp ). When 1  the contest is fair, there is no bias. When 

1  the bias is in favor of contestant 2. The empirical relevance of such 

discrimination in contests with a logit lottery is thoroughly discussed in Epstein et al. 

(2011a), Franke (2012) and Franke et al. (2011).2 Epstein et al. (2011b) have recently 

shown that structural discrimination is effective; it is useful as a means of increasing 

the contestants’ efforts when applied independently. 

The contest designer can also carry out another type of discrimination that 

affects the contestants’ incentives, not by controlling the parameter   (in which case 

1 ), but by directly changing the contestants’ prize valuations (their rewards in 

case of winning the contest), thereby increasing or decreasing the gap between these 

valuations. Such a policy is usually based on a “give and take” mechanism in case of 

winning, which is henceforth referred to “differential prize taxation”. When the 

designer faces a balanced–budget constraint, the expected net resources transferred to 

the contestants applying this type of discrimination must be equal to zero. Note that 

the budget of the contest designer does not include the awarded prize and the exerted 

efforts of the contestants. The former assumption is plausible because the awarded 

prize is often not monetary, taking the form of some privilege, such as a monopoly 

permit. The latter assumption is plausible because the exerted efforts may not be 

monetary, they can be monetary, but not transfers to the designer and, finally, the 

efforts can be monetary transfers, but not part of the budget (illegal transfers). One 

simple form of a tax scheme involves transfers that are taken from the winner and 

given to the loser. The transferred amounts depend on the identity of the winner. 

Clearly, this tax scheme automatically satisfies the balanced-budget constraint, 

independent of the contestants' winning probabilities and even if the designer holds 

just one contest. Yet another possible tax scheme consists of two numbers (one 

negative and one positive) that are added to the contestants' initial prize valuations. 

These numbers need not be equal in their absolute value. However, they need to 

satisfy the requirement that the expected transfer to one contestant in case of his 

winning the contest must be equal to the expected “tax” paid by the other contestant 

                                                            

2 Franke et al. (2012) have recently allowed 1 , but still focusing on the simple lottery case ( 1 ). 
They have shown that in this setting, for N players the maximal efforts secured by the optimal APA are 
larger than those obtained by any lottery. 
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in case of his winning the contest. Hence, a tax scheme that satisfies the balanced-

budget constraint now depends on the equilibrium winning probabilities of the 

contestants. We will show that this more subtle type of a tax scheme, which has to 

satisfy a more subtle form of the balanced-budget constraint, is more plausible 

because it is superior from the designer's point of view to the former simpler tax 

scheme. The balanced-budget constraint corresponding to this more plausible tax 

scheme is also realistic when the designer controls a series of identical contests that 

are held during a fixed period (typically weekly, monthly or quarterly contests that are 

held during the budget year). In such a case, the designer actually ensures that during 

the relevant period the net transfers between the contestants are cancelled out such 

that his budget is balanced. Discrimination via contingent taxation of the prize won in 

a contest can be applied in various public-economic contexts. In particular, it can be 

used to explain the expected change in the existing income inequality between interest 

groups (e.g., the “poor” and the “rich”) that compete on the prize (gain or loss of 

income) associated with a proposed reform in the tax system. Such interest groups are 

typically represented by lobbyists who are the actual contestants. Mealem and Nitzan 

(2012) have recently shown that discrimination implemented by the more subtle type 

of a tax scheme is also effective when applied independently. That is, when the 

designer resorts solely to this mode of discrimination, he can increase the contestants’ 

efforts. Note that Mealem and Nitzan (2012) focus on the application of differential 

prize taxation disregarding structural discrimination. Their main purpose is to show 

that in this setting the all-pay-auction induces more efforts than any lottery with  

20   . In contrast, in the current study, we allow the two modes of discrimination 

focusing on the maximal efforts the designer can induce in a contest based on a 

lottery. 

In light of the separate effectiveness of the above two modes of 

discrimination, the main objective of this study is to examine whether both of these 

modes of discrimination are needed when they can be applied simultaneously and to 

study their effectiveness in generating efforts. Given that the gap between the 

contestants can be closed by discrimination, either by modifying the contestants’ prize 

valuations or by structurally changing the impact of their efforts, it seems that the 

designer can resort just to one type of discrimination. Interestingly, our preliminary 

claim establishes that, when 20   , both types of discrimination are effective, not 

only when applied independently, but also when applied simultaneously. Furthermore, 
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by the first main result, under any lottery exhibiting constant or increasing returns to 

scale and under some lotteries exhibiting decreasing returns to scale, the combined 

effects of the proposed dual discrimination increase the designer’s revenue beyond the 

average value of the initial prize valuations, which is the maximal effort obtained by 

either mode of discrimination under any possible lottery3. In particular, when 1 , 

the combined effects of the two proposed modes of discrimination can yield efforts 

that are almost equal to the highest initial prize valuation. These efforts are exerted by 

the contestant who initially has the lower prize valuation. This contestant is offered an 

illusion of winning a very large prize. However, this attractively high prize is almost 

always unattainable, because the designer ensures that it is almost never won. Note 

that these efforts are the largest possible under any mechanism and, as is well known, 

they can be extracted under various versions of the 'take it or leave it' mechanism. The 

disadvantages of the ‘take it or leave it’ expropriating mechanism relative to the 

simple lottery with the dual mode of discrimination are spelled out in section 3B.   

 The extreme effectiveness of dual discrimination is robust to an increase in 

the number of the contestants. That is, if 1 , a designer who simultaneously applies 

the two modes of discrimination can induce the largest possible efforts in any N-

player contest.4 Our second main result reinforces the first one by establishing that the 

extreme, twofold polarized discrimination strategies presented in the first result are 

optimal. Surprisingly, this result implies that if the designer can control the two 

modes of discrimination as well as the exponent   of the CSF in (1), he can secure 

the largest possible efforts that are almost equal to 1n  by selecting the widely studied 

simple intermediate lottery where 1 .5 The superiority of this constant-returns-to-

scale-lottery is in marked contrast to its non-optimality when the designer is not 

                                                            

3  See Epstein et al. (2011b) and Mealem and Nitzan (2012). 
4 For a thorough study of equilibrium efforts in contests based on a lottery with 2 , Alcalde and 
Dahm (2010) have shown that there exists an equilibrium in mixed strategies that is equivalent to the 
equilibrium of the APA. However, so far a characterization of the complete set of mixed-strategy 
equilibria is not available, even for the “simple” case without a balanced-budget constraint and without  
structural discrimination. Nevertheless, our result implies that, even when the designer can control the 
parameter  without being subjected to any constraint,  0 , the total maximal efforts are still 
obtained for 1 , because these efforts are the largest possible for any lottery. 
5 In the designer’s maximization problem (10), the exponent   is a given parameter, 20   . That 
is, the designer does not control  . Still , the solution of his problem for any 20    implies that 
the maximal contestants’ efforts are obtained for 1 . In other words, the indirect effort function is 
maximized at 1 .So this value of the exponent would be the designer’s preferred value if he could 
select the parameter  . 
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allowed to apply any mode of discrimination between the contestants, or when he is 

allowed to apply just one of these modes of discrimination. 

The secondary objective of the paper is to compare the effectiveness of the 

two modes of discrimination that we study when applied independently. That is, our 

purpose is to answer the question which type of discrimination yields larger efforts 

when applied separately. We show that, when 20  , differential prize taxation is 

superior to structural discrimination; it yields larger efforts. Differential prize taxation 

has another advantage beyond its superior effectiveness in inducing efforts; 

practically, it seems to be easier to implement because taxation is a common method 

of intervention, especially when insisting on satisfying the balanced-budget 

constraint. In contrast, structural discrimination might be normatively difficult to 

implement, especially when the legal system requires equal treatment of the 

contestants. Notice that by independently applying either mode of discrimination, the 

designer can maximize the intensity of the contest and equalize the contestants’ 

winning probabilities. The question is whether this strategy also maximizes the 

contestants’ efforts. It turns out that with structural discrimination this is indeed the 

case. In contrast, with differential prize taxation it is usually not the case with one 

exception. Specifically, when 20  , prize taxation that equalizes the contestants’ 

winning probabilities does not yield maximal efforts. Such equalization does, 

however, yield the maximal efforts under the extreme lottery where 2 . 

 

2. The setting 

In our contest there are two risk-neutral contestants, the high and low benefit 

contestants, 1 and 2. The initial prize valuations of the contestants are denoted by 1n  

and 2n  and, with no loss of generality, we assume that 1 2n n  or 1

2

1n
k

n
   and that 

the contest designer has full knowledge of the contestants’ prize valuations. 

Heterogeneity in the contestants’ prize valuations is usually attributed to differences 

in preferences or to differences in the value of the awarded non-monetary privilege 

(monopoly permit). Given the contestants’ fixed prize valuations and the CSF, the 

function that specifies the contestants’ winning probability given their efforts, 

),( 21 xxpi , the expected net payoff (surplus) of contestant i is: 
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(2)                         iiii xnxxpuE  ),( 21 ,  (i=1,2) 

 

where ),( 21 xxpi  is the lottery given by (1). In the optimal contest design setting, the 

objective function of the contest designer is: 

 

(3)     21 xxG   

 

Resorting just to structural discrimination means that the contest designer maximizes 

his objective function (3) by selecting   (given any   that satisfies 20   )6. 

Resorting solely to differential prize taxation means that the designer changes the 

contestants’ prize valuations from 1n  and 2n  to  11 n  and  22 n  by selecting 

the (positive or negative) amounts 1  and 2  (given any   that satisfies 20   ). 

A contest designer who applies such discrimination must ensure that the transformed 

prize valuations are positive. Otherwise the contestants will not voluntarily take part 

in the contest and the designer’s revenue will be equal to zero. If the contest designer 

faces a balanced-budget constraint, then 1  and 2  must also satisfy the equality 

02211   pp . That is, the expected transfer to one contestant in case of his 

winning the contest must be equal to the expected “tax” paid by the other contestant 

in case of his winning the contest.7 When the designer can apply both types of 

discrimination, he maximizes his objective function (3) by selecting  , 1  and 2  

(again, for any   that satisfies 20   ), given the anticipated Nash equilibrium 

efforts of the contestants. The particular choice of his preferred discrimination policy 

together with the corresponding efforts of the contestants, constitute the equilibrium 

of the game. The contest game that we study has therefore a two-stage structure: 

                                                            

6 The analysis in this study is confined to lotteries with an exponent  such that 20   . These 
lotteries include the constant and decreasing-returns-to-scale lotteries that are economically the most 
plausible ones. Note that, as is well known, the contest games based on these lotteries have a unique 
pure-strategy equilibrium, see Konrad (2009) and references therein. 
7 An alternative interpretation to the balanced-budget constraint is the following one. Suppose that the 
contested prize is divisible; in this case ip  can be interpreted, as in Corchon and Dahm (2010), as the 
share of the prize won by contestant i and i  can be interpreted as the tax/subsidy levied on 
(transferred to) contestant i assuming that he wins the whole prize. Hence, the constraint 

02211   pp  means that the tax collected from one contestant is transferred to the other one 
although, clearly, it is possible that 021   . 
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1. In the first stage the designer determines the discrimination policy, by 

selecting  , 1  and 2  (for any   that satisfies 20   ), 

2. In the second stage the contestants simultaneously make decisions on their 

exerted efforts 1x  and 2x  taking as given the discrimination policy set by the 

designer. 

The solution of this contest game is a sub-game-perfect Nash equilibrium. 

 

 Suppose that given a CSF of the logit form (1) where 20  , the designer 

can apply the two modes of discrimination, that is, select  , 1  and 2 . In this case 

the two contestants maximize their expected payoffs: 

 

(4)   
 

  111
21

1
1 xn

xx

x
uE 


 

 



 and    
 

  222
21

2
2 xn

xx

x
uE 


 








 

 

Let 
22

11








n

n
a  and 












a
d . By the first order conditions, 

 

(5)            
 2

11*
1 1




d

nd
x

  and  
 2

22*
2 1




d

nd
x

   

 

and, therefore, 

 

(6)    
 2

2211*
2

*
1 1




d

nnd
xxG

  

 

(7)                     
11 


d

d
p  and 

1
1

2 


d
p  

 

and the balanced-budget constraint takes the form 

 

(8)   0
1

1
1 212211 





 

dd

d
pp  

 



 9

or 

 

(9)     021 d  

 

The designer’s problem is therefore: 

(10)  

   
 

 

0  .6
0  .5

0  .4
0  .3

011  .2
01  .1

..

1
 

,,

22

11

21

2
2211*

2
*
1

21



























n

n

d

d

d

ts

d

nnd
xxMax

 

In Appendix A we present the justification for constraints 1 and 2. It will be shown 

that these constraints guarantee that the contestants’ utilities are not negative as well 

as the fulfillment of the second-order conditions in the contestants’ maximization 

problems.8 

 

3. Two-mode discrimination 

3.A Results 

Let us start by clarifying the effectiveness of discrimination when it can take the form 

of both differential prize taxation and structural discrimination. More precisely, our 

preliminary claim is the following one: 

 

Claim 1: 

For 1k  and 20  , dual discrimination yields larger efforts than those obtained 

just by differential prize taxation.9 

The proof of the preliminary claim (see Appendix B) uses the following idea: 

the designer increases the polarization between the contestants’ stakes by reducing the 

                                                            

8 The justification in Appendix A of constraints 1 and 2 in problem (10) is similar to that presented in 
Appendix B in Epstein et al. (2011b). 
9 In section 4 we show that differential prize taxation is more effective than structural discrimination. 
This implies that dual discrimination yields larger efforts than those obtained just by structural 
discrimination.  
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stake of contestant 1 and increasing the stake of contestant 2. The increase in 

polarization is associated with an increase in the sum of the contestants’ prize 

valuations. But to enable the increased polarization, the balanced-budget constraint 

requires creating a structural bias in favor of contestant 1, the contestant whose stake 

has been reduced, by selecting   which is smaller than 1. In the proof, the required 

reduction in   results in the preservation of the contestants’ winning probabilities 

while increasing the sum of their stakes, and this causes the increase in their exerted 

efforts (see (6)). This idea raises the following question: what happens to the total 

efforts if the designer “maximizes” the extent of polarization between the contestants’ 

stakes by reducing the stake of contestant 1 almost to zero (  11 n ) and by 

increasing the stake of contestant 2 to a “very large” level. Clearly, to make sure that 

the balanced-budget constraint is satisfied, the designer must create an appropriate 

bias in favor of contestant 1 by selecting a very small  , such that the balanced-

budget constraint (9) is satisfied: 

 

(11)    








1

2

1

22

11





















n

n  

 

The two types of discrimination exerted in this case are somewhat different than those 

described in the proof of claim 1, because the designer does not confine himself to 

preserving the winning probabilities of the contestants. It turns out that, for 1 , this 

dual discrimination with maximal polarization, that is,  11 n  and 2 , is an 

optimal strategy yielding efforts that are almost equal to 1n  , the initial higher prize 

valuation of contestant 1. For example, for 1 , 1001 n  and 22 n , if the 

designer considerably increases the polarization between the contestants’ stakes by 

selecting   )100000 ,9.99(, 21   and   according to (11), 10109898.9  , the 

total efforts will be equal to 7.99G . This example illustrates the more general 

finding obtained in the first part of the first proposition presented below. That is, 

when 10   , dual discrimination with maximal stake polarization and selection of 

  that satisfies (11) yields efforts that are almost equal to 1n . When 1  these 

efforts are equal to those obtained under the "take it or leave it" mechanism. However, 

in our setting 1n  is almost obtained using a standard simple lottery that allows 
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structural bias between the contestants, without setting a minimal effort for contestant 

1, without disregard for the balanced-budget constraint and without deterring the 

participation of one of the contestants. 

Undertaking the extreme dual discrimination with maximal polarization, 
 11 n  and 2 , while choosing   according to (11), such that the balanced-

budget constraint (9) is satisfied, is possible for 10   . But it is not possible for 

21  . The reason is that the designer’s selection of   ,, 21  must ensure that the 

utility of the contestants is not negative, to prevent their abandonment from the 

competition and, in turn, the decline of the contestants’ efforts to zero. In other words, 

constraints 1 and 2 in problem (10) that ensure the existence of competition, as well as 

the second order conditions for utility maximization, must be satisfied. It can be 

verified that when 10   , for any degree of polarization between the contestants, 

(any positive value of d), these two constraints are satisfied. However, an increase of 

  beyond 1 does not enable any degree of polarization (any value of d) in which 

contestant 1’s stake is reduced and contestant 2’s stake is increased, as implied by 

constraint 2 in problem (10) that ensures the entry of contestant 2 to the competition. 

In this case ( 21  ) the designer can set a maximal value for d which is equal to 

1
1

max 



d .10 Combining this equality with the condition for the existence of the 

balanced-budget constraint, 
1

2




d , gives the maximal value of 2  (given 01  ) 

that can be set by the designer, 
1

1
2 



 . This means that the maximal 

polarization in this case is obtained when  11 n  and 
1

1
2 



 n . Can this 

maximal degree of polarization together with the value of   determined by (11) yield 

total efforts that converge to 1n ? By the second part of Proposition 1, the answer is 

negative. 

 

 

                                                            

10 Notice that if the designer chooses 
1

1
max 




dd , then constraint 1 in problem (10) is also 

satisfied. 
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Proposition 1:11 

1. For 1k  and 10   , when  11 n , 2  and   is set according to 

(11), the winning probability of contestant 1 converges to 1, but his effort 

converges to zero and the winning probability of contestant 2 converges to zero, 

but his effort converges to 1n . Total efforts therefore converge to 1n , 

  01 uE  and     12 1 nuE  . 

2. For 1k  and 21  , when  11 n , 






1

1
2  and   is set according to 

(11), the winning probability of contestant 1 is 

1 , but his effort converges to 

zero and the winning probability of contestant 2 is 





 


11  and his effort 

converges to 21
111

nn 





 


. Total efforts therefore converge to a value that 

is smaller than 1n  and     021  uEuE .12 

 

The special appeal of the dual polarized discrimination strategies presented in 

Proposition 1 is highlighted by the following result. 

 

Proposition 2: For any 20   , the dual polarized discrimination strategies applied 

in Proposition 1 yield total efforts that converge to the lowest upper bound of the  

possible equilibrium efforts of the contestants. 

 

The relationship between the exponent   of a lottery and the maximal attainable 

efforts G is presented in Figure 1. By Proposition 1, under any lottery exhibiting 

constant or increasing returns to scale, 21  , and under lotteries exhibiting 

decreasing returns to scale, such that 1
2
15.0  
k

, the combined effects of the 

extreme polar modes of discrimination increase the designer’s revenue beyond the 

                                                            

11 The proofs of this and the next propositions appear in the Appendix. 
12 For 1k , that is, when nnn  21 , in the range 10  , we would get that nG   and in the 
range 21   , we would get that nG  . 
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average value of the initial prize valuations, )(5.0 21 nn  , which is the maximal effort 

obtained by either mode of discrimination under any possible lottery.  

Proposition 2 implies that when the designer applies the two modes of 

discrimination, each type has a positive “added value” that enhances the exertion of 

efforts relative to the situation where the designer resorts to just one mode of 

discrimination. That is, the two modes of discrimination are supportive or 

“complementing” - their combination yields larger efforts than those obtained by 

separate application of one of these modes of discrimination for almost any given 

level of   ( 20  ). Furthermore, under lotteries with increasing or constant 

returns to scale, as well as under some lotteries with decreasing returns to scale, such 

dual discrimination yields efforts that are larger than the average prize valuation (see 

ABC in Figure 1), which is the largest possible total effort under separate application 

of these modes of discrimination. The advantage of combining these two types of 

discrimination relative to the use of a single mode of discrimination is due to the 

distinctive features of the contribution of each of these modes of discrimination to the 

exerted efforts as described below. 

(i) Differential prize taxation increases as much as possible the initially lower 

prize valuation while reducing the initially higher prize valuation almost to 

zero. This increases the sum of the contestants’ prize valuations to infinity and 

makes the ‘income effect’ (associated with a scheme that increases the sum of 

the final stakes from ( )21 nn   to )( 2211   nn ) of this mode of 

discrimination the dominant effect.13  

(ii) The maximal possible increase in the sum of the contestants’ prize valuations 

is not the result of differential prize taxation alone. It is rendered possible by 

structural discrimination that makes sure that the balanced-budget constraint is 

satisfied. Specifically, stuctural discrimination counterbalances the above 

‘income effect’ by almost completely favorably discriminating contestant 1, 

ensuring that his winning probability converges to zero.  

The moderating effect described in (ii) is necessary to attain the maximal 

efforts. While structural discrimination has a ‘second order’ effect on efforts that 

moderates the income effect of differential prize taxation, it also enables the 

                                                            

13 For a clarification of the meaning of the income effect associated with differential prize taxation, see 
the discussion following Proposition 2 in Mealem and Nitzan (2012). 
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dominance of this ‘first order’ income effect on efforts described in (i), namely, the 

increase in efforts due to the increase in the sum of the contestants’ prize valuations. 

The dominance of the effect of differential prize taxation means that the more extreme 

this mode of discrimination, the higher the total efforts and this requires the extremity 

of structural discrimination.  

 Proposition 2 also implies that if the designer can control  , 1 , 2  as well as 

 , he can secure almost the largest possible efforts 1n  by selecting 1  (recall that 

we have already proved in part 2 of Proposition 1 that the efforts exerted when 

  

Figure 1: The relationship between the exponent   and the maximal 

attainable efforts G 

 

 

21   converge to a value that is smaller than 1n ). Any lottery with 1  is 

therefore inferior to a simple lottery where 1 , when in both cases the designer 

applies the optimal discrimination strategy, viz, the dual polarized discrimination 

strategy. The superiority of 1  is in marked contrast to its non-optimality when the 

designer is not allowed to discriminate between the contestants or when the designer 

is allowed to discriminate between the contestants, but apply just one mode of 

discrimination. 

  

)(5.0 21 nn   

G  

2  

1n  

1  O  

  

  

  

B  

C  

 k215.0   

  
A  

1n  

21
111

nn 





 


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 Finally, let us turn to the justification of the particular form of differential 

prize taxation we have assumed by comparing it to an alternative simpler form.  

 

The alternative simpler differential prize taxation: Suppose that, before the contest is 

held, the designer announces that in case of winning contestant i ( 2,1i ) is subjected 

to a tax equal to i , which is transferred to his rival (according to Appendix B, in 

equilibrium the requirement is that in 210  ).  

 

It turns out that, from the designer's point of view, this simpler form of a tax scheme 

that automatically satisfies the balanced-budget constraint is inferior to the assumed 

mode of differential prize taxation that applies the pair  21, . That is, for any given 

lottery, where 20   , the maximal efforts obtained under the optimal dual 

discrimination based on the simpler alternative differential prize taxation are smaller 

than the maximal efforts obtained in our model under the optimal dual  

discrimination. When 2 , the two models yield the same total efforts  215.0 nn  . 

Specifically, 

 

Proposition 3: For any 20   , the optimal dual polarized discrimination strategy 

in our model yields total efforts that are larger than  2125.0 nn  , the maximal 

efforts obtained under the optimal dual discrimination strategy based on the 

alternative simpler mode of differential prize taxation. When 2 , the two models 

yield the same total efforts  215.0 nn  .  

 

The proof of this proposition is obtained by showing that, under the simpler 

alternative of differential prize taxation, the optimal dual discrimination requires that 

021    and k . In this case, 021    because setting positive i ’s 

reduces the prize of contestant i in case of winning and increases his payoff in case of 

losing. Both of these effects reduce his incentive to exert effort. Hence, the designer 

has no incentive to apply differential prize taxation and he applies just structural 

discrimination setting k , which maximizes the intensity of the competition. Note 

that an increase in the stake of contestant 2, which is realized when he loses the 
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contest, induces him to reduce his effort. In our setting, however, an increase of 2  in 

contestant 2’s stake induces him to increase his effort.  

 

3.B Discussion  

By part 1 of Proposition 1, the application of dual polarized discrimination can yield 

the maximal efforts. This extreme result is particularly interesting because it is 

obtained under a variant of the simple and most commonly studied CSF in the contest 

literature; the simple lottery where 1  that allows structural bias between the 

contestants. When the designer does not face a balanced-budget constraint (and any 

surplus is allowed), it can be easily shown that with complete information on the 

contestants' prize valuations, he can apply a "take it or leave it" mechanism that 

expropriates almost the largest possible efforts ( 1n ). In such a case he can basically 

confiscate (arbitrarily close to) the complete higher value of the prize ( 1n ) by taxing 

all the lower value of the prize ( 2n ) and by taxing almost all of 1n , ensuring the 

winning of contestant 1 with the higher prize valuation. There are three crucial 

differences, however, between the effort-maximizing mechanisms applied by the 

designer in this case and in our setting that highlight the advantage of a simple lottery 

accompanied by an optimal dual discrimination strategy. 

1. In the current study, the designer can apply a strategy of double discrimination, 

but the set of allowed strategies is confined by the balanced-budget constraint. 

Despite this restriction, he can induce the contestants to exert the maximal 

efforts. In the alternative "take it or leave it" setting, the designer has more 

flexibility because he can select any strategy of differential taxation of the prize 

(including strategies that result in a surplus). But such excessive flexibility 

might be questionable and perhaps infeasible for lack of a balanced budget. 

Note that in the alternative setting the designer’s flexibility is reduced because 

he cannot apply structural discrimination. He can still attain the maximal 

revenue. 

2. In the current paper, the designer’s utility is defined as the contestants’ efforts, 

as commonly assumed in the contest literature. In the alternative "take it or 

leave it" setting a less common definition is used. Since the designer does not 

face a balanced-budget constraint, the objective function of the designer consists 

of the contestants’ efforts plus the collected tax (the budget surplus). 
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3. In the alternative "take it or leave it" setting the designer extracts from 

contestant 1 almost all his higher prize valuation. In contrast, in the current 

study, the situation is reversed; although initially contestant 1’s stake is the 

higher one, after the implementation of the dual polarized discrimination 

strategy, the stake of contestant 1 is reduced (almost) to zero, so practically 

virtually no efforts can be extracted from him. However, contestant 2’s stake is 

very much increased and his winning probability is reduced substantially 

(almost to zero), such that his effort becomes almost equal to the initial stake of 

contestant 1 and his utility converges to zero. This result is due to the “illusion” 

offered to contestant 2; the possibility of his winning a very large prize. 

However, as explained above, this attractively high prize is almost always 

unattainable, because the designer ensures that it is almost never won.14 Still 

contestant 2 (not contestant 1) is induced to exert efforts that are almost equal to 

1n . 

 

 Two important conclusions can be drawn from the results. First, for 1k , 

when the designer applies the (optimal) dual polarized discrimination strategy (the 

strategy that maximizes the contestants’ efforts), an increase in   from 1  to 

2  reduces efforts. Second, given any number of contestants N, such that 

Nnnn  ,...,21 , when 1  and the designer applies dual polarized discrimination 

strategy, he can attain the almost 1n . In the more general multi-player contest, the 

designer has to reduce the stakes of 2N  contestants to zero, making sure that 

contestant 1 with the highest stake is not included among them. Applying the dual 

polarized discrimination strategy with respect to the two remaining contestants, the 

designer can induce efforts that are almost equal to 1n . 

 The last question we wish to address is whether the designer can induce the 

maximal efforts that are almost equal to 1n  by applying dual polarized discrimination 

strategy, but by reversing the roles of the contestants (reducing the stake of contestant 

2 almost to zero and substantially increasing the stake of contestant 1). The answer to 

this question is negative. For 1k  and 10   , if the designer chooses 1 , 

                                                            

14 The designer also offers an illusion to contestant 2 whenever 21   , although in these cases the 
exerted efforts by contestant 2 converge to a value smaller than 1n . 
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 22 n  and sets   according to (11), then it can be easily shown that total efforts 

converge to 2n . For 1k  and 21  , it can be shown that reversal of the roles of 

the two contestants results in total efforts that converge to a value that is smaller than 

1n . 

 

4. The preferred single mode of discrimination 

Suppose that the designer can select just one mode of discrimination. When he 

chooses structural discrimination,    0,0, 21  , the contestants’ payoffs, efforts, 

winning probabilities and the problem of the designer are obtained by substituting 

   0,0, 21   in (4), (5), (6), (7) and (10).15 In this case, the designer selects the 

optimal  , k , and the corresponding efforts for 20   are equal to 

 2125.0 nnG   , see Epstein et al. (2011b). When the designer resorts solely to 

differential prize taxation, 1 , the contestants’ payoffs, efforts, winning 

probabilities and the problem of the designer are now obtained by substituting 1  

in (4), (5), (6), (7) and (10). In this case the designer can 

select       212121 5.0,5.0, nnnn  , which satisfies all the constraints in 

problem (10) and induce efforts that are equal to  2125.0 nnG   . By Proposition 

2 in Mealem and Nitzan (2012), when 20   , the designer does not equalize the 

stakes of the contestants. He prefers a different strategy 

      212121 5.0,5.0, nnnn  , such that 021   which yields efforts that 

are larger than  2125.0 nnG   , the efforts obtained under structural 

discrimination.16 We therefore get that for 20   , differential prize taxation yields 

efforts that are larger than those obtained under structural discrimination. When 

                                                            

15 Notice that in this case (8) and (9) are always satisfied. 
16 The reason that the designer prefers a differential prize taxation scheme that does not equalize the 
contestants' prize valuations is spelled out in length in Mealem and Nitzan (2012). The equalitarian 
taxation scheme represented by       212121 5.0,5.0, nnnn   enables the designer to 
neutralize the initial difference in the contestants’ stakes and thus increase the intensity of competition 
and, in turn, the contestants’ efforts relative to the initial situation represented by    0,0, 21  . The 
move from point       212121 5.0,5.0, nnnn   to the equilibrium point (that satisfies 

021  ) enables the designer to further increase the contestants’ efforts by fully taking advantage 
of the potential “income effect” associated with a scheme that increases the sum of the final stakes 
from ( )21 nn   to )( 2211   nn . This positive income effect dominates the negative effect on total 
efforts due to the reduced competition associated with the creation of a gap between the contestants’ 
final stakes. 
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2 , the two modes of discrimination are equivalent. That is, they induce the same 

efforts.17  

 

5. Conclusion 

5.A A brief summary of the main contribution  

Under common knowledge of the contestants' prize valuations and any Tullock-type 

lottery associated with a pure-strategy equilibrium, optimal contest design can be 

implemented by applying structural discrimination that biases the effect of the 

contestants’ exerted efforts, Epstein et al. (2011a), (2011b). Alternatively, such design 

can be carried out by affecting the contestants’ prize valuations via differential 

taxation of the prize, subject to a balanced-budget constraint. Our results establish 

that: 

(i) Both modes of discrimination are effective and, therefore will be used by the 

designer, when they can be applied simultaneously; Furthermore, under 

lotteries exhibiting constant or increasing returns to scale (with the exception 

of the case 2 ) and under certain lotteries exhibiting decreasing returns to 

scale, 1
2
15.0  
k

, the combined effects of these modes of discrimination 

can increase the designer’s revenue beyond the average value of the initial 

prize valuations, which is the maximal effort obtained by either mode of 

discrimination under any possible lottery, Epstein et al. (2011b), Mealem and 

Nitzan (2012);  

(ii) The dual polarized discrimination strategies corresponding to lotteries where 

20   are optimal; 

(iii)When 1 , a variant of the prototypical simple and most commonly studied 

lottery that applies extreme structural discrimination, together with a polar 

differential prize taxation is the designer’s optimal strategy that yields the 

                                                            

17 Proof: When 2 , optimal structural discrimination requires that k  and the corresponding 
efforts are equal to  215.0 nnG  . With differential prize taxation, when 2 , the designer must 
set  21,,   such that constraints 1 and 2 in his problem (10) are satisfied. Since by constraint 1, 

1d  and, by constraint 2, 1d , the designer’s optimal strategy requires that 1d . Substituting 
1d  in the balanced-budget constraint, we get that 021    which implies, by (6), that the efforts 

of the contestants are equal to  215.0 nnG  . 
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largest possible efforts (efforts that are almost equal to the initially higher 

prize valuation); 

(iv) If the contest designer can use just a single mode of discrimination, then 

differential prize taxation is superior to structural discrimination; When the 

lottery is extreme, 2 , the two modes of discrimination are equivalent, 

yielding the same revenue. 

(v) The plausibility of the particular form of differential prize taxation (and the 

corresponding balanced-budget constraint) we have assumed is due to its 

superior effectiveness as a means of generating revenue relative to an 

alternative simpler form of differential prize taxation the designer could apply.  

 

5.B Extraction of the maximal revenue  

In an unconstrained environment that allows budget surplus and just differential prize 

taxation, the designer can expropriate almost all the initially higher prize valuation, 

applying a "take it or leave it" mechanism. In this case, both of the contestants are left 

without any surplus in case of winning and, since the contestant with the lower stake 

is deterred from taking part in the contest, contestant 1, who takes part in the contest 

and wins, transfers almost all his stake to the designer. In our balanced-budget 

constrained setting, the designer also captures almost all the initially higher stake 

when 1 , due to the simultaneous effective application of the two modes of 

discrimination. But in this case the designer gets hold of the actual efforts exerted by 

the contestants and not of the taxes collected from the winners (the expected value of 

these taxes is equal to zero). We have pointed out to substantial differences between 

the two situations that clarify the advantage of applying a standard lottery rather than 

a "give it or take it” mechanism. 

  

5.C Generalization to N-player contests 

A potential interesting extension of our study is the analysis of the multiple-player 

case. Only few studies dealt with N-player contests assuming lotteries with 

asymmetric contestants. Stein (2002), Fang (2002), Franke (2007) and Franke et al. 

(2011, 2012) assumed, for N-player, that 1 , and Cornes and Hartley (2005) allowed 

any  . Stein (2002) extended the two-player contest to N-player contest and examined 

how changes in the contestants’ prize valuations and in the measure of their prior 
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relative chance of winning affect the equilibrium efforts. Fang (2002) compared the 

lottery model where 1  and 1  to the All-Pay Auction and examined the 

conditions under which the total efforts corresponding to a lottery are larger than those 

corresponding to the All-Pay Auction. Franke (2007) compared these efforts under 

Affirmative Action (AA), where the designer affects the winning probabilities of the 

contestants (in our case, via the selection of  ) to the efforts obtained under Equal 

Treatment (ET). For two contestants, he extended his analysis to the case where 1 , 

but for N players he confined the analysis to 1 . For N-player contests, Franke et 

al. (2011, 2012) have recently allowed structural discrimination ( 1 ), but still 

focusing on the simple lottery case ( 1 ). Franke et al. (2011) have shown that in 

this setting the designer will level the playing field by encouraging weak contestants, 

but he will not equalize the contestants’ chances of winning the contest. Franke et al. 

(2012) have shown that the maximal efforts secured by the optimal APA are larger 

than those obtained by any lottery. 

For N players, Cornes and Hartley proposed an elegant way to examine the 

existence of equilibrium for any  . Among other things, they have shown that, for 

1 , there exists a unique equilibrium in pure strategies. But, for 1 , there is no 

explicit presentation of equilibrium and, in fact, multiple equilibria are possible, 

which precludes the possibility of conducting comparative statics, see footnote 24 in 

Franke (2007). This implies that, to attain consistency of the results, we can choose 

1 , for two players or 1 , for any number of players. In our study the focus is 

on two-player contests and, therefore, we can compare the two modes of 

discrimination also for lotteries with 2 , despite our inability to compute explicitly 

the equilibrium outcome under differential prize taxation. This case is also more 

general than the one examined by Franke (2007), since he assumed for 2 players that 

1 . The challenging question what happens when we move to an N-player contest 

for any  , 20   , (note that in our study we have dealt only with the case 1 ) 

seems an especially demanding challenge and is left for future research. 
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Appendix A 

In problem (10), the designer controls the parameters  , 1  and 2 . From the 

expected payoff of the contestants, equations (4), we get the first order conditions: 

     
   012

21

112
1

1

1

1 






 









xx

nxx

x

uE
 

(A1)       and 
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and, after rearranging, we get the contestants’ equilibrium efforts, see (5). Substituting 

these efforts in the contestants’ expected payoffs, see (4), we get: 

 (A2)             
 2

11*
1 1

1





d

dnd
uE

  and     
 2
22*

2 1
1)1(





d

dn
uE

  

The second order equilibrium conditions (SOC) are: 

 
    

   0

11

3

21

212
1

2
211

2
1

1
2







































xx

xx
xxn

x

uE
 

and 

 
     

   0

11

3

21

2122
21

2
22

2
2

2
2










































xx

xx
xxn

x

uE
 

In equilibrium, we obtain that a
x

x
*

2

*
1 . Since 












a
d , the SOC can be written as: 

(A3)     011  d  and   011   d  

Also, in equilibrium, the expected contestants' payoffs must be non-negative, that is, 

  0*
1 uE  and   0*

2 uE , which requires (see (A2)) that: 

(A4)    01  d  and 01)1(  d  

Note that the conditions in (A4), namely, constraints 1 and 2 in problem (10), ensure 

that the SOC in (A3) are also satisfied. 

Q.E.D 
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Appendix B 

Claim 1: 

For 1k  and 20  , dual discrimination yields larger efforts than those obtained 

just by differential prize taxation. 

Proof: Resorting solely to differential prize taxation means that the designer chooses 

 21, , given that 1 . That is, in problem (10), ad  . In this case, for 20    

and 1k , 21 0   .18 Denote by  EE
21 ,  the equilibrium pair of  21,  and by 

Ed  the corresponding d, 

















E

E

E n

n
d

22

11 .Since, in equilibrium, 011  En   and 

01 E , we get that 1
1

1 
E

n


 and, by the balanced-budget constraint (9), in 

equilibrium 
E

E

Ed
1

2




 . Hence, by (6), in equilibrium total efforts are equal to: 

 

(B1)   
 

 EE

E

E
E nn

d

d
G 221121

 


  

 

Let us show that allowing the designer to change   relative to 1  as well as 

 21,  increases the contestants’ efforts. The idea of the proof is based on enabling 

changes in the contestants’ stakes, such that their winning probabilities are preserved 

(d remains constant, see (7)), but the sum of their modified prize valuations is 

increased. This certainly increases their efforts as implied by (6). Consider then the 

following two changes made by the designer. 

1. Multiplying the equilibrium  EE
21 ,  by  . The new mode of discrimination 

therefore becomes  EE
21 , , such that   satisfies the requirement 

E

n

1

11


  . 

2. Setting a new   (the structural discrimination parameter that will differ from 

1), such that the balanced-budget constraint is satisfied.  

                                                            

18 This has been established in the proof of Proposition 1 (Part 1) in Mealem and Nitzan (2012). 
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The reason for the requirement 
E

n

1

1


   in the first change is that the new stake of 

contestant 1 must be positive, otherwise he leaves the contest and the contestants’ 

efforts are equal to zero. This requirement ensures therefore that the new prize 

valuations of the contestants  EE nn 2211 ,    are positive. The new value of a is 

E

E

N n

n
a

22

11







  and the corresponding new d is equal to the original one, 

EE

E

E

E

N dd 
1

2

1

2





 . This means that the winning probabilities of the 

contestants are unaltered. By the balanced-budget constraint, the feasibility of the first 

change requires that the new   satisfies 021  EE
Nd  . Since 




























E

E

N

n

n

d 22

11

, 

  must satisfy 021
22

11























EE
E

E

n

n








 or:19 

 

(B2)    0

1

2

1

22

11 




























E

E

E

E

n

n  

 

Given that EN dd  , the new efforts are: 

 

(B3)   
 

 EE

E

E
N nn

d

d
G 221121

 


  

 

                                                            

19 This choice requires that 10    because, by the balanced-budget constraint, in the original 

equilibrium 1

1

2

1

22

11 






















 







E

E

E

E

n

n . Since EE
21 0    and 

E

n

1

11


  ,  
E

E

E

E

n

n

n

n

22

11

22

11












  and 

therefore, 










 


























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















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








1

2

1

22

11

1

2

1

22

111
E

E

E

E

E

E

E

E

n

n

n

n
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Since 1 , we get that    0212121  EEEEEE   and, therefore, the 

total efforts in (B3) are larger than the total efforts in (B1), EN GG  . This means that 

the selection of   that differs from 1 together with the larger  21, , which is not 

necessarily the optimal selection, increases the total efforts of the contestants. 

Q.E.D. 

 

Proposition 1:20 

1. For 1k  and 10   , when  11 n  , 2  and   is set according to 

(11), the winning probability of contestant 1 converges to 1, but his effort 

converges to zero and the winning probability of contestant 2 converges to zero, 

but his effort converges to 1n . Total efforts therefore converge to 1n , 

  01 uE  and     12 1 nuE  . 

2. For 1k  and 21  , when  11 n  , 






1

1
2  and   is set according to 

(11), the winning probability of contestant 1 is 

1 , but his effort converges to 

zero and the winning probability of contestant 2 is 





 


11  and his effort 

converges to 21
111

nn 





 


. Total efforts therefore converge to a value that 

is smaller than 1n  and     021  uEuE . 

Proof:  

Part 1. By the balanced-budget constraint (9), 
1

2




d  and, therefore, when 

10   , constraints 1 and 2 in problem (10) are always satisfied. Substituting 

1

2




d  in (6) we get that 
 

2

1

2

2211
1

2

1


























 nn

G . Multiplying the 

                                                            

20 Note the proof is indirect not using the Kuhn-Tucker conditions. The reason is that the constraints in 
problem (10) imply that the feasible set of the control variables is not compact. In particular, note that 
constraints 5 and 6 have the form of strict inequalities. In addition, note that the objective function is 
not continuous at ii n . The standard Kuhn-Tucker conditions cannot therefore be used. 
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nominator and denominator of the above expression by 
2

2

1









 we get that 

2

2

1

2

2

2

1

2

1
1

1

1





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























 nn

G . Now, for 10   , where  11 n , 2  and   

is determined according to (11), we get that 

 
  12

1
2

2

1

2

2

2

1

2

1
1

01
10

1

1
n

n

n

nnn
n

G 
































  

Since d , the winning probability of contestant 1 converges to 1, because 

111

1
11 







d
d

d
p  

so 02 p . By (5), the exerted effort of contestant 1 is: 

 
 

     1
1

11 112
11*

1 






dd

d
n

d

nd
x   

Since  11 n , d  and 1
11 




d

d
p , 0*

1 x . The exerted effort of 

contestant 2 is equal to:  

 
   111

22
2

22*
2 

















d

d

d

n

d

nd
x

  

Substituting 
1

2




d  in the second term of the above expression, we get that  

 11
1

2

22*
2 
























d

dn
x




  

Multiplying the nominator and the denominator in the second term by 
2

1




 , we get 

that 
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 11
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2
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



  

Since  11 n , 1
1


d

d  and 2 , we get that 1
*
2 nx  , 

  1
1

1
21

2

1

1
2

21

*
2 1

111
n

n

n
nn

d
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x 
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




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



















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











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








  

The utility of contestant 1 is     11111 xnpuE   . Since 11 p ,  011 n  

(because  11 n ) and 0*
1 x  hence,   01 uE . The utility of contestant 2 is 

    22222 xnpuE   . By the balanced-budget constraint (9), 112 dnd    

and therefore 1222 dnnn   . Since 1222 dnnn   , 
1

1
2 


d
p  and 

1
*
2 nx  ,     1122 1

1
ndnn

d
uE 


 . When d , we get that 

    12 1 nuE  . 

 

Part 2. As already noted in the discussion before Proposition 1, for 21  , 

maximal polarization requires that  11 n  and 
1

1
2 



 n , where   is determined 

by (11). To find out the limit of the corresponding efforts, let us substitute in (6), 

11 n , 
1

1
2 



 n  and 
1

1





d  to obtain: 

1212

1
211 111

1
1

1
11

1

nnn

n
nnn

G 
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



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




 


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
















 

(it can be readily verified that the last inequality holds because, by assumption, 

12 nn  ). Since 
1

1





d , the winning probability of contestant 1 is 

1

11 



d

d
p  

so 

112 p . By (5), the exerted effort of contestant 1 is equal to  

 2
11*

1 1



d

nd
x

 . 

Since  11 n , 0*
1 x . The exerted effort of contestant 2 is equal to 
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 
 2

22*
2 1




d

nd
x

 . Substituting 
1

1





d  and 
1

1
2 



 n , we get that 

21
*
2

111
nnx 





 


. Since  11 n ,  011 n  and, therefore,   01 uE . 

The utility of contestant 2 is:  

    1
2 2 2 2 2 2 1 2

1 1 11 1 0
1

n
E u p n x n n n

   
                          

 

Q.E.D. 

 

Proposition 2: For any 20   , the dual polarized discrimination strategies applied 

in Proposition 1 yield total efforts that converge to the lowest upper bound of the  

possible equilibrium efforts of the contestants. 

Proof: Let us divide the proof to two parts dealing with 10   and then with 

21  .  

Part 1. If 10  , then by part 1 of Proposition 1 the polarized discrimination 

strategy yields efforts that are equal to 1n . We therefore have to show that the total 

efforts given by (6) do not exceed 1n . That is,  
  12

2211

1
n

d

nnd 



  or, after 

some simplifications, 112121
20  dndndndnd  . By the balanced-budget 

constraint, 12  d . Substituting this term (twice) in the last inequality and then 

adding and subtracting 2n , the inequality takes the form: 

  22212111
20   nnndndnddnd , 

which, after simplification becomes: 

     222111
2 10   nnndnd  

Since, 0d , 011 n , 21 nn   and 022  n , the above inequality holds. 

 

Part 2. If 21  , then by part 2 of Proposition 1 the polarized discrimination 

strategy yields efforts that converge to 21
111

nn 





 


. We therefore have to show 

that the total efforts given by (6) do not exceed this level. Let us first show that the 
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contestants’ equilibrium efforts do not exceed 
1

21




d

ndn . For that purpose, let us 

substitute the equilibrium efforts of (5) in (4), to obtain the equilibrium utilities: 

     
 2
11*

1 1
1





d

ddn
uE

  and     
 2
22*

2 1
1)1(





d

dn
uE

  

In equilibrium, the utility of a contestant is not negative so the sum of these utilities is 

not negative. That is, 
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or, after some simplification, 
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Since, by the balanced-budget constraint 021  d , the above inequality takes the 

form:  
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or, dividing both sides of the inequality by  1d ,  
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To complete the proof, let us show that  
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or 

     2121 111 ndnndnd    

or 

      21 1111 ndnd    

Since the utility of contestant 2 is not negative, by constraint (2) in Problem (10), 

  011  d . Therefore, if   011  d , the latter condition is satisfied as 

equality and if   011  d , the latter condition takes the form 21 nn  , which is 

also satisfied. 

Q.E.D.  
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Proposition 3: For any 20   , the optimal dual polarized discrimination strategy 

in our model yields total efforts that are larger than  2125.0 nn   - the maximal 

efforts obtained under the optimal dual discrimination strategy based on the 

alternative simpler form of differential prize taxation. When 2 , the two models 

yield the same total efforts  215.0 nn  .  

Proof: Let us prove that the optimal dual discrimination strategy under the simpler 

mode of differential prize taxation yields efforts that are equal to  2125.0 nn  . This 

will complete the proof since, for 10   ,   12125.0 nnn    and for 20   , 
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Suppose that given a CSF of the logit form (1) where 20  , the designer 

can apply the two modes of discrimination, that is, select  , 1  and 2 . In this case 

the two contestants maximize their expected payoffs: 
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     and 
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b
e . By the first order conditions, 
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Hence, in equilibrium, 212  n , because otherwise total efforts converge to zero 

(if this inequality is not satisfied, contestant 2 does not take part in the contest and 

contest 1 exerts a negligible effort, which ensures his winning). Total efforts are 

therefore equal to 
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Note that  2121 22   nn  is maximal and equal to  21 nn   when 

021   , independent of 
 21e

e . This latter term is maximal and equal to 0.25 

when 1e . The maximization of 
 

 21212 22
1

 


nn
e

e  is therefore obtained 

when 021    and k  (which ensures that 1e ) because the second order 

conditions for maximization are satisfied and the utility of every contestant in not 

negative. The maximal total efforts are therefore equal to  2125.0 nn  .  

Q.E.D. 
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