
Benavides, David (Ed.); Batory, Don (Ed.); Grünbacher, Paul (Ed.)

Research Report

Fourth International Workshop on Variability Modelling of
Software-intensive Systems. Proceedings

ICB-Research Report, No. 37

Provided in Cooperation with:
University Duisburg-Essen, Institute for Computer Science and Business Information Systems (ICB)

Suggested Citation: Benavides, David (Ed.); Batory, Don (Ed.); Grünbacher, Paul (Ed.) (2010) :
Fourth International Workshop on Variability Modelling of Software-intensive Systems.
Proceedings, ICB-Research Report, No. 37, Universität Duisburg-Essen, Institut für Informatik und
Wirtschaftsinformatik (ICB), Essen

This Version is available at:
https://hdl.handle.net/10419/58178

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/58178
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

ICB-RESEARCH REPORT

ICB
Institut für Informatik und
Wirtschaftsinformatik

UNI VERSI TÄT

D U I S B U GR
E S S E N

Proceedings

ICB-Research Report No. 37

January 2010

Fourth International Workshop on Variability
Modelling of Software-intensive Systems

David Benavides
Don Batory
Paul Grünbacher (Eds.)

Die Forschungsberichte des Insti tuts
für Informatik und Wirtschaftsinfor ‐
matik dienen der Darstellung vorläu ‐
f iger Ergebnisse, die i . d. R. noch für
spätere Veröffentlichungen überarbei‐
tet werden. Die Autoren sind deshalb
für kritische Hinweise dankbar.

All rights reserved. No part of this
report may be reproduced by any
means, or translated.

Contact :

Insti tut für Informatik und
Wirtschaftsinformatik (ICB)
Universi tät Duisburg‐Essen
Universi tätsstr . 9
45141 Essen

Tel. : 0201‐183‐4041
Fax: 0201‐183‐4011
Email : icb@uni‐duisburg‐essen.de

Authors’ Address:

Prof. Dr. Heimo Adelsberger
Dipl.‐Wirt.‐ Inf . Andreas Drechsler

Insti tut für Informatik und
Wirtschaftsinformatik (ICB)
Universi tät Duisburg‐Essen
Universi tätsstr . 9
D ‐45141 Essen

heimo.adelsberger@icb.uni ‐due.de
andreas.drechsler@icb.uni‐due.de

The ICB Research Reports comprise
preliminary results which will usually
be revised for subsequent publica‐
t ions. Critical comments would be
appreciated by the authors.

Alle Rechte vorbehalten. Insbesondere
die der Übersetzung, des Nachdru‐
ckes, des Vortrags, der Entnahme von
Abbildungen und Tabellen – auch bei
nur auszugsweiser Verwertung.

ISSN 1860‐2770 (Print)
ISSN 1866‐5101 (Online)

ICB Research Reports

Edited by:

Prof. Dr. Heimo Adelsberger
Prof. Dr. Peter Chamoni
Prof. Dr. Frank Dorloff
Prof. Dr. Klaus Echtle
Prof. Dr. Stefan Eicker
Prof. Dr. Ulrich Frank
Prof. Dr. Michael Goedicke
Prof. Dr. Tobias Kollmann
Prof. Dr. Bruno Müller ‐Clostermann
Prof. Dr. Klaus Pohl
Prof. Dr. Erwin P. Rathgeb
Prof. Dr. Albrecht Schmidt
Prof. Dr. Rainer Unland
Prof. Dr. Stephan Zelewski

VaMoS’10

i

Abstract
This ICB Research Report constitutes the Proceedings of the 4th International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS’10), which was held from January 27–29, 2010 at
the Johannes Kepler University Linz.

VaMoS’10

ii

VaMoS’10

iii

Table of Contents

1 WELCOME MESSAGE .. 1

2 ORGANIZATION .. 2

3 WORKSHOP FORMAT ... 5

4 TECHNICAL PROGRAMME ... 7

VaMoS’10

1

1 Welcome Message
Welcome to the 4th International Workshop on Variability Modelling of Software-intensive
Systems: VaMoS’10! This year we are celebrating 20 years of feature models!

Previous VaMoS workshops have been held in

• Limerick (2007)
• Essen (2008) and
• Sevilla (2009).

The aim of the VaMoS workshop series is to bring together researchers from various areas of variabil-
ity modelling in order to discuss advantages, drawbacks and complementarities of the various variabil-
ity modelling approaches, and to present novel results for variability modelling and management.

Continuing the successful format of the three previous VaMoS workshops, VaMoS 2010 will be a
highly interactive event. Each session will be organized in such a way that discussions among the
workshop participants will be stimulated. We hope that VaMoS will trigger work on new challenges in
variability modelling and thus will help to shape the future of variability modelling research.

VaMoS’10 attracted 50 submissions of authors from 24 countries. Each submission was reviewed by
at least three members of the programme committee. Based on the reviews, 16 submissions were ac-
cepted as full papers, 6 submissions as short papers and 6 submissions have been accepted as short
papers documenting tool demonstrations.

We extend our gratitude to all the people who spent time and energy to make VaMoS a success. Va-
MoS’10 would not have been possible without their efforts and expertise. We thank Kyo Kang and
Krzysztof Czarnecki who accepted our invitation to give keynotes. We cordially thank all the mem-
bers of the VaMoS programme committee for devoting their time to reviewing the submitted papers,
and doing so on time. We are grateful to the people who helped preparing and organizing the event,
especially Stephanie Eibensteiner, Karin Gusenbauer, Wolfgang Heider, Roberto E. Lopez-Herrejon,
Birgit Kranzl, Kim Lauenroth, and Rick Rabiser. We also thank the student volunteers for their help.
Finally, we thank the sponsors of VaMoS: University of Duisburg-Essen, University of Seville, Uni-
versity of Texas at Austin, Johannes Kepler University Linz, the Christian Doppler Laboratory for
Automated Software Engineering, the province of Upper Austria, and the City of Linz.

VaMoS is under the distinguished patronage of Dr. Josef Pühringer (Governor of Upper Austria) and
Dr. Franz Dobusch (Mayor of Linz).

Enjoy VaMoS 2010 and a beautiful Linz!

David Benavides Don Batory Paul Grünbacher

VaMoS’10

2

2 Organization
Steering Committee

Ulrich Eisenecker, University of Leipzig, Germany

Patrick Heymans, PReCISE, University of Namur, Belgium

Kyo-Chul Kang, Pohang Univ. of Science and Technology, Korea

Andreas Metzger, University of Duisburg-Essen, Germany

Klaus Pohl, University of Duisburg-Essen, Germany

Honorary Chair

Kyo-Chul Kang, Pohang Univ. of Science and Technology, Korea

General Chair

Paul Grünbacher, Johannes Kepler University Linz, Austria

Program co-chairs

Don Batory, University of Texas, USA

David Benavides, University of Seville, Spain

Organising Committee

Kim Lauenroth, University of Duisburg-Essen, Germany

Roberto E. Lopez-Herrejon, Johannes Kepler University Linz, Austria

Rick Rabiser, Johannes Kepler University Linz, Austria

VaMoS’10

3

Program Committee

Vander Alves, University of Brasilia, Brasil

Sven Apel, University of Passau, Germany

Danilo Beuche, Pure::Systems, Germany

Jürgen Börstler, Umeå University, Sweden

Manfred Broy, TU Munich, Germany

Goetz Botterweck, LERO, Ireland

Oscar Díaz, Universidad del País Vasco, Spain

Alessandro Fantechi, Universita' degli Studi di Firenze, Italy

Stefania Gnesi, ISTI-CNR, Italy

Anirüddha Gokhalé, Vanderbilt University, USA

Paul Grünbacher, Johannes Kepler Universitat Linz, Austria

Øystein Haugen, University of Oslo & SINTEF, Norway

Mei Hong, Beijing University , China

Tomoji Kishi, Japan Advanced Institute of Science and Technology

Stan Jarzabek, National University of Singapore

Roberto E. Lopez-Herrejon, Johannes Kepler Universitat Linz, Austria

Tomi Männistö, Helsinki University of Technology, Finland

Vicente Pelechano, Universidad Politécnica de Valencia, Spain

Antonio Ruiz-Cortés, Universidad de Sevilla, Spain

Camille Salinesi, University of Paris 1-Sorbonne, France

Klaus Schmid, University of Hildesheim, Germany

Douglas Schmidt, Vanderbilt University, USA

Steffen Thiel, Furtwangen University of Applied Sciences, Germany

Pim van den Broek, University of Twente, The Netherlands

Frank van der Linden, Philips, The Netherlands

Andrzej Wasowski, IT University of Copenhagen

Matthias Weber, Carmeq GmbH, Germany

Jules White, Vanderbilt University, USA

VaMoS’10

4

Additional reviewers

Patrizia Asirelli

Maurice ter Beek

Thorsten Berger

Quentin Boucher

Marcel Böhme

Carlos Cetina

Andreas Classen

Dumitrescu Cosmin

Alessio Ferrari

Alexander Gruler

Alexander Harhurin

Reiko Heckel

Arnaud Hubaux

Martin Johansen

Chang Hwan Peter Kim

Hans Koerber

Neil Loughran

Lami

Alberto Lora

Raul Mazo

Johannes Mueller

Helge Pfeiffer

Fabricia Roos

Marko Rosenmueller

Wolfgang Scholz

Sergio Segura

Steven She

Norbert Siegmund

Bernd Spanfelner

Maria Spichkova

Andreas Svendsen

Pablo Trinidad

Ha Duy Trung

Yinxing Xue

Hongyu Zhang

Wei Zhang

VaMoS’10

5

3 Workshop Format
As VaMoS is planned to be a highly interactive event, each session is organized in order to stimulate
discussions among the presenters of papers, discussants and the other participants. Typically, after a
paper is presented, it is immediately discussed by pre-assigned discussants, after which a free discus-
sion involving all participants follows.

Three particular roles, which imply different tasks, are taken on by the VaMoS attendees:

1) Presenter

A presenter obviously presents his paper but additionally will be asked to take on the role of discuss-
ant for the other paper in his session. It is highly desired that – as a presenter – you attend the complete
event and take an active part in the discussion of the other papers. Prepare your presentation and bear
in mind the available time.

2) Discussant

A discussant prepares the discussion of a paper. Each paper is assigned to two discussants (typically
the presenter of the other paper in the same session and a presenter from another session). A discuss-
ant’s task is to give an unbiased technical review of the paper directly after its presentation. This task
is guided by a predefined set of questions that are found in the discussion template provided by the
VaMoS organizers.

3) Session Chair

A session chair’s tasks are as follows:

Before the session starts:

• Make sure that all presenters and presentations are available.

• Make sure that all discussants are present and that they have downloaded their discussion
slides to the provided (laptop) computer.

For each paper presentation:

• Open your session and introduce the presenters.

• Keep track of time and signal the presenters when the end of their time slot is approaching.

• Invite the discussants and organize the individual paper discussions, i.e., ensure that the dis-
cussion is structured.

• Close the paper discussion and hand over to the next presenter.

VaMoS’10

6

VaMoS’10

7

4 Technical Programme

Keynotes
FODA: Twenty Years of Perspective on Feature Modeling
Kyo C. Kang ... 9

Variability Modeling: State of the Art and Future Directions
Krzysztof Czarnecki .. 11

Research Papers (Full Papers)
Semistructured Merge in Revision Control Systems
Sven Apel, Jörg Liebig, Christian Lengauer, Christian Kästner, William R. Cook .. 13

Leveraging Aspect-Connectors to Improve Stability of Product-Line Variabilities
Marcelo Dias, Leonardo Tizzei, Ceíılia Rubira, Alessandro Garcia, Jaejoon Lee .. 21

A Formal Semantics for Decision-oriented Variability Modeling with DOPLER
Deepak Dhungana, Patrick Heymans, Rick Rabiser .. 29

A Deontic Logical Framework for Modelling Product Families
Patrizia Asirelli, Maurice H. ter Beek, Stefania Gnesi, Alessandro Fantechi .. 37

The Variability Model of The Linux Kernel
Steven She, Rafael Lotufo, Thorsten Berger, Andrzej Wasowski, Krzysztof Czarnecki 45

A Preliminary Review on the Application of Feature Diagrams in Practice
 Arnaud Hubaux, Andreas Classen, Marcílio Mendonça, Patrick Heymans ... 53

Cardinality-Based Feature Modeling and Model-Driven Engineering: Fitting them Together
Abel Gómez, Isidro Ramos ... 61

Integrating Automated Product Derivation and Individual User Interface Design
Andreas Pleuss, Goetz Botterweck, Deepak Dhungana ... 69

Supporting Stepwise, Incremental Product Derivation in Product Line Requirements Engineering
Reinhard Stoiber, Martin Glinz .. 77

Variability Modelling for Model-Driven Development of Software Product Lines
Ina Schaefer .. 85

Using Incremental Consistency Management for Conformance Checking in Feature-Oriented Model-Driven
Engineering
Roberto E. Lopez-Herrejon, Alexander Egyed, Salvador Trujillo, Josune de Sosa, Maider Azanza 93

The CVM Framework —A Prototype Tool for Compositional Variability Management
Andreas Abele, Yiannis Papadopoulos, David Servat, Martin Törngren, Matthias Weber 101

Conflict Resolution Strategies During Product Configuration
Alexander Nöhrer, Alexander Egyed .. 107

Optimizing Non-functional Properties of Software Product Lines by means of Refactorings
Norbert Siegmund, Martin Kuhlemann, Mario Pukall, Sven Apel ... 115

Automating the Configuration of Multi Software Product Lines
Marko Rosenmüller, Norbert Siegmund ... 123

VaMoS’10

8

Variability in Time — Product Line Variability and Evolution Revisited
Christoph Elsner, Goetz Botterweck, Daniel Lohmann, Wolfgang Schröder-Preikschat 131

Short Papers
Using Collaborations to Encapsulate Features? An Explorative Study
Martin Kuhlemann, Norbert Siegmund, Sven Apel ... 139

Modeling Variability of Augmented Software Product Lines
Johannes Müller ... 143

A Method Based on Association Rules to Construct Product Line Models
Alberto Lora-Michiels, Camille Salinesi, Raúl Mazo ... 147

Measuring the Ability to Form a Product Line from Existing Products
Christian Berger, Holger Rendel, Bernhard Rumpe .. 151

A Custom Approach for Variability Management in Automotive Applications
Fabian Kliemannel, Georg Rock, Stefan Mann .. 155

Introducing TVL, a Text-based Feature Modelling
Quentin Boucher, Andreas Classen, Paul Faber and Patrick Heymans .. 159

Tool Demonstrations
XToF – A Tool for Tag-based Product Line Implementation
Christophe Gauthier, Andreas Classen, Quentin Boucher, Patrick Heymans, Margaret-Anne Storey, Marcílio
Mendonça ... 163

Tool Support for Evolution of Product Lines through Rapid Feedback from Application Engineering
Wolfgang Heider Rick Rabiser ... 167

Tool Support for Incremental Consistency Checking on Variability Models
Michael Vierhauser, Deepak Dhungana, Wolfgang Heider, Rick Rabiser, Alexander Egyed 171

A Support Tool for Domain Analysis
Liana Barachisio Lisboa, Vinicius Cardoso Garcia, Silvio Romero de Lemos Meira, Eduardo Santana de
Almeida ... 175

Research Tool to Support Feature Configuration in Software Product Lines
Ciarán Cawley, Patrick Healy, Goetz Botterweck, Steffen Thiel .. 179

SMARTFORM: A Web-based Feature Configuration Tool
Wonseok Chae, Timothy L. Hinrichs .. 183

FODA: Twenty Years of Perspective on Feature
Modeling

(Keynote)

Kyo C. Kang
Department of Computer Science and Engineering

Pohang University of Science and Technology (POSTECH)
San 31, Hyoja-Dong, Nam-Gu, Pohang, KOREA, 790-784

E-mail: kck {at} postech.ac.kr
http://selab.postech.ac.kr/kck/

Abstract—Feature-oriented domain analysis (FODA) was pro-
posed twenty years ago as a method for systematic discovery
and exploitation of commonality across related software systems
to support software reuse. Since then, many industrial cases of
FODA application have reported, the original model has been
extended, and new paradigms such as generative programming
and feature-oriented programming have been proposed based
on the concept of feature orientation. The research community
exploring feature orientation in software development has been
growing significantly in recent years as evidenced by the large
number of citations of the original work and the researches that
followed.

Any software artifacts we create will evolve as new features
are added, and existing features are removed or modified, and,
therefore, it is important to build softness (which we often call
modifiability, adaptability, maintainability, etc.) into software
when we design it. FODA stimulates software engineers to
think about variability of software they create, and provides a
mechanism to codify that knowledge. This variability information
is the most critical knowledge for building softness into software,
and I believe this is the reason why feature modeling became
popular among researchers as well as practitioners. In my
talk, I will review the salient features of FODA report and
various extensions of the original feature model, and then explore
research topics.

VaMoS 2010

9

VaMoS 2010

10

Variability Modeling: State of the Art and Future
Directions

(Keynote)

Krzysztof Czarnecki
Bank of Nova Scotia / NSERC Industrial Research Chair

University of Waterloo
Department of Electrical and Computer Engineering

200 University Ave. West
Waterloo, ON N2L 3G1, Canada

e-mail: czarnecki@acm.org
www.gsd.uwaterloo.ca/ kczarnec
www.generative-programming.org

Abstract—Feature modeling started 20 years ago as a simple,
yet very appealing and intuitive form of variability modeling.
Over time researchers proposed numerous extensions to accom-
modate the needs of many real-world applications. As a result,
a large number of distinct forms of feature modeling exist in the
literature. I will present an ongoing effort to design a unified
feature modeling language that supports both Boolean and rich
cardinality-based feature models with natural simplicity. The
effort is inspired by real-world variability modeling languages
and is driven by a diverse set of applications. Among others, I will
attempt to answer the following question: What is the remaining
essence of feature modeling, once a feature modeling language
includes most of the mechanisms present in other structural
modeling languages, such as class modeling? I will also discuss
progress in automated tools and techniques for performing
operations on feature models, such as configuration, analysis,
and synthesis. I will close with a discussion of challenges and
future directions in variability modeling, including the challenge
of mapping features to and representing them in other software
artifacts.

Any software artifacts we create will evolve as new features
are added, and existing features are removed or modified, and,
therefore, it is important to build softness (which we often call
modifiability, adaptability, maintainability, etc.) into software
when we design it. FODA stimulates software engineers to
think about variability of software they create, and provides a
mechanism to codify that knowledge. This variability information
is the most critical knowledge for building softness into software,
and I believe this is the reason why feature modeling became
popular among researchers as well as practitioners. In my
talk, I will review the salient features of FODA report and
various extensions of the original feature model, and then explore
research topics.

VaMoS 2010

11

VaMoS 2010

12

Semistructured Merge in Revision Control Systems
Sven Apel, Jörg Liebig, Christian Lengauer

Dept. of Informatics and Mathematics
University of Passau

{apel,joliebig,lengauer}@fim.uni-passau.de

Christian Kästner
School of Computer Science

University of Magdeburg
ckaestne@ovgu.de

William R. Cook
Dept. of Computer Sciences

University of Texas at Austin
wcook@cs.utexas.edu

Abstract—Revision control systems are a major means to
manage versions and variants of today’s software systems. An
ongoing problem in these systems is how to resolve conflicts
when merging independently developed revisions. Unstructured
revision control systems are purely text-based and solve conflicts
based on textual similarity. Structured revision control systems
are tailored to specific languages and use language-specific
knowledge for conflict resolution. We propose semistructured
revision control systems to inherit the strengths of both classes
of systems: generality and expressiveness. The idea is to provide
structural information of the underlying software artifacts in the
form of annotated grammars, which is motivated by recent work
on software product lines. This way, a wide variety of languages
can be supported and the information provided can assist the
resolution of conflicts. We have implemented a preliminary
tool and report on our experience with merging Java artifacts.
We believe that drawing a connection between revision control
systems and product lines has benefits for both fields.

I. INTRODUCTION

Revision control systems (a.k.a. version control systems)
have a long tradition in software engineering [1], [2]. On
the one hand, they are used in virtually every substantial
software project in industry. On the other hand, they have
also attracted much attention in academia. Revision control
systems are a major means to manage versions and variants
of today’s software systems. A programmer creates a revision
of a software system by deriving it from the base system or
from another revision; a revision can be developed and evolve
in isolation; and it can be merged again with the base system
or another revision. A major problem of revision control is
how to resolve merge conflicts that are caused by concurrent
changes.

In the recent years, two classes of revision control systems
have emerged: (1) revision control systems that operate on
plain text and (2) revision control systems that operate on
more abstract and structured document representations. The
first class is used widely in practice, since such systems are
typically language-independent (i.e., they work with every
software artifact that can be represented with text). Some
widely used systems of this class are CVS1, Subversion2, Git3,
and Mercurial4. Henceforth, we call them unstructured revi-
sion control systems. A problem is that, when conflicts occur,
the unstructured revision control system has no knowledge

1http://www.cvshome.org/eng/
2http://subversion.tigris.org/
3http://git-scm.com/
4http://mercurial.selenic.com/

of the structure of the underlying software artifacts, which
makes it difficult to resolve certain kinds of conflicts, as we
will illustrate.

The second class is explored mainly in academia with
the goal of solving the problems of unstructured revision
control systems with the conflict resolution. The idea is to
use the structure and semantics of the software artifacts being
processed to resolve merge conflicts automatically [3]. These
systems operate on abstract syntax trees or similar represen-
tations instead of on plain program text. A drawback is that,
aiming at a particular language’s syntax or semantics, they
sacrifice language independence. Henceforth, we call these
systems structured revision control systems.

Apparently, there is a trade-off between generality and
expressiveness of revision control systems. A revision control
system is general, if it works with many different kinds of
software artifacts. It is expressive if it is able to handle as
many merge conflicts as possible automatically. Inspired by the
trade-off between generality and expressiveness, we propose a
new class of revision control systems, called semistructured
revision control systems, that inherits the strengths but not
the weaknesses of structured and unstructured revision control
systems. The idea is to increase the amount of information a
revision control system has at its disposal to resolve conflicts,
while maintaining generality in the sense that many languages
are supported. In particular, we concentrate on the merge
process, so we speak of semistructured merge.

Our proposal is based on previous work on language-
independent feature composition in software product line
engineering [4], [5]. We noticed a strong similarity between
software composition tools and software merging techniques
used in revision control systems, which we exploit in our
proposal. In a nutshell, we extend an existing feature compo-
sition tool infrastructure, called FEATUREHOUSE, to enable
it to merge different revisions of a software system based on
the structure of the software artifacts involved. Users can plug
new languages into FEATUREHOUSE by providing a formal
specification of their languages’ syntax (i.e., the grammar)
enriched with semantic information. While this approach is
not entirely language-independent, it is still quite general in
that new languages can be integrated easily by providing
their grammars. If, for whatever reason, there is no grammar
available for a certain language, a programmer can parse
corresponding software artifacts line by line, which would be
effectively the unstructured approach.

VaMoS 2010

13

http://www.cvshome.org/eng/
http://subversion.tigris.org/
http://git-scm.com/
http://mercurial.selenic.com/

Base Program STACK

1 import java.util.LinkedList;
2 public class Stack<T> {
3 private LinkedList<T> items = new LinkedList<T>();
4 public void push(T item) {
5 items.addFirst(item);
6 }
7 public T pop() {
8 if(items.size() > 0) return items.removeFirst();
9 else return null;

10 }
11 }

Fig. 1. A simple stack implementation in Java.

Learning from product line engineering pays off in the
development of revision control systems, as we will demon-
strate. But also the reverse is interesting. Revision control
systems are use widely in practice to manage versions and
variants. We and others believe that drawing a connection
between revision control systems and software product lines
also provides insights for software product line engineers,
especially with regard to real-world application scenarios [6].

In the remainder, we analyze the trade-off between gener-
ality and expressiveness of structured and unstructured merge.
Based on the analysis, we derive our proposal of semistruc-
tured merge. Furthermore, we offer a preliminary tool that
demonstrates the principal applicability of the approach, and
we report on first experiences with it.

II. CONFLICTS IN REVISION CONTROL – BACKGROUND
AND RELATED WORK

There is a large body of work on revision control sys-
tems [1], [2] and conflict resolution in software merging [3].
We concentrate on aspects relevant for our proposal. The
purpose of a revision control system is to manage different
revisions of a software system. Usually, revisions are derived
from a base program or from other revisions. By branching
the development line, a programmer can create independent
revisions, which can be changed and evolve in isolation (e.g.,
to add and test new features). Finally, independent revisions
can be merged again with the base program or with other
revisions, which may have been changed in the meantime.

The key issue we address in our work is merge conflict
resolution. When two revisions have evolved independently,
conflicts may occur while merging them. A major goal of
research in this area is to empower revision control systems
to resolve merge conflicts automatically [3]. First, we illustrate
the problem of conflict resolution in unstructured merge. Then,
we highlight some mechanisms of structured merge that enable
them to resolve conflicts better than unstructured merge.

A. Unstructured Merge

To illustrate the conflict resolution problem, we use the
running example of a simple stack implementation, as shown
in Figure 1. Henceforth, we call this program the base program
or simply STACK. It contains a class Stack that contains a
field items and the two methods push and pop.

Revision TOP

1 import java.util.LinkedList;
2 public class Stack<T> {
3 private LinkedList<T> items = new LinkedList<T>();
4 public void push(T item) {
5 items.addFirst(item);
6 }
7 public T top() {
8 return items.getFirst();
9 }

10 public T pop() {
11 if(items.size() > 0) return items.removeFirst();
12 else return null;
13 }
14 }

Fig. 2. A revision of the stack implementation that adds method top.

Revision SIZE

1 import java.util.LinkedList;
2 public class Stack<T> {
3 private LinkedList<T> items = new LinkedList<T>();
4 public void push(T item) {
5 items.addFirst(item);
6 }
7 public int size() {
8 return items.size();
9 }

10 public T pop() {
11 if(items.size() > 0) return items.removeFirst();
12 else return null;
13 }
14 }

Fig. 3. A revision of the stack implementation that adds method size.

Now, suppose a programmer would like to add a new feature
TOP, but would like to develop the feature in its own branch,
independently of the main branch (i.e., base program). To this
end, the programmer creates a branch with a new revision TOP.
Furthermore, suppose another programmer adds subsequently
a feature Size directly to the main branch5 by creating a
corresponding revision of the base program. Figure 2 and
Figure 3 present code for the two revisions, each of which
add a new method to class Stack. Finally, suppose that, at
some point in time, the two branches are merged again to
combine both revisions including the new features.

Merging the two branches involves merging the two revi-
sions TOP and SIZE on the basis of the common ancestor, the
base program STACK. This process is also called a three-way
merge because it involves three programs or documents [2]. In
our example, the merge process reports a conflict that cannot
be resolved automatically with unstructured merge. Figure 4
illustrates the output of the Linux merge tool for this example.
The figure shows that the merge process is not able to merge
the two new methods top and size such that both can be
present in the merged program.

This example is very simple but it illustrates already the
problems of unstructured merge. An unstructured merge tool
operates solely on the basis of text lines or tokens. It identifies
new text fragments with regard to the common ancestor (base
program) and stores the common fragments before and after

5Note that the programmer could develop feature SIZE in any other branch
but, for simplicity, we assume that the main branch is used.

VaMoS 2010

14

mergeunstruct(TOP, STACK, SIZE)

1 import java.util.LinkedList;
2 public class Stack<T> {
3 private LinkedList<T> items = new LinkedList<T>();
4 public void push(T item) {
5 items.addFirst(item);
6 }
7 <<<<<<< Top/Stack.java
8 public T top() {
9 return items.getFirst();

10 }
11 =======
12 public int size() {
13 return items.size();
14 }
15 >>>>>>> Size/Stack.java
16 public T pop() {
17 if(items.size() > 0) return items.removeFirst();
18 else return null;
19 }
20 }

Fig. 4. Output of the Linux merge tool when merging revision TOP and
SIZE with the base program.

mergestruct(TOP, STACK, SIZE)

1 import java.util.LinkedList;
2 public class Stack<T> {
3 private LinkedList<T> items = new LinkedList<T>();
4 public void push(T item) {
5 items.addFirst(item);
6 }
7 public T top() {
8 return items.getFirst();
9 }

10 public int size() {
11 return items.size();
12 }
13 public T pop() {
14 if(items.size() > 0) return items.removeFirst();
15 else return null;
16 }
17 }

Fig. 5. Merging TOP and SIZE without conflicts.

the new fragments. If the two revisions change or extend text
in the same region, the system reports a conflict, i.e., it is not
able to decide how to merge the changes or extensions. In
our example, the merge tool knows that two independent text
fragments (which actually implement the two methods top
and size) are added to the same location of the base program
(which is enclosed by the two fragments that implement the
methods push and pop). The problem is that the unstructured
merge tool does not know that these fragments are methods
and that a merge of the two is actually straightforward, as we
illustrate next.

Why is an unstructured revision control system not able to
resolve the conflict that occurs when merging the revisions
TOP and SIZE? As indicated before, an unstructured merge
tool does not know that the two fragments implement Java
methods whose order does not matter within a class decla-
ration. If the tool knew that the base program and the two
revisions are actually Java programs, then it would be able to
solve the conflict automatically. There are actually two ways to
resolve the conflict: include method top first and then method
size (shown in Figure 5), or vice versa.

Revision SERIALIZABLE

1 import java.util.LinkedList;
2 import java.io.Serializable;
3 public class Stack<T> implements Serializable {
4 private static final long serialVersionUID = 42;
5 ...
6 }

Fig. 6. Revision that makes Stack objects serializable.

Revision FLUSHABLE

1 import java.util.LinkedList;
2 import java.io.Flushable;
3 public class Stack<T> implements Flushable {
4 ...
5 public void flush() { ... }
6 }

Fig. 7. Revision that makes Stack objects flushable.

B. Structured Merge

Figure 5 illustrates a very simple example of taking ad-
vantage of information on the syntax and semantics of the
programs and revisions involved in the merge process. In
the past, many tools have been proposed that leverage this
kind of information to resolve as many conflicts as possi-
ble [3]. Westfechtel and Buffenbarger pioneered this field by
proposing tools that incorporate structural information such
as the context-free and context-sensitive syntax in the merge
process [7], [8]. Researchers proposed a wide variety of
structural comparison and merge tools including tools specific
to Java [9] and C++ [10]. Some tools even consult additionally
semantic information [11]–[13].

Let us illustrate the abilities of structured merge by a further
example. Suppose we have the base stack implementation and
we create two independent revisions, one to develop feature
SERIALIZABLE that enables stack objects to be serialized and
another to develop feature FLUSHABLE that allows program-
mers to flush the elements of the stack to a data stream.
Figure 6 and Figure 7 depict excerpts of the two revisions.

Merging the two revisions with the base program using
unstructured merge causes two conflicts. First, the system is
not able to merge the two new import statements and, second,
it is not able to merge the two implements clauses of the two
revisions. Figure 8 shows the conflicts as reported by the Linux
merge tool.

A structured revision control system that knows that the
base program and the revisions are written in Java is able to
resolve the conflicts automatically and produces the desired
result (i.e., the imports are placed one after the other and the
implements clauses are concatenated), as shown in Figure 9.

Beside the conflicts we have seen so far, there are many
more conflicts that can be resolved by structured revision
control systems on the basis of language-specific knowledge.
For example, a for loop in Java consists of a header and a
body, and the header consists of three parts. This information is
useful when two revisions modify disjoint parts of the header.

VaMoS 2010

15

mergeunstruct(SERIALIZABLE, STACK, FLUSHABLE)

1 import java.util.LinkedList;
2 <<<<<<< Serializable/Stack.java
3 import java.io.Serializable;
4 =======
5 import java.io.Flushable;
6 >>>>>>> Flushable/Stack.java
7 <<<<<<< Serializable/Stack.java
8 public class Stack<T> implements Serializable {
9 private static final long serialVersionUID = 42;

10 =======
11 public class Stack<T> implements Flushable {
12 >>>>>>> Flushable/Stack.java
13 private LinkedList<T> items = new LinkedList<T>();
14 public void push(T item) {
15 items.addFirst(item);
16 }
17 public T pop() {
18 if(items.size() > 0) return items.removeFirst();
19 else return null;
20 }
21 public void flush() { ... }
22 }

Fig. 8. Output of the Linux merge tool merging revision SERIALIZABLE
and FLUSHABLE with the base program.

mergestruct(SERIALIZABLE, STACK, FLUSHABLE)

1 import java.util.LinkedList;
2 import java.io.Serializable;
3 import java.io.Flushable;
4 public class Stack<T> implements Serializable, Flushable {
5 private static final long serialVersionUID = 42;
6 private LinkedList<T> items = new LinkedList<T>();
7 public void push(T item) {
8 items.addFirst(item);
9 }

10 public T pop() {
11 if(items.size() > 0) return items.removeFirst();
12 else return null;
13 }
14 public void flush() { ... }
15 }

Fig. 9. The desired result of merging revision SERIALIZABLE and FLUSH-
ABLE with the base program.

C. Generality vs. Expressiveness

The previous discussion reveals that there is a trade-off
between generality and expressiveness of revision control
systems. Unstructured revision control systems are very gen-
eral. They can be used with every kind of (textual) software
artifact. However, they are not able to resolve conflicts that
require knowledge on the language of the artifacts involved.
Typically, a structured revision control system is tailored to
a particular language. So, it would be possible to build a
revision control system for Java that can resolve the conflicts
we have discussed so far and, in addition, many other conflicts.
However, such a system would be useless in a setting in which
a software system consists of artifacts written in many different
languages, most notably software product lines [4], [14].

The trade-off motivates us to explore the space between
structured and unstructured revision control systems. Can we
invent a system that is able to handle a wide variety of software
artifacts and that has enough information on these artifacts
to resolve a reasonable number of conflicts automatically?
A trivial solution would be to develop a structured revision

items push pop

Stack<T>

Stack

items push pop

Stack<T>

Stack

size

items push top pop

Stack<T>

Stack

items push top pop

Stack<T>

Stack

size

(b)

(d)

(a)

(c)

Fig. 10. Different revisions of the stack example represented as program
structure trees.

control system for every artifact type that occurs in a software
project. A problem with this naive approach is that it is very
tedious and error-prone. Moreover, in many cases, not all
artifact types can be anticipated; in times where people invent
their own domain-specific languages and document formats,
this approach is simply infeasible.

III. SEMISTRUCTURED MERGE

The basic idea of semistructured revision control systems—
which is much like in structured revision control systems—
is to represent software artifacts as trees and to provide
information on how the nodes of a certain type (e.g., methods
or classes) and their subtrees are merged. We call such a tree,
which is essentially a parse tree, a program structure tree
(a.k.a. feature structure tree) [5]. In Figure 10 (a), we show a
simplified program structure tree of the base program STACK,
and, in Figure 10 (b) and Figure 10 (c), we show simplified
program structure trees of TOP and SIZE. It is important to
note that not all structural information is represented in the
tree. For example, there are no nodes that represent statements
or expressions. But the structural information is not lost; it is
contained as plain text in the leaves (not shown). So a program
structure tree is not necessarily a full parse tree but abstracts
from some details and represents them as plain text.

The choice of which kind of structural element is repre-
sented by a distinct node depends on the expressiveness which
we want to attain with semistructured merge. Let us explain
this choice by means of the stack example. Taking the three
program structure trees as input, a merge tool can produce
the desired output just by superimposing the trees, as shown
in Figure 10 (d). Why does this algorithm work?6 It works
because the order of methods does not matter. If the two
revisions added methods with identical signatures, the tool
would have to merge the statements of their bodies. This would
be more difficult since their order matters (and statements

6Note that the structured merge tools of Westfechtel [7] and Buffen-
barger [8] are not able to resolve this kind of conflict (personal communication
with Westfechtel). However, in principle they would have enough information
to do so.

VaMoS 2010

16

do not have unique names). Even with all knowledge on the
Java language, there are always cases in which we cannot
say how to merge sequences of statements. This is the reason
why we choose to represent methods as leaves and their
statements as sole text content; in other languages, we may
choose differently.

In the example of Figure 8, we see that unstructured merge
is not able to combine the differing implements clauses of
two revisions of a class. With semistructured (and structured)
merge, we are able to achieve this because we know that
lists of types can be concatenated.7 But what do we do with
program elements of which we do not know how to merge
them, such as method bodies with statements? The answer
is simple: We represent the elements as plain text and use
conventional unstructured merge. That is, if a conflict occurs
inside a method body, we cannot resolve it automatically—
much like in unstructured merge.

So, semistructured merge is more expressive than unstruc-
tured merge because certain conflicts can be resolved auto-
matically; but it is less expressive than truly structured merge
because some content is treated as plain text. The question
that arises is: Why not use structured merge altogether? The
answer is: This way we loose more and more generality, as
we explain next.

A. Balancing Generality and Expressiveness

The ability of semistructured merge to resolve the conflicts
which we have discussed so far is based on the observation
that the order of certain elements, e.g., of classes, interfaces,
methods, imports, implements and throws list elements, and
so on, does no matter. We call those conflicts ordering con-
flicts. A merge algorithm that just resolves ordering conflicts
automatically is simpler to define than a full structural merge.
A semistructured merge uses an abstraction of the structure
of the document, where the abstraction has just enough infor-
mation to identify ordered items and resolve conflicts.

Thus, our system consists of two parts: (1) a generic engine
that knows how to identify and resolve ordering conflicts and
(2) a small abstract specification—for each artifact type—of
the program’s or document’s elements of which the order does
not matter. The abstract specification of a document structure
is given by an annotated grammar of the language. Most of
the difficult work is done by the generic merge engine, using
the grammar as a guide. This architecture makes it relatively
easy to include new languages by providing proper abstract
specifications. For example, the order of data type declarations
in a Haskell program or of functions in a Python program does
not matter.

To illustrate the role of annotations, consider the excerpt
of a simplified Java grammar in Figure 11. It contains a set
of production rules. For example, the rule ClassDecl de-
fines the structure of classes containing fields (FieldDecl),
constructors (ClassConstr), and methods (MethodDecl).

7Again, the structured merge tools of Westfechtel [7] and Buffenbarger [8]
are not able to resolve this kind of conflict, but this should be possible in
principle.

1 @FSTNonTerminal(name="{Type}")
2 ClassDecl : "class" Type ImplList "{"
3 (FieldDecl)* (ClassConstr)* (MethodDecl)*
4 "}";
5 ...
6 @FSTNonTerminal(name="ImplClause")
7 ImplList : "implements" @LIST Type ("," @LIST Type)*
8 @FSTTerminal(name="{<ID>}({ParamList})")
9 MethodDeclaration :

10 Type <ID> "(" (ParamList)? ")" "{"
11 (Statement)*;
12 "}";
13 @FSTTerminal(name="{TOSTRING}")
14 Type : ...

Fig. 11. An excerpt of a simplified Java grammar with semantic annotations.

Production rules may be annotated with @FSTNonTerminal
and @FSTTerminal. The former annotation defines that
(1) elements corresponding to the rule are represented as
nodes in corresponding program structure tree, (2) there may
be subnodes, and (3) the order of elements or nodes is
arbitrary. In our example, we annotate the rule for class
declarations with @FSTNonTerminal8 because classes may
contain further classes, methods, and so on, and the order of
classes in a file or package may vary. The @FSTTerminal
annotation is like the @FSTNonTerminal annotation except
that subelements are represented as plain text. We annotate the
rule for method declarations in this way because the order of
methods may vary but their inner statements are represented by
plain text, as explained before. A further interesting example
is the rule for implements lists. This rule is annotated with
@FSTNonTerminal, so the order of elements (i.e., type
names) of an implements list may vary. However, for a parser,
it is difficult to recognize that the elements form really a
list, which is basically due to the grammar’s treatment of the
commas between the elements. The inner annotation @LIST
passes exactly this information to the generated parser.

Beyond ordering conflicts we can imagine many ways to
use annotations for conflict resolution. For example, we could
use annotations to specify how the parts of a for loop header
are merged. In this case, the order of the parts matters, so the
annotations would have to be of a different kind. In further
work, we will explore the potential of our approach to resolve
other kinds of conflicts.

As we have illustrated, an annotated grammar contains
sufficient information to guide a language-independent revi-
sion control system in merging Java artifacts. But how does
this approach facilitate generality? Indeed, for a language
to be supported, we need some information in the form of
an annotated grammar, so the tool is not entirely language-
independent. But such a grammar is easily provided, since
standard grammars in Backus-Naur-Form are available on
the Web for many languages, and adding annotations is a
matter of hours, at most. Actually, we do not even need
the entire grammar of a language, but only the part that is
concerned with elements whose order is flexible. We have

8The annotation parameter name is used to assign a name to the corre-
sponding nodes in the program structure tree.

VaMoS 2010

17

been quite successful using such a mechanism in feature
composition in software product line engineering [4] and we
expect to reproduce the success of applying such a mechanism
in revision control systems.

To summarize, semistructured merge is more expressive
than unstructured merge, since certain conflicts can be re-
solved automatically based on information on the underlying
languages; and semistructured merge is more general than
structured merge, since a wide variety of languages can
be supported solely on the basis of providing an annotated
grammar, which needs to be done only once per language.
If, for whatever reason, there is no information available
on a given language, semistructured merge behaves exactly
like unstructured merge, parsing the corresponding software
artifact line by line.

IV. IMPLEMENTATION AND EXPERIENCE

We have implemented a first prototype of a semistructured
merge tool, called FSTMERGE, which is able to resolve
ordering conflicts.9 FSTMERGE takes advantage of our ex-
isting tool infrastructure FEATUREHOUSE, as illustrated in
Figure 12. The tool FSTGENERATOR generates almost all
code that is necessary for the integration of a new language
into FSTMERGE. FSTGENERATOR expects the grammar of
the language in a proprietary format, called FEATUREBNF,
of which we have shown already an example in Figure 11.
Using a grammar written in FEATUREBNF, FSTGENER-
ATOR generates an LL(k) parser (which produces program
structure trees) and a corresponding pretty printer, which are
then integrated into FSTMERGE. After the generation step,
FSTMERGE proceeds as follows: (1) the generated parser
receives the base program and two revisions written in the
target language and produces for each program a program
structure tree; (2) FSTMERGE performs the semistructured
merge as explained before (the trees are superimposed and
a conventional unstructured merge is applied to the leaves);
(3) the generated pretty printer writes the merged revisions to
disk.

structure trees
feature

Generator

CJava ...C# Haskell JavaCC Python

MergeParser

and revisions

use unstructured merge for text content

base program
feature structure tree

superimposed
revisions
merged

Pretty Printer

FSTMerge

FSTGenerator

FeatureBNF

Fig. 12. The architecture of FEATUREHOUSE.

So far, we have used FSTMERGE only with Java programs
and we concentrated on ordering conflicts (including merging
classes containing methods, fields, implements lists). But,

9FSTMERGE and some examples can be downloaded with the FEATURE-
HOUSE distribution: http://www.fosd.de/fh/

due to our experience with FEATUREHOUSE in software
product line engineering [4], [5], [15]–[18], we expect that
integrating further languages is very easy. In fact, we have
already developed the annotated grammars of several further
languages including C, C#, JavaCC, and Haskell—what is
missing are case studies. The more interesting issue is whether
semistructured merge can play to its strengths in real software
projects. It is clear that semistructured merge is able to resolve
more conflicts than unstructured merge. But how frequent are
such conflicts? For example, how often are methods added
independently to the same region? How often are implements
lists changed? Currently, we cannot provide answers. Although
there is some evidence that revisions often involve additions
of larger structures such as entire functions [19], we need
a substantial set of data to answer the question definitely.
From the theoretical point of view, semistructured merge is
very interesting, not least because, by means of playing with
annotations, we can adjust the way the merge tool works.
However, the impact on practical revision control remains to be
evaluated. A first step is to analyze the kind and frequencies of
conflicts in different software projects incorporating different
kinds of software artifacts.

V. CONCLUSION AND OPEN ISSUES

Both unstructured and structured revision control systems
have strengths and weaknesses. The former are very general
but cannot resolve certain kinds of conflicts. The latter are
typically tailored to specific languages and can thus resolve
conflicts better than the former. To profit from both worlds, we
have proposed semistructured merge, which is inspired by our
previous work on software product lines. Developers provide
information on the artifact languages in the form of annotated
grammars. This way, a wide variety of different languages
can be supported while taking advantage of the provided
information during the merge process. We have implemented a
preliminary tool and plugged in support for the Java language.
Whereas integrating further languages is straightforward, it is
interesting to explore whether semistructured merge can play
to its strengths in practical software engineering. Finally, it
is interesting to study the commonalities and differences of
software product lines and revision control systems. We have
taken a first step and we believe that, in the future, both fields
will converge.

We see three interesting open issues of our approach. The
first issue is that semistructured merge (much like structured
merge) relies on structural information, so the revisions must
be syntactically correct. Whereas it is best practice to commit
only correct programs or documents, this is not a strict
requirement of today’s (unstructured) revision control systems.
In such cases, the artifacts involved have to be parsed as
plain text such that semistructured merge behaves exactly like
unstructured merge. It is interesting to explore whether in
such cases syntacticly correct fragments can be represented
by program structure trees and only the incorrect fragments
as plain text.

VaMoS 2010

18

http://www.fosd.de/fh/

A further issue is the role of refactorings. So far we
have not addressed changes like the renaming of methods
or classes. For example, in semistructured merge, a rename
method refactoring would result in two different methods (the
original method and the renamed method), without reporting
a conflict. It is debatable if this is the desired behavior. On the
other hand, we believe that structural information of whatever
kind is of a great value in the presence of refactoring. One can
even imagine to tune the kind of information that is passed
to the merge tool, e.g., information on references between
program elements instead of ordering information. We will
explore this issue in further work.

Finally, it would interesting to explore how type information
can be used to resolve conflicts. The problem is that type
systems are typically tailored to specific languages and thus
would undermine generality. However, researchers begin to
think about cross-language and language-independent type
systems [20]–[22]. In the future, it may be possible to use
such a type system for conflict resolution in semistructured
revision control systems.

ACKNOWLEDGMENTS

We thank Don Batory for fruitful discussions on the poten-
tial of semistructured merge. This work has been supported
in part by the German Research Foundation (DFG), project
number AP 206/2-1.

REFERENCES

[1] R. Conradi and B. Westfechtel, “Version Models for Software Configu-
ration Management,” ACM Computing Surveys (CSUR), vol. 30, no. 2,
pp. 232–282, 1998.

[2] B. O’Sullivan, “Making Sense of Revision-Control Systems,” Commu-
nications of the ACM (CACM), vol. 52, no. 9, pp. 56–62, 2009.

[3] T. Mens, “A State-of-the-Art Survey on Software Merging,” IEEE
Transactions on Software Engineering (TSE), vol. 28, no. 5, pp. 449–
462, 2002.

[4] S. Apel, C. Kästner, and C. Lengauer, “FeatureHouse: Language-
Independent, Automated Software Composition,” in Proceedings of the
International Conference on Software Engineering (ICSE). IEEE
Computer Society, 2009, pp. 221–231.

[5] S. Apel and C. Lengauer, “Superimposition: A Language-Independent
Approach to Software Composition,” in Proceedings of the International
Symposium on Software Composition (SC), ser. Lecture Notes in Com-
puter Science, vol. 4954. Springer-Verlag, 2008, pp. 20–35.

[6] M. Staples and D. Hill, “Experiences Adopting Software Product Line
Development without a Product Line Architecture,” in Proceedings of
the Asia-Pacific Software Engineering Conference (APSEC). IEEE
Computer Society, 2004, pp. 176–183.

[7] B. Westfechtel, “Structure-Oriented Merging of Revisions of Software
Documents,” in Proceedings of the International Workshop on Software
Configuration Management (SCM). ACM Press, 1991, pp. 68–79.

[8] J. Buffenbarger, “Syntactic Software Merging,” in Selected Papers from
the ICSE SCM-4 and SCM-5 Workshops on Software Configuration
Management, ser. Lecture Notes in Computer Science, vol. 1005.
Springer-Verlag, 1995, pp. 153–172.

[9] T. Apiwattanapong, A. Orso, and M. Harrold, “JDiff: A Differencing
Technique and Tool for Object-Oriented Programs,” Automated Software
Engineering, vol. 14, no. 1, pp. 3–36, 2007.

[10] J. Grass, “Cdiff: A Syntax Directed Differencer for C++ Programs,” in
Proceedings of the USENIX C++ Conference. USENIX Association,
1992, pp. 181–193.

[11] V. Berzins, “Software Merge: Semantics of Combining Changes to
Programs,” ACM Transactions on Programming Languages and Systems
(TOPLAS), vol. 16, no. 6, pp. 1875–1903, 1994.

[12] D. Jackson and D. Ladd, “Semantic Diff: A Tool for Summarizing the
Effects of Modifications,” in Proceedings of the International Confer-
ence on Software Maintenance (ICSM). IEEE Computer Society, 1994,
pp. 243–252.

[13] D. Binkley, S. Horwitz, and T. Reps, “Program Integration for Languages
with Procedure Calls,” ACM Transactions on Software Engineering and
Methodology (TOSEM), vol. 4, no. 1, pp. 3–35, 1995.

[14] D. Batory, J. Sarvela, and A. Rauschmayer, “Scaling Step-Wise Refine-
ment,” IEEE Transactions on Software Engineering (TSE), vol. 30, no. 6,
pp. 355–371, 2004.

[15] S. Apel, C. Lengauer, B. Möller, and C. Kästner, “An Algebra for
Features and Feature Composition,” in Proceedings of the Interna-
tional Conference on Algebraic Methodology and Software Technology
(AMAST), ser. Lecture Notes in Computer Science, vol. 5140. Springer-
Verlag, 2008, pp. 36–50.

[16] S. Apel, F. Janda, S. Trujillo, and C. Kästner, “Model Superimposition in
Software Product Lines,” in Proceedings of the International Conference
on Model Transformation (ICMT), ser. Lecture Notes in Computer
Science, vol. 5563. Springer-Verlag, 2009, pp. 4–19.

[17] S. Apel, C. Kästner, A. Größlinger, and C. Lengauer, “Feature
(De)composition in Functional Programming,” in Proceedings of the
International Conference on Software Composition (SC), ser. Lecture
Notes in Computer Science, vol. 5634. Springer-Verlag, 2009, pp.
9–26.

[18] S. Apel, C. Lengauer, D. Batory, B. Möller, and C. Kästner, “An Algebra
for Feature-Oriented Software Development,” Department of Informatics
and Mathematics, University of Passau, Tech. Rep. MIP-0706, 2007.

[19] G. Stoyle, M. Hicks, G. Bierman, P. Sewell, and I. Neamtiu, “Mutatis
Mutandis: Safe and Predictable Dynamic Software Updating,” in Pro-
ceedings of the International Symposium on Principles of Programming
Languages (POPL). ACM Press, 2005, pp. 183–194.

[20] M. Grechanik, D. Batory, and D. Perry, “Design of Large-Scale Polylin-
gual Systems,” in Proceedings of the International Conference on
Software Engineering (ICSE). IEEE Computer Society, 2004, pp. 357–
366.

[21] S. Apel and D. Hutchins, “An Overview of the gDeep Calculus,”
Department of Informatics and Mathematics, University of Passau, Tech.
Rep. MIP-0712, 2007.

[22] S. Apel and D. Hutchins, “A Calculus for Uniform Feature Compo-
sition,” ACM Transactions on Programming Languages and Systems
(TOPLAS), 2010.

VaMoS 2010

19

VaMoS 2010

20

Leveraging Aspect-Connectors to Improve Stability
of Product-Line Variabilities

Marcelo Dias #1, Leonardo Tizzei #2, Cecı́lia Rubira #3, Alessandro Garcia ∗4, Jaejoon Lee †5

#Institute of Computing, University of Campinas
Campinas, Brazil

1marcelo.dias@students.ic.unicamp.br
2tizzei@ic.unicamp.br

3cmrubira@ic.unicamp.br
∗Informatics Department, PUC-Rio

Rio de Janeiro, Brazil
4alessandro.garcia@puc-rj.br

†Computing Department, Lancaster University
Lancaster, UK

5j.lee@comp.lancs.ac.uk

Abstract—One of the design goals of Product Line Architec-
tures (PLAs) is to remain stable while accommodating changes
of stakeholder’s requirements. However, the stability of a PLA is
largely dependent on how modularized are the decisions cross-
cutting multiple architectural variation points. Their scattered
implementation often leads to a number of side effects, such
as architecture-wide modifications. This paper proposes a novel
component model to encapsulate architectural variation points in-
side aspect-connectors, called Connector-VPs. Our component
model addresses limitations of emerging aspect-oriented models,
such as XPIs, which do not allow a modular implementation
of crosscutting variability decisions in a PLA. The role of a
Connector-VP is both binding aspectual-level components to
base-level ones, and isolating crosscutting decisions at archi-
tectural variation points. We have evaluated the PLA stability
designed using our solution in the presence of heterogeneous
evolutionary scenarios in the context of component-based PLAs.
The results show that our solution tends to promote superior
PLA resilience on these scenarios.

Index Terms—Component-based software development;
Aspect-Oriented Programming; Software Product Lines;
Software Architecture; Architectural Variability;

I. INTRODUCTION

Software product line (SPL) engineering aims at improving
development efficiency for families of software systems in a
given domain [7]. This concept promotes large-scale reuse
through a Product Line Architecture (PLA) that is common
to a variety of similar products in terms of their architectural
elements. The combination of SPL and Component-based
Development (CBD) is a well-known technique to rapidly and
efficiently derive products from a set of reusable assets [3]. In
the CBD, software systems are developed composing interop-
erable and reusable blocks called software components [24].
A component-based PLA fosters explicit representation of
component specification and contributes to reduce coupling
and increase cohesion, thereby improving SPL modularity and
evolvability [4].

In the context of component-based PLAs, an architectural

variation point is a place on the PLA where decisions are made
to derive different products [25]. Architectural variation points
are associated with non-kernel features (optional or alternative
ones). Evolution scenarios involving non-kernel feature cause
changes in architectural variation points. These scenarios usu-
ally involve inclusion of non-kernel features and/or changing
kernel features into non-kernel ones. In this context, it is
important for organizations to achieve design stable PLAs
and achieving a controlled evolution of architectural variation
points lies at the heart of it. A stable PLA means that it
can endure evolutionary changes by sustaining its modularity
properties.

One of the modern approaches to support enhanced mod-
ularity is Aspect-Oriented Programming (AOP) [15]. Some
works advocate that aspects can be used to facilitate PLA
evolution by using aspects to modularize PLA variabilities [2],
[8], [21]. Aspectual-level components can be used to imple-
ment crosscutting non-kernel features, by defining pointcuts
that advise base-level components of a PLA. However, recent
studies [20], [8] have identified that the use of conventional
AOP mechanisms can lead to PLA instabilities in specific
evolution scenarios. The reason is twofold: (i) the use of
conventional AOP leads to a high coupling between aspectual
and base components of a PLA, thereby generating pointcut
instabilities, and (ii) many decisions on architectural variation
points are still difficult to modularize with AOP.

Emerging AOP approaches, such as XPIs [13], address the
first problem but not the second one. XPIs aim at decreasing
the tight dependency caused by AOP. This approach em-
ploys explicit abstract interfaces, called Crosscut Programming
Interfaces (XPIs), to decouple aspects from the base code
intercepted by them. A XPI specifies sets of base code points
where aspects should be plugged in.

In the context of aspect-oriented PLAs, the employment of
XPIs can decouple aspectual-level components from the core
architecture, thus improving the PLA modularity. However,

VaMoS 2010

21

the combined use of components, aspects, and XPIs to design
PLAs does not suffice to address the scattered implementation
of inter-related decisions at architectural variation points.
Components usually have to include in their implementation
some additional code in order to support all possible variability
decisions of the architectural variation points. In this case,
the support implementation of such variability decisions is
usually scatteredly implemented over the components. Hence,
evolution scenarios on architectural variation points would also
imply in changes traversing the related components, thereby
decreasing the PLA stability.

We propose the concept of aspect-connectors for improv-
ing architecture variability, called Connector-VPs. While
Connector-VPs are employed to bind aspectual compo-
nents to XPIs of base-level components, they also encapsulat-
ing the support implementation for variability decisions from
components. The goal of our solution is to design stable PLAs
by encapsulating the implementation of such otherwise scat-
tered decisions inside Connector-VPs. The employment of
Connector-VPs avoids changes in architectural variation
points from being propagated to the components and their
interfaces.

This paper also presents a comparative study to evaluate
the positive and negative impact of using Connector-VPs
to design component-based PLAs. The objective is to quan-
titatively and qualitatively assess to what extent the use of
aspect-connector for architecture variability promotes PLA
design stability in the presence of various types of change.
In our investigation, we have adopted a component imple-
mentation model called COSMOS* [12]. We have focused
on eight releases of a SPL called MobileMedia [16]. Two
alternative implementations of MobileMedia product line were
involved and compared in our study: (i) one using COSMOS*
component model; and (ii) one using COSMOS* combined
with the use of Connector-VPs. It is worth mentioning,
that in both implementations, XPI approach was employed to
decouple aspectual-level components from base-level ones. We
have employed conventional metrics for change impact [23]
and modularity [26] for evaluating the PLA stability of the two
implementations. The results pointed out that the application of
Connector-VPs tends to promote superior PLA resilience
than the other approach involved in this study.

The paper is organized as follows: Section II presents
some necessary concepts to understand the rest of this paper.
Section III presents the novel COSMOS*-VP implementation
model, which applies our proposed solution. Section IV de-
scribes the empirical study, which provides data for the change
impact analysis in Section V and for the modularity analysis
in Section VI. Section VII presents some works related to this
one, and in Section VIII we draw the conclusions, list some
limitations of our study, and plan the future work.

II. BACKGROUND

A. COSMOS* Component Implementation Model

According to Szyperski [24], a software component is an
unit of modularity with explicit provided and required inter-

faces. It can also be deployed independently and is subject to
composition by third parties. The COSMOS* implementation
model is representative of component models because it has
all these characteristics. The main benefits of COSMOS* is
twofold. First, COSMOS* explicitly represents architectural
units, such as components, connectors and configuration, thus
providing traceability between the software architecture and
the respective source code. Second, COSMOS* is considered
a platform-independent model, as it is based on a set of design
patterns.

COSMOS* defines five sub-models, which address different
perspectives of component-based systems: (i) the specification
model specifies the components; (ii) the implementation model
explicitly separates the provided and required interfaces from
the implementation; (iii) the connector model specifies the
link between components using connectors; (iv) composite
components model specifies high-granularity components; and
(v) system model defines a software component which can be
straightforwardly executed.

Figure 1 (a) shows an architectural view of a COSMOS*
component called FavouritesMgr and Figure 1 (b) shows
the detailed design of the same COSMOS* component.
COSMOS* components are internally divided in specifica-
tion (spec package) and implementation (impl package).
The specification is the external view of the component,
which is also sub-divided in two parts, one that specifies
the provided services (spec.prov package) and the other
makes dependencies explicit (spec.req package). For in-
stance, IManager and IFavourites interfaces are pro-
vided interfaces and IPersistence is a required inter-
face. The impl package has three mandatory classes: (i)
a ComponentFactory class, responsible for instantiating
the component; (ii) a Facade class that realizes provided
interfaces, following the Façade design pattern [10]; and (iii)
a Manager class that realizes IManager interface and pro-
vides meta-information about the component. It is possible to
have an optional class called ObjectFactory, which aims
at reducing coupling between implementation classes within
the component.FavControl, which supports the implemen-
tation of the IFavourites interface and requires services
from other components via IPersistence interface, is
example of an auxiliary class.

Fig. 1. (a) An architectural view of a COSMOS* component; (b) A detailed
design of the COSMOS* component.

B. Components Enriched With XPIs
Some approaches aiming at decreasing the high coupling

caused by aspects have been proposed [13], [17]. These

VaMoS 2010

22

approaches decouple the specification of the base code places
where aspects are plugged from the aspects itself, in order
to improve system modularity. The XPI approach [13] is
one of the proposed approaches. While it employs Crosscut
Programming Interfaces (XPIs) to specify base code places
separately from aspects, it neither limits the use of existing
aspect-oriented mechanisms nor require new ones.

In the context of the combined use of components and
aspects, we call by aspectual-level components those which
implement crosscuting features, and are plugged into base-
level components in order to provide their features. Aspectual-
level components support the separation of features (in this
paper, features are considered equivalent to concerns), and,
consequently, increases the system modularity. Applying the
XPIs approach to the combined use of components and as-
pects, the aspects of an aspectual-level component and the
XPIs of a base-level components are separated, thus improving
system modularity [17].

COSMOS* can combine aspects and the concepts of XPI
to the context of components in order to implement aspectual-
level components. These components use aspects to intercept
base-level components in order to provide their functionality.
The main goal is to take advantage of the benefits of the
three approaches involved, thus increasing the modularity of
component-based architectures. Some characteristics of this
combination are similar to other aspectual component models,
such as separation between aspectual-level and base-level
components, as DyMAC [17] and FAC [22], and the employ-
ment of aspect-connectors, as FAC. However, the combined
use of COSMOS* and XPI, compared to these approaches,
presents some advantages. For example, it does not need new
programming mechanisms as the FAC, and its connectors can
be used not just to encapsulate non-functional concerns as in
DyMAC (see Section VII).

Fig. 2. Detailed design of an aspectual-level component.

Figure 2 shows the detailed design of the
FavouritesMgr now implemented as an aspectual-
level component. It has a structure similar to the COSMOS*
component, with a new package called aspects. Abstract
Aspects that specify advices stay inside the aspects
package, FavouritesConcern is an example of
Abstract Aspects. The aspect-connector Connector
extends FavouritesConcern and advises the base-level
MediaMgr, through its XPIMedia. For the sake of clarity,

we omitted all operations, attributes, and the classes inside
MediaMgr package.

C. Evolving Component-based PLAs with Aspects

Some works advocate that aspects can be used to facilitate
PLA evolution by using aspects to modularize PLA variabil-
ities [2], [8], [21]. In that case, aspectual-level components
are used to implement non-kernel features. The employment
of XPIs can decouple aspectual-level components from base-
level ones, thus improving the PLA modularity.

However, the XPIs concept does not suffice to solve the
scattering of architectural variation points over architectural
elements of a component-based PLA. The scattering is created
by implementing an architectural variation point across a set
of components. That is usually necessary in order to support
all variability decisions related to the architectural variation
point.

In an illustrative example, suppose that the PLA of a mobile
phone SPL has to handle different types of media, such as
music and photo. From the assets of this SPL, it is possible
to derive mobile phones which handle (i) music, (ii) photo,
or (iii) both music and photo. A possible way to implement
this PLA would be creating one component for media, one
for music, and other for photo. The MediaMgr component
would handle operations that are common to both photo and
music (e.g. create, delete) and MusicMgr and PhotoMgr
components would handle operations specific to its media
type, respectively. Since at least one media type must be
chosen, MediaMgr is a kernel component implemented on
the base level. MusicMgr and PhotoMgr components are
implemented on the aspect level and intercept MediaMgr
component in order to provide Music and Photo features,
respectively. The MediaMgr component is not aware of the
particularities of each type of media, since it deals with general
operations. Thus, both PhotoMgr and MusicMgr compo-
nents must check whether the data originated from MediaMgr
component is of the appropriate type. This data checking is
only necessary when there are more than one type of media,
and it represents a support implementation for the decisions
of the architectural variation point which is scattered on
two components, namely PhotoMgr and MusicMgr. Hence,
evolution scenarios related to this architectural variation point
would imply in changes in at least two components.

The support implementations for architectural variation
points should be encapsulated within architectural connec-
tors, thus allowing components and architectural variation
points to be changed independently. Without such architectural
connector, a change in these implementations may affect
several components of a PLA. Furthermore, a component that
implements variation points of a certain PLA might hinder its
reusability in other PLAs, since it holds details of the PLA.

The encapsulation of support implementations for archi-
tectural variation points in specific architectural connectors
also helps to isolate the implementation of features from
the implementation of variation points. Thus, changing one
should not affect the other. For instance, when an optional

VaMoS 2010

23

feature becomes an alternative feature, only the element where
the decisions related to this feature are supported should be
modified, that is, the specific architectural connector which
implements the architectural variation point.

III. COSMOS*-VP EXTENSION

The COSMOS*-VP model extends COSMOS* model by
providing guidelines to specify aspect-connectors for architec-
tural variation points, called Connector-VPs and material-
ize them into source code. Connector-VPs avoid architec-
tural variation points to be scatteredly implemented over sev-
eral PLA architectural elements. Once the architectural varia-
tion points are moved from components to Connector-VPs,
changes in architectural variation points are avoided from
being propagated to the components and their interfaces, thus
facilitating PLA evolution.

TABLE I
SUMMARY OF THE ELEMENTS INTRODUCED TO THE COSMOS*

CONNECTOR MODEL

Element Description
Delegation
Interfaces

Aspects used to extend Abstract Aspects of
aspectual-level components.

Interception
Interfaces

Aspects used to advise base-level components in or-
der to provide the non-kernel features of the aspetual-
level components.

Adapter A class which implement an Adapter design pat-
tern [10] between the Interception Interfaces and the
Delegation Interfaces of a Connector-VP.

Table I summarises the elements introduced by COSMOS*-
VP to the COSMOS* connector model, in order to allow
the specification and implementation of Connector-VPs. A
Connector-VP provides mechanisms to mediate the binding
of the Abstract Aspects of aspectual-level components to the
XPIs of base-level components. This binding is necessary in
order to provide the non-kernel features of aspectual-level
components to base-level components. ConnectorVPs bind
the components by using Delegation Interfaces to extend
the Abstract Aspects, and using Interception Interfaces to
advise the base-level components XPIs. The use of such
interfaces separates the Connector-VPs specification from
its implementation, avoiding a Connector-VP from being
an instable hard-wired connector between Abstract Aspects
and XPIs.

The Adapter design pattern is used to mediate the connec-
tion between Delegation Interfaces and Interception Interfaces
(see Table I). While the Adapter mediates the connection,
it provides a place to implement the necessary support for
variability decisions of the architectural variation point. Hence,
the employment of the Adapter helps a ConnectorVP to
encapsulate an architectural variation point. That is, without a
mediator, as an Adapter of a ConnectorVP, the base-level
components are directly advised by aspectual-level ones, thus,
the implementation that supports the variability decisions have
to be scatteredly implemented inside components. Another
benefit of the Adapter is that some mismatches between
Abstract Aspects and XPIs, connected by a Connector-VP
can be adapted.

It is worth mentioning that all aspectual-level components
connections at a specific architectural variation point must
be mediated by only one Connector-VP. That allows the
Connector-VP to encapsulate the support implementation
for all possible decisions of the point.

Fig. 3. (a) An architectural view of a Connector-VP; (b) A detailed
design of a Connector-VP.

Figure 3 (a) illustrates the architectural view of a
Connector-VP, namely MediaFavVP, which medi-
ates the connection between the aspectual-level com-
ponent FavouritesMgr to the base-level component
MediaMgr. The Delegation Interface DIOptional ex-
tends the Abstract Aspect of FavouritesMgr, called
FavouritesConcern, and the Interception Interface
IIOptional is used to intercept MediaMgr, using
XPIMedia, in order to provide the optional feature of
FavouritesMgr.

Figure 3 (b) presents how the MediaFavVP can be im-
plemented using AspectJ. In the figure, we have omitted some
required packages of the components, for the sake of clarity. To
provide the behaviour extended from FavouritesConcern
to the MediaMgr an adapter, called InterAdapter,
is created between the IIOptional and DIOptional
interfaces. InterAdapter must have one method for
each one of the advices extended by DIOptional. And,
each advice of DIOptional, which is a realization of
one Abstract advice of FavouritesConcern, is imple-
mented in order to intercept its correspondent method of the
InterAdapter. IIOptional, during the execution of its
advices, which intercept MediaMgr, will provide the optional
feature Favourites to MediaMgr calling the InterAdapter
methods.

This mechanism permits support decisions implementations
to be put between the components inside the MediaFavVP.
These implementations can be created in IIOptional or in
InterAdapter, thus, avoiding them to be scattered over
the components. These implementations can determine, for
example, under which conditions the optional feature will be
provided.

It is important to notice that although the complexity
of the Connector-VPs, their elements are very sim-
ple, and most of them can be semi-automatically generated

VaMoS 2010

24

based on the XPIs and Abstract Aspects connected by the
Connector-VP.

< < a l t e r n a t i v e > >
PhotoMgr

< < k e r n e l > >
M e d i a M g r

MediaXPI

< < C o n n e c t o r - V P > >
MediasVP

PhotoAbsAspect

< < a l t e r n a t i v e > >
MusicMgr

MusicAbsAspect

< < a l t e r n a t i v e > >
PhotoMgr

< < k e r n e l > >
M e d i a M g r

MediaXPI

< < a s p e c t > >
Photo-Media

PhotoAbsAspect

< < a l t e r n a t i v e > >
MusicMgr

MusicAbsAspect

< < a s p e c t > >
Music-Media

Legend:

XPIs

Abstract Aspect

e lements which
i m p l e m e n t
var ia t ion point

(b)

(a)

Fig. 4. (a) MobileMedia COSMOS*-XPI PLA; (b) MobileMedia COSMOS*-
VP PLA.

Figure 4 illustrates how an architectural variation point can
be isolated inside a Connector-VP. The Figure 4 (a) shows a
slice of MobileMedia PLA, implemented using COSMOS*
combined with XPIs, containing an architectural variation
point related to the choice of two alternative components,
namely PhotoMgr and MusicMgr. Alternative components
are aspectual-level components which implement the alterna-
tive features. MusicMgr and PhotoMgr components are
implemented on the aspect-level and intercept MediaMgr
component in order to provide Music and Photo features,
respectively. The MediaMgr is a base-level component and
it deals with general operations of medias support. Both
PhotoMgr and MusicMgr component must check whether
the data received advising MediaMgr component is of ap-
propriate type. This data checking is not necessary when just
one of the components is chosen, and it represents a support
implementation for the possible decisions of the architectural
variation point, which is scattered over the components.

The Figure 4 (b) shows the same slice of the PLA im-
plemented using COSMOS*-VP. A Connector-VP, called
MediasVP, mediates the binding of the alternative compo-
nents to the MediaMgr. The data checking is implemented
into the MediasVP adapter, and depending on the checking
result, the appropriated alternative component will provide
its feature. Thereby, the architectural variation point was
encapsulated only inside the MediasVP.

IV. EMPIRICAL SETTINGS

This section presents the empirical settings used to assess
the use of COSMOS*-VP to design stable PLAs.

A. Target software product line

In order to exemplify and evaluate our solution, we present a
software application, called MobileMedia [8], which is a SPL
for mobile applications that manipulates photo, music, and
video on mobile devices, such as mobile phones. The system
uses various technologies based on the Java ME platform,
such as SMS, WMA and MMAPI. It has two implementations
with the same functionalities but implemented with different
approaches: one uses AO programming and has approximately
12 KLOC and the other uses only OO programming and has

11 KLOC. MobileMedia endured seven evolution scenarios,
which led to eight releases. It is possible to derive 200 products
from the last release. The scenarios comprise different types of
changes involving kernel, optional, and alternative features, as
well as non-functional concerns. The purpose of these changes
is to exercise the implementation boundaries and, thus, assess
the design stability of the PLA. Table II summarises the
evolution scenarios in MobileMedia.

B. Study Definition and Execution

The objective of this comparative study is to assess quanti-
tatively and qualitatively to what extent the specification and
implementation of Connector-VPs, by using COSMOS*-
VP model, promote PLA design stability in the presence of
various types of changes. In this study, we compare two mod-
els to implement PLAs: (i) COSMOS* combined with AOP
and XPIs, called COSMOS*-XPI; and (ii) using COSMOS*-
VP. It is worth mentioning that COSMOS*-VP also employs
AOP and XPIs to decouple components from aspectual-level
to those of base-level of a PLA. In our study, we have used
change impact and modularity metrics in order to evaluate
PLAs stability.

The original AO implementation of the MobileMedia was
the input for our empirical study. In order to execute the
comparative study, we have performed the following steps:
• Step 1. Refactor the first release (R1) of the original AO

implementation to COSMOS*-XPI and COSMOS*-VP
implementations.

• Step 2. Evolve the refactored COSMOS*-XPI and
COSMOS*-VP implementations according to the evolu-
tion scenarios described in Table II.

• Step 3. Collect change impact and modularity metrics for
eight COSMOS*-XPI and COSMOS*-VP releases;

• Step 4. Compare the results of COSMOS*-VP against
COSMOS*-XPI implementation.

As a result of Step 1 execution, two new implementations
were created, named COSMOS*-XPI and COSMOS*-VP im-
plementations, each one with eight releases (R1-R8). During
the execution of steps 1 and 2, we strictly followed the same
implementation decisions made by the original MobileMe-
dia developers, such as extracting exception handling code
according to Castor et al. [9], and aspectizing all optional
and alternative features. During the execution of Step 3, we
have used the same metric suites of the original MobileMedia
empirical study [8]. The majority of the metrics were collected
using tools, such as Aopmetrics [1].

V. CHANGE IMPACT ANALYSIS

This section describes the change impact on PLA elements.
The change impact on PLA elements is measured by the
number of components and connectors changed or added.
The greater the number of architectural elements affected
(i. e. changed or added), the greater is the impact on the
PLA. A PLA is resilient if its elements are little impacted
by evolutions. The change impact metrics has been collected
comparing each release to its previous one (e.g. comparing R2

VaMoS 2010

25

TABLE II
SUMMARY OF EVOLUTION SCENARIOS IN MOBILEMEDIA

Release Description Type of Change
R1 MobilePhoto core

R2 Exception handling included (exception handling was implemented according to Castor et al.[9]) Inclusion of non-functional concern
which is also a kernel feature

R3 New feature added to count the number of times a photo has been viewed and sorting photos by
highest viewing frequency. New feature added to edit the photo’s label.

Inclusion of optional and kernel fea-
tures

R4 New feature added to allow users to specify and view their favourite photos. Inclusion of optional feature
R5 New feature added to allow users to keep multiple copies of photos Inclusion of optional feature
R6 New feature added to send photo to other users by SMS Inclusion of optional feature

R7
New feature added to store, play, and organise music. The management of photo (e.g. create, delete
and label) was turned into an alternative feature. All extended functionalities (e.g. sorting, favourites
and SMS transfer) were also provided

Changing of one kernel feature into two
alternatives

R8 New feature added to manage videos Inclusion of alternative feature

Fig. 5. Number of affected modules during PLA evolution.

to R1). It is worth mentioning that components could also be
removed (not only added or changed), but the impact caused
by this type of modification was similar for all PLAs and was
insignificant.

In the following, we discuss the change impact caused by
inclusion of kernel features (R2 and R3), inclusion of optional
features (R4, R5, and R6), and inclusion of alternative features
(R7 and R8).

A. Inclusion of Kernel Features

This section presents the results of the change impact caused
during the inclusion of the kernel features ExceptionHandler
and LabelMedia, which were included in R2 and R3, respec-
tively. The overall results, presented in Figure 5(a), show
that COSMOS*-VP PLA had the lowest number of PLA
elements changed. That happened because COSMOS*-VP
succeeded in isolating changes inside base-level components
and inside Connector-VPs. Hence, the changes were not
propagated to the aspectual-level components connected by the
Connector-VPs. For example, in R3, the metainformation
about media was changed from String to ImageData
type, which implied changes in various XPIs which were
relying on that reference. ImageData also embodies the
same information previously contained in String type. On
COSMOS*-VP PLA, this type mismatch could be adapted by
the Connector-VPs. Thus, these changes were isolated in
base-level components by the Connector-VPs. That was no
possible in COSMOS*-XPI PLA. Due to the use of hard-wired
connectors, which do not have adapter capabilities, the changes
had to be propagated to the aspectual-level components.

In the number of PLA elements added, the result was the
same in both PLAs. That happened because kernel features
were implemented by base-level components in both PLAs.
As COSMOS*-VP does not differ from COSMOS*-XPI on
how kernel features are implemented by base-level elements,
the same base-level components and connectors needed to be
added in both PLAs. Furthermore, no new aspect-connector

was needed. Thereby, the same number of PLA elements was
added in both PLAs.

B. Inclusion of Optional Features

This section describes the inclusion of the optional features
Favourites, CopyMedia, and SMS (R4, R5, and R6). During
the inclusion of these features, COSMOS*-VP PLA presented
the lowest number of PLA elements changed and added (see
Figure 5 (b)). The results of COSMOS*-VP were possible
because of two reasons. First, Connector-VPs could be
used to connect more than one optional component, added
during the evolutions to the aspectual level of the PLAs,
to base-level ones. A Connector-VP can be reused to
connect more than one aspectual-level component, since the
components connected are associated with the same architec-
tural variation point. That is not possible with COSMOS*-
XPI aspect-connectors, which led to a higher number of
added connectors in COSMOS*-XPI PLA. Second, due to the
scattered implementation of architectural variation points over
COSMOS*-XPI PLA elements, each inclusion of new optional
component changed more elements in COSMOS*-XPI than in
COSMOS*-VP PLA.

C. Inclusion of Alternative Features

The last two releases (R7 and R8) included the alterna-
tive features Music and Video, respectively. The overall
results show a great advantage for COSMOS*-VP against
COSMOS*-XPI (see Figure 5 (c)). COSMOS*-VP presented a
much lower number of PLA elements added and changed. The
employment of Connector-VP facilitated the COSMOS*-
VP PLA evolution by isolating from components the im-
plementation that supports the variability decisions of the
architectural variation points.

In R7, which included the alternative feature Music, the
kernel feature Photo was turned into alternative. In R8 the
alternative feature Video was also included. These evolution

VaMoS 2010

26

Fig. 6. Coupling and cohesion of MobileMedia PLAs.

scenarios led to a big impact on most of the architectural
variation points of the PLAs. They were impacted due to
the necessity of considering the new Music and Video
components created. The architectural variation points, which
were associated with just optional components, had changed
in order to allow different combinations of the optional com-
ponents and the new alternative ones (Photo, Music, and
Video). On COSMOS*-XPI PLA, the optional components
were changed in order to create new Abstract Aspects to
be connected to the new alternative components. And also
new aspect-connectors between these components had to be
created. On COSMOS*-VP, only the Connectors-VPs,
already used to connect the optional components to the PLA
core, had to be changed to provide the optional features to the
new alternative components included. Therefore, the use of
Connector-VP decreased the number of elements changed
and added in these releases, providing the best result to the
addition of alternative features (R7 and R8), and also to turn
a kernel feature into alternative (R7).

VI. MODULARITY ANALYSIS

This section presents the results for the modularity analysis
according to two metrics, namely cohesion and coupling.
These metrics were chosen because they are previously-
validated stability indicators as presented in several experimen-
tal studies (e.g. [8], [9], [11]). The majority of these metrics
can be automatically collected by applying metric tools, such
as Aopmetrics [1].

The modularity of all PLAs is discussed using Lack of Co-
hesion of Methods (LCOM) [6] and Efferent Coupling (Ce) [6]
metrics. The notion of cohesion is related to encapsulation, that
is keeping related things together. Thus, a high LCOM may
indicate bad design. Efferent coupling refers to the degree of
interdependence between parts of a design, which means that
a high interdepence can harm maintainability.

Figure 6 presents PLA modularity in terms of average
LCOM and average Ce of all PLA elements measured in
each release. The overall results show that COSMOS*-VP
presents a PLA implementation as modular as COSMOS*-
XPI. It means that the employment of Connector-VPs to
avoid scattered implementation of architectural variation points
did not harm the modular PLA design provided by combined
use of components, AOP and XPIs approach.

Regarding LCOM (Figure 6 (a)), COSMOS*-VP PLA
presents slightly higher LCOM than COSMOS*-XPI. That
happened because the COSMOS*-XPI aspect-connectors are

very cohesive, once they are made by just one aspect bridg-
ing XPIs and Abstract Aspects. Although, COSMOS*-VP
Connectors-VPs are simple, they are more complex than
COSMOS*-XPI aspect-connectors, thereby they have higher
LCOM.

Figure 6 (b) illustrates the results for Ce. COSMOS*-XPI
and COSMOS*-VP have very similar overall results for Ce,
with a slightly advantages for COSMOS*-VP on last two
releases (R7 and R8). The inclusion of alternative features in
these releases implied the creation of new aspect-connectors
on COSMOS*-XPI PLA. As explained in Section V-C, these
connectors, with their dependencies, were not created in
COSMOS*-VP PLA.

VII. RELATED WORK

Mezini and Osterman [19] propose a new model called
Caesar, which allows multiple different decompositions si-
multaneously. Caesar comprises the concept of collaboration
interfaces, which differ from standard interfaces in two ways:
(i) collaboration interfaces introduce modifiers to annotate
required and provided operations; (ii) it uses interface nesting
in order to express the interplay between multiple abstractions
of a component. Different from Caesar, Cosmos-VP defines
an implementation model which does not demand new mech-
anisms and can be implemented in mainstream programming
languages. Furthermore, Caesar does not comprise the concept
of aspect-connectors, which is a key concept in COSMOS*-
VP model.

Some works propose the integration of components and
aspects into new models promoting the encapsulation of advice
code (e.g. [17], [22]). Like COSMOS*-VP, one of their goals
is to increase reusability of advice code. FAC approach [22]
also comprises new programming mechanisms and an archi-
tecture description language (ADL) to support their approach.
Lagaisse and Joosen [17] describe a framework whose func-
tional layer contains the core application and the middleware
layer offers non-functional services. Aspect-connectors link
both layers, which allows non-functional crosscutting concerns
to be separately encapsulated. COSMOS*-VP approach differs
these by using connectors to encapsulate variation points.

The problem caused by the scattering of architectural varia-
tion point is related to optional feature problem, which occurs
when optional features are mutual independent in the domain,
but have mutual dependencies in their implementation [14].
This problem limits the variability of a PLA. Kästner et
al. [14] survey different approaches to solve the problem and
suggest that derivative modules and conditional compilation
can eliminate implementation dependencies and thus restore
PLA variability. However, both of these approaches have their
shortcomings. Conditional compilation may harm separation
of concerns and modularity [8]. Derivative modules approach
states that code responsible for the dependency should be
extracted from the features implementation modules and reim-
plemented as a new module. Nevertheless, having several
modules implementing a feature can harm the stability of the
PLA, since whether a evolution in the feature is required,

VaMoS 2010

27

it may impact on all these modules. Connector-VP while
mediates interactions among non-kernel features implementa-
tion, it avoid these features to be scatteredly implemented over
several PLA elements.

Lahire et al. [18] extend the SmartAdapters approach to
support variability. The SmartAdapters approach specifies how
a reusable concern should be composed with other concerns
through a set of adaptations, which are described using a
domain-specific language. The extended approach also pro-
vides supports for variability in the weaving process in order
to make the concern more reusable. Whereas they use adapters
to increase the reusability of concerns, our solution employs
connectors to encapsulate architectural variation points aiming
at increasing PLA stability.

VIII. CONCLUSION AND FUTURE WORK

PLA is a key artefact to achieve a controlled evolution
and, hence, it is important for organisations to understand
how PLAs evolve and which approaches better support PLA
stability. The main contribution of this paper is a novel com-
ponent implementation model, namely COSMOS*-VP, which
improves the stability of component-based PLAs, by avoiding
scattered implementation of architectural variation points over
several PLA elements. To achieve more stable PLAs, our
proposed solution encapsulates the implementation needed to
support all variability decision related to architectural varia-
tion points into aspect-connectors, namely Connector-VP.
Which are also employed to mediate the connection between
aspectual-level components and base-level components.

COSMOS*-VP was compared in the presence of hetero-
geneous evolutionary scenarios against the combined use of
components, aspects and XPIs to implement component-based
PLAs. The overall results show that the COSMOS*-VP PLA
was more resilient than the other approach involved. We
concluded that encapsulating the implementation needed to
support variability decisions inside aspects-connectors, called
Connector-VPs, COSMOS*-VP reduces change propaga-
tion. This was similar in all types of change scenarios involv-
ing kernel, optional, and alternative features in MobileMedia.

We identified two main threats to validity of our study
case: (i) the evolution scenarios might not be representative;
and (ii) MobileMedia might not be representative of industrial
SPLs. Risk (i) cannot be completely avoided owing to the lack
of documentation in the literature about industry representative
evolution scenarios in SPL. Moreover, we minimize the risk
exercising several evolution scenarios, which involved kernel,
and non-kernel optional, and alternative features. Regarding
risk (ii), even though MobileMedia is a small SPL, it is
heavily-based on industry-strength technologies. Furthermore,
it has been extensively used and evaluated in previous re-
search [4], [5], [8]. In fact, we are working on a new case study
of a more representative SPL. Although Connector-VPs
can facilitate PLA evolution and the fact that they can be semi-
automatically created, their complexity can harm the code
comprehension. Thereby, the new case study must comprise
an evaluation of the Connector-VPs drawbacks.

ACKNOWLEDGMENT

We would like to thank the anonymous referees for the insightful
comments. Marcelo Dias is supported by Fapesp/Brazil under grant
2008/02501-9. Leonardo P. Tizzei is supported by Capes/Brazil under
grant 05866/2007. Ceclia M. F. Rubira is partially supported by
CNPq/Brazil productivity grant 301446/2006-7. Alessandro Garcia
is partially supported by Faperj/Brazil distinguished scientist grant
E-26/102.211/2009, by CNPq productivity grant 305526/2009-0, by
CNPq Universal project grant 483882/2009-7, and by PUC-Rio
productivity grant. And also, this research is partially supported by
the Service Oriented Software Development through Product Line
Engineering Technology project, which is funded by POSTECH,
Phang, South Korea.

REFERENCES

[1] Aopmetrics - http://aopmetrics.tigris.org/. Acessed on October 16, 2009.
[2] V. Alves, et al. Extracting and evolving mobile games product lines. In

LNCS, volume 3714/2005, 2005.
[3] C. Atkinson, et al. Component-based product line engineering with

UML. Addison-Wesley, Boston, MA, USA, 2002.
[4] I. A. Bertoncello, M. O. Dias, P. H. S. Brito, and C. M. F. Rubira.

Explicit exception handling variability in component-based product line
architectures. In WEH ’08: Proc. 4th WEH, USA, 2008. ACM.

[5] N. Cacho et al. Ejflow: taming exceptional control flows in aspect-
oriented programming. In In Proc. of the 7th AOSD, 2008. ACM.

[6] S. Chidamber and C. Kemerer. A metrics suite for oo design. IEEE
TSE, 20(6):476–493, 1994.

[7] P. Clements and L. M. Northrop. Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

[8] E. Figueiredo, et al. Evolving software product lines with aspects: an
empirical study on design stability. In ICSE, 2008.

[9] F. C. Filho, et al. Exceptions and aspects: the devil is in the details.
In Proc. of International Symposium on Foundations of Software Engi-
neering. (FSE), USA, 2006. ACM.

[10] E. Gamma, et al. Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley, 1994.

[11] A. Garcia, et al. Modularizing design patterns with aspects: a quantita-
tive study. In Proc. of 4th AOSD, USA, 2005. ACM.

[12] L. A. Gayard, C. M. Rubira, and P. A. Guerra. COSMOS*: a COm-
ponent System MOdel for Software Architectures. Technical Report
IC-08-04, Institute of Computing, University of Campinas, 2008.

[13] W. G. Griswold, et al. Modular software design with crosscutting
interfaces. IEEE Softw., 23(1):51–60, 2006.

[14] C. Kastner et al. On the impact of the optional feature problem: Analysis
and case studies. In In Proc. of the 13th SPLC. IEEE Press, 2009.

[15] G. Kiczales, et al. Aspect-oriented programming. In Proceedings of
ECOOP, pages 220–242. Springer-Verlag, 1997.

[16] R. Laddad. AspectJ in Action. Manning, 2003.
[17] B. Lagaisse and W. Joosen. Component-based open middleware sup-

porting aspect-oriented software composition. In In Proc. of Component-
Based Software Engineering, 2005. pages 139–254, 2005.

[18] P. Lahire, et al. Model Driven Engineering Languages and Systems,
Volume 47352007, chapter Introducing Variability into Aspect-Oriented
Modeling Approaches, Springer, Berlin, 2007.

[19] M. Mezini and K. Ostermann. Reliable Software Technologies Ada-
Europe, chap. Modules for Crosscutting Models. Springer, Berlin, 2003.

[20] C. Nunes, et al. Comparing stability of implementation techniques for
multi-agent system product lines. In Proc. 13rd CSMR, Germany, 2009.

[21] J. Oldevik. Can aspects model product lines? In EA ’08: Proc. of the
2008 AOSD WEA, USA, 2008. ACM.

[22] N. Pessemier, et al. A model for developing component-based and
aspect-oriented systems. LNCS, 4089/2006, 2006.

[23] C. Sant’anna, et al. On the reuse and maintenance of aspect-oriented
software: An assessment framework. In Proceedings XVII Brazilian
Symposium on Software Engineering, 2003.

[24] C. Szyperski. Component Software. Addison-Wesley, 2002.
[25] J. van Gurp, et al. On the notion of variability in software product lines.

In Proc. IEEE/IFIP Conf. on Soft. Architecture (WICSA’01), USA, 2001.
[26] S. Yau and J. Collofello. Design stability measures for software

maintenance. IEEE TSE, 11(9):849–856, 1985.

VaMoS 2010

28

A Formal Semantics for Decision-oriented
Variability Modeling with DOPLER

Deepak Dhungana
Lero – The Irish Software

Engineering Research Centre
University of Limerick,

Limerick, Ireland
deepak.dhungana@lero.ie

Patrick Heymans
Research Center in Information
Systems Engineering (PReCISE)

University of Namur,
Namur, Belgium

patrick.heymans@fundp.ac.be

Rick Rabiser
Christian Doppler Laboratory

for Automated Software Engineering
Johannes Kepler University

Linz, Austria
rabiser@ase.jku.at

Abstract—Variability models define and document software
product lines. They provide the basis for automating the deriva-
tion of new products, thereby utilizing the flexibility and adapt-
ability of systems. Numerous approaches for variability modeling
have been proposed and applied successfully in industry. In
our own research we have been developing a decision-oriented
approach to variability modeling (DOPLER) that has been applied
in different industrial environments. However, decision-oriented
approaches have so far been defined only informally and lack
a rigorous definition. This can lead to ambiguities and limits
the development of tools. In this paper we define the formal
semantics of our decision-oriented variability modeling language
DOPLERVML as an example of how decision-oriented variability
modeling approaches can be formally defined. We explain how
DOPLER models can be used for generating product configura-
tions.

Keywords-Decision-oriented Variability Modeling; DOPLER;
Formal Semantics; Software Product Lines.

I. INTRODUCTION

Product line engineering (PLE) aims at lowering the cost
and increasing the quality of software development by devel-
oping a family of similar and related products [3]. Models
are used in PLE to explicitly define the often tacit knowledge
about variability and to support the automation of different
product line activities. For instance, variability models are
used to guide and automate product derivation [17] or system
reconfiguration [19]. A wide array of variability modeling
techniques and tools have been developed reflecting the back-
ground of different researchers, the needs of different industrial
contexts, and the kinds of systems under investigation. For
example, feature-oriented approaches [5], [13], [14] have
been developed and applied successfully. Similarly, decision-
oriented approaches have been proposed [1], [2], [15], [18] that
guide product derivation by domain experts based on decision
models.

We have developed the decision-oriented variability mod-
eling language DOPLERVML as part of the DOPLER1 tool
suite [8] and have been successfully applying the approach in
a number of industrial contexts. For example, Siemens VAI2

uses the approach to automate component-based software

1Decision-Oriented Product Line Engineering for Effective Reuse
2http://www.industry.siemens.com/metals/en/

product line engineering [7]. It is also used in the do-
main of industrial automation systems to support runtime
reconfiguration of IEC 61499 based systems using variability
models [9]. Furthermore, we have been exploring the use of
our model-based approach to support runtime monitoring and
adaptation of service-oriented systems [4]. In the domain of
enterprise resource planning DOPLER is used for model-based
customization of business systems at runtime [19]. These
different case studies demonstrate the utility and usefulness
of our approach. However, until now the semantics of the
modeling constructs is only implicitly defined as a part of
the tools supporting the approach. The implementation and
adoption of DOPLERVML preceded its formalization which is
not unusual as shown in [10].

A number of new research challenges led us to start working
on a more rigorous definition of DOPLERVML. An explicit
formal semantics enables their unambiguous interpretation
and manipulation. Such capabilities are required in our tool
suite as several third-party components interact with DOPLER
to automate tasks such as generating product configurations,
checking the consistency of models and code, or testing
product lines.

This paper is structured as follows: In Section II, we present
an informal background of DOPLERVML and introduce an
example, to be used through out the paper. Section III presents
the formal semantics of the approach. In Section IV, we
demonstrate how the formal constructs can be used to devise
algorithms to that can generate configurations. Section V
presents related work and Section VI concludes the paper with
a short discussion on future work.

II. BACKGROUND: DOPLERVML

DOPLERVML supports variability modeling of the problem
space (stakeholder needs or desired features), the solution
space (the architecture and the components of the technical
solution), and traceability between these spaces. Problem
space variability (also known as product line variability [16])
is relevant to the domain and needs to be understandable
by domain experts utilizing the model for product deriva-
tion. Variability models therefore define the available set of
choices and the relationships among these. Solution space

VaMoS 2010

29

Fig. 1. Core meta-model of the DOPLERVML. Decisions define problem
space variability while assets reflect the solution space structure. Inclusion
conditions link the problem and the solution space.

variability (also referred to as software variability [16]) means
the variability of diverse reusable assets such as architectural
elements, components, test cases, or documents. Managing
variations at different levels of abstraction and for diverse
development artifacts is a daunting task, especially when the
systems supporting various products are very large, as is
common in industrial settings. A language for modeling the
solution space needs to be flexible and adaptable to different
implementation practices [7].

The core meta-model for DOPLERVML is depicted in Fig-
ure 1. It allows building models of the problem space using
decisions and models of the solution space using assets. The
meta-model is generic and can be adapted to different domains
by defining concrete asset types, asset type attributes, and
relationships between assets.

A. Decisions

A decision is defined whenever for a given goal (e.g.,
configuring a component) there exist two or more ways of
achieving it. Decisions represent the variation points in a prod-
uct line variability model. Taking a decision involves judging
the merits of multiple options and selecting one of them
for action (e.g., when considering customer requirements).
Decisions are not independent of each other and cannot be
made in isolation. For instance, due to decision dependencies
earlier decisions can lead to new decisions or influence the
options available in subsequent decisions.

Our modeling approach supports two kinds of decision
dependencies: firstly, as not all decisions are equally important
or relevant at a certain point in time, we allow modeling
them in a hierarchy. Hierarchical dependencies are used to
specify when a particular decision is relevant to a user. The
hierarchical arrangement of decisions thus adds context to
them. For example, it would make no sense to ask a user
about the capacity of a database system, if she does not
intend to use a database at all. Secondly, as taking a certain
decision may have implications on other decisions we allow
modeling decision effects. Logical dependencies represent

actions that need to be executed after a decision has been
taken to propagate the effect of one decision to other decisions.
For example, the type of the database to be used could be
logically induced from the system’s size. The core meta-model
(Figure 1) shows hierarchical dependencies specifying how the
decisions are organized and logical dependencies specifying
the relationship between decisions’ values through decision
effects.

A simple example of a decision-oriented variability model
of a personal information management (PIM) system is de-
picted in Figure 2. It consists of three decisions describing
product line variability and assets describing software variabil-
ity. When deriving a new product, users first need to decide on
the basic functionality provided by the PIM, which is modeled
using the decision PIM_Tasks. Depending on the chosen
option(s) (Email, Todo Lists, Appointments) the
user is presented with subsequent decisions (i.e., the decision
Sync is presented to the user). If the user selects 2-way
synchronization (decision Sync) she needs to determine the
length of the synchronization interval through another decision
Sync_Interval.

B. Assets

Assets describe the product line’s reusable artifacts and their
dependencies relevant in a certain development environment.
We use the term asset as a generic term to represent all
kinds of artifacts whose variability needs to be modeled. This
is required, as different mechanisms are typically used to
achieve variability at different levels such as requirements,
architecture, or implementation. A great challenge lies in
linking these variability mechanisms across different artifacts.
Using the generic term “asset” thus allows for domain-specific
refinements and interpretations that are needed to support
different software development processes and environments.

At the meta-level we support two basic types of dependen-
cies among assets: structural dependencies are used to specify
the physical organization of the assets while functional depen-
dencies are used to specify how the system is implemented.
Structural dependencies describe the physical organization of
the assets. This includes how they are packaged or arranged
in sub-systems. In our modeling language, structural depen-
dencies are represented by relationship links like “consists
of”, “contributes to”, “is predecessor of”, “is successor of”,
etc. Functional dependencies describe the logical structure of
assets and define how they functionally depend on each other.
In our modeling language, functional dependencies are rep-
resented by relationship links such as “includes”, “requires”,
“excludes” etc.

The example model depicted in Figure 2 defines six reusable
assets (in this example software components) implementing
the PIM application. Models also contain inter-asset relation-
ships reflecting the organization of the solution space. E.g.,
POP3 requires a SSL Coder component. In DOPLER such
dependencies are modeled formally using a rule language,
which will be illustrated later in this paper.

VaMoS 2010

30

Fig. 2. A simple example of a decision-oriented variability model containing problem space elements (decisions) and solution space elements (assets). For
illustrative purposes, the dependencies among the model elements are written in plain text, in DOPLERVML these are modeled using a rule language.

Decisions and Assets are linked using inclusion conditions.
For example in Figure 2, the components refer to the values of
the decisions and specify the conditions under which they are
part of the configuration of the derived product. MailClient
is included if the option Email is selected in the decision
PIM_Tasks. This means that assets are “aware” of the
conditions under which they are required for the final product
whereas decisions are “unaware” of the assets. This is helpful
when marketing strategies of a company change and a new
portfolio of products is required for the same set of core assets.

III. FORMAL SEMANTICS

According to [11], [12], the semantics of a language L
(where L actually denotes its abstract syntax) consists of
two parts: the semantic domain, noted S, and the semantic
function M : L → S. We first describe the building blocks of
DOPLERVML and then define its abstract syntax, its semantic
domain, and its semantic function.

A. Building Blocks of the Language

Definition 1 (Data type): A data type θ is a couple

θ = 〈Idθ,Domθ 〉

where Idθ is the type identifier and Domθ is the set of possible
values for this type, also called the interpretation domain.

We define DT to be the set of all types defined in a
variability modeling context. Types can be predefined (DTp)
or user-defined (DTu): DT = DTp ∪ DTu.
DTp is a finite set of predefined data types:

DTp = {〈Number,Q 〉 , 〈Boolean,B 〉 , 〈String, S 〉}.

DTu is a finite set of data types to be provided by the
modeler. For each user-defined data type θ, we define an

operation Enum(θ) which returns the set of values in the
Domθ. In our example (see Figure 2) the set of user-defined
data types is the following singleton whose domain contains
a enumeration of three values:

DTu = {〈PM, {Email, TodoList, Appointment} 〉}.

The interpretation function for types is a function
[[•1]] : DT → Dom which returns the interpretation domain
corresponding to the type provided, i.e. [[θ]] def= Domθ.
Dom is the interpretation domain of all data types, i.e.
Dom =

⋃
θ∈DT Domθ.

Definition 2 (Boolean Formulae): Boolean Formulae (BF)
play an important role in DOPLERVML. They can be built from
terms and simpler sub-formulae. The terms can be constants,
variables or expressions built using other terms. Due to the
lack of space, we do not give a complete definition. These
formulae have a straight forward semantics. As we will see
later, the variables in a Boolean formula can also be decisions
from the decision model (which are comparable to typed
variables).

B. The Abstract Syntax: L

The abstract syntax for DOPLERVML defines the set of all
possible variability models that can be written in the language.
A variability model is a couple 〈DM,AM〉 where DM is a
decision model, and AM is an asset model. DM and AM
are described in detail in definitions 3 and 4, respectively. For
convenience, the inclusion conditions of assets are part of the
asset model.

VaMoS 2010

31

1) The Decision Model:
Definition 3 (Decision Model): A decision model DM can

be defined as a 5-tuple

DM = 〈D, τ, fvis, fval, fpos 〉

where
• D is the finite set of decisions provided by the modeler.

We differentiate between two kinds of decisions: user
decisions (UD), which are directly taken by the user,
and state decision (SD), which values are derived from
already taken decisions: D = UD ∪ SD.

• τ : D → DT is a typing function labeling each decision
with its corresponding data type. Example:
τ(PIM Tasks) = 〈PM, {Email, TodoList, Appointment} 〉
and τ(Sync) = 〈Boolean,B 〉 .
Furthermore, we define a key word selection, which
returns the current value of a decision. The value that
can be bound to decisions always has the same type as
the decision itself.

• fvis : D → BF returns the visibility condition (as a
Boolean formula) for each decision. Example:
fvis(Sync) = {Email} ∈ selection(PIM Tasks).
The visibility condition of a decision is a type of hierar-
chical dependency explained in Section II-A.

• fval : D → BF returns the validity condi-
tion for each decision. In the running example,
fvis(Sync Interval) = selection(Sync Interval) ≥
0 ∧ selection(Sync Interval) ≤ 100.
The validity condition of a decision is a type of logical de-
pendency between decisions as explained in Section II-A.

• fpos = fder ∪ τ ′ is a set of rules for deriving the
value of decisions. There are two kinds of rules: value
derivation rules (fder) and type redefinition (τ ′). These
rules are a type of logical dependency between decisions
as explained in Section II-A.

• fder : (SD → BF × Terms) ∪ (UD 9 BF × Terms)
is a set of rules defining how the values of certain deci-
sions are calculated depending on whether the specified
condition is fulfilled. The definition reflects that all state
decisions, but not all user decisions (hence the partial
function), have a derivation rule.

• τ ′ ⊆ D → BF × DT is a conditional type redefinition
function, specifying the condition under which the type
of a decision is changed. τ ′(d) = 〈ϕ, θ 〉 means that if
the condition ϕ is fulfilled, the type of the decision is
changed to θ. In the example, τ ′(PIM Tasks) could
be changed to include more options (e.g., Chat, SMS)
depending on how the user chooses other options.
For decisions whose type is predefined, type redefinition
is forbidden, i.e. ∀d ∈ DTp.τ ′(d) = 〈TRUE, τ(d) 〉.

Note that there are additional constraints meant to avoid cir-
cular definitions. For example, we require that ∀d ∈ D.fvis(d)
does not refer to d or other decisions influenced by d. The
extensive list of constraints is not provided here to save space
but they can be found in [6].

2) The Asset Model:
Definition 4 (Asset Model): An asset model AM can be

defined as a 9-tuple

AM = 〈A, τ,AT ,AT A,AT R, fav, Rinc, Rexc, finc 〉

where:
• A is a finite set of assets.
• τ : A → AT is the typing function of assets. τ is

overloaded wrt DM without ambiguity.
• AT is a finite set of asset types defined for a given

development context. In the example, there is only one
asset type, viz. Component.

• AT A is a finite set of attributes.
• AT R ⊆ AT × AT A a relation that associates asset

types to a set of attributes. Not all asset types need
to have attributes, and asset types can have more than
one attribute. In the example, asset type Component is
defined with two attributes: Price and Class.

• τ : AT R → DT ∪ {Expr} is a new (harmless) over-
loading of the typing function. It associates each asset
attribute with a data type. Expr is a special given data
type used for attributes such that Domτ(Expr) = Terms.

• fav : A × AT R → Dom is a function that returns the
value of the assets’ attributes. The value must be of the
type specified in the asset type, i.e.

∀ 〈at, α 〉 ∈ AT R,∀a ∈ A · τ(a) = at·
fav(a, 〈at, α 〉) ∈ Domτ(〈at,α〉)

For example, the value of the attribute Price is of type
Double and the value of the attribute Class is of type
String.

• Rinc ⊆ A×A represents the inclusion relationship among
the assets. For example, having the asset POP3 requires
to include the asset SSL coder as well.

• Rexc ⊆ A × A represents the exclusion relationship
among the assets.

• finc : A → BF returns, for each asset, the condition for
including it in a configuration based on the value of the
decisions.

Again the complete list of constraints on these definitions
have been omitted in this paper and can be found in [6].

C. The Semantic Domain: S
The semantic domain of DOPLERVML is represented by the

set of all configurations that can be derived from all possible
variability models.

Definition 5 (Semantic Domain): The semantic
domain is defined as S = P(Configuration) where
Configuration is the set of all tuples of the form
〈DecV als, SelectedAssets,AttrV als 〉:
• DecV als : D → (Dom ∪ {null})× {vis, hid} returns a

tuple for every decision in the decision model. The first
element of that tuple is the value of the decision. If the
value is null, it means that the decision has not yet been
taken. The second element of the tuple is either vis or

VaMoS 2010

32

Fig. 3. The semantic domain represents all possible configuration sets. One
variability model maps to one particular configuration set, which consists of
a possibly infinite number of configurations. Each configuration consists of
the set of decision values (dv), the set of selected assets (sa) and the attribute
values of the selected assets (av).

hid, indicating that, after the configuration, the decision
is visible or hidden, respectively. In a valid configuration
c, it is not possible for a decision to be visible but not
yet taken:

∀cs ∈ S.∀ 〈dv, sa, av 〉 ∈ cs.dv(x) 6= {null, vis}.

• SelectedAssets ⊆ A is the set of assets that have been
selected to be included in the final product. There can be
two causes for the inclusion of assets:

– the inclusion condition of the asset evaluates to true
with the given set of DecV als;

– the asset is the target of a Rinc relationship originat-
ing from an already included asset.

• AttrV als ⊆ SelectedAssets × AT R → Dom assigns
a value to the attributes of all assets that are included in
the final product.

D. The Semantic Function: M
Given a syntactic domain L and a semantic domain S, the

final and main step in defining a semantics is to relate the
syntactic expressions to the elements of the semantic domain,
so that each syntactic creature is mapped to its meaning [12].
The semantic function M : L → S for DOPLERVML is
defined as

∀m ∈ L ·M(m) = {〈dv, sa, av 〉 ∈ S| r1 ∧ r2 ∧ r3}

where r1, r2 and r3 are three rules defined as follows:
r1: The values given to decisions meet the specification

of their validity, visibility, value derivation and type
redefinition3. Formally,

∀d ∈ D · [[fval(d)]]dv
∧([[fvis(d)]]dv ⇔ π2(dv(d)) = vis)
∧[[fder(d)]]dv
∧[[τ ′(d)]]dv

3We adopt the usual notation πi(x) for the ith element of a tuple x.

• For a given decision d, validity (fval(d)) and vis-
ibility (fvis(d)) return Boolean formulae that are
interpreted in the standard way. Concretely, for
fval, this means that the interpretation function
[[•1]]•2 : fval → DecV als → B is defined as

[[d 7→ ϕ]]dv ≡ [[ϕ]]dv

The semantics of fvis is similar.
• The interpretation function for derivation rules

(fder(d)) has a similar signature as above, but gets
a slightly different definition:

[[d 7→ 〈ϕ, T 〉]]dv ≡ [[ϕ⇒ d = T]]dv

If the condition ϕ holds, the value of the decision
d is calculated by evaluating the term T .

• The interpretation function for type redefinition τ ′

has, again, a similar signature, but a slightly more
subtle interpretation:

[[d 7→ 〈ϕ, θ 〉]]dv ≡ π1(dv(d)) ∈ π2(τ(d)) ∨
([[ϕ]]dv ∧ π1(dv(d)) ∈ π2(θ))

If the condition ϕ holds, the value of the decision
d is from the new domain defined by the type
redefinition function, otherwise the value is from
the previously defined domain.

r2: The set of selected assets is chosen based on whether
the inclusion condition is fulfilled and whether the asset
is required by already included assets:

sa = sa′ ∪ {a| 〈b, a 〉 ∈ R+
inc ∧ b ∈ sa

′}

where sa′ = {a|a ∈ A ∧ [[finc(a)]]dv} and where R+
inc

denotes the transitive closure of Rinc. We must also
avoid explicitely excluded assets to be included, i.e.,
sa ∪ ua = � where

ua = {a|a ∈ A ∧ b ∈ sa ∧ 〈b, a 〉 ∈ Rexc}

r3: Finally, an attribute of a selected asset either has a value
entered by the modeler, or, if the type of attribute is
Expr, the value returned by the evaluation of the term
defined by the attribute value.

∀a ∈ sa · τ(a) = at ∧ µ = (a, 〈at, α 〉) :
av(µ) = [[fav(µ)]]dv ∨ (τ(〈at, α 〉) ∈ DT

∧ av(µ) = fav(µ))

IV. INTERPRETING VARIABILITY MODELS

A DOPLER variability model represents a set of con-
figurations. The “execution” of a variability model selects
one of these configurations based on the decisions taken by
the user and/or an automated tool. The formal semantics
of DOPLERVML allows devising algorithms for automating
operations on variability models.

Based on the formal semantics, we have developed tools that
can generate all possible configurations based on a variability
model. Our configuration generator simulates user interaction

VaMoS 2010

33

by taking decisions on behalf of the user. We have also
developed tools that enact DOPLER variability models by
letting users take decisions and arrive at a set of included assets
for a specific product configuration. The set of included assets
can then be used by domain-specific application generators
and deployment tools for further processing.

Firstly, the visibility condition (fvis) of each decision is
evaluated. If the condition holds, the decision needs to be
taken. Either the user or a tool is asked for an answer. The
answer is evaluated against the decision’s validity condition
(fval). If the validity condition holds, the decision is bound to
the input value. The effects of all decisions are propagated by
evaluating all derivation rules and executing them as necessary.
Such rules can also cause other variable bindings, which lead
to the recursive propagation of the decision effects.

The rule engine used to propagate the effects of the de-
cisions does not use a brute force algorithm but evaluates
only expressions containing the currently taken decision after
changes. The execution of the action can change the set of
already bound decision variables; it can however also be only
informative. As the rule engine often re-triggers the evaluation
of the rules, there must not be cyclic dependencies in the
model. We detect cycles statically in the rules using standard
graph algorithms.

The set of all included assets are calculated in three steps:
(i) An asset is included if its inclusion condition (finc) holds;
(ii) the inclusion relationship of all included assets (Rinc) is
evaluated and all related assets are also added to the list of
included assets; (iii) the second step is repeated until there are
no more relationships left to evaluate.

V. RELATED WORK

The first decision-oriented variability modeling approaches
were developed in the early 1990’s as part of the Synthesis
project [2]. Decision-oriented approaches use decisions as
prime modeling constructs to define product lines and to sup-
port product derivation. Over the years, numerous approaches
have been proposed by different researchers and there is
abundant work on using them in different contexts [1], [2],
[15], [18]. However, decision-oriented approaches so far lack
semantic precision which leads to ambiguous interpretations of
the models, prevents rigorous analyzes, and makes automation
difficult. There are only few tools supporting decision-oriented
PLE.

Regarding decision modeling, the DOPLER approach is
based on ideas presented in the Synthesis project [2] and
the approach by Schmid and John [18]. However, compared
to these approaches DOPLERVML provides a more flexible
way to model the solution space (because of meta-modelling
capabilities) and traceability to the problem space.

Other related decision-oriented approaches include Ko-
brA [1] and V-Manage [15]: The KobrA approach provides
no explicit support to model the product line solution space.
It is defined only informally and tool support is lacking. The
V-Manage approach is tool-supported. However, an explicit
formal semantics is so far missing. A unique feature of this

approach is the concept of decision collections, i.e., multiple
instances of a decision or a set of decisions. For example,
when two instances of a certain component are required, the
configuration of these components has to be repeated for each
required component, i.e., decisions need to be duplicated when
executing the variability model.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we presented a formal semantics of the DO-
PLERVML modeling approach. This semantics is intended to
contribute towards a better understanding of decision-oriented
variability modeling languages in general. We described how
a DOPLER variability model can be interpreted.

DOPLER models are particularly suitable for product deriva-
tion scenarios, where stakeholders are presented with a con-
figuration questionnaire. Furthermore, the correctness of the
generated configurations depends on the expert knowledge
“codified” in the model and not only on the formal semantics
described in this paper.

There are other applications of the formal semantics on our
agenda. For example, we plan to implement user assistance
during modeling to avoid logical modeling errors. We also plan
to provide automated analysis of decision interactions based
on the assets they influence based on our formal semantics.

REFERENCES

[1] C. Atkinson, J. Bayer, and D. Muthig. Component-based product line
development: the KobrA approach. In SPLC, pages 289–310, 2000.

[2] G. H. Campbell, S. R. Faulk, and D. M. Weiss. Introduction to Synthesis.
Technical report, Software Productivity Consortium, Herndon, VA, USA,
1990.

[3] P. Clements and L. Northrop. Software Product Lines: Practices and
Patterns. SEI Series in Software Engineering, Addison-Wesley, 2001.

[4] R. Clotet, D. Dhungana, X. Franch, P. Grünbacher, L. Lopez, J. Marco,
and N. Seyff. Dealing with changes in service-oriented computing
through integrated goal and variability modeling. In Workshop on
Variability Modelling of Software-intensive Systems (VAMOS 2008),
pages 43–52, Essen, Germany, 2008. ICB-Research Report No. 22.

[5] K. Czarnecki and C. Kim. Cardinality-based feature modeling and
constraints: A progress report. In International Workshop on Software
Factories at OOPSLA’05, pages 1–9, San Diego, USA, 2005. ACM
Press.

[6] D. Dhungana. A Model-driven Approach to Flexible and Adaptable Soft-
ware Variability Management. PhD thesis, Johannes Kepler University,
2009.

[7] D. Dhungana, P. Grünbacher, and R. Rabiser. Domain-specific adapta-
tions of product line variability modeling. In IFIP WG 8.1 Working
Conference on Situational Method Engineering: Fundamentals and
Experiences, Geneva, Switzerland, 2007.

[8] D. Dhungana, R. Rabiser, P. Grünbacher, and T. Neumayer. Integrated
tool support for software product line engineering. In Tool Demonstra-
tion, 22nd IEEE/ACM International Conference on Automated Software
Engineering (ASE 2007), Atlanta, Georgia, USA, 2007.

[9] R. Froschauer, A. Zoitl, and P. Grünbacher. Development and adaptation
of IEC 61499 automation and control applications with runtime vari-
ability models. In 7th IEEE Int’l Conference on Industrial Informatics
(INDIN 2009), Cardiff, UK, 2009.

[10] D. Harel and A. Naamad. The STATEMATE semantics of statecharts.
ACM Trans. Softw. Eng. Methodol., 5(4):293–333, 1996.

[11] D. Harel and B. Rumpe. Modeling languages: Syntax, semantics and
all that stuff, part I: The basic stuff. Technical report, Jerusalem, Israel,
Israel, 2000.

[12] D. Harel and B. Rumpe. Meaningful modeling: What’s the semantics
of ”semantics”? Computer, 37(10):64–72, 2004.

VaMoS 2010

34

[13] P. Heymans, P. Y. Schobbens, J. C. Trigaux, Y. Bontemps, R. Matule-
vicius, and A. Classen. Evaluating formal properties of feature diagram
languages. Software, IET, 2(3):281–302, 2008.

[14] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-
oriented domain analysis (FODA) feasibility study. Technical report,
Technical Report CMU/SEI-90TR-21, Software Engineering Institute,
Carnegie Mellon University, Pittsburgh, PA, USA, 1990.

[15] J. Mansell and D. Sellier. Decision model and flexible component defini-
tion based on XML technology. In Lecture Notes in Computer Science:
Software Product-Family Engineering 5th International Workshop, PFE
2003, pages 466–472. Springer Berlin/Heidelberg, 2004.

[16] A. Metzger, P. Heymans, K. Pohl, P.-Y. Schobbens, and G. Saval.
Disambiguating the documentation of variability in software product
lines: A separation of concerns, formalization and automated analysis. In
15th IEEE International Requirements Engineering Conference (RE’07),

pages 243–253, New Delhi, India, 2007.
[17] R. Rabiser, P. Grünbacher, and D. Dhungana. Supporting product

derivation by adapting and augmenting variability models. In 11th
International Software Product Line Conference (SPLC 2007), Kyoto,
Japan, 2007.

[18] K. Schmid and I. John. A customizable approach to full-life cycle vari-
ability management. Journal of the Science of Computer Programming,
Special Issue on Variability Management, 53(3):259–284, 2004.

[19] R. Wolfinger, S. Reiter, D. Dhungana, P. Grünbacher, and H. Prähofer.
Supporting runtime system adaptation through product line engineering
and plug-in techniques. In 7th IEEE International Conference on
Composition-Based Software Systems (ICCBSS), Madrid, Spain, 2008.
IEEE Computer Society.

VaMoS 2010

35

VaMoS 2010

36

A deontic logical framework for modelling product families

Patrizia Asirelli, Maurice H. ter Beek, Stefania Gnesi
Istituto di Scienza e Tecnologie dell’Informazione

ISTI–CNR, Pisa, Italy
Email: {asirelli,terbeek,gnesi}@isti.cnr.it

Alessandro Fantechi
DSI, University of Florence, Italy

ISTI–CNR, Pisa, Italy
Email: fantechi@dsi.unifi.it

Abstract—We discuss the application of deontic logics to
the modelling of variabilities in product family descriptions.
Deontic logics make it possible to express concepts like
permission and obligation, and hence promise a direct mod-
elling of constraints over the products of a family. Indeed,
we first show how feature models can be straightforwardly
characterised by means of a deontic logic. We then study the
deontic modelling of the behavioural variability in product
families by defining a deontic extension of a behavioural
logic. This allows both constraints over the products of a
family and constraints over their behaviour to be expressed
in a single framework: a novelty in the field. We discuss
how model-checking tools could support formal verification
in this framework, and we indicate some future research into
that direction.

I. INTRODUCTION

Modelling variability in product families has been the
subject of extensive study in the literature on Software
Product Lines, especially that concerning Feature mod-
elling [3], [8], [15]. Variability modelling addresses how
to define which features or components of a system are
optional, alternative, or mandatory; formal methods are
then developed to show that a product belongs to a family,
or to derive instead a product from a family, by means of
a proper selection of the features or components.

Modal Transition Systems (MTSs) have been proposed
as a formal model for product families [12], [18], allowing
one to embed in a single model the behaviour of a family
of products that share the basic structure of states and
transitions, transitions which can moreover be seen as
mandatory or possible for the products of the family.
In [10], we have pushed the MTS concept to a more
general form, allowing more precise modelling of the
different kinds of variability that can typically be found in
the definition of a product family.

Recently, deontic logics [1], [22] have become popular
in computer science for formalising descriptional and be-
havioural aspects of systems. This is mainly because they
provide a natural way to formalise concepts like violation,
obligation, permission, and prohibition. Intuitively, they
permit one to distinguish between correct (normative)
states and actions on the one hand and non-compliant
states and actions on the other hand. This makes deontic
logics a natural candidate for expressing the conformance

Funded by the Italian project D-ASAP (MIUR-PRIN 2007) and by
the RSTL project XXL of the Italian National Research Council (CNR).

of members of a family of products with respect to
variability rules.

Such a conformance of products to a family concerns
not only properties related to features, that in some sense
can be considered static. Behavioural variability of the
family has to be considered as well, i.e. how the products
of a family differ in their ability to respond to events in
time. These dynamic properties must also be verified for
products to be member of such families. This is an aspect
that the techniques focussing on feature models do not
typically address.

Recently, a Propositional Deontic Logic (PDL) capable
of expressing the permitted behaviour of a system has been
proposed [5], [6]. This PDL combines the expression of
permission and obligation with concepts from temporal
logics.

In [2], we have laid the basis for the study of the appli-
cation of deontic logics to the modelling of behavioural
variability. We did this by showing the capability of a logic
derived from PDL to finitely characterise the complete
behaviour of a family of products. We have also shown
in [2] that, given an MTSM representing a family, we are
able to produce a deontic logic formula that is satisfied by
all and only those products that can be derived from M.
This preliminary result has convinced us that this kind of
deontic logics are a good candidate to express in a unique
framework both behavioural variability aspects, by means
of standard branching-time logical operators, and static
constraints over the products of a family, which usually
require a separate expression in a first-order logic (as can
be seen in [3], [11], [19]), using deontic operators.

In the first part of this paper, we present a straight-
forward characterization of feature models by means of
deontic logics. We then proceed with this direction of
research by defining a novel deontic extension of a be-
havioural logic that allows both static constraints over the
products of a family and constraints over their behaviour
to be expressed in a single framework. This logic is given a
semantic interpretation over MTSs for which a verification
framework based on model-checking techniques could be
implemented extending existing model checking tools.

A. Related Work

MTSs have been introduced in [12], [17], [18] to for-
mally model and verify the behaviour of product families.
We have extended MTSs in [10] to allow different notions

VaMoS 2010

37

of behavioural variability to be modelled. An algebraic
approach to behavioural modelling and verification of
software product lines has been developed in [13], [14].
In [2] we showed how to finitely characterise MTSs by
means of deontic logic formulae. To the best of our
knowledge, the current paper presents a first attempt
towards a modelling and verification framework capable
of addressing both static and behavioural conformance of
products of a family.

B. Outline

In Sect. II we present a simple running example that we
will use throughout the paper. After a brief description
of feature models in Sect. III, we discuss the use of
deontic logic to characterise feature models and to verify
static requirements of product families in Sect. IV. We
then introduce the behavioural modelling of families by
means of MTSs in Sect. V. In Sect. VI we introduce
a deontic extension of an existing branching-time logic,
which we apply to the running example in Sect. VII to
show its expressivity and to discuss the verification of
behavioural requirements of product families in Sect. VIII.
We conclude the paper in Sect. IX with some ideas for
future work.

II. RUNNING EXAMPLE: COFFEE MACHINE FAMILY

To illustrate the contribution of this paper we use a
simple running example, namely a family of (simplified)
coffee machines, for which we consider the following
requirements:

1) A coffee machine is activated by a coin. The only
accepted coins are the one euro coin (1e), exclu-
sively for the European products and the one dollar
coin (1$), exclusively for the US products;

2) After inserting a coin, the user has to choose whether
or not (s)he wants sugar, by pressing one of two
buttons, after which (s)he may select a beverage;

3) The choice of beverages (coffee, tea, cappuccino)
varies between the products. However, delivering
coffee is a must for every product of the family,
while cappuccino is only offered by European prod-
ucts;

4) After delivering the appropriate beverage, optionally,
a ringtone is rung. However, a ringtone must be rung
whenever a cappuccino is delivered;

5) The machine returns to its idle state when the cup
is taken by the user.

This list contains both static requirements, which identify
the features that constitute the different products (see
requirements 1, 3 and, partially, 4) and behavioural re-
quirements, which describe the admitted sequences of
operations (requirements 2, 5 and, partially, 4).

In the sequel, we will first distill the feature model
of the above family and provide a formal representation
in terms of deontic logic formulae. We will then show
how the behavioural requirements of this family can be
described using an MTS. Finally, we will show how to
combine the two approaches by defining a deontic logical

framework to check the satisfiability of both static and
behavioural requirements over products that should belong
to the family.

III. FEATURE DIAGRAMS AND FEATURE MODELS

Feature diagrams were introduced in [15] as a graphical
and/or hierarchy of features; the features are represented
as the nodes of a tree, with the product family being the
root. Features come in several flavours; in this paper we
consider the following features:

optional features may be present in a product only
if their parent is present;

mandatory features are present in a product if and
only if their parent is present;

alternative features are a set of features among which
one and only one is present in a
product if their parent is present.

When additional constraints are added to a feature dia-
gram, this results in a feature model. Also constraints come
in several flavours; in this paper we consider the following
constraints:

requires is a unidirectional relation between two fea-
tures indicating that the presence of one
feature requires the presence of the other;

excludes is a bidirectional relation between two fea-
tures indicating that the presence of either
feature is incompatible with the presence of
the other.

An example of a feature model for the Coffee Machine of
Sect. II is given in Fig. 1; the requires constraint obligates
feature Ringtone to be present whenever Cappuccino is,
while the excludes constraint prohibits features 1$ and
Cappuccino to both be present in any product of this
family of Coffee Machines. It is easy to see that this
feature model satisfies the static requirements (1, 3 and,
part of, 4) of our running example.

IV. DEONTIC LOGIC APPLIED TO FEATURE MODELS

Deontic logics are an active field of research for many
years now. Many different deontic logic systems have been
developed with a lot of success in the community [1], [22].

A. Deontic Logic: A First Glimpse

A deontic logic consists of the standard operators of
propositional logic (i.e. negation (¬), conjunction (∧),
disjunction (∨) and implication (=⇒)) augmented with
deontic operators. In this paper, we consider two of the
most classic deontic operators, namely it is obligatory that
(O) and it is permitted that (P), which enjoy the duality
property

P (α) = ¬O(¬α),

i.e. something is permitted iff its negation is not obligatory.

VaMoS 2010

38

requires

Coffee1$ 1e

Coin Beverage

Coffee Machine

Ringtone

Tea Cappuccino

mandatoryoptional alternative excludes

Figure 1. Feature model of the Coffee Machine family.

B. A Deontic Characterization of Feature Models

The way deontic logics formalise concepts such as
violation, obligation, permission and prohibition is very
useful for system specification, where these concepts arise
naturally. In particular, deontic logics seem to be very
useful to formalise product families specifications, since
they allow one to capture the notions of optional and
mandatory features.

The deontic characterization of a feature model builds
a set of deontic formulae which, taken as a conjunction,
precisely characterises a product family. We assume that
a name of a feature A is used as the atomic proposition
indicating that A is present.

The deontic characterization is constructed as follows:
• If A is a feature, and A1 and A2 are two subfeatures

(possibly marked alternative, optional or manda-
tory), then add the formula

A =⇒ Φ(A1, A2),

where Φ(A1, A2) is defined as:

Φ(A1, A2) = (O(A1)∨O(A2))∧¬(P (A1)∧P (A2))

if A1 and A2 are marked alternative,
and is otherwise defined as:

Φ(A1, A2) = φ(A1) ∧ φ(A2),

in which Ai, for i ∈ {1, 2}, is defined as:

φ(Ai) =
{
P (Ai) if Ai is optional and
O(Ai) if Ai is mandatory.

Moreover, since the presence of the root feature is
taken for granted, the premise of the implication
related to that feature can be removed.1

• If A requires B, then add the formula

A =⇒ O(B)

• If A excludes B, then add the formula

(A =⇒ ¬P (B)) ∧ (B =⇒ ¬P (A))

Before applying this construction to our running example,
we make two remarks. First, note that the alternative

1By doing so, we tacitly do not deal with trivially inconsistent graphs
in which the root is involved in an excludes relation with a feature.

feature can also be defined in terms of the excludes
feature: Marking subfeatures A1 and A2 alternative is
the same as stating that A1 and A2 exclude each other.

The second remark concerns the following less common
feature: multiple optional features are a set of features of
which at least m and at most n > m, with m,n ≥ 0, are
present in a product if their parent is present. The deontic
characterization of this feature is as follows, assuming that
feature A has s subfeatures A1, . . . , As:

A =⇒ (
∨
K

(
∧
i∈K

O(Ai) ∧
∧
j 6∈K

¬P (Aj))),

with K = {S ⊆ 2{1,...,s} : m ≤ |S| ≤ n }.

If we apply the construction described above to our
running example, then the conjunction of the following
deontic formulae precisely characterises the feature model
of Fig. 1. We refer to this conjunction as the characteristic
formula.

O(Coin) ∧O(Beverage) ∧ P (Ringtone)

Coin =⇒ (O(1$) ∨O(1e)) ∧ ¬(P (1$) ∧ P (1e))

Beverage =⇒ O(Coffee) ∧ P(Tea) ∧ P(Cappuccino)

Cappuccino =⇒ O(Ringtone)
(1$ =⇒ ¬P (Cappuccino)) ∧ (Cappuccino =⇒ ¬P (1$))

C. Verifying Static Requirements of Product Families

The deontic characterization of feature models de-
scribed in this section is a way to provide a semantics
to feature models. The deontic formulae expressing the
features and the constraints between them can then be
used to verify whether or not a certain product belongs
to a specific family.

Given the above characterization of the coffee machine,
let us suppose that we have defined two coffee machines
with the following list of features:

CM1 = {Coin, 1e,Beverage,Coffee}
CM2 = {Coin, 1e,Beverage,Coffee,Cappuccino}

VaMoS 2010

39

It is easy to see that coffee machine CM1 belongs to the
product family since it satisfies the characteristic formula
of the feature model, whereas CM2 does not: it falsifies
the constraint that a Cappuccino requires a Ringtone.
This can be formally verified by interpreting these lists
as a conjunction of axioms (each comma stands for a
∧) that when added to the characteristic formula makes
it either true or false, according to whether or not the
product belongs to the family. For instance, CM2 does not
belong to the product family because the addition (through
conjunction) of

Coin ∧ 1e ∧ Beverage ∧ Coffee ∧ Cappuccino

to the characteristic formula of the feature model makes
the subformula Cappuccino =⇒ O(Ringtone) false, as a
result of which the whole formula is false.

In general, the problem of finding a product that satisfies
the deontic characterization of a feature model is reduced
to that of finding a satisfying assignment to a set of
boolean variables. Efficient SAT solvers, like Chaff [21],
can therefore be used to address this kind of problems.

V. BEHAVIOURAL MODELS FOR PRODUCT FAMILIES

The behavioural requirements given in Sect. II for
our coffee machine family can be formally expressed by
a Modal Transition System (MTS). Several variants of
MTSs have been proposed in [10], [12], [18] with the aim
of embedding in a single model the behaviour of a family
of products that share the basic structure of states and
transitions. This basic structure can be defined as a doubly-
labelled transition system [9], which is an extension of an
ordinary Labelled Transition System (LTS) obtained by
labelling states with atomic propositions and transitions
with actions.

Definition 1: A doubly-labelled transition system
(L2TS) is a sixtuple (S, s0,Act,→,AP, L), in which
• S is a set of states;
• s0 ∈ S is the initial state;
• Act is a finite set of observable actions;
• →⊆ S×Act×S is the transition relation; instead of

(s, α, s′) ∈→ we will often write s α→ s′;
• AP is a set of atomic propositions;
• L : S −→ 2AP is a labelling function that associates

a subset of AP to each state.
An MTS can now be defined as an L2TS in which tran-

sitions are either required or possible, to reflect mandatory
or optional transitions for the products of the family.

Definition 2: A modal transition system (MTS) is a
septuple (S, s0,Act,→�,→♦,AP, L) such that (S, s0,Act,
→� ∪ →♦,AP, L) is an L2TS. A MTS has two distinct
transition relations: The must relation →� expresses re-
quired transitions, while the may relation →♦ expresses
possible transitions. Note that, by definition, the may
relation includes the must transition.

An example MTS is shown in Fig. 2; the solid arcs are
must transitions, while the dashed arcs are may transitions.
Its states are {0, 1, . . . , 12}, with initial state 0, while
its set of actions contains 1e, 1$, sugar, no_sugar, etc.

Figure 2. MTS modelling a product family.

Each state is labelled with the set of actions that label
its outgoing (required and possible) transitions. Finally,
must transitions 2 coffee−−−→� 4 and 3 coffee−−−→� 9 imply that
delivering coffee is a must for every product of the family
represented by this MTS. In fact, this MTS models the
behavioural requirements given in Sect. II for our family
of coffee machines.

Note that the MTS in Fig. 2 also models the static re-
quirements concerning optional and mandatory features,
through the use of may and must transitions. However,
this MTS is not able to model three particular constraints
listed among the requirements:
• actions 1e and 1$ are exclusive (alternative fea-

tures);
• a cappuccino is only offered by European products

(excludes relation between features);
• a ringtone is rung whenever a cappuccino is delivered

(requires relation between features).
We have seen that deontic logics can express also these
characteristics, as represented by the Feature Diagram of
Fig. 1. In order to define a unique framework in which to
reason about behavioural as well as static requirements, in
the following section we work on the integration of deontic
operators within a temporal logic able to deal with MTSs.

VI. TOWARDS A DEONTIC LOGICAL FRAMEWORK FOR
PRODUCT FAMILIES

In order to define a unique logical framework in which
to express both evolution in time and the variability of
a product family, we define the temporal logic DHML
based on the “Hennessy-Milner logic with Until” defined
in [9], [16], which has been augmented with the Deontic
possibility and obligation operators (in a style reminiscent
of the logic PDL proposed in [5], [6]) and path operators
from CTL [7]. DHML is a simpler variant of the logic
proposed in [2].

VaMoS 2010

40

A. DHML Logic: Syntax

DHML is a logic of state formulae (denoted by φ),
in which a path quantifier prefixes an arbitrary path
formula (denoted by π). We assume a set of atomic
actions Act = {α, β, . . .} and a set of atomic propositions
AP = {p, q, . . .}. From these two sets more complicated
formulae can be built in the usual way, using the propo-
sitional and deontic operators described in Sect. IV or
actions as well as the Hennessy-Milner modal, CTL path,
and Until operators we describe next, together with their
intuitive meaning:
• [a]φ: for all next states reachable with a, φ holds;
• E π: there exists a path on which π holds;
• Aπ: on each of the possible paths π holds;
• φ U φ′: in the current or a future state φ′ holds, while
φ holds until that state (but not necessarily in that
state).

Definition 3: The syntax of DHML is:

φ ::= tt | p | ¬φ | φ ∧ φ′ | [α]φ | Eπ | Aπ |
P (α) | O(α)

π ::= φ U φ′

As usual, ff abbreviates ¬tt, φ∨ φ′ abbreviates ¬(¬φ∧
¬φ′), φ=⇒ φ′ abbreviates ¬φ∨φ′, and 〈α〉φ abbreviates
¬[α]¬φ: there exists a next state reachable with a in
which φ holds. Furthermore, F φ abbreviates (tt U φ):
there exists a future state in which φ holds; and Gφ
abbreviates ¬F (¬φ): in any future state φ holds. Finally,
EF φ abbreviates E (tt U φ): there exists a path on which
φ holds in a future state; and AGφ abbreviates ¬EF¬φ:
φ holds in every state on every path.

An example of a well-formed formula in DHML is thus

[α](P (β) ∧ (p =⇒ O(γ))),

which states that after the execution of the action α, the
system is in a state where the action β is permitted (in
the sense of the may transition) and if the proposition p
holds then the action γ is obligatory (in the sense of the
must transition).

B. DHML Logic: Semantics

The formal semantics of DHML is given below by
means of an interpretation over the MTSs defined in
Sect. V. To this purpose, we use a relation P ⊆ S×Act to
denote which actions are permitted in which states, with
the understanding that P (s, α) iff α ∈ L(s). We assume
that Act ⊆ AP, i.e. all actions are atomic propositions.

Definition 4 (Semantics): The satisfaction relation |= of
DHML over an MTS L = (S, s0,Act,→�,→♦,AP ∪
Act, L) is defined as follows:
• s |= tt always holds;
• s |= p iff p ∈ L(s);
• s |= ¬φ iff not s |= φ;
• s |= φ ∧ φ′ iff s |= φ and s |= φ′;
• s |= [α]φ iff s

α−→♦ s′, for some s′ ∈ S, implies
s′ |= φ;

Figure 3. MTS of a European Coffee Machine.

• s |= Eπ iff there exists a path σ starting in state s
such that σ |= π;

• s |= Aπ iff σ |= π for all paths σ starting in state s;
• s |= P (α) iff P (s, α) holds;
• s |= O(α) iff P (s, α) holds and ∃s′ : s α−→� s′;
• σ |= [φ U φ′] iff there exists a state sj , for some
j ≥ 0, on the path σ such that for all states sk, with
j ≤ k, sk |= φ′ while for all states si, with 0 ≤ i < j,
si |= φ.

For the MTS in Fig. 2 we thus have, e.g., 0 |= 1e and
0 |= [1e](O(sugar)) since 1 |= (O(sugar)), which itself
follows from the fact that sugar ∈ L(1) and 1

sugar−−−→� 2.
Note that notions of weak and strong permission are

introduced in [5], [6] (and used to define a notion of obli-
gation). The semantics of DHML can be extended in the
following way to include a notion Pw of weak permission:
s |= Pw(α) iff P (s, α) holds and ∃s′ : s α−→♦ s

′.
Finally, we note that DHML differs from the classical

modal µ-calculus [16], since the modal box operator of
DHML is defined in terms of may transitions while the
modal µ-calculus makes no distinction between must and
may transitions in its semantic domain. For the same
reason, also the weak permission operator cannot be
expressed in the modal µ-calculus.

VII. USING DHML TO EXPRESS BEHAVIOURAL AND
STATIC REQUIREMENTS OF PRODUCT FAMILIES

We can now apply the DHML logic introduced in the
previous section to our running example. We do this
to illustrate the ability of DHML to express both static
constraints over the products of a family and constraints
over their behaviour.

DHML is able to complement the behavioural descrip-
tion of an MTS by expressing constraints over possible
products of a family, that is, the static requirements that
could not be expressed in the MTS:

VaMoS 2010

41

• actions 1e and 1$ are exclusive (alternative fea-
tures):

((EF <1$> true) =⇒ (AG¬P (1e))) ∧
((EF <1e> true) =⇒ (AG¬P (1$)))

• a cappuccino is only offered by European products
(excludes relation between features):

((EF <cappuccino> true) =⇒ (AG¬P (1$))) ∧
((EF <1$> true) =⇒ (AG¬P (cappuccino)))

• a ringtone is rung whenever a cappuccino is delivered
(requires relation between features):

(EF <Cappuccino> true) =⇒ (AF O(ring_a_tone))

The above expressions have been obtained by merging
the static requirements represented by the pure deontic
formulae given in Sect.IV for these requirements, with
the behavioural relations among actions expressible by
the temporal part of the logic. It is worthwhile making
two remarks. First, note that we have used the same
characterization of the alternative feature as the one given
for the excludes feature.

Second, since requires is a static relation between
features it does not imply any ordering among the related
features, i.e. a coffee machine that rings a ringtone before
producing a cappuccino cannot be excluded as a product
of the family of coffee machines by verification of the
above formula. Indeed, the correct ordering of actions is
guaranteed by the MTS description of the family.

DHML is also able to express behavioural requirements
over possible products of a family as temporal logic
properties, such as:

1) It is possible to get a coffee with 1e:

[1e] EF <coffee> true

2) It is always possible to ask for sugar:

AF <sugar> true

3) It is not possible to get a beverage without inserting
a coin:

AG (¬(coffee ∨ tea ∨ cappuccino) U
(<1e> true ∨ <1$> true))

It is important to note, however, that the logical concept
of possibility does not distinguish between the concepts
possibility for a user of the coffee machine to ask for
sugar and possibility for a product of the family to include,
among the other actions offered to the user, the action of
asking a cappuccino. To distinguish these two concepts
of possibility, we need to resort to the deontic operators
of DHML, using its capability to combine the expression
of the concepts of permission and obligation with that of
behavioural requirements.

VIII. USING DHML TO VERIFY BEHAVIOURAL AND
STATIC REQUIREMENTS OF PRODUCT FAMILIES

Another classic application of temporal logic is to
verify that a model of a system satisfies properties given
by logic formulae. Model checking is the most known
automatic technique for verifying a system’s correctness
properties [7]. Such verification is exhaustive, i.e. all
possible input combinations and states are taken into
account, and a counterexample is usually generated in case
a certain property does not hold. Correctness properties
reflect typical (un)desired behaviour of the system under
scrutiny. Formally, the problem of model checking can be
stated as follows: given a desired property, expressed as a
temporal logic formula φ, and a structure M with initial
state 0, decide whether M, 0 |= φ, where |= is the usual
satisfaction relation. If M is finite, model checking thus
reduces to a graph search.

We could use model checking to analyse the confor-
mance of members of a family of products with respect
to variability rules. To do so, we consider that a product
is formally represented by a MTS in which only must
(required) transitions appear. For instance, let us consider
the product represented by the coffee machine defined by
the MTS presented in Fig. 3. Such a MTS may have
been generated starting from an independent high-level
specification language such as, e.g., UML, and we may
want to check that it belongs to the family, by checking the
properties that we have defined to characterise the coffee
machine family. It is easy to check that all the properties
previously defined are satisfied by this MTS.

Moreover, if we take a few examples of properties
expressed in DHML that are a mix of behavioural and
deontic characteristics, then we are interested in checking
their validity over the MTS presented in Fig. 3. If they
turn out to be valid, then we can conclude that this
product satisfies all the static (features) and behavioural
requirements that the products derived from the family
of coffee machines should satisfy according to the list of
requirements given in Sect. II.

A first and simple example is the formula

EF O(coffee),

which must be read as it is possible that eventually the
product is obligated to deliver a coffee, i.e. there exists a
sequence of actions that leads to a state in which there is
a must transition labelled coffee. Verifying this formula on
this model of a product shows it is valid, because in state 2,
e.g., there is a must transition labelled coffee (2 coffee−−−→� 4)
and coffee ∈ L(2).

Note that the presence of a may transition labelled
cappuccino has no influence on the verification of this
formula: To be valid in a state s, the obligation O(coffee)
requires s to be labelled with coffee and the presence of
an outgoing must transition from s labelled with coffee.

It is immediate that this formula implies the validity of

EF P (coffee).

VaMoS 2010

42

Finally, since all paths at a certain point pass either state
2 or 3 and coffee ∈ L(3) and 3 coffee−−−→� 7, even the formula

AF O(coffee)

is valid: always eventually a coffee must be delivered.

In general, to perform verifications of this kind, we
need a model checker able to check DHML formulae
over models described as MTSs, with possible constraints
expressed in DHML itself.

We are currently pursuing two different approaches to
DHML model checking:
• We can exploit the relations between MTSs and

L2TSs in order to reuse the UMC model-checking
engine [20]. UMC is an on-the-fly model checker
that was originally designed for the efficient veri-
fication of UCTL logic [4], an action- and state-
based branching-time temporal logic, over L2TSs.
The comparison of the expressiveness of UCTL and
DHML still has to be studied, which means that
enhancements to the model-checking engine to cover
DHML deontic operators could be needed as well.

• Several model checkers employ SAT-solvers to imple-
ment the so-called bounded model checking approach,
in order to efficiently address large state spaces.
Using the same SAT-based engine for solving both
the deontic issues related to the constraints on a
family (as seen before) and the behavioural issues
(employing bounded model-checking techniques) is
hence a way of pursuing the scalability of verification
of DHML properties to real-world cases, in which
state spaces tend to increase beyond the capability of
explicit model checkers.

Merging the two approaches with the aim of increased
scalability and usability would then be a further step in the
direction of the industrial application of the verification of
behavioural requirements of product families.

IX. CONCLUSIONS AND FUTURE WORK

In [2] we have shown how a deontic logic can express
the variability of a product family by showing the capa-
bility of a deontic logic formula to finitely characterise a
finite state MTS, a formal method proposed to capture the
behavioural variability of a product family. In this paper,
we have pursued this line of research. We have first shown
how feature models can be straightforwardly characterised
by means of a deontic logic. We have then defined DHML,
a novel deontic extension of a Hennessy-Milner and CTL-
like behavioural logic for product families that allows
both static constraints over the products of a family and
constraints over their behaviour to be expressed in a single
framework. The semantic domain of this logic has been
chosen such that a verification framework based on model-
checking techniques is available.

The added value of the DHML logic we have introduced
in this paper can thus be summarised as allowing the
possibility of reasoning, in a unique framework, also on
behavioural aspects of products of a family.

There are several aspects of our line of research that
require a deeper understanding:
• how to express dependencies of variation points;
• the identification of classes of properties that, proved

on family definitions, are preserved by all the prod-
ucts of the family;

• how quantitative properties can be evaluated, such as
the number of possible different products of a given
family;

• from a more pragmatic point of view, the study on
scalability to real problems, and how the approach
adapts to incremental family construction.

More importantly, it remains to study to what degree the
complexity of the proposed deontic logic and verification
framework can be hidden from the end user, or can be
made more user friendly, in order to support developers
in practice, since formal models such as MTSs are not
directly usable as modelling framework. Nowadays, UML
diagrams are often used as modelling paradigm and it
could be very interesting to be able to apply to them the
same formal reasoning we have presented here for MTSs
and the deontic logic. Indeed, recently model-checking
techniques for UML activity and state chart diagrams
have been developed [4], exploiting the branching-time
temporal logic UCTL. An extension of this framework by
including deontic operators could be applied to verify the
conformance of static and dynamic constraints of product
derivations. This would allow to go into the direction
of producing the family description itself already in a
UML-like fashion, hence towards a better usability and
acceptance within the industrial software product lines
community.

REFERENCES

[1] L. Åqvist, Deontic Logic. In D. Gabbay and F. Guenthner
(Eds.): Handbook of Philosophical Logic (2nd Edition),
Volume 8. Kluwer Academic, 2002, 147-264.

[2] P. Asirelli, M.H. ter Beek, A. Fantechi, and S. Gnesi,
Deontic Logics for Modeling Behavioural Variability. In
D. Benavides, A. Metzger, and U. Eisenecker (Eds.): Pro-
ceedings of the Third International Workshop on Variability
Modelling of Software-intensive Systems (VaMoS’09), ICB
Research Report 29, Universität Duisburg-Essen, 2009, 71–
76.

[3] D.S. Batory, Feature Models, Grammars, and Propositional
Formulas. In J.H. Obbink and K. Pohl (Eds.): Proceed-
ings Software Product Lines Conference (SPLC’05), LNCS
3714, 2005, 7–20.

[4] M.H. ter Beek, A. Fantechi, S. Gnesi and F. Mazzanti, An
action/state-based model-checking approach for the analy-
sis of communication protocols for Service-Oriented Appli-
cations. In S. Leue and P. Merino (Eds.): Proceedings For-
mal Methods for Industrial Critical Systems (FMICS’07),
LNCS 4916, Springer, 2008, 133–148.

[5] P.F. Castro and T.S.E. Maibaum, A Complete and Compact
Propositional Deontic Logic. In C.B. Jones, Zh. Liu and
J. Woodcock (Eds.): International Colloquium Theoretical
Aspects of Computing (ICTAC’07), LNCS 4711, Springer,
2007, 109–123.

VaMoS 2010

43

[6] P.F. Castro and T.S.E. Maibaum, A Tableaux System for
Deontic Action Logic. In R. van der Meyden and L. van
der Torre (Eds.): Proceedings Deontic Logic in Computer
Science (DEON’08), LNCS 5076, Springer, 2008, 34–48.

[7] E.M Clarke, E.A. Emerson, and A.P. Sistla, Automatic Ver-
ification of Finite State Concurrent Systems using Temporal
Logic Specifications. ACM Transactions of Programming
Languages and Systems 8, 2 (1986), 244–263.

[8] K. Czarnecki and U.W. Eisenecker. Generative Program-
ming: Methods, Tools, and Applications, Addison-Wesley,
2000.

[9] R. De Nicola and F.W. Vaandrager, Three Logics for
Branching Bisimulation. Journal of the ACM 42, 2 (1995),
458–487.

[10] A. Fantechi and S. Gnesi, Formal Modeling for Product
Families Engineering. In Proceedings Software Product
Lines Conference (SPLC’08), IEEE, 2008, 193–202.

[11] A. Fantechi, S. Gnesi, G. Lami and E. Nesti, A Method-
ology for the Derivation and Verification of Use Cases
for Product Lines. In R.L. Nord (Ed.): Proceedings Soft-
ware Product Lines Conference (SPLC’04), LNCS 3154,
Springer, 2004, 255–265.

[12] D. Fischbein, S. Uchitel and V.A. Braberman, A Foundation
for Behavioural Conformance in Software Product Line
Architectures. In R.M. Hierons and H. Muccini (Eds.):
Proceedings Role of Software Architecture for Testing and
Analysis (ROSATEA’06), ACM, 2006, 39–48.

[13] A. Gruler, M. Leucker and K.D. Scheidemann, Modeling
and Model Checking Software Product Lines. In G. Barthe
and F.S. de Boer (Eds.): Proceedings Formal Methods for
Open Object-Based Distributed Systems (FMOODS’08),
LNCS 5051, Springer, 2008, 113–131.

[14] A. Gruler, M. Leucker and K.D. Scheidemann, Calcu-
lating and Modeling Common Parts of Software Product
Lines. In: Proceedings Software Product Lines Conference
(SPLC’08), IEEE, 2008, 203–212.

[15] K. Kang, S. Choen, J. Hess, W. Novak and S. Peterson,
Feature Oriented Domain Analysis (FODA) Feasibility
Study. Technical Report SEI-90-TR-21, Carnegie Mellon
University, Nov. 1990.

[16] K.G. Larsen, Proof Systems for Satisfiability in Hennessy-
Milner Logic with Recursion, Theoretical Computer Sci-
ence 72, 2-3, (1990), 265–288

[17] K.G. Larsen and B. Thomsen, Partial Specifications and
Compositional Verification, Theoretical Computer Science
88, 1, (1991), 15–32

[18] K.G. Larsen, U. Nyman and A. Wąsowski, Modal I/O
Automata for Interface and Product Line Theories. In R.
De Nicola (Ed.): Proceedings European Symposium on
Programming Languages and Systems (ESOP’07), LNCS
4421, Springer, 2007, 64–79.

[19] M. Mannion and J. Camara, Theorem Proving for Product
Line Model Verification. In F. van der Linden (Ed.): Pro-
ceedings Software Product-Family Engineering (PFE’03),
LNCS 3014, Springer, 2004, 211–224.

[20] F. Mazzanti, UMC model checker v3.6, April 2009. URL:
http://fmt.isti.cnr.it/umc

[21] M.W. Moskewicz, C.F. Madigan, Y. Zhao, L. Zhang and
S. Malik, Chaff: Engineering an Efficient SAT Solver.
In: Proceedings Design Automation Conference (DAC’01),
ACM, 2001, 530–535.

[22] J.-J.Ch. Meyer and R.J. Wieringa (Eds.), Deontic Logic in
Computer Science: Normative System Specification, Wiley,
1994.

VaMoS 2010

44

The Variability Model of The Linux Kernel

Steven She∗, Rafael Lotufo∗, Thorsten Berger†∗, Andrzej Wąsowski‡, Krzysztof Czarnecki∗

∗University of Waterloo, Canada, {shshe, rlotufo, kczarnec}@gsd.uwaterloo.ca
†University of Leipzig, Germany, berger@informatik.uni-leipzig.de

‡IT University of Copenhagen, Denmark, wasowski@itu.dk

Abstract—Lack of realistic benchmarks hinders efficient design
and evaluation of analysis techniques for feature models. We
extract a variability model from the code base of the Linux
kernel, obtaining a model larger by an order of magnitude than
the largest publicly available feature model so far. We analyze
properties of this model, compare it with previously available
benchmarks, and emphasize the differences from published
academic examples. As a result, we broaden our understanding
of what a feature model is, hopefully challenging tool designers
by providing an interesting benchmark, giving input to design
of random model generators, and last but not least, inspiring
designers of variability modeling languages.

I. INTRODUCTION

Reports from tool vendors and users in the series of pro-

ceedings of the Software Products Lines conference witness

a broad industrial interest and experience in using variability

modeling. Nevertheless, many researchers feel that realistic

benchmarks for evaluating variability modeling tools are in-

accessible [1]. Many variability models are in fact available

already (see www.splot-research.org, fm.gsdlab.org), however

very few of them originate from realistic processes; most are

small examples from research publications or outcomes of

student run case studies. Given the lack of realistic large-

scale models, many authors resort to using randomly generated

models [2], [3], [4].

In order to help the community mitigate this limitation, we

bring a large and realistic variability model, extracted from the

build system of the Linux kernel. Linux has an explicit vari-

ability specification expressed in the Kconfig language [5]—a

language developed specifically for this purpose by the kernel

developers. The Kconfig model so closely resembles feature

models [6], [7] that it can be naturally interpreted as one [8].

We present the Kconfig model—available online in a feature

modeling friendly format (see fm.gsdlab.org). We detail the

model transformation from the Kconfig language to feature

model. Foremostly, we extensively study the properties of

the Kconfig model, contrasting it to metrics of a corpus of

published feature models.

We intend to attract the attention of designers of feature

modeling tools to our result, so they can use the Kconfig model

as a particularly tough benchmark and its characteristics as a

source of requirements on tools. Some would also be interested

to know that randomly generated models used in previous

works are likely much easier to analyze than the Linux model.

Last but not the least, the Kconfig notation, together with

the size and structure of the Linux model, should inspire

designers of variability modeling languages, in particular when

Fig. 1. The xconfig configurator GUI

it comes to support for modularity and user interface aspects

like visibility of features.

II. THE KCONFIG LANGUAGE

Configuration options are known as configs in Linux. Kcon-

fig is the language used to specify the available configs and

dependencies among them: configs can be nested under other

configs; they can also be grouped under menus and choice

groups. The kernel configurator, xconfig, renders the Kconfig

model as a tree of options, which users select to specify

configurations to be built. Cross-tree dependencies, if any, are

indicated in the bottom part of xconfig’s GUI (Fig. 1).

Figure 2 shows a fragment of the Linux variability model

in the Kconfig language. The fragment contains a menu with

four Boolean configs as children.

Configs are named parameters with a specified value type:

Boolean, tristate, integer (int or hex), or string. Boolean

configs represent options that can be switched on (y) or

off (n). Tristate configs are similar, except that they have

two ‘on’ states: y indicates that the code implementing the

option should be linked into the kernel statically, whereas

m indicates that it should be compiled as a dynamically

loadable module. Thus, tristate is a simple form of a binding

mode specification [7]. We refer to Boolean and tristate configs

collectively as switch configs, since they appear in xconfig as

switches (e.g., checkboxes). Integer configs are used to specify

VaMoS 2010

45

menu "Power management and ACPI options"

depends on !X86_VOYAGER

config PM

bool "Power Management support"

depends on !IA64_HP_SIM

---help---

"Power Management" means that . . .

config PM_DEBUG

bool "Power Management Debug Support"

depends on PM

config CPU_IDLE

bool "CPU idle PM support"

default ACPI

config PM_SLEEP

bool

depends on SUSPEND || HIBERNATION ||

XEN_SAVE_RESTORE

default y

. . .

endmenu

Fig. 2. Fragment of a Kconfig model

numerical options such as buffer sizes. String configs are used

to specify names of, for example, files or disk partitions. We

refer to integer and string configs as entry-field configs, since

the configuration tool shows them as editable fields.

Config definitions can include other elements besides type.

If the type is followed by a prompt, i.e., a short explanation

text shown to the user in xconfig, the config is user-selectable;

otherwise it is not. A config can have a visibility condition

directly following the prompt (not shown in the example). A

longer help text can also be provided (see the PM entry in

Figure 2).

A depends-on clause introduces a dependency that must be

satisfied when selecting the config. In the example, PM can

only be selected if IA64_HP_SIM is not selected. Reversely,

a select clause (not shown) enforces immediate selection

of another config when this config is selected by the user.

Depends-on is also used to specify nesting, when referencing

its previous config: for example PM_DEBUG is nested under

PM.

A default clause has a two-fold effect. First, if the config

is user-selectable, default is used to provide an initial value,

which can still be overridden by the user. For example,

CPU_IDLE takes the same value as ACPI by default. If the

config is not user-selectable, then the default enforces a value

for the feature, effectively defining a cross-tree constraint. For

example, PM_SLEEP is non-user-selectable and set to y if its

depends-on condition holds; otherwise it is set to n.

Menus are used for grouping. Kconfig provides a condi-

tional visibility mechanism for menus. We call conditionally

visible menus simply conditional menus; if their condition, a

cross-tree constraint, is false, they and their children are grayed

out in the configurator.

Finally, choices (not shown) group configs into alternatives,

which we call choice configs. Choices themselves can be

Boolean or tristate. When the choice state is y, the choice

configs underneath are constrained with XOR; when the value

PM_MENU →¬X86_VOYAGER

PM →¬IA64_HP_SIM

PM_SLEEP ↔ SUSPEND || HIBERNATION || . . .

Fig. 3. Feature model for the example of Fig. 2

is m, the configs are constrained with OR. A choice marked

as optional can be set to n and no choice config needs to

be selected. Choices without the mark are mandatory and

cannot be set to n. Tristate choices reflect a common binding

variation: static binding requires an exclusive module to be

linked statically; dynamic binding allows multiple alternative

modules to be compiled—a single module is loaded at runtime.

Kconfig as a Feature Modeling Notation. We will interpret the

hierarchy of configs, menus, and choices as the Linux feature

model. Table I maps Kconfig concepts to feature modeling

concepts. Figure 3 shows the feature model for the Kconfig

example of Figure 2 generated by this mapping.

Switch configs map to optional features (Table I); each

feature for a tristate config additionally has an attribute of type

bmode, defined as enum {y,m}. An entry-field config maps to

a mandatory feature with an attribute of an appropriate type,

integer or string.

We map conditional menus to optional features; a more

faithful translation would require extending the feature mod-

eling notation with visibility conditions. Unconditional menus

map to mandatory features.

We map a choice to a feature with a group underneath con-

taining the grouped features representing the choice configs. A

mandatory choice maps to a mandatory feature with an XOR-

TABLE I

MAPPING KCONFIG MODELS TO FEATURE MODELS

Kconfig concepts Feature modeling concepts

Switch config

➟

Optional feature

Entry-field config Mandatory feature

Conditional menu Optional feature

Unconditional menu Mandatory feature

Choice

Mandatory Mandatory feat. + XOR-group

Optional Optional feat. + XOR-group

Mandatory tristate Mandatory feat. + OR-group

Optional tristate Optional feat. + OR-group

Choice config Grouped feature

Config, menu or

choice nesting ➟ Sub-feature relation

Visibility conditions

➟ Cross-tree constraintSelects

Constraining defaults

VaMoS 2010

46

group. An optional choice maps to an optional feature with

an XOR-group. In a slightly lossy manner, we map a tristate

choice to a feature with the less restrictive OR-group.

III. THE LINUX VARIABILITY STUDY

We analyzed aspects of features, hierarchy, constraints, and

natural-language content in the Linux model both quantita-

tively and qualitatively. When applicable, we applied the same

analysis to a corpus of published models and compared the

results with Linux.

Statistics gathering for Linux. Our statistics were gathered for

the 2.6.28.6 version of the kernel. The Kconfig model was

extracted from a normalized form using the kernel configurator

code. Prior to gathering the statistics, we apply a post-

processing stage to account for some special cases in the

Kconfig model (e.g. there were 11 multiply-defined features

in the hierarchy).

Corpus of published models. The corpus contains 32 models

available from the SPLOT website [9] (see Appendix A).

Most of these models are academic examples; from workshop

and conference publications and MSc and PhD theses. They

span many domains, including insurance, entertainment, web

applications, home automation, search engines, and databases.

Nineteen models represent software product lines; eight rep-

resent other types of product lines, e.g., hardware or business;

and five represent entire domains, e.g., electronic commerce

systems. Only five models describe real, existing software

systems, however even these appears to be results of research

efforts as opposed to regular industrial engineering practice.

To analyze the published models, we created a simple tool,

reusing Mendonca’s parser for SPLOT’s XML-based feature

model format (http://www.splot-research.org/sxfm.html).

A. Characterization of Features

Feature and group statistics. Table II gives statistics for

both Kconfig concepts and their feature modeling counterparts.

The Linux model has 5426 features, which is an order of

magnitude more than Electronic Shopping, the largest of the

published models, with 287 features. The vast majority (4744

or 89%) are user-selectable. Only about about 3% (188)

of features have integer and String attributes. Note that 71

TABLE II

LINUX FEATURE AND GROUP STATISTICS

Kconfig Concept Features Mand. Grouped XOR + OR

Config 5323 0 146 0

Non / User-Sel. 547 + 4744

Boolean 2005 0 136 0

Tristate 3130 0 10 0

Int 132 132 0 0

Hex 29 29 0 0

String 27 27 0 0

Menu 71 38 0 0

Choice 32 31 0 30 + 2

Total 5426 257 146 30 + 2

 0

 2

 4

 6

 8

 10

 12

 14

 0 50 100 150 200 250 300

N
u
m

b
e
r

o
f
F

e
a
tu

re
 M

o
d
e
ls

Number of Features

Fig. 4. Sizes of the published models

features correspond to menus, and 38 of these features are

mandatory. Choices contributed 32 features and 32 groups; 30

of them are XOR-groups; the two OR-groups were contributed

by two tristate choices.

Compared to published models (Figure 4, Table III) the

Linux model contains very small percentages of mandatory

features (5%), grouped features (3%), and groups (1%; relative

to the number of features). Thus, the Linux features are mostly

optional (92%).

Code-granularity of features. In order to assess the code-

granularity of an average feature in Linux, we computed the

set of source files included in the allno and in the allyes

configurations. Allno tries to approximate the smallest possible

configuration of Linux kernel, while allyes tries to approximate

the largest configuration (both are included as targets in the

build system and are based on a very simple algorithm).

Table IV reports that a mere 61 user-selectable features are

included in the former, and 3448 in the latter (which is about

73% of all user-selectable features). Moreover, all features

except one of allno are also features of allyes. We used

the difference between the sizes of the two configurations to

compute an average feature size. An average feature spans 2.76

TABLE III

PUBLISHED MODELS VS. LINUX

% relative to no. features Published Models Linux

median, min - max

mandatory features 25%, 0% - 66% 4.74%

grouped features 44%, 0% - 75% 2.69%

groups 16%, 0% - 35% 0.59%

XOR 9%, 0% - 30% 0.55%

OR 6%, 0% - 16% 0.04%

cross-tree constraint ratio 19%, 0% - 62% 82%

TABLE IV

CONFIGURATION STATISTICS

Metric allno allyes ∆ θ

Features 61 3,448 3387 1

Files 973 10,326 9,353 2.76

SLOC 210,302 4,266,171 4,055,869 1,197.48

∆i = allyes
i
− allnoi; θi = ∆i/∆1

VaMoS 2010

47

source files, and roughly a thousand non-blank non-comment

lines of code (although surprisingly small, this number is still

an over-approximation of the actual average, as it ignores the

fact that lines not belonging to allyes are removed by the

preprocessor).

Qualitative characteristics. To understand types of features

and options in the Linux kernel, we performed a subjective

categorization of 180 randomly selected features. The selected

categories characterize the granularity of features from the

user’s point of view—whether a feature enables support for

a device or its option—as well as their type—whether the

feature is related to a driver, protocol, API, etc.

We categorized features based on the help descriptions

provided in the Kconfig files and by querying the web when

needed. We left features with no description information

in Kconfig uncategorized. As this type of classification is

subjective, we performed a sanity check by cross checking the

categories for 18 features. We found a discrepancy of only 8%

and so believe that the categorization is sound and relevant.

We used the following user-based granularity categories:

• Menu: grouping features, e.g., IO_SCHEDULERS, which

groups read/write schedulers for block devices;

• Support: features that support certain devices or proto-

cols, e.g., HID_SAMSUNG, which enables support for

Samsung’s InfraRed remote control;

• Option: features enabling/disabling a specific kernel or

driver capability, e.g., DASD, which enables DASD block

devices using S/390s channel commands;

• Debug: features enabling tracing and other debug func-

tions for developers, like BOOT_TRACER, which acti-

vates collection of run-time informations to assist boot

time optimization; or MEMSTICK_DEBUG, which acti-

vates debug info for memory stick devices.

Additionally, we categorized features into the following

types:

• API: features that provide an API for programming, e.g.,

CRYPTO_CTR, which enables API for the block cipher

algorithm, required for IPSec;

• Driver: features related to drivers, e.g., SND_ADLIB, that

enables support for AdLib cards;

• Kernel: change kernel behaviour, e.g., FAILSLAB, which

enables fault-injection capability for kmalloc;

TABLE V

USER-BASED GRANULARITY CATEGORIES OF LINUX FEATURES

Menu Support Option Debug No Info

1 97 46 13 23

TABLE VI

TYPES OF FEATURES IN LINUX KERNEL

API Driver Kernel Protocol Subsystem No Info

5 120 15 14 1 25

 0

 200

 400

 600

 800

 1000

 1200

 1400

 0 1 2 3 4 5 6 7 8

N
u
m

b
e
r

o
f
le

a
v
e
s

Depth

Fig. 5. Linux leaf depth

 0

 50

 100

 150

 200

 250

 300

 350

 400

 20 40 60 80-139

N
u
m

b
e
r

o
f
fe

a
tu

re
s

Number of children

Fig. 6. Linux branching factor

• Protocol: features that implement protocols, e.g., LLC2,

which enables support for PF_LLC sockets;

• Subsystem: features that enable whole subsystems, e.g.,

Bluetooth, BT, which enables the Bluetooth subsystem,

comprising of several layers of software.

We found a very high correlation between support features

and drivers, meaning that roughly 50% of features in the

Linux kernel are drivers that support certain devices and

protocols, greatly outnumbering features that enable smaller-

grained functionality.

Interesting is also the relatively high number of the

developer-oriented debug features.

B. Model Hierarchy

Figure 5 shows the number of leaves with a given depth for

Linux. The maximum leaf depth in the Linux model is 7 (we

assume level 0 for root). The maximum depth for published

models is 10. The shapes of the leaf-depth histogram for

the publish models vary significantly; however, the shape for

the largest published model, Electronic Shopping, has closest

resemblance to that of Linux. An interesting observation is

that the Linux model is relatively shallow (average depth of

4).

Figure 6 shows the number of features for a given branching

factor, i.e., number of children, for Linux. The vast majority

of features are leaves (4544; not shown in the histogram).

Surprisingly, as many as 384 features are single-child parents;

VaMoS 2010

48

 0

 1000

 2000

 3000

 4000

 5000

 6000

2 3 4 5 6 7 8 9 10-22

N
u
m

b
e
r

o
f
c
o
n
s
tr

a
in

ts

Number of unique features

Requires
Excludes

Other

Fig. 7. Constraints categorized by the number of features they reference

these include features representing choices and singular op-

tions. The histogram has a long tail: 58 features have between

20 and 139 children. In contrast, the published models have

maximum branching of 11, which is vastly smaller than for

Linux. Interestingly, when generating models, White et al. [2]

assume a branching factor of at most 5, which appears very

low in the face of our data.

As before, histogram shapes of the published models vary

significantly, with the shape for Electronic Shopping resem-

bling most closely that of Linux. A notable difference, when

compared to Linux, is the relatively low number of single-child

parents in Electronic Shopping, where it is far lower than the

number of two-child parents.

C. Constraints

A constraint restricts legal combinations of features. Ob-

viously, hierarchical dependencies, discussed in the previous,

section are constraints. Not all dependencies can be expressed

as hierarchical dependencies, however. Additional cross-tree

constraints, specified in a suitable logic, are typically added

besides the nesting structure. The Kconfig language includes

a language of boolean expressions extended with equality

predicates on non-boolean values for this purpose.

We determined three sources of cross-tree constraints in

the Kconfig model: visibility conditions, select clauses, and

constraining defaults (see Section II). The excerpt from Fig. 2

maps to the cross-tree constraints shown under the diagram

in Fig. 3. The constraint on PM_DEBUG is not a cross-tree

constraint—it belongs to the hierarchy. Also, the default in

CPU_IDLE does not give rise to any cross-tree constraints,

since it is not constraining itself, but merely proposes a default

value that can be overridden.

As Mendonca [4] points out, the hardness of analysis of

feature models lies in the complexity of their cross-tree con-

straints. At the same time, it is not uncommon that researchers

believe that cross-tree constraints are rare and not crucial

to feature modeling. For example in our reference corpus,

eleven models do not have any cross tree constraints, and a

further eleven only have one or two constraints. Only 37% of

models in our sample have a significant amount of cross-tree

dependencies. In the Kconfig model, a total of 4186 (77%)

of features declare a constraint in their definitions, sometimes

more than one, giving rise to a total of 9291 constraints in the

feature-modeling sense (top-level conjuncts).

It is interesting to see how these conjuncts distribute over

more standard types of constraints (see Figure 7). 5313 (89%)

of them are positive implications (also known as requires

constraints), and 649 (11%) are excludes constraints (i.e.

constraints of the form f → ¬g). 3324 constraints represent

more complex relations involving more than two features. The

most complex of these includes 22 distinct literals in one

constraint:

(MWINCHIP3D ∨ MCRUSOE ∨ MEFFICEON ∨ MCYRIXIII∨

MK7 ∨ MK6 ∨ MPENTIUM4 ∨ MPENTIUMM ∨ MPENTIUMIII∨

MPENTIUMII ∨ M686 ∨ M586MMX ∨ M586TSC ∨ MK8∨

MVIAC3_2 ∨ MVIAC7 ∨ MGEODEGX1 ∨ MGEODE_LX∨

MCORE2) ∧ ¬X86_NUMAQ) ∨ X86_64) → X86_TSC = y

In contrast, published models almost exclusively contain

binary constraints. Only 4 (12%) models in the sample contain

a constraint relating 3 features, and none contained larger

constraints. We should mention here that for analysis tools,

binary constraints are easy. Consistency checking of a 2-CNF

formula can be done in polynomial time, while consistency

checking for a formula with ternary clauses is NP-complete.

Thus the Linux model sets a new challenge for analysis tools.

Not only does the Linux kernel model contains a large num-

ber of constraints, but these constraints also involve unusu-

ally many features. Mendonca [4], [10] introduces cross-tree

constraints ratio (CTCR)—a normalized measure comparing

the number of features participating in cross-tree constraints

(more precisely a percentage of features in the model that

are referenced in constraints). As we can see in Table III,

CTCR for published models varies between 0 and 60%, with

19% being a typical value. In the Linux model, all 82% of

features participate in cross tree constraints. Effectively the

Linux hierarchy says relatively little about the combinatorial

dependencies between features, indicating a certain limitation

of hierarchical models for describing dependencies in very

complex software projects.

D. Natural Language Properties

Natural language processing techniques gain popularity in

software engineering tools, including feature modeling [11],

[12]. It is thus relevant to investigate the main properties of

texts available in the Kconfig model. The Linux model has

three kinds of textual attributes: feature identifiers (like PM),

prompt texts (Power management support), and descriptions

("Power Management" means that . . .).

Available Textual Information. We have counted the length

of feature identifiers (considering strings separated by un-

derscores as separate words), of prompts, and of descrip-

tions. Table VII summarizes the findings. The majority of

identifiers are 13 characters long, but there do exist some

of length 2 (such as MD, SX, VT), and some of length 43

VaMoS 2010

49

(SECURITY_SELINUX_POLICYDB_VERSION_MAX_VALUE). The major-

ity of identifiers contains two or three words, with some

approaching as many as nine. Most prompts include 3–5

words, with some reaching up to 13.

The help descriptions exhibit a similar pattern. The majority

is around 30 words long, but some reach as much as 392

words. At the same time 823 features have no descriptions

at all. Out of these, 540 are non-user-selectable, and 102 are

menus or choices. As many as 181 of user-selectable configs

contain no descriptions.

These numbers demonstrate a considerable effort of kernel

developers to make features descriptions valuable for users.

Still, about 20% of features have poor data like unhelpful iden-

tifiers or descriptions under 20 words. Most short descriptions

are not very explanatory, containing texts such as Say Y here or

If unsure say N or just the full name of the supported device.

Longer descriptions have detailed explanations, such as when

to enable the given feature and suggestions of other related

features to enable or disable.

Vocabulary. We analyzed the most frequent domain specific

terms in the Linux model. We consider any word not included

in the aspell (0.60.5) English dictionary to be a domain term.

Table VIII shows the most frequent domain words for the

text attributes. Most common terms clearly relate to popular

hardware kinds or to kernel subsystems.

Moreover, identifiers of 3601 features share com-

mon words with identifiers of their immediate parents

(not necessarily domain specific words). For example:

CRYPTO_DEV_HIFN_795X_RNG is a child of CRYPTO_DEV_HIFN_795X,

or DVB_USB_DIBUSB_MB_FAULTY is a child of DVB_USB_DIBUSB_MB.

Consequently, for about half of the features, it should be

possible to automatically determine their immediate parents

using a string similarity metric.

IV. THREATS TO VALIDITY

External Validity. Our baseline corpus is comprised of 32

models selected from published sources. Due to their academic

origin, these models are not realistic. However, they are a

suitable baseline here, as they support our main point that

TABLE VII

SIZE OF TEXTUAL ARTIFACTS IN THE KCONFIG MODEL

artifact no. of characters no. of words

median min max median min max

identifiers 13 2 58 2 1 9

prompts 27 2 82 4 1 13

description - - - 29 2 392

TABLE VIII

TOP DOMAIN TERMS IN THE KCONFIG MODEL

Text source Most frequent domain terms

Identifier usb snd md serial fb debug

Prompt usb ethernet pci intel scsi pcmcia

Description usb linux scsi ethernet pci howto

there exist realistic models that do not share characteristics

with published models.

Studying the Linux kernel as a single subject raises a doubt

whether the reported values of metrics are representative.

However, we do not make any general claims about feature

models based on these metrics. Rather we postulate that this

model, which describes a realistic and wide-spread software

system, should be included in benchmark sets of feature mod-

els. While a single model cannot be claimed to be representa-

tive, it does witness a departure from expected characteristics.

Moreover, as Tartler [13] suggests, it is unlikely that Linux

is an exception among operating systems, since other have

similar qualities.

Arguably, the Kconfig model has not been created as a

feature model but rather as a specification of a configuration

system. Our interpretation of this model as a feature model can

be seen as a violation of the original intention. Nevertheless

Kconfig shares structural characteristics with feature models,

and its main purpose (modeling a range of configuration

choices) is consistent with the main objective of feature

modeling. Unlike typical feature models, which are created

during domain analysis, the Kconfig model has been grown

bottom up—by adding features during evolution of the system.

While these two processes, domain analysis and evolution—

are different—the evolutionary bottom up construction is a

realistic scenario, resembling the processes during evolution

of mature product lines.

Internal Validity. The qualitative classification of Linux fea-

tures has been done manually by one member of the project

team for a randomly selected subset of 180 features. In order

to ensure the representativeness of this result we have selected

the 180 feature sample uniformly; in the sense that every

feature in the kernel had equal probability to be selected. For

a subsample of uniformly selected 18 features (out of the 180)

we have independently verified the classification using another

member of the project.

No formal definition of the Kconfig language is available,

besides the only existing implementation itself. Thus, we could

not verify whether our transformation of the Kconfig model to

the feature modeling notation is semantics preserving. In order

to decrease the chance of misinterpretations, we have used the

original Linux configurator code to perform the first phase of

that translation consisting of normalizing the representation

and removing any syntactic sugar. Thus, we are confident that

the first phase of the translation is in agreement with whatever

the kernel developers have intended. For the remaining part of

translation usual best practice measures were applied, such like

investigating test cases using our translator against the Linux

configurator tool.

Because there is no single accepted canonical syntactic

representation for constraint systems, counting constraints is

always subject to applied translations. In our case, however,

it is very clear that regardless of which of the reasonable

translations was used, the complexity of constraints in the

Linux model is much higher than any constraints in the

VaMoS 2010

50

published models.

V. RELATED WORK

The connection between the Kconfig language and feature

modeling was previously described by Sincero and Schröder-

Preikschat [14]. In their paper, they describe feature modeling

concepts in terms of Kconfig constructs. Our work differs

in that we investigate the inverse mapping—from Kconfig to

feature model.

Tartler et al. [13] propose an architecture for a tool to

detect dead features in the Linux Kernel. They make the same

assumption as we do, i.e. that Kconfig can be naturally and

meaningfully interpreted as a feature model. However, they are

not interested in the properties of the model itself, except for

existence of dead features. They extend a classic feature model

analysis (dead feature detection) to the mapping of features to

code to diagnose quality errors in the Linux codebase. It will

be interesting to see if their analysis actually scales to the

model we have described here.

Segura and Ruiz–Cortés [1] complain about the lack of

realistic benchmarks for feature model analysis tools, and

postulate creating a common standardized benchmark set with

a repository of realistic models. Our contribution can be seen

as one step towards addressing their concern, by providing

a large and realistic feature model, which is now available

online.

Randomly generated benchmarks have been applied in

evaluation of analyzes tools for feature models [3], [2], [4],

[10]. The generators applied in these projects have been tuned

to generate models that resemble published models. However

these characteristics turn out not to be true for large real life

models, as exemplified by the Linux model described in this

paper. Our results can serve as an input to design a statistically

significant generator of random benchmarks for tools.

The European Project AMPLE has investigated use of

automatic information retrieval techniques for extraction of

feature models from requirement documents [11], [12]. The

applicability and tuning of such algorithms to practical models

heavily depends on properties of documentation available such

as the size of provided descriptions and the amount of domain

specific terms in them. The statistics of Section III-D are

hopefully inspiring for this purpose.

Earlier we have presented reverse engineering algorithms

that can be used to obtain examples of feature models from

systems, where no explicit model is embedded—directly from

compatibility constraints [15], or from sets of legal configura-

tions [16].

VI. CONCLUSION

The Linux model is an excellent example of a large-scale

variability model used in practice. We have shown that it

challenges many of the long-held assumptions in the product-

line community. It offers a wealth of information and acts as an

excellent benchmark for the evaluation of automated analysis

tools.

REFERENCES

[1] S. Segura and A. Ruiz-Cortés, “Benchmarking on the automated anal-

yses of feature models: A preliminary roadmap,” in VaMoS, 2009, pp.

9–17.

[2] J. White, D. C. Schmidt, D. Benavides, P. Trinidad, and A. R. Cortés,

“Automated diagnosis of product-line configuration errors in feature

models,” in SPLC. IEEE Computer Society, 2008, pp. 225–234.

[3] P. Trinidad, D. Benavides, A. R. Cortés, S. Segura, and A. Jimenez,

“Fama framework,” in SPLC. IEEE Computer Society, 2008, p. 359.

[4] M. Mendonca, A. Wąsowski, and K. Czarnecki, “Sat-based analysis of

feature models is easy,” in SPLC’09. IEEE, 2009.

[5] R. Zippel and numerous contributors, “kconfig-language.txt,” seen 2009-

11-23.

[6] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, “Feature-

oriented domain analysis (FODA) feasibility study,” Technical Report

CMU/SEI-90-TR-21, 1990.

[7] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods,

Tools, and Applications. Boston, MA: Addison-Wesley, 2000.

[8] J. Sincero, H. Schirmeier, W. Schröder-Preikschat, and O. Spinczyk, “Is

The Linux Kernel a Software Product Line?” in Workshop SPLC-OSSPL

2007, 2007.

[9] M. Mendonca, M. Branco, and D. Cowan, “S.P.L.O.T.: software

product lines online tools,” in OOPSLA Companion. ACM, 2009,

http://www.splot-research.org.

[10] M. Mendonca, A. Wasowski, K. Czarnecki, and D. D. Cowan, “Efficient

compilation techniques for large scale feature models,” in GPCE’08,

2008, pp. 13–22.

[11] N. Weston, R. Chitchyan, and A. Rashid, “A framework for constructing

semantically composeable feature models from natural language require-

ments,” in SPLC. IEEE Computer Society, 2009.

[12] V. Alves, C. Schwanninger, L. Barbosa, A. Rashid, P. Sawyer, P. Rayson,

C. Pohl, and A. Rummler, “An exploratory study of information retrieval

techniques in domain analysis,” in SPLC. IEEE Computer Society,

2008, pp. 67–76.

[13] R. Tartler, J. Sincero, W. Schröder-Preikschat, and D. Lohmann, “Dead

or alive: Finding zombie features in the linux kernel,” in FOSD, 2009,

pp. 81–86.

[14] J. Sincero and W. Schröder-Preikschat, “The linux kernel configurator

as a feature modeling tool,” in Proceedings of the Workshop on Analyses

of Software Product Lines (ASPL), 2008, pp. 257–260.

[15] K. Czarnecki and A. Wąsowski, “Feature models and logics: There and

back again,” in SPLC ’07. IEEE, 2007.

[16] K. Czarnecki, S. She, and A. Wąsowski, “Sample spaces and feature

models: There and back again,” in SPLC’08. IEEE, 2008.

[17] Software Product Lines, 12th International Conference, SPLC 2008,

Limerick, Ireland, September 8-12, 2008, Proceedings. IEEE Computer

Society, 2008.

APPENDIX A

CORPUS OF PUBLISHED MODELS

The corpus includes 32 models downloaded from the SPLOT web-

site [9] on 16 November 2009:

Aircraft PL, Arcade Game PL, Car PL, Cellphone, CFDP Library,

Connector PL, Digital Video System, Documentation_Generation,

Electronic Shopping, FAME-DBMS, Graph, Graph Product Line,

HIS, Insurance Policy, Insurance_Product, Inventory, James, JPlug,

Key_Word_In_Context_index_systems, Model_Transformation,

Monitor_Engine_System, MoviesApp PL, SAL, Search_Engine_PL,

Smart Home, Stack PL, Telecommunication_System, Text_Editor,

Thread, Virtual_Office_of_the_Future, Weather Station, Web_Portal

VaMoS 2010

51

VaMoS 2010

52

A Preliminary Review on the Application of
Feature Diagrams in Practice

Arnaud Hubaux, Andreas Classen*
PReCISE Research Centre

University of Namur, Belgium
Email: {ahu, acs}@info.fundp.ac.be

Marcı́lio Mendonça
University of Waterloo, Canada

Email: marcilio@csg.uwaterloo.ca

Patrick Heymans
PReCISE Research Centre

University of Namur, Belgium
Email: phe@info.fundp.ac.be

Abstract—For two decades, feature diagrams have been in-
tensively studied as a means to specify variability and pilot
configuration in software product line engineering. Surprisingly
though, it seems that very few reports on the use of feature
diagrams in practice are available. To test this claim, we started
a systematic review of such reports. In the collected material,
we tried to identify positive and negative feedback on the use of
feature diagrams. In this paper, we present the first results of
this work in progress and discuss the opportunity of extending
it to a fully systematic review on a wider scale.

I. INTRODUCTION

Software product line (SPL) engineering (SPLE) has long
been promoted as a cost-effective means to build customisable
products out of reusable assets [1]. SPL development is
traditionally a two-activity process [2]. The first activity, called
domain engineering, consists in developing a set of reusable
assets that can be configured and combined to create different
products of the SPL. A key point in domain engineering is
the identification and documentation of variability of the SPL.
Typically, the variability is documented in a variability model.
Variability models can take different forms and shapes, and
address artifacts of different natures [2]. Here we focus on a
particular kind of model, namely feature diagrams (FDs) [3],
which are typically used to provide a technology-independent
and high-level representation of variability. The second activity
is application engineering during which variability is progres-
sively resolved: the stakeholders decide which features from
the FD are selected for inclusion in the final product and which
are discarded until the product is completely configured [4].

The research community has worked intensively on FDs
for more than two decades. This resulted notably in regular
enhancements of their expressiveness (e.g. [4]), formalisation
(e.g. [5]) and automated reasoning tools (e.g. [6]). However,
thorough studies of the fitness of FDs wrt. industrial problems
are hard to find. By fitness we mean the ability to fulfil a
particular function or meet a particular need. Our discussions
with researchers and practitioners also support this “informal
observation”. In this context, we believe it is necessary to clear
up the matter and provide evidence of the presence or absence
of supportive material. This concern can be translated into the
following research question: What evidence do we have of the
fitness of FDs in practice?

*FNRS Research Fellow.

In order to answer the research question, one possibility
is to conduct a systematic literature review [7]. However,
the time and resources needed to perform such a review
are considerable. It is then often recommended to start with
a smaller scale review that serves as an opportunity and
feasibility study for a full systematic review [8]. In this paper,
we follow this recommendation and propose a preliminary
review based on a limited sample of paper sources.

Another systematic review in the field of variability mod-
elling was published recently by Chen et al. [9] but our
objectives are different:

• we focus on FDs and not on variability models in general;
• we inventorise applications of FDs in practice rather than

approaches to model variability.
The main contribution of this paper is preliminary evidence

that industrial application of FDs has been barely tackled in
the literature and that there is an opportunity to conduct a full
systematic review. In the long run, the expected benefits from
our study are the following:

• a comprehensive inventory of success stories as well as
failures of FDs in industry that can be used to define
guidelines to help practitioners decide whether FDs are
appropriate or not to their specific needs;

• repeated updates of our study will allow to assess the
progress of the acceptance of FDs in industry;

• the collected observations can be used to identify the
major research problems and define a practice-driven
research roadmap for FD modelling and analysis.

The paper is structured as follows. Section II presents the
review method and Section III describes the results of our
analysis. Section IV discusses the limitations of our results
and opportunities for conducting a full systematic review.

II. REVIEW METHOD

Since this study is only meant to be a pilot for a possible
full systematic review, we relaxed some of the guidelines
proposed by Kitchenham [7]. We thus refer to this pilot as
a semi-systematic review. We will elaborate more on this in
Section IV.

The initial paper base consists of the proceedings of all
editions of (1) the software product line conference (SPLC)
and co-located workshops for the years 2000, 2002, and

VaMoS 2010

53

2004–2009, (2) the workshop on product family engineering
(PFE) for the years 2001 and 2003, and (3) the workshop on
Variability Modelling of Software-intensive Systems (VaMoS)
for the years 2007–2009. PFE has been retained to ensure
the continuity of publications between 2000 and 2009, as
suggested on the SPLC history web page.1 We focus on
these three events because they are major events for the SPL
community and already total 415 papers.2 Therefore, we think
that this sample is representative of the activity in the field,
which is confirmed by [9].

From those 415 papers, a first short list of 29 papers3 was
established based on their titles. This short list was obtained
after a filtering based on a disjunction of three search criteria.
The first criterion aims at capturing papers that study FDs
and their applications, e.g. product configuration, in real-life
examples. In order to avoid papers that only consider toy
examples, we included a set of terms that usually refer to real
cases. They are detailed below. The second and third criteria
broaden the scope by considering papers that discuss the
application of SPLs in practice but which title do not contain
an explicit reference to a topic different from variability
modelling (e.g. architecture modelling). Note that given the
nature of these latter two criteria, the search of papers was
done manually. To be accepted, the title of the paper had to
match at least one of the criteria, i.e. contain:

• (Criterion 1)
at least one of the terms feature diagram, feature model,
variability model, configuration or derivation
and
the name of a company or a reference to a practical
application (e.g. industry, practice, case study, empirical
or experience) or a reference to an economic context (e.g.
market or finance);

• or (Criterion 2)
one of the terms product line or product family
and
the name of a company or a reference to a practical
application or a reference to an economic context
and
no reference to a topic different from variability mod-
elling;

• or (Criterion 3)
the name of a company or an industrial application
domain
and
no reference to a topic different from variability mod-
elling;

The 29 papers that matched the criteria are listed in Table I
and sorted by criterion. Note that one paper ([11]) matched
more than one criteria.

1http://splc.net/history.html
2Apart for SPLC’09 and the three editions of VaMoS for which we directly

investigated the proceedings, the lists of published papers was retrieved from
DBLP on the 20th of October 2009.

3Unfortunately, the access to paper [10] was not granted.

TABLE I
DISTRIBUTION OF THE SELECTED PAPERS BY CRITERIA.

Criterion Number of papers References
1 9 [10], [11], [12], [13], [14], [15],

[16], [17], [18]
2 20 [19], [20], [11], [21], [22], [23],

[24], [25], [26], [27], [28], [29],
[30], [31], [32], [33], [34], [35],
[36], [37]

3 1 [38]

The set of 29 papers was then further filtered based on their
abstracts and introductions. Only those whose abstract or intro-
duction addressed the evaluation or application of variability
models in industrial settings, or discussed the applicability of
FD-based configuration systems were kept. At the end of the
filtering process, 16 papers remained (bold-faced in Table I),
i.e., roughly 4% of the total number (415) of papers.

At this point we did not know what results to expect when
reviewing the papers. Therefore, data extraction was performed
in an ad hoc way (by collecting notes of possibly relevant
information), instead of using a data extraction form that we
should have defined a priori, as suggested by Kitchenham [7].
Similarly, we defined the paper categories, which are discussed
in the next section, after having read the papers.

III. FINDINGS

A. Classification of the papers

Our readings lead us to identify four categories. The first
one relates to successful applications of FDs for which some
adaptations to the FD language were made. The second one
denotes successful applications for which no adaptations to
the language were made. The third one gathers cases where
the authors do not actually use FDs but acknowledge that they
could have helped. The fourth one discusses unsuccessful ap-
plications. A last category was added to gather false positives,
i.e., papers for which the applications of FDs turned out to
be missing or too vague to tell anything about their fitness.
The distribution of the papers we reviewed is summarised in
Table II.

TABLE II
DISTRIBUTION OF THE REVIEWED PAPERS BY CATEGORIES.

Category Number
of papers

References

Successful applications with adap-
tations

2 [17], [16]

Successful applications without
adaptations

4 [37], [33], [31],
[14]

FDs could have helped 3 [11], [15], [13]

Unsuccessful applications 2 [22], [12]

False positives 5 [35], [34], [21],
[19], [18]

VaMoS 2010

54

B. Description of the papers

We now describe the content of all the papers belonging to
each of the categories defined above.

Successful applications of FDs with adaptations. Gillan et
al. [17] report on their application of an experimental FD
notation applied to the modelling of embedded software in
the telecommunication domain. The three main challenges
to the adoption of FDs were (1) the management of the
growing number of variation points, (2) the need to implement
features formerly available in the software into the hardware,
and (3) the specification of feature behaviours. For each of
these challenges, they propose extensions to FDs suited to
the telecommunication domain. The design of their system
architecture is based on this extended version of FD language.

Reiser et al. [16] aim at specifying a unified FD language
based on FODA [3]. According to their experience in the
automotive industry, they claim that the biggest threats to using
FDs in complex SPLs are the heterogeneity of development
techniques and the divergence of subsystems. The framework
they propose to address these threats uses hierarchically organ-
ised FDs linked to the other artifacts. In addition, they present
a list of seven requirements for a unified language collected
from their experience in the automotive industry. They also
touch upon two potential benefits of FDs in this context:
(1) features can link management, marketing and development
within and between companies, and (2) FDs provide a central
view of variability over a vast range of artifacts.

Successful applications of FDs without adaptations. Dor-
dowsky et al. [37] discuss the adoption of SPL principles
to manage the software variants and technology variations in
complex avionic systems. One of their achievements is the
efficient production of source code for different variants based
on a FD. Unfortunately, very little detail about the FD and the
way code is generated from it are available. They also report
that there is a pressing need for higher integration between the
FD and the other constituents of the tool chain.

Jensen [33] looks into the derivation of products in the
domain of intelligence planning, collection and analysis for
the US government and its allies. The author reports that
FODA [3] helped to define the domain analysis process but
gives no indication how FODA actually contributed to the
final design. The author also complains about the lack of tool
support to handle variation points across the tool chain.

Steger et al. [31] report on the introduction of SPLE
at Bosch Gasoline Systems. They used FDs to model the
variability of the SPL but do not provide feedback about the
actual advantages of FDs in their application, though they
mention the lack of available tool support. By applying feature
analysis their goal was to reduce resource consumption, a
critical aspect in embedded systems.

Wenzel et al. [14] explain how FDs can be used to tailor the
databases of the configuration management system available in
the IBM Tivoli suite. In their case, FDs proved to simplify and
ease the understanding of the stakeholders who lacked specific
knowledge about the underlying structure of the databases.

Furthermore, using FDs for configuration reduced the “error-
prone elicitation of requirements” and enabled the automation
of choice propagation. A quick evaluation of their approach
revealed that (1) the tree-based navigation coupled with cross-
cutting constraints “were regarded as a significant advan-
tage”, (2) FD-based database specification has a “time-saving
potential” and (3) the reduced amount of knowledge needed
to understand the database can potentially increase customer
acceptance. About this latter point though, they mention that
experts might miss information intentionally left out of the
FD.

Applications where FDs could have helped. Deelstra et
al. [11] studied two large industrial organisations and identi-
fied a collection of product derivation problems, including the
lack of hierarchical structuring of variation points, and the lack
of formal representation of variation points and dependencies.
The authors clearly refer to FDs as a potential solution to the
former but do not elaborate further on how to solve the other
problems.

O’Leary et al. [15] compare two approaches for product
derivation in industrial settings. A result of their comparison
is a list of lessons learned for product derivation. A strong
emphasis is put on the need to represent variability differently
according to the type of stakeholder who is dealing with it.
The authors do not rule out FDs as a potential representation
but they add that FDs should not be the only one available.

Schmid et al. [13] studied three existing configuration
tools unrelated to SPLE and compared them according to the
variability concepts usually present in FDs. Although their
investigation does not allow to draw any conclusion regarding
the application of FDs, they provide evidence that the FD and
configuration tool worlds overlap and “co-evolved in a similar
way”.

Unsuccessful applications of FDs. Ishida [22] discusses
the application of SPLE at the Nomura Research Institute to
develop semi made-to-order software packages. The author
rejects FD-based approaches as they “may produce more
problems than benefits” because of the “degree of software
intensiveness [sic], the ambiguity of criteria to decompose
systems into features, and the frequency of requirement spec-
ification changes.”. The author adds that the key to success
is abstraction rather than massive configuration of concrete
artefacts. Their approach follows the model-view-controller
(MVC) decomposition, and is based on a combination of
UML, entity-relationship diagram and the Turbine web ap-
plication framework.

Tolvanen et al. [12] identify approaches to define domain-
specific modelling (DSM) languages that enable automated
product derivation in practice. According to them, FDs are
clearly not a good candidate as they “operate at a level
too general to identify DSM concepts” to be included in
the language and “do not capture the dependencies and
constraints required to define modelling constructs”. Instead,
they recommend to work at the level of the architectural
model, which better supports the identification of product
concepts and their relationships.

VaMoS 2010

55

False positives. Carbon et al. [35] focus on the integration
of SPLE principles in existing workflows and infrastructures
to facilitate the customization of office devices without refer-
ring to any variability model in particular. Habli et al. [34]
elaborate mainly on the role and definition of an appropriate
configuration management plan to develop products. Although
relevant to the field, they do not connect them to FDs.
Helferich et al. [21] discuss the distinction between marketed
and engineered SPLs but do not discuss the impact of this
distinction on FDs. Jaring et al. [19] identify several variability
issues taken from their experience with various industrial
partners and advocate a reference framework normalising the
representation of variability throughout the SPL development
lifecycle. They do not explicitly point to FDs as a con-
crete solution. Wnuk et al. [18] focus on the management
of variability at the requirements level. Aside from a brief
reference to OVMs [2], which are compared to their “product
configuration specification”, they do not discuss the use of
variability models.

C. General observations

We start with the observations that directly address our
research question:

• few papers on the application of FDs were found.
We first observe that less than 2% of all the papers (8
out of 415) actually discuss successful and unsuccessful
applications of FDs in practice. Among these 8 papers,
we observe 6 successful and 2 unsuccessful reports. This
very small number of applications makes it difficult to
draw any conclusion, expect that it tends to confirm our
impression that there are very few experience reports. The
low number of unsuccessful reports is, however, more
understandable as practitioners are generally reluctant to
publish unsuccessful attempts.

• few details about the usage of FDs were found. Out
of the 6 successful reports, only 3 ([17], [16], [14])
provide details about how FDs were used. Unfortunately,
the advantages and disadvantages described are still pre-
liminary and the gains of using FDs are not backed up
by concrete evidence. The papers that suggest FDs as a
potential solution do not really substantiate this choice
either. The first paper ([22]) reporting on unsuccessful
uses of FDs also fails to provide substantial evidence. Its
observation seems to be based on speculation rather than
on facts, its justification being that “[FDs] may produce
more problems than benefits” [22]. The second case of
the unsuccessful applications ([12]) affirms that FDs were
not suited but again does not detail the evaluation process
that lead to this conclusion.

• lack of of existing material is corroborated by other
sources. For instance, a systematic review of variabil-
ity management (VM) approaches published at SPLC
2009 [9] concludes:

There is only little, if any, experimental or de-
tailed comparative analysis to show the relative

advantages and disadvantages of different VM ap-
proaches. That is why it would be hard to build
an evidence-based guidance for selecting a VM
approach for specific development situation and con-
text. Hence, there is a vital need of conducting com-
parative analysis of different approaches in order to
provide the practitioners with a qualified portfolio
of techniques.

FDs being part of VM approaches, their survey also
provides the insight that comparative evaluations of FDs’
advantages and disadvantages are lacking, too. Deelstra et
al. [11] and Jaring et al. [19] go along the same lines
saying that most of the approaches meant to support
product derivation “fail to provide substantial supportive
evidence” [11]. Gillan et al. [17] declare that the accep-
tance of FDs in telecommunication requires “more and
deeper case studies”.

Other interesting observations we made are that there is a:

• growing interest from practitioners. What Table II
does not show is that 8 of the 11 papers reporting on
applications of FDs have been published between 2007
and 2009, i.e. more than two thirds of the experiences
were reported during the last two years. Even though this
trend still has to be confirmed by more comprehensive
studies, it seems to show a growing interest for FDs in
practice.

• lack of tool support. 3 papers ([31], [33], [37]) complain
about the lack of tool support and the weak integration
among the constituents of the tool chain. Although this
information does not really help to understand how FD
languages should be improved, it stresses the urge to
develop dependable and easily interoperable tools. If not
the key to the uptake of FDs, it would at least facilitate
their evaluation.

• lack of relationships among modelling languages. The
results of Schmid et al. [13] provide a first feeling that
the configuration tool world and SPLE have somehow
evolved in parallel but with converging goals. However,
they also observed that a stronger emphasis was put on
the relationship between the artifacts (e.g. components
and abstract features) in configuration systems than in
SPLE. As for tool support, this pinpoints a trend in SPLE
research to focus on a modelling language and develop
model-centred reasoning without much care for interop-
erability. Providing more integration among languages
would be an opportunity to increase the acceptance of
FDs by practitioners.

Concerning the different dialects of FDs used in the suc-
cessful cases, there is unfortunately not much to say either.
Gillan et al. [17] and Steger et al. [31] use their own dialect
and developed specific tool support. Reiser et al. [16] used
pure::variants and seem to use the FD language proposed by
Czarnecki [4] in their examples. Jensen [33] vaguely refer-
ences FODA whereas Dordowsky et al. [37] do not mention
any particular FD dialect. Wenzel et al. [14] used the feature

VaMoS 2010

56

modelling plug-in for Eclipse from Antkiewicz et al. [39]. This
multitude of dialects does not allow to draw any conclusion
regarding a preference for a particular language. Furthermore,
the lack of justification makes it hard to understand the
rationales for their selection. The only noticeable fact is that
in four of the six cases, tools were either explicitly developed
([17], [31]) or used ([16], [14]).

Before concluding, we mention two additional observations
that both address the relevance of our search criteria.

• false positives after abstract and introduction. Table I
shows that, out of the 9 papers matching the first crite-
rion, 8 were selected for review, i.e., we had only one
false positive. The second criterion is, however, far less
discriminant as only 9 of the 20 (i.e. half of the papers)
were selected for a complete review. This is probably
due to the broader scope of this latter criterion. The third
criterion turned out to be inconclusive as the only paper
matching this criterion was not selected for a full review.

• false positives after full review. The filtering based
on the abstract and introduction still resulted in 5 false
positives, i.e., only 11 papers turned out to be relevant to
our research question, as shown in Table II. Here, it is
interesting to note that, among these 5 papers, 4 matched
the second criterion whereas only 1 matched the first.
This confirms the previous observation that the second
criterion is too general.

The outcome of our review provides a fairly disappointing
answer to the research question. It shows that for three of
the most important venues in the field, the available material
is sufficient neither to convince of the relevance of FDs
nor to let practitioners evaluate whether FDs are a suitable
solution to their problems. It also reveals that the current lack
of tool support and interoperable languages might be major
barriers to the acceptance of FDs in industry. Yet, the recent
growing interest of practitioners should encourage researchers
to actively publish their experience report to constitute a strong
body of knowledge.

IV. DISCUSSION

We now discuss the threats to the validity of our preliminary
review, and the opportunity and feasibility of conducting a full
systematic review.

A. Threats to validity

In Section II, we referred to our review process as semi-
systematic. According to Kitchenham [7], a systematic review
should follow a two-step process. The first step is the planning
of the review. During planning, the objective and the review
protocol are defined. In our case, the objective was intention-
ally modest as our study is meant to be a pilot, and hence
more of an exploratory nature than an exhaustive collection
of evidence. Consequently, our review protocol is a simplified
version of the one suggested by Kitchenham, i.e. no quality
assessment was performed, the data extraction protocol was
not systematic and no detailed metadata analysis was carried
out. Also, the protocol was not reviewed by external experts.

It is during the second step that the review is actually
conducted. In our lightweight review process, we considered
a limited set of paper sources, that were reviewed by only
one researcher (the first author), without any external expert
being involved in this task. In addition, all the paper venues
were considered to be of equal importance during our analyses.
Finally, no predefined data collection forms were used to
record the results.

The impact of these limitations on the quality of our
analyses is hard to tell given the small sample space we
considered. However, the goal of this review was to study
the feasibility of a full systematic review. The conclusions we
drew previously should therefore be seen as preliminary, too.

B. Opportunity and feasibility of a full systematic review

The findings reported in the previous section point to a lack
of experience reports for FDs in three important publication
venues. We also observed that, in the experience reports, the
justifications for the claimed advantages and drawbacks of
FDs are often quite thin. Our preliminary findings might lead
to the conclusion that academic research on FDs is out of
touch with reality in software engineering. Several possible
reasons for this lack of experience reports are conceivable.
First, FDs are used but practitioners barely report on their
applications. Possible causes are that practitioners do not want
to publish their FDs, do not want to pay their engineers to write
papers discussing their experience with FDs, or do not have
sufficient incentive for publishing their experiences. Secondly,
practitioners do not want to advertise unsuccessful applications
of FDs. Finally, FDs might simply not be used by practitioners.

Confirming this finding is important. This justifies the need
for a thorough and systematic review of a broader scope. We
envision several ways to broaden the scope of our research.
Obviously, we could consider more software engineering
venues and journals, including those not specifically dedicated
to SPLE, like ICSE, RE, ASE, TOSEM or TSE. Similarly,
we could broaden the scope to include industrial venues. A
completely different path would be to explore other engineer-
ing domains that also have to model variability and deal with
configuration issues.

In order to increase our chances of collecting valuable
results, we intend to specify a full-fledged systematic review
protocol. Besides alleviating the threats to validity discussed
above, we have to learn the lessons from our observations. We
mentioned in our review method that the paper classification
was not defined a priori but a posteriori. We now have to look
at the classification we defined from a distance and evaluate
how its refinement could facilitate the analysis of the results.
Section III-C clearly showed that the second criterion was too
general and lead to many false positive papers. Note that it
was only applied to events dedicated SPLE and, thus, had a
limited relevance. Further investigations are still needed to tell
whether a broader scope of research will justify the refinement
of this criterion. In contrast, the third criterion will probably
be too general for papers outside the SPL community and will
have to be refined.

VaMoS 2010

57

The review of papers from other domains is likely to call
for a completely different review protocol since its goal would
be to identify well accepted techniques similar to FDs (rather
than identify usages of FDs in other domains). Therefore,
another pilot study will probably be required to first identify
the techniques used that are comparable to FDs. Based on
these results, another systematic review could identify those
that are used in practice in their respective domains.

In case a systematic review confirms the preliminary results
observed here, it should probably be followed by an investiga-
tion of the reasons for the absence of experience reports (e.g.
conduct a large-scale survey of practice in industry).

V. CONCLUSION

In this paper, we questioned the availability of evidence
supporting the fitness of feature diagrams in practice. In
order to answer this question, we conducted a semi-systematic
literature review. This review focused on two of the major
venues for software product line research, i.e. the software
product line conference (SPLC) and the workshop on vari-
ability modelling of software-intensive systems (VaMoS). Our
preliminary findings demonstrate a lack of solid evaluation of
the impact of feature diagrams on the industry. The review,
however, is still preliminary, semi-systematic and limited in
scope. Its results, although negative, are encouraging and call
for a more thorough and systematic review, which is planned
future work. In the meantime, we hope to encourage more
empirical research on FDs and urge researchers to publish
existing empirical results.

ACKNOWLEDGEMENTS

This work is sponsored by the Interuniversity Attraction
Poles Programme of the Belgian State, Belgian Science Policy,
under the MoVES project, and the FNRS.

REFERENCES

[1] P. C. Clements and L. Northrop, Software Product Lines: Practices and
Patterns, ser. SEI Series in Software Engineering. Addison-Wesley,
August 2001.

[2] K. Pohl, G. Bockle, and F. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, July
2005.

[3] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” SEI, Carnegie
Mellon University, Tech. Rep. CMU/SEI-90-TR-21, November 1990.

[4] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Formalizing
cardinality-based feature models and their specialization.” Software
Process: Improvement and Practice, vol. 10, no. 1, pp. 7–29, 2005.

[5] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps, “Generic
semantics of feature diagrams,” Computer Networks, p. 38, 2006.

[6] M. Mendonça, “Efficient reasoning techniques for large scale feature
models,” Ph.D. dissertation, University of Waterloo, 2009.

[7] B. A. Kitchenham, “Procedures for undertaking systematic reviews,”
Computer Science Department, Keele University (TR/SE-0401) and
National ICT Australia Ltd (0400011T.1), Tech. Rep., 2004.

[8] P. Brereton, B. A. Kitchenham, D. Budgen, M. Turner, and M. Khalil,
“Lessons from applying the systematic literature review process within
the software engineering domain,” Journal of Systems and Software,
vol. 80, no. 4, pp. 571 – 583, 2007.

[9] L. Chen, M. Ali Babar, and N. Ali, “Variability management in software
product lines: A systematic review,” in SPLC’09, San Francisco, CA,
USA, 2009, pp. 81–90.

[10] A. Hein, M. Schlick, and R. Vinga-Martins, “Applying feature models in
industrial settings,” in SPLC’00. Norwell, MA, USA: Kluwer Academic
Publishers, 2000, pp. 47–70.

[11] S. Deelstra, M. Sinnema, and J. Bosch, “Experiences in software product
families: Problems and issues during product derivation,” in SPLC’04,
Boston, MA, USA, 2004, pp. 165–182.

[12] J.-P. Tolvanen and S. Kelly, “Defining domain-specific modeling lan-
guages to automate product derivation: Collected experiences,” in
SPLC’05, Rennes, France, 2005, pp. 198–209.

[13] K. Schmid and C. Kroher, “An analysis of existing software configura-
tion systems,” in DSPL’09, San Francisco, CA, USA, 2009, pp. 2–7.

[14] S. Wenzel, T. Berger, and T. Riechert, “How to configure a configuration
management system - an approach based on feature modeling,” in
MAPLE’09, San Francisco, CA, USA, 2009, pp. 99–105.

[15] P. O’Leary, R. Rabiser, I. Richardson, and S. Thiel, “Important issues and
key activities in product derivation: Experiences from two independent
research projects,” in SPLC’09, San Francisco, CA, USA, 2009, pp.
121–130.

[16] M.-O. Reiser and M. Tavakoli, R.and Weber, “Unified feature modeling
as a basis for managing complex system families,” in VaMoS’07,
Limerick, Ireland, 2007, pp. 79–86.

[17] C. Gillan, P. Kilpatrick, I. Spence, R. Gawley, J. Brown, and
R. Bashroush, “Challenges in the application of feature modelling in
fixed line telecommunications,” in VaMoS’07, Limerick, Ireland, 2007,
pp. 141–148.

[18] K. Wnuk, B. Regnell, J. Andersson, and S. Nygren, “An industrial case
study on large-scale variability management for product configuration
in the mobile handset domain,” in VaMoS’09, Seville, Spain, 2009, pp.
155–164.

[19] M. Jaring and J. Bosch, “Representing variability in software product
lines: A case study,” in SPLC’02, London, UK, 2002, pp. 15–36.

[20] M. Raatikainen, T. Soininen, I. Männistö, and A. Mattila, “A case study
of two configurable software product families,” in PFE’03, 2003, pp.
403–421.

[21] A. Helferich, K. Schmid, and G. Herzwurm, “Reconciling marketed and
engineered software product lines,” in SPLC’06, 2006, pp. 23–27.

[22] Y. Ishida, “Software product lines approach in enterprise system devel-
opment,” in SPLC’07, Kyoto, Japan, 2007, pp. 44–53.

[23] D. Sellier and G. Benguria, G.and Urchegui, “Introducing software
product line engineering for metal processing lines in a small to medium
enterprise,” in SPLC’07, Kyoto, Japan, 2007, pp. 54–62.

[24] Y. Matsumoto, “A guide for management and financial controls of
product lines,” in SPLC’07, Kyoto, Japan, 2007, pp. 163–170.

[25] R. Kreuter, C. Lescher, A. Schreiber, and C. Schwanninger, “Applying a
cost model for product lines: Experience report.” in MESPUL’08, 2008,
pp. 263–271.

[26] M. Khurum, T. Gorschek, and K. Pettersson, “Systematic review of
solutions proposed for product line economics,” in MESPUL’08, 2008,
pp. 277–284.

[27] A. J. Nolan, “Building a comprehensive software product line cost
model,” in SPLC’09, 2009, pp. 249–256.

[28] Y. Takebe, N. Fukaya, M. Chikahisa, T. Hanawa, and O. Shirai, “Expe-
riences with software product line engineering in product development
oriented organization,” in SPLC’09, 2009, pp. 275–283.

[29] R. Buhrdorf, D. Churchett, and C. W. Krueger, “Salion’s experience
with a reactive software product line approach,” in PFE’03, 2003, pp.
317–322.

[30] J. Snyder, H. Lai, S. Reddy, and J. Wan, “Software product line support
in coremetrics oa2004,” in SPLC’04, 2004, pp. 188–191.

[31] M. Steger, C. Tischer, B. Boss, A. Müller, O. Pertler, W. Stolz, and
S. Ferber, “Introducing pla at bosch gasoline systems: Experiences and
practices,” in SPLC’04, Boston, MA, USA, 2004, pp. 34–50.

[32] R. Kolb, I. John, J. Knodel, D. Muthig, U. Haury, and G. Meier,
“Experiences with product line development of embedded systems at
testo ag,” in SPLC ’06, 2006, pp. 172–181.

[33] P. Jensen, “Experiences with product line development of multi-
discipline analysis software at overwatch textron systems,” in SPLC’07,
Kyoto, Japan, 2007, pp. 35–43.

[34] I. Habli and T. Kelly, “Challenges of establishing a software product
line for an aerospace engine monitoring system,” in SPLC’07, Kyoto,
Japan, 2007, pp. 193–202.

[35] R. Carbon, S. Adam, and T. Uchida, “Towards a product line approach
for office devices - facilitating customization of office devices at ricoh
co,” in SPLC’09, San Francisco, CA, USA, 2009, pp. 151–160.

VaMoS 2010

58

[36] W. J. Slegers, “Building automotive product lines around managed
interfaces,” in SPLC’09, 2009, pp. 257–264.

[37] F. Dordowsky and W. Hipp, “Adopting software product line principles
to manage software variants in a complex avionics system,” in SPLC’09,
San Francisco, CA, USA, 2009, pp. 265–274.

[38] F. r. van de Linden and J. G. Wijnstra, “Platform engineering for the
medical domain,” in PFE’01, 2001, pp. 224–237.

[39] M. Antkiewicz and K. Czarnecki, “Featureplugin: feature modeling
plug-in for eclipse,” in Proceedings of the 2004 OOPSLA workshop
on eclipse technology eXchange. New York, NY, USA: ACM, 2004,
pp. 67–72.

VaMoS 2010

59

VaMoS 2010

60

Cardinality-Based Feature Modeling and
Model-Driven Engineering:

Fitting them Together
Abel Gómez1, Isidro Ramos2

Department of Information Systems and Computation
Universidad Politécnica de Valencia

Valencia, Spain
1agomez@dsic.upv.es
2iramos@dsic.upv.es

Abstract—Feature Modeling is a technique which uses a spe-
cific visual notation to characterize the variability of product lines
by means of diagrams. In this sense, the arrival of metamodeling
frameworks in the Model-Driven Engineering field has provided
the necessary background to exploit these diagrams (called
feature models) in complex software development processes.
However, these frameworks (such as the Eclipse Modeling Frame-
work) have some limitations when they must deal with software
artifacts at several abstraction layers. This paper presents a
prototype that allows the developers to define cardinality-based
feature models with constraints. These models are automatically
translated to Domain Variability Models (DVM) by means
of model-to-model transformations. Thus, such models can be
instantiated, and each different instantiation is a configuration
of the feature model. This appproach allows us to take advantage
of existing generative programming tools, query languages and
validation formalisms; and, what is more, DVMs can play a key
role in MDE processes as they can be used as inputs in complex
model transformations.

Keywords-Software Product Lines; Model Driven Architecture;
Feature Modeling; UML; OCL

I. INTRODUCTION

The key aspect of Software Product Lines (SPL) [6] that
characterizes this approach against other software reuse tech-
niques is how to describe and manage variability. Although
several approaches have addressed this problem, the most of
them are based on feature modeling, proposed in [12]. In
this approach, the commonalities and varibilities among the
products of a SPL are expressed by means of the so-called
features (user-visible aspect or characteristic of the domain),
which are hierarchically organized in feature models.

The use of feature models can be exploited by means of
metamodeling standards. In this context, the Model-Driven
Architecture [14] proposed by the Object Management Group
is a widely used standard which arises as a suitable frame-
work. In this sense, the Meta Object Facility (MOF) and the
Query/Views/Transformations (QVT) standards allows us to
define feature models and their instances, and use them in
a Model-Driven Engineering (MDE) process. In this context,
MDE and the Generative Programming approach [7] provides
a suitable basis to support the development of SPLs. Moreover,

Generative Programming and SPLs facilitate the development
of software products for different platforms and their use under
different technologies.

In this paper we discuss the main issues that arise when
trying to use feature models in a MDE process, and how to
easily overcome them. We also present a tool that allows the
developers of SPLs to define, use and exploit feature models
in a modeling and metamodeling tool. In our case, we have
chosen the Eclipse Modeling Framework (EMF). Moreover,
the EMF framework provides several tools which permit us to
enrich these models (by means of OCL expressions and OCL
interpreters) and to deal easily with them (by using model
transformations). All these features of EMF allows us to use
this framework to start a Software Product Line.

The remainder of this paper is structured as follows: in
section II we present the starting point of our work and the
main problems that arise when trying to use feature models
in a MDA process; and in sections III and IV we present
both the ideal approach and the practical approaches to use
feature modeling in a MDA context. In section V we show
our feature metamodel and how we operationalize the solution
presented in section IV in our prototype tool. Related works
are discussed in section VI and in section VII we present our
conclusions and future works.

II. FOUNDATIONS

A. Cardinality-based feature models at a glance

Cardinality-based feature modeling [8] integrates several of
the different extensions that have been proposed to the original
FODA notation [12]. In this sense, a cardinality based feature
model is also a hierarchy of features, but the main difference
with the original FODA proposal is that each feature has
associated a feature cardinality which specifies how many
clones of the feature are allowed in a specific configuration.
Cloning features is useful in order to define multiple copies
of a part of the system that can be differently configured.

Moreover, features can be organized in feature groups,
which also have a group cardinality. This cardinality restricts
the minimun and the maximun number of group members that

VaMoS 2010

61

can be selected. Finally, an attribute type can be specified for
a given feature. Thus, a primitive value for this feature can be
defined during configuration.

In feature models is also quite common to describe con-
straints between features such as the implies and the excludes
relationships, which are the most common used ones. Accord-
ing to the original FODA notation, these constraints can be
expressed by means of propositional formulas [2], thus, it is
possible to reason about the satisfiability of the feature model.
As explained in [8], this interpretation for feature models is not
very adequated when dealing with cardinality-based feature
models due to the fact that we can have multiple copies of the
same feature. Therefore, it is necessary to clearly define the
semantics of the constraint relationships in the new context,
where features can have multiple copies, and features can
have an attribute type and a value. In this case, we need
more expressive approaches to (i) define constraints between
features and (ii) perform formal reasoning over the feature
models and their constraints.

B. Feature models and their configuration

A configuration of a feature model is usually defined as
the set of features that are selected from a feature model
without violating any of the constraints defined in it, but it
can also be defined as a valid set of instances of a feature
model. I.e., the relationship between a feature model and a
configuration is comparable to the relationship between a class
and an object. The first definition, is well-suited when dealing
with “traditional” feature models (those that can be defined
by using the original FODA notation). In this case, every
instantiation of the elements of the feature model will follow
the singleton pattern, that is, every feature can have at most
one instance. Fig. 1 shows an example of this.

In Fig. 1a an example feature model is represented. This
feature model represents a system S, with two features A and
B. The first one, feature A, is mandatory (it must be included
in every possible product of the product line), and the second
one, feature B, is optional (it can be included in a particular
product or not). Thus, we have two possible configurations for
this feature model, which are represented in figures 1b and 1c.

As can be seen, this process of selection of features (ac-
cording to the defined constraints) is closely related with a
copy mechanism, that is, a configuration of a feature model
is a more restrictive copy of the original one that represents
exactly one variant. This mechanism can also be used in
cardinality-based feature models. In this case, when features
have an upper bound greater than 1 they can be cloned at

S

A B

(a)

S

A B

(b)

S

A

(c)

Fig. 1. Example of a feature model (1a) and the two possible configurations
that it represents (1b and 1c).

model level, thus, we can have mutiple copies of the same
feature. Several specializations can be done at model level
until only one variant is possible.

C. Cardinality-based feature models and MDE main issues

In previous paragraphs we have described what cardinality
based feature models are and how they are usually exploited.
Nevertheless, there are some issues, that we will address in
the remaining of this paper, that cause some problems when
trying to use feature models in a MDE process.

The first one comes from the classical definition of config-
uration of a feature model (the set of features that are selected
from a feature model). This definition tends to define the
configuration as a copy mechanism instead of as an instan-
tiation mechanism. Although this definition can be somewhat
intuitive when dealing with traditional feature models, it can
be confusing when dealing with cardinality-based ones. In
this case, the instantiation concept is best suited when talking
about cardinality-based feature models with attribute types,
given that the configuration is more easily understandable as an
instance-of relationship rather than as a copy-and-refinement-
of relationship.

The second issue that comes up is how to deal with model
constraints when features can be cloned in our models and
such features can have an attribute type. In this case, as pointed
out in section II, we need to use more expressive languages
that allows us (i) to deal with sets of features (i.e. n copies of
feature A) and (ii) to deal with typed variables which values
can be unbounded in order to easily represent attribute types.

III. PUTTING MODEL-DRIVEN ENGINEERING AND
FEATURE MODELING TOGETHER

The Meta Object Facility standard (MOF, [16]), which pro-
vides support for meta-modeling, defines a strict classification
of software artifacts in a four-layer architecture (from M3 to
M0 layer). The meta-metamodel layer (M3) is where the MOF
language is found. MOF can be seen as a subset of the UML
class diagram, and can be used to define metamodels at M2
layer. This way, artifacts that reside in layer x, are expressed
in terms of the constructors defined in layer x+ 1.

In turn, the Query/Views/Transformations (QVT, [15]) stan-
dard describes how to provide support to queries and model
transformations in a MDE process. QVT uses the pre-existent
Object Constraint Language (OCL, [17]) language to perform
queries over software artifacts. The QVT standard provides
three different languages to describe these transformations. In
this sense, the QVT–Relations can be interesting because of its
implicit support for traceability and its high level of abstrac-
tion, as it is a declarative language. This language uses object
templates to define relationships among different domains that
can be enforced, performing a model transformation when
needed.

As the MOF standard provides support for modeling and
metamodeling, we can use it to define cardinality-based feature
models by defining its metamodel. Previousy, a configuration

VaMoS 2010

62

FeatureGroup

min : EInt
max : EInt

Node

Feature

max : EInt
name : EString

RootFeature
TypedValue

value

0..1

child

0..1

min : EInt

M3

M2

M1

MOF

Feature
Metamodel

Feature
Models

M0 Con�guration

f

f1 f2 f3

〈1..2〉

f

f1 f2 f3

〈0..1〉

f

f1 f3

Specialization step Specialization step

Conforms to Conforms toConforms to

Instance of
(singleton)

f

f1 f3

NamedElement

Package Type

ClassProperty Operation

ownedType
0..*

ownedAttribute

0..* ownedOperation

0..*

opposite
0..1

Fig. 2. Specialization and configuration of feature models in the context of
MOF

process by means of specialization was shown. This concep-
tion about the configuration process involves copy of features,
but it has a big implication: configurations are expressed in
terms of the feature metamodel instead of in terms of the
feature model. Fig. 2 shows how the specialization process fits
in the four-layer architecture of MOF. In this figure the EMOF
language is represented in a simplified way in the level M3.
In the level M2 the metamodel for cardinality-based feature
models is represented by using the MOF language (also in a
simplified way), and finally, in level M1 some feature models
are represented. The leftmost model is the one that represents
our family of systems, and starting from it, we obtain the
final model as an specialization of the original one. Thus,
the configuration of the feature model is defined in terms
of the features metamodel as the model it conforms to has
no variability, and both feature model and configuration are
practically equivalent.

In order to use a feature model in a MDE process, we need
to use the one that captures the whole variability of the domain.
This is necessary to define any possible configuration of the
model, but it is also necessary in order to define model-based
transformations that allows us to use this feature models and
their configurations in other complex processes.

Feature

max : EInt
name : EString

RootFeature
TypedValue

value

0..1 min : EInt

M1

Feature
Metamodel

Feature
Model

M0

Con�gurations

f1 f2

〈1..2〉

f

f1 f2 f3

Conforms to

Instance ofInstance of Instance of

f2 f3

f f

f1 f3

f

f3

f

...

Fig. 3. Instantiation of feature models

Fig. 3 shows how a configuration without performing a spe-
cialization process looks like. This way, the feature model can
be used in any modeling framework to automatically generate
configuration editors, and what is more, feature models and
configurations can take part of a MDE process. Developers
can take advantage of related tools, feature models can be
used to guide model transformations with multiple inputs,
and configurations can be automatically checked againts their
corresponding models using built-in query languages.

IV. USING A MODELING FRAMEWORK FOR FEATURE
MODELS AND THEIR CONFIGURATIONS

The Eclipse Modeling Framework (EMF) [10] can be con-
sidered as an implementations of the MOF architecture. Ecore,
its metamodeling language can be placed at layer M3 in the
four-layer architecture of the MOF standard. By means of
Ecore, developers can define their own ecore models which
will be placed al the metamodel layer (M2). An example of
such metamodels can be the metamodel to build cardinality-
based feature models. Finally, this Ecore models can be used to
automatically generate graphical editors which are capable of
building instance models, which will be placed at M1 layer.
In the case of feature modeling, these instance models are
the feature models. The left column on Fig. 4 shows this
architecture.

As can also be seen in Fig. 4, the M0 layer is empty. That
is a limitation of most of the modeling frameworks which are
available today. As said, EMF provides a modeling language
(Ecore) that can be used to define new models and their
instances. This approach only covers two layers of the MOF
architecture: the metamodel and the model layers. However,
in the case of feature modeling we need to work with three
layers of the MOF architecture: metamodel (cardinality-based
feature metamodel), model (cardinality-based feature models),
and instances (configurations).

Fig. 4 shows how to overcome this drawback: it is possible
to define a model-to-model transformation in order to convert
a feature model (i.e. the model represented by Feature model
which can not be instantiated) to an Ecore model (i.e. the
Domain Varibility Model, DVM, which represents the Fea-
ture model as a new class diagram). Thus, it is possible to
represent a feature model at the metamodeling layer, making

Model-t
o-model

transform
ation

M3

M2

M1

Feature
Metamodel

Feature
Model

Ecore

Domain
Variability
Model

M0

Conforms to Conforms to

Instance of Instance of

Ø Ø

Fig. 4. EMF and the four-layer architecture of MOF

VaMoS 2010

63

TABLE I
CARDINALITY-BASED FEATURE METAMODEL: PROPOSED TYPES OF

RELATIONSHIPS BETWEEN FEATURES
Bi

na
ry

 re
la

tio
ns

hi
ps

G
ro

up
ed

 re
la

tio
ns

hi
ps

Vertical (hierarchical)
relationships Horizontal relationships

Mandatory

Optional

Generic

Biconditional

Implication

Exclusion

Use

OR

XOR

[j..k]

[j..1]

[j..k]0≤j≤1<k≤m

0≤j≤1

0≤j≤k≤m

[1..n]

[0..n] [0..n]

*where m is the number of childs

the definition of its instances possible. This way, developers
can take advantage of EMF again, and automatically generate
editors to define feature model configurations, and validate
them against their corresponding feature models thanks to their
new representation, the DVM.

V. OUR APPROACH

Based on the concepts presented in the previous section
and using EMF, we have developed a tool that allows us to
automate several steps in order to prepare a feature model that
can be exploited to develop a SPL in the context of MDA. In
this sense, our tool provides:

• Graphical support to define (a variant of) cardinality-
based feature models.

• Automatic support to generate Domain Variability Mod-
els from feature models that capture all the variability of
the application domain, allowing the developers to use
them in model transformations.

• Automatic support for configuration editors, which will
assist the developers in the task of defining new config-
urations.

• Capabilities to check the consistency of a configuration
against its corresponding feature model.

A. Cardinality-based feature metamodel

The basis of our work is the cardinality-based feature
metamodel, which permits to define feature models. In our
proposal we have decided to represent explicitly the relation-
ships between features. Thus, our metamodel represents in an
uniform way the hierarchical relationships and the restrictions
between features. Table I classifies and summarizes the types
of relationships that the feature metamodel is able to represent.
As can be seen, relationships are classified in two orthogonal
groups:

• Vertical vs. horizontal relationships. Vertical relationships
define the hierarchical structure of a feature model and

horizontal relationships define dependecies and restric-
tions between features.

• Binary vs grouped relationships. Binary relationships
define relationships between two single features. In turn,
grouped relationships are a set of relationships between
a single feature and a group of childs.

Given this classification, the following relationships exist:

• Binary and vertical relationships. This relationships de-
fine structural relationships between two single features.
In our approach, they represent a has_a relationship
between a parent and a child feature. They can be
mandatory and optional depending on the lower bound
value. The upper bound (n) can be on both cases 1 or
greater than 1, and indicates how many instances of the
child feature will be allowed.

• Grouped and vertical relationships. Grouped and vertical
relationships are a set of binary relationships where the
child features share a is_a connotation with respect to
their parent feature. A group can have an upper and a
lower bound. These bounds specify the minimun and
the maximun number of features that can be instantiated
(regardless of the total number of instances).

• Binary and horizontal relationships. These relationships
are specified between two features and do not express any
hierarchical information. They can express constraints
(biconditional, implications and exclusion) or dependen-
cies (use). The first group applies to the whole set of
instances of the involved features, however, the second
one allows us to define dependencies at instance level,
i.e.:

– Implication (A −→ B): If an instance of feature A
exists, at least an instance of feature B must exist
too.

– Coimplication (A ←→ B): If an instance of feature
A exists, at least an instance of feature B must exist
too and vice versa.

– Exclusion (A × × B): If an instance of feature
A exists, can not exist any instance of feature B and
vice versa.

– Use (A −−→ B): This relationship will be defined
at configuration level, and it will specify that an
specific instance of feature A will be related to one
(or more) specific instances of feature B as defined
by its upper bound (n).

Fig. 5 shows our feature metamodel. Such metamodel has
been defined taking into account that every element will have
a different graphical representation. This way, it is possible
to automatically generate the graphical editor to draw feature
models based on such metamodel. In that figure, a feature
model is represented by means of the FeatureModel class, and
a feature model can be seen as a set of Features and the set
of Relationships among them. A feature model must also have
a root feature, which is denoted by means of the rootFeature
role.

VaMoS 2010

64

Fig. 5. Cardinality-based features metamodel

Binary relationships in table I are represented in the features
metamodel as descendants of the Relationship class. Class
StructuralRelationship represents the so called Vertical rela-
tionships and GenericRelationship represents the Horizontal
ones. StructuralRelationships relate one parent RelatableEle-
ment (a Feature or a Group) with one child Feature. A
Group specifies that a set of StructuralRelationships should
be considered as a group.

It is noteworthy to point out two slight differences of
our approach with respect to the classical cardinality-based
feature models. First, we represent feature multiplicities at
relationship level instead of at feature level (by means of
the BoundableElement class). This allows us to easily define
mandatory and optional relationships explicitly. Second, fea-
tures can not have an attribute type. In turn, this information
is expressed in terms of feature attributes. Feature attributes
express information which is complementary to a feature and
can be used to describe parametric features.

B. Cardinality-based feature modeling editor

The cardinality-based feature modeling editor allows us
to easily define new feature models. Following the Model-
Driven Software Development (MDSD) approach, it has been
automatically generated from the metamodel presented in the
previous section. To obtain this graphical editor, the Graphical
Modeling Framework (GMF [9]) has been used.

Fig. 6 shows what this editor looks like. The palette is
located on the right side of the figure, and shows the tools
that can be used to define the feature models. In the canvas an
example feature model is shown. This feature model describes
a product line for mobile phones. A mobile phone must have a
screen, which can be touchscreen or not. Touchscreens can use
resistive or capacitive technology. Moreover, a mobile phone
can also support handwriting recognition, however, this feature
is incompatible with normal screens. This can be described by
means of an excludes relationship (solid line with crosses at
its ends between feature Normal and HandwrtingRecognition).
In our product line, mobile phones can also have one or
two cameras, each one with their corresponding resolutions.
Those cameras can be used for videoconferencing or digital
photography. If the camera is used for digital photography, it
can be associated to an optional flash light. This is specified
by means of the dashed line between features Camera and
Flash. Finally, these mobile phones can have FM radio support,
but it can be installed only if the device has a headphones
connection, as the FM antenna is part of this accessory. This
dependency is expressed by the implies relationship (directed
line between feature Radio and feature Headphones).

C. Generating the Domain Variability Model

In section IV was explained that it is necessary to execute
a model-to-model transformation in order to easily define
configurations of a feature model in EMF. Following the MDA
approach, this transformation has been defined by using the
Relations language defined in the QVT standard. In order
to integrate and execute the transformation process in our

Fig. 6. Screenshot of the cardinality-based feature modeling editor

VaMoS 2010

65

Fig. 7. Example Domain Variability Model

prototype, a custom tool based on the mediniQVT [11] trans-
formations engine has been built.

The following paragraphs describe the transformation which
transforms a feature model (expressed as an instance of the
cardinality-based features metamodel in EMF), to a Domain
Variability Model (DVM, expressed as an Ecore model that
can be instantiated). The transformation is declared as follows
and it is executed from the feature domain to the classdiagram
domain.

transformation Feature2ClassDiagram(feature :
features, classdiagram : ecore) { ... }

As feature models describe not only the structure of the
features but also the relationships among them, it is necessary
to define rules to generate both the structure of the DVM
and the restrictions that apply to it. First, the structure of the
DVM is defined by means of Ecore containment references and
inheritance relationships; and second, restrictions are defined
by means of OCL expressions. These OCL expressions are
included on the DVM itself by means of EAnnotations. This
EAnnotations are automatically used in next steps by our
prototype to check that configurations are valid.

Figure 7 shows the resulting Ecore model. The rules that
have been applied are:

• Feature2Class. For each Feature of the source model
an EClass with the same name of the feature will be
created. All these classes will be created inside the same
EPackage, whose name and identifier derives frome the
feature model name. All the features in Fig. 7 are example
of the aplication of this rule.

• FeatureAttribute2ClassAttribute. For each feature At-
tribute, an EAttribute will be created in the target model.
This EAttribute will be contained in its corresponding
EClass. Any needed EDataType will be also created.
Attributes in the Camera EClass are example of this.

• StructuralRelationship2Reference. For each Structural-
Relationship from a parent Feature a containment ERef-
erence will be created from the corresponding EClass (i.e.
same name than the Feature). The multiplicity of this
EReference will be the lower and upper bounds of the
StructuralRelationship. Containment EReferences from
MobilePhone are example of the application of the rule.

• Group2Reference. This rule states that for each Group
contained in a Feature a containment EReference will be

created from the corresponding EClass (i.e., same name
than the Feature). This EReference will point to a new ab-
stract class, whose name will be composed by the Feature
name and the suffix “Type”. This rule has the following
post-conditions: GroupChild2Class, Group2ChildsAnnot,
GroupChild2LowerAnnot and GroupChild2UpperAnnot.
Screen, ScreenType and the EReference ScreenFeatures
are example of the result produced by this rule.

• GroupChild2Class. This rule is in charge of creating
the EClasses from the Features belonging to a Group.
Moreover, each one of these EClasses inherit from the ab-
stract EClass that has been previously created. EClasses
Normal, Resistive, Capacitive, and their inheritance rela-
tionship are example of the aplication of the rule.

• Group2ChildsAnnot, GroupChild2LowerAnnot,
and GroupChild2UpperAnnot. These rules create
EAnnotations that will contain OCL expressions. This
expressions will check that the multiplicities specified
for the Group and the child Features are also satisfied
by the instances of the DVM.

• UsesRelationship2Reference. For each Uses relationship
between two Features, an EReference will be created
in the target model. This EReference will relate two
EClasses whose names will match the Features names.
The EReference flash, between Camera and Flash, shows
and example of this.

The next relations generate OCL expressions in the DVM
for each restriction relationship of the source model. They can
be easily expressed as the following OCL invariants created
in the root EPackage:

• ExcludesRelationship2ModelConstraint. This rule gener-
ates the following invariant for (A excludes B):

A.allInstances()->notEmpty() implies B.
allInstances()->isEmpty()) and

B.allInstances()->notEmpty() implies A.
allInstances()->isEmpty())

• ImpliesRelationship2ModelConstraint. If the relationship
is (A implies B), the following OCL expresion is
created by this rule:

A.allInstances()->notEmpty() implies B.
allInstances()->notEmpty())

• BiconditionalRelationship2ModelConstraint. This rule
creates the following OCL invariant if the source rela-
tionship is (A if and only if B):

VaMoS 2010

66

(a) (b)

Fig. 8. Example of successful (8a) and unsuccessful (8b) configuration check

A.allInstances()->notEmpty() implies B.
allInstances()->notEmpty()) and

B.allInstances()->notEmpty() implies A.
allInstances()->notEmpty())

D. Creating and validating configurations

In order to create new configurations of feature models it
is not necessary to use any custom tool. As far as we have
a DVM which captures the same varibility than the original
feature model, developers can use the standard Ecore tools.
The most straightforward method to create a new configuration
is to use the “Create Dynamic Instance. . . ” option of the
standard “Sample Ecore Model Editor”. This way, the “Sample
Reflective Ecore Model Editor” can be used to define new
configurations of our feature model. However, although EMF
provides all the libraries and technologies to exploit OCL
expressions, there is not a default method to check OCL
invariants which are directly stored as EAnnotations in Ecore
models themselves. Thus, we have built an extension which
can take advantage of the OCL invariants that have been
automatically created in the previous transformation step.

Fig. 8a shows an example configuration. A mobile phone
with a normal screen, radio, headphones and two cameras
has been defined. This configuration is valid conforming to
the example feature model, as the popup window in the
figure shows. However, Fig. 8b shows a configuration with a
normal screen and handwriting recongnition, which violates
the excludes relationsship. Moreover, this configuration in-
cludes radio support, but it does not include the headphones
connection which is also invalid. When the configuration is
invalid the checking process is unsuccessful. In this situation,
the prototype console shows a summary with the constraints
that are not met, and which are the problematic elements.

VI. RELATED WORKS

Feature modeling has been an important discussion topic
in the SPL community, and a great amount of proposals
for variability management have arised. Specially, most of

them are based in the original FODA notation and propose
several extensions to it [5]. Our work is closely related with
previous research in feature modeling, however, there are
several distinctive aspects:

In [8] a notation for cardinality-based feature modeling is
proposed. In this sense, our tool shares most of this notation
as it is widely known and used, but we have included some
variants. First, in our aproach features can not have an attribute
type, but rather, they can have typed feature attributes which
can be used to describe parameterized features. Second, in
[8] both feature groups and grouped features can have car-
dinalities. However, the possible values for grouped features
cardinalities are restricted. In our proposal, these values are not
restricted and have different meanings: cardinality of feature
groups specify the number of features that can be instantiated,
and cardinality of grouped features specify the number of
instances that each feature can have.

Our work describes a prototype to define configurations of
feature models. Previous work has been also done in this area,
such as the Feature Modeling Plugin [1]. This tool allows the
user to define and refine a feature model and configurations
by means of specializations. The advantage of this approach is
that it is possible to guide the configuration process by means
of constraint propagation techniques. The main difference with
our work is that configurations are defined in terms of the
feature metamodel and both models and configurations coexist
at the same layer. Thus, in order to be able to deal both with
models and configurations it is necessary to build complex
editors (as they must guarantee that the specialization process
is properly done).

Some previous works have already represented feature
models as class diagrams. In [8] the translation from feature
models to class models is performed manually, and no set of
transformation rules are described. In this work, OCL is also
presented as a suitable approach to define model constraints,
but as the correspondences between feature models and class
diagrams are not precisely defined, there is no automatic

VaMoS 2010

67

generation of OCL invariants. In turn, [13] do present a
set of QVT rules to automatically generate class diagrams
from feature models. However, in this case, neither model
constraints nor configuration definitions support is presented.

In [2] a proposal for feature constraints definition and
checking is done. Specifically, this work proposes to represent
features as propositions and restrictions among them as propo-
sitional formulas. However, in propositional formulas only
true and false values are allowed. This approach is not
suitable to our work, as we can have typed attributes which can
not be expresed by this kind of formulas. Thus, we state that
more expressive languages are needed. In this case, we propose
OCL as our constraint definition language. Nevertheless, in
order to perform more advanced reasoning (for example,
satisfiability of feature models) richer formalisms are needed.

VII. CONCLUSIONS

In this paper we have proposed a prototype to define
and use feature models in a MDE process. This prototype
addresses one of the main issues that arises when dealing with
nowadays metamodeling tools: they usually are not able to deal
simultaneously with artifacts located in all the MOF layers.
For example, the selected modeling framework (EMF) is only
able to represent three different MOF layers (from M3 to M1),
so that, our prototype defines a mechanism to overcome this
typical limitation by means of model transformations. This
way, feature models can be transformed to Domain Variability
Models that can be instantiated and reused in future steps of
the MDE process.

Our tool has been also designed following the MDE princi-
ples and a metamodel for cardinality-based feature modeling
has been defined. Thus, by means of generative programming
techniques, a graphical editor for feature models has been
built. Feature models defined with this editor are automatically
transformed in DVMs that are used to define configurations
of feature models. Although several tools to define feature
models and configurations in the last years have arised, our
approach has several advantages against previous approaches:
(i) the infrastructure that we propose to build configurations is
simpler and more maintainable, as it is built following the
MDSD guides; (ii) configurations are actually instances of
a feature model (expressed by means of the DVM), so we
can take advantage of the standard EMF tools; (iii) as feature
models are described by DVMs that can be instantiated, both
models and configurations can be used in other MDE tasks;
(iv) having a clear separation between feature models and con-
figuration eases the validation tasks as they can be performed
by means of built-in languages; and (v) as the transformation
between feature models and DVMs is performed automatically
by means of a declarative language we can trace errors back
from DVMs to feature models.

It is important to remark that having both feature models
and configurations at different layers is very useful as they can
easily be used in model transformations. In [3] an example
is shown. In this work, a model transformation with multiple
inputs is used to generate a software architecture automatically.

In this case, one of the arguments of this transformation is a
configuration of a feature model, which is used to guide the
architecture generation process.

Finally, to use DVMs allows us to address some satisfiability
problems from new points of view. The introduction of cardi-
nalities and unbounded attribute types makes harder to reason
about feature models. Thus, richer formalisms (compared with
the traditional ones) are needed. Fortunately, class diagrams
are widely used and known, and several formalisms to reason
about them have been proposed. In this sense, we have already
done some preliminary works in model consistency checking
by using formal tools [4], and future works are oriented
towards this direction. A first version of our prototype can
be downloaded from http://issi.dsic.upv.es/˜ago-

mez/feature-modeling.

ACKNOWLEDGMENTS

This work has been supported by the Spanish Government
under the National Program for Research, Development and
Innovation MULTIPLE TIN2009-13838 and the FPU fellow-
ship program, ref. AP2006-00690.

REFERENCES

[1] M. Antkiewicz and K. Czarnecki. FeaturePlugin: feature modeling plug-
in for Eclipse. 2004 OOPSLA workshop on eclipse technology eXchange,
pages 67–72, 2004.

[2] D. Batory. Feature models, grammars, and propositional formulas. pages
7–20. Springer, 2005.

[3] M. E. Cabello, I. Ramos, A. Gómez, and R. Limón. Baseline-oriented
modeling: An mda approach based on software product lines for the
expert systems development. Intelligent Information and Database
Systems, Asian Conference on, 0:208–213, 2009.

[4] J. Cabot, R. Clarisó, and D. Riera. Umltocsp: a tool for the formal verifi-
cation of uml/ocl models using constraint programming. In Proceedings
of the twenty-second IEEE/ACM international conference on Automated
software engineering, pages 547–548, NY, USA, 2007. ACM.

[5] L. Chen, M. A. Babar, and N. Ali. Variability management in software
product lines: A systematic review. In Proceedings of the 13th Inter-
national Software Product Lines Conference (SPLC’09), San Francisco,
CA, USA, 2009.

[6] P. Clements, L. Northrop, and L. M. Northrop. Software Product Lines
: Practices and Patterns. Addison-Wesley Professional, August 2001.

[7] K. Czarnecki and U. W. Eisenecker. Generative programming: methods,
tools, and applications. ACM Press/Addison-Wesley Publishing Co.,
New York, NY, USA, 2000.

[8] K. Czarnecki and C. H. Kim. Cardinality-based feature modeling and
constraints: A progress report, October 2005.

[9] Eclipse Organization. The Graphical Modeling Framework, 2006. http:
//www.eclipse.org/gmf/.

[10] EMF. http://download.eclipse.org/tools/emf/scripts/home.php.
[11] ikv++ technologies AG. ikv++ mediniQVT website. http://projects.ikv.

de/qvt.
[12] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson. Feature-

Oriented Domain Analysis (FODA) Feasibility Study. 1990.
[13] M. A. Laguna, B. González-Baixauli, and J. M. Marqués Corral. Feature

patterns and multi-paradigm variability models. Technical Report
2008/01, Grupo GIRO, Departamento de Informática, may 2008.

[14] Object Management Group. MDA Guide Version 1.0.1. 2003. http:
//www.omg.org/docs/omg/03-06-01.pdf.

[15] Object Management Group. MOF 2.0 QVT final adopted specification
(ptc/05-11-01). 2005. http://www.omg.org/cgi-bin/doc?ptc/2005-11-01.

[16] Object Management Group. Meta Object Facility (MOF) 2.0 Core
Specification (ptc/06-01-01), 2006. http://www.omg.org/cgi-bin/doc?
formal/2006-01-01.

[17] Object Management Group. OCL 2.0 Specification. 2006. http://www.
omg.org/cgi-bin/doc?formal/2006-05-01.

VaMoS 2010

68

http://issi.dsic.upv.es/~agomez/feature-modeling
http://issi.dsic.upv.es/~agomez/feature-modeling
http://www.eclipse.org/gmf/
http://www.eclipse.org/gmf/
http://download.eclipse.org/tools/emf/scripts/home.php
http://projects.ikv.de/qvt
http://projects.ikv.de/qvt
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/docs/omg/03-06-01.pdf
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?formal/2006-01-01
http://www.omg.org/cgi-bin/doc?formal/2006-05-01
http://www.omg.org/cgi-bin/doc?formal/2006-05-01

Integrating Automated Product Derivation and
Individual User Interface Design

Andreas Pleuss, Goetz Botterweck, Deepak Dhungana
Lero – The Irish Software Engineering Research Centre

University of Limerick, Limerick, Ireland
{andreas.pleuss, goetz.botterweck, deepak.dhungana}@lero.ie,

Abstract—Software Product Lines, in conjunction with model-
driven product derivation, are successful examples for extensive
automation and reuse in software development. However, often
each single product requires an individual, tailored user interface
of its own to achieve the desired usability. Moreover, in some cases
(e.g., online shops, games) it is even mandatory that each product
has an individual, unique user interface of its own. Usually, this
results in manual user interface design independent from the
model-driven product derivation. Consequently, each product
configuration has to be mapped manually to a corresponding
user interface which can become a tedious and error-prone task
for large and complex product lines. This paper addresses this
problem by integrating concepts from SPL product derivation
and Model-based User Interface Development. This facilitates
both (1) a systematic and semi-automated creation of user
interfaces during product derivation while (2) still supporting
for individual, creative design.

I. INTRODUCTION

In Model-Driven Engineering (MDE) we strive to build
software-intensive systems with a high degree of automa-
tion and reuse, using models as the primary artifacts of
construction. When developing families of such systems [1]
we can apply techniques from Software Product Lines (SPL)
[2], [3]. An integration of SPL and MDE facilitates the
construction of families of systems with strategic reuse and
a minimum of technical diversity (SPL) and a high level of
automation (MDE). This has been demonstrated in a number
of approaches, e.g., [4], [5].

Such highly-automated approaches work well as long as the
derived artifacts can be constructed in a mechanized way on
a high quality level. For the application’s user interface (UI),
however, a fully mechanized construction is not sufficient as
it has been shown that the resulting UIs often lack of usability
[6], [7], [8]. Hence, to achieve sufficient usability, UI design
in practice is usually performed manually with the creativity
and intelligence of human designers. The flip side is that this
compromises the desired degree of automation. The situation
becomes even more complex, if we do not construct one UI,
but UIs for a whole product line of software applications.

As running example throughout this paper example we will
use a SPL for online shops, called OnlineShopPL. A product of
this SPL will be one particular e-commerce system tailored to
the specific needs of the customer (i.e., the company running
that shop). To capture the available configuration choices we
can use a feature model as shown in Fig. 1 (in FODA Notation

Online Shop

Transaction Fulfillment

Shipping
Cost

Service
Delivery

Shipping
Electronic
Delivery

Cash on
Delivery

Pay by BillCredit Card

requires requires excludes

Payment

Shopping
Cart

Products

Legend

Group
(Or)

f1 fn

Group
(Alternative)

f1 fn

Mandatory
Feature

Optional
Feature

Fig. 1. Feature model of OnlineShopPL

[9]). To simplify, we focus on the order processing part of the
online shop and abstract from other functionality.

The model specifies that a product of the OnlineShopPL,
i.e., an online shop, has a mandatory Products section, an
optional Shopping Cart and several choices on Transactions
and Fulfillment. The feature model is augmented with cross-
tree constraints, e.g., the selection of Electronic Delivery
excludes the payment method Cash on Delivery.

To derive products from our OnlineShopPL, we could
take a the conventional approach for model-driven product
line engineering: In Domain Engineering, the product line is
described as a feature model (describing the capabilities of the
product line) and a related set of components (implementing
the capabilities). In Application Engineering, a product is then
constructed by first configuring the feature model and then
deriving the product’s implementation. This derivation could
largely be realized by automated transformations and code
generators which assemble the final product.

This approach, however, has a flip side. Such automated
techniques are problematic when it comes to the creation of
usable and individual UIs. If we look for real world examples
of e-commerce software, which can be used to construct online
shops, we will find many different installations of the same
software platform.On comparing the front-ends (i.e., web sites)
of the various online shops, we will find many differences in
the UI and interaction design, although these installations were
all built based on the same platform 1. Some variations are of
purely visual nature, caused e.g., by the different shop owner’s
corporate identities. But there are also lots of variations in

1For instance, see the customer reference lists of e-commerce platform
providers, such as Intershop on http://www.intershop.de/intershop/references/

VaMoS 2010

69

http://www.intershop.de/intershop/references/

the navigation structure, the site layout, the individual UI
elements, and the interaction design, depending e.g. on the
kind of products presented in the shop and on the individual
premises and goals of the shop owner.

Providing such highly customized UIs can be of strong
importance for the shop owner as the customer experience
strongly influences the online shop’s success. This holds
not only for online shops but for most kind of applications
which directly target the end-user [10]. Consequently, while
the application core (the software components processing
customers, products, transactions, payments, etc.) can be gen-
erated as described above, the UI is designed manually by
UI design experts. The UI designers then have to manually
ensure that the UI adheres to a given product configuration
and have to manually link it to the generated application
core, which are tedious and error prone tasks. Moreover,
there is a conceptual gap in the development process at this
point: Much effort is invested during Domain Engineering
to capture knowledge precisely enough such that automated
product derivation becomes possible, but none of the generated
artifacts is considered (systematically) for the UI design.

This paper addresses this problem and proposes a solution
which facilitates both (1) a systematic and semi-automated
creation UI design during product derivation while (2) still
supporting for individual, creative design. For this purpose
we combine and adapt several concepts from Model-based
User Interface Development (MBUID) and integrate them
into our SPL product derivation approach. This enables to
semi-automatically derive a UI during product derivation,
including the connections between UI and the core application.
Nevertheless, individual customization and creative design is
still fully supported, but at well-defined “injection points”.

The remainder of the paper is structured as follows: We
analyze UI development from the viewpoint of automation
and discuss how techniques from MBUID can be used for
our goals (Sec. II). We then present concepts for the inte-
gration of automated product derivation and individual UI
design (Sec. III). Subsequently, we show how these theoretical
concepts are put into practice in our approach for model-driven
UI derivation (Sec. IV). The paper finishes with an overview
of related work and conclusions.

II. AUTOMATION IN USER INTERFACE DEVELOPMENT:
STATE OF THE ART

As a first step towards a solution we will now analyze
available alternatives in UI development. First, we examine
the overall spectrum of alternatives from the viewpoint of
automation in development. We then take a closer look on
the most promising alternatives, the concepts from the area of
MBUID.

A. Spectrum of Available Techniques

When discussing UI development under the aspect of au-
tomation, we can consider a whole spectrum of approaches
(Fig. 2). On the left-hand side we have purely manual UI

degree of automation

Purely Manual
Design

(like in traditional
HCI books)

Purely
Automated

Approaches
(e.g. Janus)

MBUID Approaches

Automatic
Transitions

(e.g. Trident)

Manual
Transitions

(e.g.
Mastermind)

Semi-Automatic
Transitions

(e.g. Mobi-D)

highlow

Fig. 2. The spectrum of approaches in terms of automation in UI design

Task Model

Domain Model

Abstract User
Interface

Model (AUI)

Concrete User
Interface

Model
(CUI)

abstraction level

Implemen‐
tation

high low

Fig. 3. Main concepts in MBUID

design without any kind of automation as described in Human-
Computer Interaction (HCI) books, e.g., [11]. If applied in
the context of model-driven development of the underlying
application core, this means that available information is not
put to proper use. For instance, the UI designers start from
textual requirements, but do not systematically consider, e.g.,
existing feature models or domain models. The right-hand
side represents the opposite extreme: a completely automated
process which generates a UI from existing information. For
instance, the Janus tool [12] can generate a UI directly from a
domain model. Such fully automated approaches can only be
used for very specific application domains as they often fail
to provide a sufficient UI quality [6], [7], [8].

Approaches from MBUID aim to overcome these problems
and to provide systematic and partially automated UI devel-
opment while preserving usability. In contrast to purely auto-
mated approaches they consider additional information about
the UI specified by the developers in terms of abstract models.2

The following section gives a more detailed introduction into
MBUID concepts, corresponding to the center part of the
spectrum in Fig. 2.

B. Model-based User Interface Development (MBUID)

Model-based User Interface Development (MBUID) [6],
[13], [14] can roughly be structured according to the process
shown in Fig. 3: The most abstract models are a Task Model
and Domain Model. The Domain Model specifies the structure
of the application logic, e.g., in terms of a conventional UML
class diagram.

1) Task Model: Tasks are activities performed by the user
or the system to reach the user’s goals. Fig. 4 shows an
example task model in ConcurTaskTree (CTT) notation [15],
corresponding to the OnlineShopPL (Sec. I): An Application
Task is performed by the system (e.g., display available
products). An Interaction Task is performed by interaction
between the user and the system (e.g., select a payment

2Here we use the term “models” in a broad sense including, e.g., XML-
based description languages

VaMoS 2010

70

Legend

|||

Product
Name

Price OnStockQuantity

Confirm

Results Download

|[]| |[]| |[]| []>> []>>

||| ||| ||| |||

|[]| []>> [] >>

Shop

Create Order Cancel

Shopping
Cart

AddTo
Cart

Item* Payment
Method

Credit
Card

Billing
Address

Sum

ResultPayment

|||

Choose
Products

AddProduct*

Description Price OnStock

||| ||| |||

Name

Quantity

Abstract
Task

Application
Task

Interaction
Task

...

Shipping

Product

[]

|||

choice

concurrency
[]>>

enabling with
information passing

|[]|
concurrency with

information passing

Fig. 4. The Task Model for the OnlineShopPL

method), while an Abstract Task groups different types of
subtasks. The horizontal lines express temporal constraints.
For instance, a concurrent execution of tasks is shown as |||,
a sequential execution of tasks with information passing is
shown as >>[].3

2) AUI: The Abstract User Interface Model (AUI) is spec-
ified based on the Task Model and the Domain Model. It
describes the UI in terms Abstract Interaction Objects (AIOs)
which are platform- and modality-independent abstractions of
UI elements (widgets). (Modality-independent means that the
UI is not necessarily graphical but can also be, for instance,
speech-based). An example of an AIO is the input element
which enables the user to input some data, like e.g., a text
field widget. Other examples are the output element which
present some data to the user, the selection element which
enables the user to select a value, or the action element which
enables the user to trigger some actions like e.g., a button. The
data or the operations associated with an AIO can be specified
by relationships to elements from the Domain Model.

Each AIO is related to a task in the Task Model. For
instance, the task Credit Card could be realized by several input
elements for the credit card number, card type, etc. AIOs are
grouped into Presentation Units (abstractions of windows in a
graphical UI) and other container elements to further structure
the UI (corresponding to, e.g., Panels in Java). Until now, there
is no common standard notation for AUIs models.

3) CUI and Final Implementation: The Concrete User
Interface Model (CUI) realizes the AUI for a specific modality
in terms of concrete widgets and layout. Like for the AUI,
there is no standard CUI notation. Subsequently, the final UI
implementation is generated, usually under consideration of
information from all other models. Depending on the purpose,
many approaches use additional models, e.g., a Context Model

3See [15] for a complete description of CTT model element types.

for context-sensitive UIs.
4) Automation within MBUID: Within the UI modeling

there are still different degrees of automation (see [6], [16])
as illustrated by the center part of Fig. 2. For instance, one
can provide model transformations for an automatic transition
from Task and Domain Model to the final implementation,
like in Trident [17], or require the modeler to manually
specify all UI models and the relationships between, like
Mastermind [18].

For our purpose, semi-automatic approaches, like Mobi-D
[7] seem to be most promising. They aim to provide as much
automation as possible while enabling manual customization
for critical decisions. Typical critical decisions are (1) the
decomposition of the UI into presentation units (e.g., whether
to put the shopping cart on a separate screen or joined with
the product selection) and (2) the mapping of AIOs to CIOs
(e.g., whether a selection element is mapped to a list box or
to a drop down list) [6], [7], [16].

III. INTEGRATING AUTOMATED PRODUCT DERIVATION
AND INDIVIDUAL USER INTERFACE DESIGN

Based on the preceding analysis, the following section
discusses two resulting general principles for derivation of
UIs: (1) Derivation on an abstract level and (2) Integration
of customization into an automated process.

A. Derivation of Abstract User Interface Models

From a technical point of view, the UI is just another
software subsystem. Consequently, a straightforward applica-
tion of product derivation concepts to the UI would work as
follows: During Domain Engineering, the UI for the complete
SPL is constructed and the required UI components are imple-
mented. During product derivation, the required components
are selected according to the configuration and automatically
composed to form the product’s UI. From the viewpoint of

VaMoS 2010

71

Feature
Model

Configuration

Features Implementation

Feature
Configuration

D
om

ai
n

En
gi

ne
er

in
g

A
pp

lic
at

io
n

En
gi

ne
er

in
g

Requirements
for (whole)

Product Line

Requirements
for a specific

(single) Product

Abstract User
Interface Model
for Product Line

Abstract User
Interface Model

for Product

Product
Derivation

MBUID
Concepts

User Interface
Implementation

data flow

Legend

Artefact

Manual
Process

Automated
Process

Tool‐
supported

Process

Fig. 5. Basic concept for semi-automatic derivation of user interfaces

UI development, this naive solution would correspond to a
purely automated approach without considering human design
knowledge or customization, which is insufficient for most
cases. Thus, product derivation for UIs requires a different
approach, considering the UI-specific body of knowledge from
MBUID.

Hence, we propose to perform the UI derivation at a higher
level of abstraction using the models from MBUID. Indeed,
our example models (Figures 1 and 4) show that a Task
Model could be related to a feature model: For instance,
the task CreditCard corresponds to the feature Credit Card,
the task BillingAddress to the feature PayByBill, the task
PaymentMethod depends on the selected Payment features, etc.
Of course, one feature can be related to multiple tasks and vice
versa; for instance, selecting the feature Electronic Delivery
indicates not only that the tasks related to keywdShipping can
be omitted but also the task OnStock.

As the AIOs are associated with tasks, they can be (in-
directly) related to features as well. Thus, it is possible to
automatically determine which AIOs are required for a given
product configuration. Other UI decisions should be optimized
manually, e.g., the decomposition into Presentation Units and
the mapping onto concrete UI elements. These decisions
strongly depend on the details of the concrete configuration
and product context. For instance in the OnlineShopPL we
have to consider the type of items sold in the shop, as this
influences form of product presentation and selection (and e.g.,
the space required on the UI).

By combining SPL and the concepts from MBUID (Fig. 3)
we come to the integrated approach we propose for derivation
of UIs (see Fig. 5): Domain Engineering processes at an
abstract level, i.e., with a model of the Abstract User Interface.
During Application Engineering, the product-specific AUI

can be calculated automatically from the product’s feature
configuration. On that base, the final UI is derived using semi-
automatic approaches from MBUID. Some parts of the UI
implementation, like the links between UI elements and appli-
cation logic, can be generated fully automatically. Others, like
the concrete layout, the visual appearance, and the selection
of concrete UI components are generated automatically, but
can be customized if desired.

This general framework introduced here still abstracts from
the concrete modeling languages used for its realization. For
instance, it is necessary to select adequate UI models and
transformations from the various MBUID approaches. We will
show a possible realization in Sec. IV.

B. Systematic Integration of UI Customization Techniques

So far, we have argued that the step from the AUI model to
the final implementation must include the option for manual
customization by the designers. We will now analyze potential
alternatives and introduce two techniques which contribute to
our approach.

In general, customization of models and model transforma-
tions is a common task in model-driven engineering. Given
one transformation one can customize it for instance by 1)
adding additional information to the source model (e.g., tagged
values), 2) tuning the transformation itself (e.g., by specifying
parameters [19]), or 3) by just post-editing the resulting target
model. These basic possibilities are used in MBUID [16] and
could be used in our approach.

However, it is desirable to provide additional, more specific
customization techniques since, 1) during product derivation
efficiency is more important than maximal flexibility and 2)
the UI designers might not be familiar with generic modeling
tools and transformation languages and require more domain-
specific (i.e., UI-specific) tool support during customization.
An important example in this sense is MOBI-D [7], which
provides two concepts for customization. During the transfor-
mation, the designer is provided with a dialog were he can
adjust parameters in a graphical UI. For customizing the CUI,
it provides a specific kind of GUI Builder were the designer
can select from those CIOs which correspond to the AIOs
from the AUI.

In the following we propose two customization techniques
for our purpose which enables the designer full control about
all aspects of the UI while enabling a high degree automated
tool support: Tree-based UI Clustering and the UI Placeholder
concept.

1) Tree-based UI Clustering: Our approach for tree-based
UI clustering addresses the problem of decomposing the UI
into presentation units. It is based on earlier work [20],
we adapt it here to handle specific requirements of product
variability. In contrast to other approaches, the approach uses
information from both Task Model and AUI and represents
them in a common view. Fig. 6 shows this for our Onli-
neShopPL: The basic tree structure represents the AUI in
terms of a hierarchy of AIOs. The AIO types are mainly
those mentioned in Sec. II-B with additional support for media

VaMoS 2010

72

...

|||

|[]| |[]| |[]| []>> []>>

||| |||

|[]| []>> [] >>
item [0..n] payment

Method

owner cardType cardNo

confirm
[Transaction]

download
[Electronic
Delivery]

payment
[Payment]

shoppingCart
[ShoppingCart]

choose
Products

[Products]

cancelorder
[Order]

shop

addTo
Cart

[ShoppingCart]

|||

productPhoto extended
Descr

||| |||

result
[Fulfillment]

shipping
[Shipping]

addProduct
[0..n]

creditCard
[CreditCard]

product
...

billing
Address

[PayByBill]

||| ||| |||

name price
[Payment]

onStock
[Shipping]

||| |||

name price
[Payment]

onStock
[Shipping]

sum
[Payment]

result

description

input output edit action selectioncontainer image text

quantity quantity

Legend

Fig. 6. The Abstract UI as a tree hierarchy for defining the Presentation Units

objects like image, text, 3D graphics, etc. The annotations
in square brackets show the corresponding features and will
be discussed later in Sec. IV-A. The horizontal lines specify
temporal constraints derived from the Task Model. Based on
these information, a heuristic calculates the clustering of AIO
into Presentation Units. The heuristic can be influenced by
parameters to take into account the requirements of a particular
CUI platform (e.g., smaller presentation units for a mobile
interface).

Fig. 7 shows the result of the clustering for two different
AUIs (AUI+C). Even if the designer wants to manually
customize the clusters, the automated heuristic still provides
a starting point which is very helpful when dealing with
UIs with many elements. In addition, based on the AUI+C
representation it is possible to create interactive visual tools
which enable the designer to modify the clustering very easily
e.g., by drag and drop.

2) The User Interface Placeholder Concept: The place-
holder concept, generalized from earlier work [21], addresses
the development of the CUI based on the clustered AUI, i.e.,
the choice of AIOs, their concrete visual appearance, and
the layout within the presentation units. The basic idea is
to transform the AUI to generate a skeleton implementation,
which can be modified in UI-specific visual authoring tools,
e.g., the multimedia authoring tool Flash. In particular, the
generated UI is composed of placeholders which can be
customized and refined.

By using an unique identifier (ID) for each placeholder we
can automatically associate it with corresponding elements,
e.g., links to the application logic or event handling code gen-

erated from the model. Moreover, we can trace placeholders,
independent from the designers modifications. As long as the
designer does not delete the placeholder itself, all generated
information remains untouched while the designer can freely
use all the authoring tool’s powerful visual functionalities
without any further restrictions.

IV. DETAILED REALIZATION

In the preceding section we took first steps towards a
solution by developing some principles on a conceptual level.
We will now present an approach that integrates this concepts
and puts them into practice. Figure 8 shows our detailed
approach which we explain in the following step by step using
our OnlineShopPL.

A. Domain Engineering

In Domain Engineering (upper layer in Fig. 8) we perform
the processes to to create and describe the product line
in terms of five models, d to d .

The process starts with Feature Analysis , which analyses
the Product Line Requirements and produces the Feature
Model d capturing the scope and capabilities of the product
line. The Feature Model for our OnlineShopPL was shown
earlier in Fig. 1.

The next step is Task Analysis , which takes into account
the Product Line Requirements and the Feature Model to create
a Task Model Cd. The task model for our OnlineShopPL was
presented in Fig. 4 in CTT notation.

After completing the Task Model this is turned into an
Abstract User Interface (AUI) Model in two steps. First, the

VaMoS 2010

73

confirm
[Transaction]

...

|||

|[]| |[]| |[]| []>> []>>

||| |||

|[]| []>> [] >>

quantity

item [0..n] payment
Method

owner cardType cardNo

download
[Electronic
Delivery]

payment
[Payment]

basket
[Basket]

choose
Products
[Products]

cancelorder
[Order]

shop

quantity addTo
Basket

[Basket]

|||

productPhoto extended
Descr

||| |||

result
[Fulfillment]

shipping
[Shipping]

addProduct
[0..n]

creditCard
[CreditCard]

product
...

billing
Address

[PayByBill]

||| ||| |||

name price
[Payment]

onStock
[Shipping]

||| |||

name price
[Payment]

onStock
[Shipping]

sum
[Payment]

result

description

(a) All features selected (i.e. AUI identical to Fig. 6)

cancel
|||

[]>> []>>

|||

>>

confirm
[Transaction]

download
[Electronic
Delivery]

choose
Products

[Products]

order
[Order]

shop

quantity

productPhoto extended
Descr

result
[Fulfillment]

addProduct
[0..n]

product

|||

name

result

description

(b) Several features deselected (according to configuration in Fig. 9)

Fig. 7. Clustered AUI Models (AUI+C) for two different feature configurations

Task Model is transformed into the AUI Model d using an au-
tomated Refinement Transformation , which also remembers
the links between tasks and AUI elements, which were derived
from these tasks, by creating a Mapping Model . Second, the
engineer can perform Manual Adjustments to further refine
the AUI model.

The final activity within Domain Engineering is Feature
Mapping , where features are connected to the corresponding
elements in the Task Model and the AUI Model. This infor-
mation is stored in a second Mapping Model . Hence, as
a final result of all these steps we get an abstract UI model,
whose elements are mapped onto the corresponding features
(via Mapping Model) and tasks (via Mapping Model).
The AUI for our OnlineShopPL was shown earlier in Fig. 6.
The red annotations in square brackets show the mappings
to the corresponding features. It should be noted that some
features influence multiple locations of the UI, similar to cross-
cutting concerns in aspect-oriented programming. For instance,
consider the feature Payment. If payment is deselected (e.g.,
because customers get individual offers via mail or email),
this not only removes elements for specifying the payment
method, but also influences the presentation of products and
the shopping cart.

B. Application Engineering

After the SPL has been established we can start Application
Engineering (see lower layer in Fig. 8), where we perform the
processes to to derive products.

The derivation of products from the product line starts with
Feature Configuration where we try to match Product Re-
quirements with the product line’s capabilities as described in
the Feature Model. This results in a Product Configuration a

(or the insight that some requirements are not covered by
the product line). Figure 9 shows an example of a feature
configuration for an online shop, with a minimal set of features
selected.

With the decisions captured in the Feature Model Config-
uration we can now perform Product Derivation, where we

Online Shop

Transaction Fulfillment

Shipping
Cost

Service
Delivery

Shipping
Electronic
Delivery

Cash on
Delivery

Pay by BillCredit Card

requires requires excludes

Payment

Shopping
Cart

Products

Legend

Group
(Or)

f1 fn

Group
(Alternative)

f1 fn

Mandatory
Feature

Optional
Feature

Fig. 9. A possible feature configuration for a concrete product

use a technique called Negative Variability [5], which works
as follows: The models on product-line level(Cd and d) contain
the union of all potential model variations. Based on the Fea-
ture Model Configuration a and the feature-implementation
mappings we can filter out elements (i.e., tasks and AUI
elements) which are related to eliminated features and, hence,
are not required for this particular product. As a result we
get the product-specific Task Model Ca and AUI Model a , as
well as Mappings between them. These are subsets of the
product-line models shown earlier (see figures 4 and 6), with
all elements removed that correspond to eliminated features.

Given the derived task and AUI model we can perform
Clustering to determine Presentation Units, which later
will become, e.g., screens or forms. For this step we use
the clustering technique from Sec. III-B. The designer can
either customize the clustering based on the tree hierarchy or
proceed with the generated model and, if required, modify
the Presentation Units later in the authoring tool (step).
Figure 7(b) discussed earlier, represents the clustered AUI
(AUI+C) for the minimal configuration in Fig. 9.

Finally, we apply a model transformation AUI-to-CUI to
turn the AUI+C model into an platform-specific CUI Model a,
which is then fed into an CUI Generator to create the CUI
Implementation a. We are experimenting with multiple AUI-
to-CUI generators for different platforms (e.g., GUI, Web,

VaMoS 2010

74

Mapping

Feature
Model

Feature
Model

(Product
Configuration)

Features User Interface

Feature
Configuration

D
om

ai
n

En
gi

ne
er

in
g

A
pp

lic
at

io
n

En
gi

ne
er

in
g

Feature
Analysis

Product Line
Requirements

Product
Requirements

1

6

Task
Model

(Product Line)

Cd

Feature
Mapping

Ad

Aa

5

data flow

Legend

mapping

Refinement
Transfor‐
mation

AUI
Model

(Product Line)

Mapping
Model

B

Task
Analysis

2 3

Ed

Task
Model

(Product)

Ca
AUI

Model
(Product)

Ea

Clustering

Artefact

Manual
Process

Automated
Process

Manual
Adjustments

4

7

AUI‐to‐CUI

CUI
Model

CUI
Generator

CUI
Implementation

9

10

Ga

Ha CUI
Implementation
(Placeholders)

Manual
Design

11

Tool‐
supported

Process

Mapping
Model

D

Mapping
Model

D

Product
Derivation

6

AUI+C
Model

Fa

Fig. 8. Overview of the process

mobile). These have been omitted from the illustration in
Sec. IV. As an example, Fig. 10 shows the generated UI
skeleton for the Adobe Flash UI platform.

The CUI generators use the placeholder concept from
Sec. III-B. This means that (1) the UI structure and the glue
code for the integration with other subsystems are completely
generated from the model and (2) design related artifacts
(which determine visual elements, layout, appearance) are
generated as placeholders. In Manual Design these place-
holder can be directly loaded into authoring tools, such as
Adobe Flash, where the UI designer can use the functionality
of professional design software and all possibilities of their
human creativity.

V. CONCLUSION

For many applications, an individually designed, usable, and
esthetic user interface is a key success factor. On the other
hand, automated approaches with techniques from model-

driven development and software product lines promise im-
provements in time to market, cost, productivity and quality
[2].

In this paper we address the integration of these, initially
contradictory, goals. To this end, we have carefully consid-
ered the related work and approaches from UI development,
MBUID in particular, and gathered a systematic overview from
the viewpoint of automation (Sec. II). Regarding SPL, we build
up on the state-of-the-art for model-driven product derivation,
as discussed in Sec. I. Until now, the few existing approaches
which try to integrate UI construction with product derivation
(e.g., [22]), use the straightforward derivation approach de-
scribed in Sec. III-A, which is only suitable for very specific
UIs without customization. To the best of our knowledge, there
is no approach yet that integrates automated product derivation
and individual UI design as addressed in this paper.

We have elaborated two general concepts, the derivation
on the level of abstract UI models, and the systematic inte-

VaMoS 2010

75

Fig. 10. The generated user interface skeleton for the screen ChooseProd-
ucts based on the AUI model in Fig. 7(a)

gration of UI customization techniques (Sec. III). Moreover,
we have shown a concrete realization of these concepts by
a concrete, detailed process illustrated by the online shop
example (Sec. IV).

The different steps within our process are supported by
prototypical tools and model transformations. We use various
Eclipse-based frameworks like the Eclipse Modeling Frame-
work (EMF), GMF (Graphical Modeling Framework), oAW
(openArchitectureWare), and ATL (ATLAS Transformation
Language). Based on these we implemented a tool chain
for feature configuration ([23], [24]) and product derivation
(using negative variability, see Sec. IV-B). The clustering and
further processing of interaction elements is implemented as
an ATL transformation adapted from earlier work [20]. The
code generation including the placeholder concept reuses the
ATL transformations from [21].

Using our concepts, large parts of UI development are
performed automatically: The selection of the (abstract) UI
elements according to the product configuration, the imple-
mentation of the UI’s overall structure, and the implementation
of relationships of UI elements is derived automatically from
the product configuration. For all parts with need for custom
design (like the selection of the concrete UI elements, UI lay-
out, and the concrete visual appearance) we provide systematic
support by generating a consistent starting point (including
all required relationships) which can then be customized and
refined visually.

Future work includes a more detailed evaluation and the
gathering of experience with the approach, which is currently
still on a conceptual prototype level. In particular, we intent
to explore support for traceability and (iterative) product evo-
lution. Another potential research direction is the combination
with MBUID approaches for context-sensitive UIs (e.g., [25])
by considering the product configuration as a specific kind of

context. Finally, we plan to analyze variability in UIs more
systematically. A question is, for instance, which variations
between UIs are rather accidental or caused by the designer’s
personal preference and which cause a measurable difference
in usability.

ACKNOWLEDGMENTS

This work was supported, in part, by Science Foundation
Ireland grant 03/CE2/I303 1 to Lero – the Irish Software
Engineering Research Centre, http://www.lero.ie/.

REFERENCES

[1] D. Parnas, “On the design and development of program families,” IEEE
Trans. Softw. Eng., vol. 2, no. 1, pp. 1–9, March 1976.

[2] P. Clements and L. M. Northrop, Software Product Lines: Practices and
Patterns. Boston, MA, USA: Addison-Wesley, 2002.

[3] K. Pohl, G. Boeckle, and F. van der Linden, Software Product Line
Engineering. New York, NY: Springer, 2005.

[4] D. Dhungana, R. Rabiser, P. Grünbacher, and T. Neumayer, “Integrated
tool support for software product line engineering,” in ASE ’07, 2007.

[5] M. Voelter and I. Groher, “Product line implementation using aspect-
oriented and model-driven software development,” in SPLC’07, 2007.

[6] P. A. Szekely, “Retrospective and challenges for model-based interface
development,” in DSV-IS, 1996.

[7] A. Puerta and J. Eisenstein, “Towards a general computational frame-
work for model-based interface development systems,” in IUI, 1999.

[8] B. A. Myers, S. E. Hudson, and R. F. Pausch, “Past, present, and future
of user interface software tools,” ACM Trans. Comput.-Hum. Interact.,
vol. 7, no. 1, pp. 3–28, 2000.

[9] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature
oriented domain analysis (FODA) feasibility study,” SEI Technical
Report CMU/SEI-90-TR-21, 1990.

[10] S. Krug, Don’t Make Me Think: A Common Sense Approach to the Web,
2nd ed. Thousand Oaks, CA, USA: New Riders Publishing, 2005.

[11] B. Shneiderman and C. Plaisant, Designing the User Interface, 4th ed.
Addison Wesley, 2004.

[12] H. Balzert, F. Hofmann, V. Kruschinski, and C. Niemann, “The janus
application development environment,” in CADUI, 1996.

[13] P. P. da Silva, “User interface declarative models and development
environments: A survey,” in DSV-IS, 2000.

[14] G. Calvary, J. Coutaz, D. Thevenin, Q. Limbourg, N. Souchon, L. Bouil-
lon, M. Florins, and J. Vanderdonckt, “Plasticity of user interfaces: A
revised reference framework,” in TAMODIA, 2002.

[15] F. Paternò, C. Mancini, and S. Meniconi, “Concurtasktrees: A diagram-
matic notation for specifying task models,” in INTERACT’97, 1997.

[16] T. Clerckx, K. Luyten, and K. Coninx, “The mapping problem back
and forth: customizing dynamic models while preserving consistency,”
in TAMODIA, 2004.

[17] J. M. Vanderdonckt and F. Bodart, “Encapsulating knowledge for
intelligent automatic interaction objects selection,” in CHI ’93, 1993.

[18] P. A. Szekely, P. N. Sukaviriya, P. Castells, J. Muthukumarasamy, and
E. Salcher, “Declarative interface models for user interface construction
tools: the mastermind approach,” in EHCI, 1995.

[19] K. Czarnecki and S. Helsen, “Feature-based survey of model transfor-
mation approaches,” IBM Syst. J., vol. 45, no. 3, pp. 621–645, 2006.

[20] G. Botterweck, “A model-driven approach to the engineering of multiple
user interfaces,” in MoDELS Workshops, 2006.

[21] A. Pleuß and H. Hußmann, “Integrating authoring tools into model-
driven development of interactive multimedia applications,” in HCI Int.,
2007.

[22] K. Garcés, C. Parra, H. Arboleda, A. Yie, and R. Casallas, “Variability
management in a model-driven software product line,” Rev. Av. en Sist.
e Informática, vol. 4, no. 2, 2007.

[23] G. Botterweck, M. Janota, and D. Schneeweiss, “A design of a config-
urable feature model configurator,” in VAMOS 2009, 2009.

[24] G. Botterweck, D. Schneeweiss, and A. Pleuss, “Interactive techniques
to support the configuration of complex feature models,” in MDPLE,
2009.

[25] J. Van den Bergh and K. Coninx, “Cup 2.0: High-level modeling of
context-sensitive interactive applications,” in MODELS, 2006.

VaMoS 2010

76

http://www.lero.ie/

Supporting Stepwise, Incremental Product Derivation in
Product Line Requirements Engineering

Reinhard Stoiber, Martin Glinz
Department of Informatics, University of Zurich, Switzerland

Email: {stoiber, glinz}@ifi.uzh.ch

Abstract—Deriving products from a software product line
is difficult, particularly when there are many constraints in
the variability of the product line. Understanding the impact
of variability binding decisions (i.e. of selecting or dismissing
features) is a particular challenge: (i) the decisions taken must
not violate any variability constraint, and (ii) the effects and
consequences of every variability decision need to be understood
well. This problem can be reduced significantly with good support
both for variability specification and decision making. We have
developed an extension of the ADORA language and tool which
is capable of modeling and visualizing both the functionality and
the variability of a product line in a single model and provides
automated reasoning on the variability space.

In this paper we describe how our approach supports stepwise,
incremental derivation of a product requirements specification
from a product line specification. We visualize what has been de-
rived so far, automatically re-evaluate the variability constraints
and propagate the results as restrictions on the remaining product
derivation options. We demonstrate our approach by showing a
sequence of product derivation steps in an example from the
industrial automation domain. We claim that our approach both
improves the efficiency and quality of the derivation process.

I. INTRODUCTION

Product derivation is the process of defining a single appli-
cation product based on a product line variability model. The
product derivation process begins with a product line domain
variability model, where all variability is unbound and ends
with a single concrete product model. During this process,
all product line variability needs to be bound, i.e. selected or
dismissed.

Product line variability models can become very complex,
particularly when the variability is restricted by many con-
straints. When deriving a product from a product line, an
application engineer is challenged with two problems: (i) the
decisions he or she takes must not violate the variability
constraints, and (ii) he or she needs to understand the effects
and consequences of every variability binding decision in order
to derive a high-quality product configuration.

Existing solutions for product derivation from a product line
variability model mostly build upon feature-oriented domain
analysis [1] or slightly extended versions thereof. However,
feature modeling languages have two significant limitations.
First, feature models can only define rather simple variability
constraints. Schobbens et al. [2] conducted a survey of feature
modeling languages that claimed to improve the expressive-
ness of the original FODA method [1]. According to this sur-
vey, current feature modeling languages support only simple

types of constraints, mostly based on cardinalities, for example
and/or/xor relationships between sub-features with the same
parent feature, and requires, excludes or mutual exclusion
dependencies between features. For complex constraints, this
is too simplistic. For example, a constraint such as F1 implies
F2 or F3 cannot be specified with a single constraint in a fea-
ture model. Second, feature models provide only the names of
the available features, but no detailed information about their
concrete functionality. In order to comprehend the meaning
and impact of a feature, additional documentation or domain
expert knowledge is required. Mannion [3], Jarzabek et al.
[4] and Czarnecki et al. [5] [6] have addressed this limitation
by introducing mappings between features and single textual
requirements, requirements documents and UML models, re-
spectively. Thus, with appropriate tool support, the detailed
impact of a feature can be shown in other documentation, but
this requires a lot of context switching, which is not ideal.

We have developed a new approach to product line re-
quirements modeling that addresses and aims to solve these
two problems. Our approach builds on the graphical object-
oriented requirements specification language ADORA [7],
ADORA’s aspect-oriented modeling capabilities [8] which we
use for modularizing product line variability, and a new
table-based boolean decision modeling concept which we use
for managing the product line variability. Using aspects for
separately modularizing variability (i.e. variable features) and
its composition semantics allows us integrate the variability
model into the graphic requirements model and visualize them
together.

In this paper, we concentrate on describing our approach to
variability decision and constraints modeling and how we can
support stepwise, incremental derivation of products. The main
idea is to encode the constraints in tables with boolean logic.
This allows us to apply existing boolean satisfiability (SAT)
solving tools for automated reasoning and verification during
product derivation. Using an industrial example, we demon-
strate how our techniques enable a stepwise and incremental
approach to product derivation.

The remainder of the paper is organized as follows. In
Section 2 we introduce an industrial product line require-
ments specification as a running example and briefly explain
the ADORA product line modeling approach. In Section 3
we motivate and describe how we support stepwise and
incremental product derivation. In Section 4 we demonstrate
the application of our approach to the example introduced

VaMoS 2010

77

Automation Device

manage
device and

subscriptions

manage
subscriptions

towards server

manage
subscriptions
from clients

Event
Logger

Persistency

0:nField
Engineer

event

1 2
System

Topology
and State
Manager

configure
system

topology

Supervisory Unit

Intelligent Field Device

write
settings

start-up
field device

Settings
Server

Web
Server

Web Interface

transmit
device
status

Communication Standard A

Std A
Server

Std A
Client

Communication Standard B

Std B
Server

Std B
Client

Communication Standard C

Std C
Server

Std C
Client

File System
File

System
Ring Buffer
Ring

Buffer

No Persistency
No

Persistency

Configuration Tool

download
settings

Device
Type Data

manage
settings

Field
Engineer

D2 before

D1 before

D6

D3

D3
D4

D4 D5

D5

D7

D8

D9

VP3

VP1

C1

VP2

Communication
Server Communication

Client
configure

Object Set

Object

Actor

Association

State

Transition

Scenario

Scenario
Connection

Aspect
Container

Join
Relationship

Legend:

undecided

undecided
undecided

undecided

undecided
undecided

undecided

Decision

undecided

undecidedD2

¬D6

ifFalse

D1 ¬D6
¬D2

¬D6 ¬D8 ¬D9
¬D7 ¬D9

ifTrue

D3 ¬D7

¬D1

¬D7 ¬D8

VP1
VP1

VP2

VP3

VP2, C1

Constraints

VP2

C1

VP3, C1
VP3, C1

Is a must in some countries.

The automation device platform is used for cost and quality reasons.

File system offer huge amounts of storage space.

Design Rationale

The web interface allows access over the world wide web.

Ring buffers are cheap to implement and fast.

The automation device platform is used for cost and quality reasons.

C is still required by many legacy systems.

Standard A is the newest and most performant one.

Might be interesting for non-critical systems.

Should the automation device be an intelligent field device?

Should the intelligent field device a web interface?
Is there no memory in the automation device?

Should the automation device be a supervisory unit?
Description / Derivation Question

Should the intelligent field device support communic. std. B?
Should the intelligent field device support communic. std. C?

Should the intelligent field device support communic. std. A?

Is there a ring buffer in the automation device?
Is there a file system in the automation device?

D2

D6
D7

D1
ID

D4
D5

D3

D8
D9

D7, D8, D9

D1, D2
Decisions Involved

D3, D4, D53
1

1
maxCardminCard

1
1

1
There are three different communication standards to configure a field device: standard A, B, and C. At least one must be chosen.

Description / Rationale
An automation device always can be either a supervisory unit or an intelligend field device.

There exist three different persistency types: no persistency, a ring buffer, or a file system. One of these must be selected.VP3
VP2
VP1
ID

D3 and (D8 or D9)
Consequent

=>
OperatorAntecedent

D6
Description / Rationale

A web interface always requires the communication standard A and a local persistency installed (either ring buffer or FS).C1
ID

Decision Table

Variation Points Table

Constraints Table

Fig. 1. An automation device product line specified in the ADORA language.

above. Section 5 discusses scalability issues, related work and
concludes.

II. PRODUCT LINE DOMAIN MODELING: AN INDUSTRIAL
EXEMPLAR

To demonstrate our approach, we employ a product line
requirements model of industrial automation devices at the
product and components level [9]. Fig. 1 shows the graphical
requirements specification and the decision and constraints
tables of this product line. The graphical notation is briefly
explained in the legend on the right-hand side of the figure.
The commonality is modeled with abstract objects or object
sets and the variable requirements are modularized with aspect
containers and graphical join relationships. Every variable join
relationship is annotated with a decision item. The details of
these decision items are modeled in tables. The subsequent
description gives a very brief overview only. For more details,
see [9].

A. Overview of the example

In our product line example, which is given in Fig. 1, the
commonality of the product line consists of two components:
a set of automation devices and a configuration tool. The
variability is constituted by the following nine variants: there
are two alternatives for the realization of an automation device:
a supervisory unit and an intelligent field device. For an
intelligent field device, an optional web interface may be
added. For the persistency of an automation device, there are
three alternatives. Finally, up to three different communication
standards for supporting the configuration of an intelligent
field device by a configuration tool may be chosen.

In our variability model, every variant is described in detail
by the model elements given in its aspect container. The
structure of the variability (equivalent to the structure in a
feature tree, but only modularizing the variable features) is
given by join relationships from the variants to the model
elements where the variants apply. Every join relationship is
annotated with a boolean decision item. These decision items
and the constraints applying to them are modeled in tables as

VaMoS 2010

78

follows.
The Decision Table lists all the decisions of the graphic

variability model. The columns of the table provide detailed
information about decisions, such as a description or con-
straints. The rightmost column is used to record decisions
actually taken in the product derivation process. Initially, in
domain modeling, every decision item is undecided by default.
Variation points are specified in the Variation Points Table
with their cardinalities and the decision items involved. Finally,
cross-tree constraints that cannot be expressed just as variation
points are specified in the Constraints Table. Such constraints
can be arbitrarily complex formulas in boolean logic. As
Fig. 1 shows, ADORA is also capable of visualizing variability
constraints graphically in the requirements model [10]. For
example, the solid line connecting the join relationship arrows
labeled D1 and D2 in Fig. 1 visualizes that these two decision
items constitute variation point VP1.

Yet undecided variability is visualized as aspects, according
to Fig. 1. As soon as a variability binding decision is taken
to true, the corresponding variability is woven into the model
at the point(s) designated by the join relationship(s) or, if the
decision was taken to false, removed from the model (see Fig.
4).

B. Automated Constraints Analysis

When working with many constraints, the modeler needs
support for determining how the constraints impact his or
her freedom to take further variability binding decisions.
Particularly, he or she needs to know whether a set of decisions
is compatible and how taking a certain decision influences the
constraints for the remaining, yet undecided decision items.
The ADORA tool is capable of providing such support by
analyzing the constraints and checking the satisfiability of all
currently interesting decision configurations using a boolean
satisfiability (SAT) solving tool. The resulting constraint prop-
agations are listed in the columns ifTrue and ifFalse in the
decision table. Thus, a modeler can immediately see the con-
sequences of any variability binding decision he or she takes.
Moreover, we can guarantee that a partially or fully derived
product always satisfies all constraints. This is very similar
to Don Batory’s idea of building a logic truth maintenance
system (LTMS) [11]. In our solution, we additionally calculate
constraint propagation previews as follows.

To calculate the constraint propagations, we iterate over
all currently undecided decision items in the decision table
and decide them once true and once false. For every of these
partial configurations, we again iterate over all remaining, still
undecided decisions and decide them again once true and once
false. All resulting configurations are checked whether or not
they satisfy all constraints, using a SAT solver. If a configu-
ration is satisfiable, no propagation is needed. Otherwise, we
know that the combination of two decision items violates the
constraints. In this case, we record a constraint propagation:
if the first decision of the violating configuration was true, we
enter the negation of the second decision item into the ifTrue
column of the first decision item, or, if the first decision was

decision
taken

decision
taken

Legend:

decision
taken

... unbound variability; the remaining variability complexity.

... bound variability; woven and with constraints satisfied.

decision
taken

Fig. 2. Stepwise and incremental product derivation in ADORA; with every
new variability binding decision the remaining product line variability gets
reduced and simpler until a valid final product is derived.

false, into the ifFalse column. The propagation of constraints is
transitive, so for every constraint propagation, we also have to
calculate all transitively triggered propagations. This process
continues until all potential decisions have been evaluated.

Whenever a decision is actually taken, all constraint propa-
gations are executed. For example, if we decide decision item
D2 in the model of Fig. 1 to false, we consequently must
decide D1 to true and D6 to false in order to derive a product
that satisfies all constraints.

Although SAT solving can be rather computation-intensive,
we have not yet experienced any major performance problems.
An in-depth performance analysis is subject to future work.

III. STEPWISE AND INCREMENTAL PRODUCT DERIVATION

A. Motivation

A product line domain model contains the full variability
and all the variability constraints. Deriving a product con-
figuration (in our case a requirements specification for an
individual product) from such a domain model in a single
step is almost impossible for any real-size product line: too
many options and constraints have to be considered all at once.
Hence it is rather straightforward to employ a stepwise process
where variability binding decisions are taken one at a time.
Fig. 2 illustrates such a process.

However, any mistake in a stepwise product derivation
process makes all subsequent steps invalid and, hence, useless.
Typical mistakes include decisions that yield an inconsistent
configuration or lead into a dead end (i.e. a configuration
that can’t be further evolved towards the desired product).
Consequently, a stepwise product derivation process requires
sophisticated tool support, particularly for ensuring consistent
intermediate configurations and for analyzing the impact of
variability binding decisions, with respect to (i) the effects
that the chosen or dismissed variability has on the final
product requirements specification, and (ii) the extent to which
the current decision restricts the options for the remaining
decisions. Furthermore, a tool should also support reverting
already taken decisions.

In the subsequent subsection, we describe how we provide
such support in ADORA.

VaMoS 2010

79

Awaiting user
decision

Propagate
constraints

(ifTrue or ifFalse
for this decision)

Partially weave
the graphic

requirements
model

Minimize,
generalize or hide
these constraints

Re-calculate
propagations (ifTrue,

ifFalse for all
unbound decisions)

engineer
takes a
derivation
decision

decisions involved in
constraints changed

| update
ifTrue, ifFalse

| re-visualize these
graphical constraints

decisions involved
in no constraint

weaving
completed

Fig. 3. A statechart describing the behavior of the ADORA tool when
executing a variability binding decision taken in a product derivation process.

B. Stepwise and Incremental Product Derivation with ADORA

Product derivation in ADORA is an incremental, step-by-
step process. Every time a new variability binding decision is
taken or an already taken decision is reverted, the ADORA
tool (i) executes the constraint propagations that are asso-
ciated with this decision, (ii) adapts and re-visualizes all
involved graphic variability constraints, (iii) partially weaves
the graphic model to reflect the new variability configuration,
and (iv) re-calculates the constraint propagations for all still
unbound variability decision items (Fig. 3). The derivation
process continues until all variability is bound and a concrete
product requirements specification has been defined. Note that
our current implementation supports forward decision making
only. Support for reverting decisions is a part of our ongoing
research.

In the remainder of this section, we explain the tasks
executed by the ADORA tool in a derivation step (Fig. 3) more
in detail. Note that this procedure is fully automatic.

When an engineer takes a decision in the derivation process,
the corresponding decision item in the decision table (cf.
Fig. 1) is set to true or false. The decision is recorded in the
Decision column of the decision table. ADORA now executes
the tasks described in Fig. 3.

The first task is to propagate the constraints: depending
on the truth value of the decision, the decisions listed in
the ifTrue or in the ifFalse columns of the decision table
are taken automatically. These decisions transitively propagate
their constraints in the same way. All taken decisions are
recorded in a decision history. This allows undoing constraint
propagations when a decision is undone.

Taking a decision may affect the graphic visualization of
variability constraints. For example, if a constraint states that
at least one of three options must be selected and a decision
is taken that selects one of these options, the constraint is
satisfied and no longer needs to be visualized. Therefore, after
taking a decision, ADORA needs to minimize constraints that
are partially satisfied by the decision taken and hide those

that are fully satisfied. On the other hand, when a taken
decision is reverted, the graphic constraint visualizations need
to be generalized (i.e. restored to their previous state). As the
latter is not yet implemented, we focus on the techniques for
minimizing and hiding constraints in this paper.

For cardinality based constraints (as listed in the variation
points), the minimization of constraints is rather easy and
straightforward. For example, if in Fig. 1 one of the decision
items D7, D8 or D9 is taken with false, then the variation point
VP3 will still be a restriction for the remaining variability
configuration space and thus still needs to be displayed for
the remaining two decision items. If, on the other hand, one
of these three decision items is decided to true, then the other
two decision items need to be set to false due to constraint
propagations. As a consequence, the VP3 constraint is fully
satisfied and will not be visualized any longer.

For the other constraints (as listed in the constraints table),
the adaptation is more difficult, since these constraints (i) are
defined as implications and (ii) may be arbitrarily complex
boolean logic formulas that can span over a large set of
decision items. In our example shown in Fig. 1, constraint
C1 is such a non-trivial cross-tree constraint. If all involved
decision items for such a constraint are undecided and one of
these decision items gets bound, then ADORA automatically
checks if the constraint is still only partially satisfied, and thus
needs to be minimized, or if the constraint is already fully
satisfied and thus needs to be hidden from the graphic model.
Deciding decision item D6 to false in Fig. 1 is an example for
the latter case: the antecedent of constraint C1 becomes false
and thus the consequent of this constraint does not need to be
enforced anymore. This means that the constraint is satisfied
and will be hidden from the graphic model. If we leave D6
undecided and decide D3 to true instead, we have an example
for the first case, where constraint C1 needs to be minimized:
the logical and operand in the consequent of the constraint is
now satisfied and thus this clause needs to be removed from
the constraint. This yields the following minimized form of
C1: D6 => D8 or D9.

In the ADORA tool we have solved and implemented the
minimization problem with an existing algorithm. Out of
several possible algorithms, we chose the Quine McCluskey
algorithm [12] that is well known from computer hardware
design for simplifying digital circuits. This algorithm is simple
to implement and always finds a minimized form of the
given constraint. The only disadvantage is that this algorithm
computes only one minimized form of the constraint, even
when there exist several ones. It could be that a different but
equally minimal form of the constraint would be more intuitive
to display in the graphical model. This, however, did not turn
out as a considerable limitation yet, since it may occur only
with very complex constraints.

After the minimizations of the graphical constraints have
been computed, the ADORA tool weaves or removes all aspect
containers and join relationships associated with the decision
taken by the engineer as well as those aspect containers and
join relationships associated with the decisions taken due to

VaMoS 2010

80

constraint propagations. The weaving semantics builds on a
slightly extended form of the weaving semantics introduced
in [8], which focuses on modularizing cross-cutting concerns
with aspects in ADORA. The details of the weaving semantics
are beyond the scope of this paper. Examples are provided in
the next section, see Fig. 4.

Finally, as Fig. 3 shows, the last task is re-calculating the
constraint propagations as described above in subsection II B
and updating the ifTrue and ifFalse columns of the decision
table accordingly .

As a final result, ADORA displays a new partially (or fully)
woven product line variability model which has less variability
than before and is consistent with all constraints. The engineer
can now continue with further variability binding decisions in
the derivation process.

IV. EXAMPLE: SEMI-AUTOMATED STEPWISE AND
INCREMENTAL PRODUCT DERIVATION WITH ADORA

In Fig. 4 we show an incremental, stepwise product deriva-
tion in five steps, as implemented in the ADORA tool. As
an example, we use the automation devices product line that
we introduced in section 2. Fig. 1 presents the fully unbound
product line domain model which is the basis for this product
derivation process. We assume that a group of engineers
wants to derive the requirements specification for a concrete
automation device from this product line.

Let’s assume that the engineers want the product to be
an intelligent field device. As they can see from the product
line domain model (cf. Fig. 1), selecting this variant requires
to dismiss the variant Supervisory Unit (ifTrue column of
decision D2 and the graphical constraint VP1). The engineers
choose to select this variant and set the decision value of
the decision item D2 to true in the ADORA tool. As a
consequence, the ADORA tool propagates the constraint in
the ifTrue column of decision item D2 and sets decision
item D1 to true. Then the tool hides the variation point
constraint VP1 because it is now satisfied. Next, the tool
performs the weaving operations associated with D2 and D1:
The model fragment contained in the Intelligent Field Device
aspect is woven into the Automation Device object set. The
Supervisory Unit aspect and the join relationship labeled D1
are removed from the model because D1 has been set to
false as a constraint propagation. Weaving the Intelligent Field
Device aspect further requires a redirection of all its incoming
join relationships (i.e. the join relationships of the sub-variants
of this variant). These join relationships receive new target join
points, which are now inside the Automation Device object
set. Finally, ADORA re-calculates the constraint propagations
for all remaining decision items. In this case there are no
changes, except that the ifTrue and ifFalse values disappear for
decision items D1 and D2 as they have been decided in this
step. Diagram 1 in Fig. 4 shows the result of this first product
derivation step. All concerned aspects and join relationships
are highlighted. Removed items are marked with a cross. Note
that these markups are not done by the ADORA tool, but have
been added manually here for convenience of the reader.

In the second step, the engineers decide to choose the
communication standard B to be part of their product and thus
set decision item D4 to true. For this decision, no constraint
propagations are necessary, because decision item D4 has no
values in the ifTrue and ifFalse columns. However, D4 is
involved in the variation point constraint VP2. This constraint
(minCard 1, maxCard 3 on D3, D4, D5) is satisfied when D4
is decided to true and will be hidden, hence. Next the aspect
Communication Standard B is woven into the Automation
Device object set and into the Configuration Tool object,
according to the join relationships associated with D4 in
Diagram 1 in Fig. 4. Finally, the constraint propagations are
re-calculated – again there are no changes. Diagram 2 in Fig. 4
shows the resulting intermediate model after step 2.

In step 3 the engineers decide not to choose the Ring Buffer
variant for an implementation of the persistency component
and set decision item D8 to false. This decision again does
not trigger any constraint propagation. However, it is involved
in two variability constraints which both need to be minimized.
The variation point constraint VP3 still puts a restriction
on the remaining two variants, which now is an alternative.
The global constraint C1 is reduced to D6 => D3 and
D9. This means that if the Web Interface variant is chosen
in a subsequent step, the Communication Standard A and
the File System variants must also be chosen. After these
minimizations, the join relationship annotated with D8 is
removed from the graphical model and the related aspect
is removed as well. Finally, the constraint propagations are
re-calculated. This time, the values for the decision items
D6, D7 and D9 are modified. D7 and D9 (the File System
persistency and the No Persistency options) are now mutually
exclusive alternatives and, as a consequence of constraint C1,
D6 (the Web Interface variant) definitely requires both D3
(Communication Standard A) and D9 (File System persistency)
to be selected. Conversely, the value in the ifFalse column of
decision item D3 tells the engineers that if they would decide
not to select Communication Standard A in a subsequent step,
the Web Interface variant could not be chosen anymore.

In step 4 the engineers can already reason on the basis of
this newer and simplified decision table and graphical model.
They decide to choose the Web Interface variant to be part
of the derived product and set D6 to true. This consequently
triggers three constraint propagations: D3 and D9 are set to
true because of constraint C1, and D7 is set to false as a
transitive consequence of setting D9 to true. All variability
constraints are now satisfied and thus hidden from the graphic
model. Then the weaving operations are performed and the
constraint propagations re-calculated. In the resulting model,
only D5 is still undecided.

In step 5 the engineers recognize that only the Communica-
tion Standard C variant is left as an option in this nearly full
configuration. As there are no more constraints, the engineers
can freely choose or dismiss this option. Here they decide
that they don’t need Communication Standard C and set the
decision item D5 to false. Consequently the tool removes
this aspect and the corresponding join relationship from the

VaMoS 2010

81

write
settings

start-up
field device

Settings
Server

1

Automation Device

manage
device and

subscriptions

manage
subscriptions

towards server

manage
subscriptions
from clients

Event
Logger

Persistency

0:nField
Engineer

event

2

3

Web
Server

Web Interface

transmit
device
status

Communication Standard A

Std A
Server

Std A
Client

Communication Standard B

Std B
Server

Std B
Client

Communication Standard C

Std C
Server

Std C
Client

File System
File

System
Ring Buffer
Ring

Buffer

No Persistency
No

Persistency

Configuration Tool
download
settings

Device
Type Data

manage
settings

Field
Engineer

D6

D3
D3 D4 D4 D5

D5

D7

D8

D9

VP3

C1

VP2

Communication
Client

configure

Communication
Server

Automation Device

manage
device and

subscriptions

manage
subscriptions

towards server

manage
subscriptions
from clients

Event
Logger

Persistency

0:nField
Engineer

event

2

3

write
settings

start-up
field device

Settings
Server

Web
Server

Web Interface

transmit
device
status

Communication Standard A

Std A
Server

Std A
Client

Communication Standard C

Std C
Server

Std C
Client

File System
File

System Ring Buffer
Ring

Buffer

Configuration Tool

download
settings

Device
Type Data

manage
settings

Field
Engineer

D6

D3

D3 D5D5

D8

D9

VP3

configure

1

Std B
Server

Communication Server

C1

Communication Client

Std B
Client

true

undecided
undecided

undecided

undecided
true

undecided

Decision

undecided

false-

¬D6

ifFalse

-

-

-

-

¬D6 ¬D8 ¬D9
¬D7 ¬D9

ifTrue

D3 ¬D7

-

¬D7 ¬D8

VP1
VP1

VP2

VP3

VP2, C1

Constraints

VP2

C1

VP3, C1
VP3, C1

...

D2

D6
D7

D1
ID

D4
D5

D3

D8
D9

Decision Table

No Persistency
No

Persistency

D7

Automation Device

manage
device and

subscriptions

manage
subscriptions

towards server

manage
subscriptions
from clients

Event
Logger

Persistency

0:nField
Engineer

event

2

3

write
settings

start-up
field device

Settings
Server

Web
Server

Web Interface

transmit
device
status

Communication Standard A

Std A
Server

Std A
Client

Communication Standard C

Std C
Server

Std C
Client

File System
File

System

Configuration Tool

download
settings

Device
Type Data

manage
settings

Field
Engineer

D6

D3
D3 D5D5

D9

VP3

configure

1

Std B
Server

Communication Server

C1

Communication Client

Std B
Client

true

undecided
undecided

false

undecided
true

undecided

Decision

undecided

false-

¬D6

ifFalse

D9

-

-

-
¬D6 D7

-

-

¬D6 ¬D9
-

ifTrue

D3 ¬D7 D9

-

¬D7

VP1
VP1

VP2

VP3

VP2, C1

Constraints

VP2

C1

VP3, C1
VP3, C1

...

D2

D6
D7

D1
ID

D4
D5

D3

D8
D9

Decision Table

No Persistency
No

Persistency

D7

true

false
true

false

true
true

true

Decision

undecided

false-

-

ifFalse

-
-

-

-

-
-

-

-

-
-

ifTrue

-

-
-

-

VP1
VP1

VP2

VP3

VP2, C1

Constraints

VP2

C1

VP3, C1
VP3, C1

...

D2

D6
D7

D1
ID

D4
D5

D3

D8
D9

Decision Table

Automation Device

manage
device and

subscriptions

manage
subscriptions

towards server

manage
subscriptions
from clients

Event
Logger

0:nField
Engineer

event

2

3

write
settings

start-up
field device

Settings
Server

Web
Server

transmit
device
status

Communication Standard C

Std C
Server

Std C
Client

Configuration Tool

download
settings

Device
Type Data

manage
settings

Field
Engineer

D5D5

configure

1

Std B
Server

Communication Server

Communication Client

Std B
Client

Persistency

File
System

Std A
Server

Std A
Client

true

undecided
undecided

undecided

undecided
undecided

undecided

Decision

undecided

false-

¬D6

ifFalse

-
-

¬D6 ¬D8 ¬D9
¬D7 ¬D9

ifTrue

D3 ¬D7

-

¬D7 ¬D8

VP1
VP1

VP2

VP3

VP2, C1

Constraints

VP2

C1

VP3, C1
VP3, C1

...

D2

D6
D7

D1
ID

D4
D5

D3

D8
D9

Decision Table

true

false
true

false

true
true

true

Decision

false

false-

-

ifFalse

-
-
-

-

-

-
-

-

-

-

-

-

ifTrue

-

-
-

-

VP1
VP1

VP2

VP3

VP2, C1

Constraints

VP2

C1

VP3, C1
VP3, C1

...

D2

D6
D7

D1
ID

D4
D5

D3

D8
D9

Decision Table

Automation Device

manage
device and

subscriptions

manage
subscriptions

towards server

manage
subscriptions
from clients

Event
Logger

0:nField
Engineer

event

2

3

write
settings

start-up
field device

Settings
Server

Web
Server

transmit
device
status

Configuration Tool

download
settings

Device
Type Data

manage
settings

Field
Engineer

configure

1

Std B
Server

Communication Server

Communication Client

Std B
Client

Persistency

File
System

Std A
Server

Std A
Client

5

1 2

3 4

true

false
true

false

true
true

true

Decision

false

false
ifFalse

-

ifTrue

-

VP1
VP1

VP2

VP3

VP2, C1

Constraints

VP2

C1

VP3, C1
VP3, C1

...

D2

D6
D7

D1
ID

D4
D5

D3

D8
D9

Decision Table

Automation Device

manage
device and

subscriptions

manage
subscriptions

towards server

manage
subscriptions
from clients

Event
Logger

0:nField
Engineer

event

2

3

write
settings

start-up
field device

Settings
Server

Web
Server

transmit
device
status

Configuration Tool

download
settings

Device
Type Data

manage
settings

Field
Engineer

configure

1

Std B
Server

Communication Server

Communication Client

Std B
Client

Persistency

File
System

Std A
Server

Std A
Client

6

--
--
--
--
--
--
--
--

Fig. 4. An exemplary stepwise, incremental product derivation from the product line variability model of Fig. 1. Diagrams 1-5 show how the model changed
after the respective derivation step. Diagram 6 shows the final product model. The yellow elements (light grey in B/W prints) and the crosses are only added
for illustration purposes.

VaMoS 2010

82

model. The result is a fully configured product requirements
model which is correct (in terms of satisfying all constraints)
by construction. Diagram 6 in Fig. 4 shows the final product
model.

V. DISCUSSION AND CONCLUSION

A. Scalability

The ADORA language allows modeling the structure, be-
havior and user interaction of a software system in a single
integrated hierarchical diagram. Using only one diagram for
modeling a complete system requires sophisticated visualiza-
tion techniques in order to scale, i.e. to keep large models
comprehensible for humans users. In our previous work, we
have developed such techniques, for example, fisheye zooming
[13] [14], intelligent line-routing [15] and aspect-oriented
modeling [8]. In [10] we have argued how these techniques
can also be used for product line modeling in ADORA.

Concerning the runtime performance, our current imple-
mentation of partial weaving in the ADORA tool is not yet
satisfactory for large models, while the performance of our
SAT solving implementation doesn’t seem to be a problem so
far. We plan to do more detailed performance analyses and
optimizations both for the our satisfiability solving solution
and the aspect weaving in the ADORA tool.

B. Related Work

Stepwise and incremental product derivation is not entirely
new. For example, Czarnecki et al. [5] [6] introduced a
stepwise derivation process called ’specialization and multi-
level configuration of feature models’. In comparison to our
approach, this solution has two disadvantages. Firstly, the
model elements describing a single feature are scattered over
several diagrams (the approach relies on UML). Secondly,
feature modeling allows only rather simplistic types of cross-
tree constraints, as we argued in the introduction section.

Other authors have addressed the problem of automatic
reasoning to leverage the complexity of variability modeling.
Thüm et al. [16], for example, recently introduced a grounded
framework for reasoning about edits to feature models. They
define four particular types of edits that can be made in a
feature model. One of them is specialization, which we also
use for product derivation. Since they build on the foundations
of Batory’s work [11], their feature modeling solution allows
arbitrarily complex constraints. However, their work so far
focuses on feature modeling only. They do not provide any
solution to integrate variability modeling with more detailed
modeling of the functionality.

White et al. [17] presented a solution that creates map-
pings between variability models and equivalent constraint
satisfaction problems (CSPs) and uses these CSPs for an
automated calculation of a sequence of minimal feature adap-
tations between two different application feature models. As
application feature models they typically consider an original
feature configuration and a new one that has evolved during
the development. White et al. focus on the evolution of an

already derived product configuration, while we focus on the
product derivation itself in the first place.

Furthermore, there is a range of commercial and open
source tools for feature modeling which also support product
derivation. However, in terms of feature modeling and auto-
mated reasoning, these solutions are less advanced than the
one of Thüm et al. [16] and they also have at least the same
limitations as Czarnecki et al.’s feature modeling approach [6].

C. Conclusion

We have developed a new variability modeling approach
that allows an inherently integrated modeling of features
and requirements by building on aspect-oriented modeling,
a new table-based boolean decision modeling solution and
the ADORA language [7]. Our solution allows the descrip-
tion of arbitrarily complex variability constraints, implements
an automated analysis and constraint propagation of these
variability constraints and supports incremental and stepwise
product derivation. This significantly reduces the complexity
and the cognitive load for the model users and improves the
understanding of the consequences and the impact of concrete
variability binding decisions by human engineers involved in
the product derivation process. We claim that already for
intermediately complex product lines, such a stepwise and
incremental approach to product derivation becomes necessary
in order to enable an efficient and intuitive derivation of
consistent and valid products.

In our current tool implementation, we have fully imple-
mented the support for stepwise and incremental product
derivation that we described in this paper. However, there is
still room for improvements and extensions. For example, the
generation of human-friendly graphical layouts with our weav-
ing implementation is still a challenge. We did not yet find
any really suitable algorithms that always generate satisfying
layouts. Further, for our automated reasoning and constraints
propagation solution, we do not yet calculate adequate intuitive
and minimal sets of constraint propagations needed when
already bound decisions are reverted. This is challenging be-
cause also the order of the previously taken decisions and their
constraint propagations need to be taken into account. The
runtime performance of our tool implementation, in particular
when weaving models, also needs improvement. Finally, we
plan to do empirical evaluations in the near future in order
to validate the usefulness of our approach and the support
that ADORA provides for real-world product line modeling
problems.

ACKNOWLEDGMENT

We would like to thank Ivo Vigan for his programming work
and his advice for implementing a SAT solver for ADORA.

REFERENCES

[1] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and A. S. Peterson,
“Feature-oriented domain analysis (FODA) feasibility study,” Carnegie-
Mellon University Software Engineering Institute, Tech. Rep., November
1990.

VaMoS 2010

83

[2] P.-Y. Schobbens, P. Heymans, J.-C. Trigaux, and Y. Bontemps, “Generic
semantics of feature diagrams,” Comput. Netw., vol. 51, no. 2, pp. 456–
479, 2007.

[3] M. Mannion, “Using first-order logic for product line model validation,”
in SPLC’02: Proceedings of the Second Software Product Line Confer-
ence., ser. Lecture Notes in Computer Science, G. J. Chastek, Ed., vol.
2379. Springer, 2002, pp. 176–187.

[4] S. Jarzabek, W. C. Ong, and H. Zhang, “Handling variant requirements
in domain modeling,” J. Syst. Softw., vol. 68, no. 3, pp. 171–182, 2003.

[5] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Formalizing
cardinality-based feature models and their specialization,” Software
Process: Improvement and Practice, vol. 10, no. 1, pp. 7–29, 2005.

[6] K. Czarnecki, M. Antkiewicz, C. H. P. Kim, S. Lau, and K. Pietroszek,
“fmp and fmp2rsm: Eclipse plug-ins for modeling features using model
templates,” in OOPSLA Companion, 2005, pp. 200–201.

[7] M. Glinz, S. Berner, and S. Joos, “Object-oriented modeling with
ADORA,” Inf. Syst., vol. 27, no. 6, pp. 425–444, 2002.

[8] S. Meier, T. Reinhard, R. Stoiber, and M. Glinz, “Modeling and evolving
crosscutting concerns in ADORA,” in Aspect-Oriented Requirements
Engineering and Architecture Design, 2007. Early Aspects at ICSE:
Workshops in, May 2007.

[9] R. Stoiber and M. Glinz, “Modeling and managing tacit product line
requirements knowledge.” in 2nd International Workshop on Managing
Requirements Engineering Knowledge (MaRK’09). IEEE CS, 2009.

[10] R. Stoiber, T. Reinhard, and M. Glinz, “Visualization support for
software product line modeling,” in Proceedings of SPLC’08 (Second

Volume). 2nd International Workshop on Visualisation in Software
Product Line Engineering (ViSPLE’08)., 2008, pp. 313–322.

[11] D. S. Batory, “Feature models, grammars, and propositional formulas,”
in SPLC’05: Proceedings of the 9th International Software Product Line
Conference., ser. Lecture Notes in Computer Science, J. H. Obbink and
K. Pohl, Eds., vol. 3714. Springer, 2005, pp. 7–20.

[12] E. J. McCluskey, “Minimization of boolean functions.” Bell System
Technology Journal., vol. 35, no. 5, pp. 1417–1444, 1956.

[13] C. Seybold, M. Glinz, S. Meier, and N. Merlo-Schett, “An effective
layout adaptation technique for a graphical modeling tool,” in ICSE’03:
Proceedings of the 25th International Conference on Software Engineer-
ing., May 2003, pp. 826–827.

[14] T. Reinhard, S. Meier, R. Stoiber, C. Cramer, and M. Glinz, “Tool sup-
port for the navigation in graphical models,” in ICSE ’08: Proceedings
of the 30th International Conference on Software Engineering, 2008,
pp. 823–826.

[15] T. Reinhard, C. Seybold, S. Meier, M. Glinz, and N. Merlo-Schett,
“Human-friendly line routing for hierarchical diagrams,” in ASE ’06:
Proceedings of the 21st International Conference on Automated Software
Engineering., Sept. 2006, pp. 273–276.

[16] T. Thüm, D. Batory, and C. Kästner, “Reasoning about edits to feature
models,” in ICSE ’09: Proceedings of the 31st International Conference
on Software Engineering., 2009, pp. 254–264.

[17] J. White, D. Benavides, B. Dougherty, and D. C. Schmidt, “Automated
reasoning for multi-step software product-line configuration problems.”
in SPLC’09: Proceedings of the 13th International Software Product
Line Conference. IEEE CS, 2009.

VaMoS 2010

84

Variability Modelling for Model-Driven Development of Software Product Lines∗

Ina Schaefer
Dept. of Computer Science and Engineering

Chalmers University of Technology
Gothenburg, Sweden

schaefer@chalmers.se

Abstract—Model-driven development of software-intensive
systems aims at designing systems by stepwise model re-
finement. In order to create software product lines by
model-driven development, product variability has to be
represented on every modelling level and preserved under
model refinement. In this paper, we propose ∆-modelling as
an generally applicable variability modelling concept that is
orthogonal to model refinement. Products on each modelling
level are represented by a core model and a set of ∆-
models specifying changes to the core to incorporate product
features. Core and ∆-models can be refined independently
to obtain a more detailed model of the product line. Based
on a formalization of ∆-modelling, we establish conditions
that model refinement and model configuration commute re-
sulting in an incremental model-driven development process.

Keywords-Software Product Lines; Variability Modelling;
Model-driven Development; Model Refinement

I. INTRODUCTION

Model-driven development [1] of software-intensive
systems aims at reducing design complexity by shifting
the focus during system development from implementation
to modelling. A model is an abstraction of a system with
respect to certain system aspects. In model-driven devel-
opment, an initial system model is successively refined
by adding details relevant in particular design phases. A
software product line [2], [3] is a set of systems with
well-defined commonalities and variabilities. In order to
use model-driven development in software product line
engineering, the variability of the different products has
to be represented within the used modelling concepts and
preserved under model refinement.

The variability of products in software product lines is
currently predominantly captured by feature models [4].
Features represent important product characteristics. A
feature model determines a set of products by the set of
valid feature configurations. However, features at the level
of a feature model are merely labels [5]. Hence, feature-
based variability has to be mapped to the modelling
concepts used on each modelling level [6] in order to
design a product line by a model-driven development
process.

Existing approaches to integrate feature-based vari-
ability into modelling languages can be classified in
two main directions [7]. First, negative variability-based

∗This work has been supported by the Deutsche Forschungsgemein-
schaft (DFG) and by the European project HATS, funded in the Seventh
Framework Program.

approaches consider one model for all products of a
product line that is augmented with variant annotations
determining which model elements are present in which
products [8], [9], [10], [11]. Second, positive variability-
based approaches [6], [7], [12], [13], [14] associate model
fragments to features and compose them for a given fea-
ture configuration. However, most approaches only focus
on modelling concepts used on one modelling level and
do not consider how the variability representation can be
preserved under model refinement.

In order to define a seamless model-driven develop-
ment process for software product lines, we propose ∆-
modelling, a general concept integrating variability mod-
elling with model refinement. On each modelling level,
product line variability is represented by a core model and
a set of ∆-models. The core model represents a valid prod-
uct of the product line. ∆-models specify changes of the
core model, i.e., additions, modifications and removals of
model fragments, in order to capture further products. An
application condition attached to a ∆-model determines
for which feature configuration a ∆-model is applicable.
A product model for a feature configuration is obtained
by applying the modifications specified by the ∆-models
with valid application conditions.

For refinement, the core model and every ∆-model are
transformed independently into a more detailed core model
or ∆-model, respectively. The internal structure of the
core and ∆-models, as well as the application conditions
of the ∆-models are preserved. If the specified modifi-
cations in the refined ∆-models satisfy local refinement
compatibility conditions, a refined product model for a
feature configuration can be obtained in two ways: first,
the product model is configured on the higher level of ab-
straction and afterwards transformed to a refined model; or
second, the core and ∆-models are refined and afterwards
configured by applying the modifications of the refined ∆-
models to the refined core model. The commutativity of
model refinement and model configuration builds the basis
for incremental model-driven development of software
product lines.

The ∆-modelling concept provides an integrated vari-
ability modelling approach for model-driven development
of software product lines. Its main characteristics are:
• ∆-modelling is independent of a concrete modelling

or implementation language. It can be instantiated to
concrete modelling or implementation languages by
defining the semantics of ∆-application.

VaMoS 2010

85

• Combinations of features can be explicitly captured
by flexible application conditions attached to ∆-
models.

• Modular and evolutionary system development is
facilitated by adding ∆-models to an existing model.

• Model refinement is orthogonal to variability mod-
elling. Core and ∆-models are refined independently
such that variability is expressed by the same struc-
tural concepts on all modelling levels.

• The commutativity of model configuration by ∆-
application and model refinement provides the basis
for an incremental development process by stepwise
refinement of core and ∆-models.

The outline of this paper is as follows: In Section II,
we review related work. In Section III, we explain the
∆-modelling approach at an example of a trading system
product line. In Section IV, we formalize ∆-modelling
and extend this formalization to model refinement in
Section V. SectionVI concludes with an outlook to future
work.

II. RELATED WORK

Model-driven engineering for software product line
development is proposed in [10], [15] in order to re-
solve product variability by model transformations. A
model in the problem domain, usually a feature model,
is transformed into a model in the solution domain, e.g.,
a product model [7], product architecture [16] or product
implementation [17].

The existing approaches to represent feature-based vari-
ability can be classified into two main directions [7].
Annotative approaches specify negative variability. They
consider one model representing all products of a product
line. Variant annotations, e.g., using UML stereotypes [8],
[9], [10], [11], define which parts of the model have to
be removed to derive the model of a concrete product. [5]
associates presence conditions to modelling elements to
be removed in certain feature configurations.

Compositional approaches capture positive variability.
Model fragments are associated with features and com-
posed for a particular feature configuration. A prominent
example is the AHEAD [12] approach. A product is
built by stepwise refinement of a base module with a
sequence of feature modules. In [6], [7], [13], models are
constructed by aspect-oriented modelling techniques. [14]
applies model superposition to compose model fragments.
In [18], a product model is obtained by composition and
refined by model transformation. [19] propose to represent
model variability by a base model and associated vari-
ability and resolution models determining how modelling
elements of the base model have to be replaced for a
particular product model. The base model is similar to the
core model in the ∆-modelling approach while variability
and resolution models correspond to ∆-models, but are
not directly connected product features.

Most of the above approaches only focus on the repre-
sentation of variability on a single modelling layer. In [9],
different modelling levels during system development are

considered, but variability resolution is based on tex-
tual decision models that are separated from the system
models. In contrast, ∆-modelling facilitates a seamless
representation of variability inbetween different modelling
layers.

The notion of program deltas is introduced in [20] to
describe the modification of an object-oriented program,
e.g., by introduction of new fields or extension of methods.
The mapping of collaborative features to models in [6] is
similar to ∆-models. Collaborative features can modify a
core model by additions, removals and modifications, but
require a one-to-one relationship to a feature. In [21], ∆-
modelling is presented as an approach to develop product
line artifacts suitable for automated product derivation.

Feature-oriented model-driven development
(FOMDD) [22] combines feature-oriented programming
(FOP) with model-driven engineering. In FOMDD, a
product can, first, be composed from a base module
and a sequence of feature modules and afterwards
transformed to another product model. Second, the base
module and the feature modules can be transformed and
then composed to a transformed product model. This is
similar to the commutativity between model refinement
and model configuration in ∆-modelling. FOP can be
seen as a special case of ∆-modelling. Feature modules
are always associated to exactly one feature, whereas
∆-models explicitly consider combinations of features.
In feature modules, only additions and modifications can
be specified. In contrast, ∆-models may contain removals
of model parts. While the base module in FOP is fixed
by the mandatory features, in ∆-modelling, any valid
product can be chosen as core model enabling a flexible
product line design.

III. VARIABILITY MODELLING USING ∆-MODELS

Figure 1 shows an overview of the model-based devel-
opment process for software product lines using the ∆-
modelling approach. First, an initial model of the product
line is created that captures the variability of the feature
model. From this initial model on a high level of ab-
straction, successively refined models are constructed that
describe more detailed aspects of the considered products.

On each modelling level, product variability is captured
by a core model and a set of ∆-models. A core model
corresponds to a valid product of the product line. ∆-
models specify changes to the core model by additions,
modifications and removals of model fragments in order
to represent further products. An application condition is
attached to every ∆-model determining for which feature
configurations the specified changes are to be carried
out. In order to obtain a product model for a feature
configuration, the changes specified by ∆-models with
valid application condition are applied to the core. The
concept of ∆-modelling to express variability is indepen-
dent of a concrete modelling language. The modelling
constructs used on each modelling level can be chosen
to appropriately represent the considered system aspects.
The application conditions attached to the ∆-models create

VaMoS 2010

86

Feature Modelling

Feature Model Feature Configuration

Core Model1

Modelling Level 1

configure

configure
!-Models1

create

refine

[...]

Core Model2

Modelling Level 2
configure

!-Models2

refine

refine

Core Modeln

Modelling Level n
configure

!-Modelsn Product Modelsn

refine

Product Models1

Product Models2

Figure 1. Model-driven development with ∆-Modelling

the connection between the features in the feature model
and product variability on the different modelling levels.
If the selection of a feature influences the choice of the
modelling language, e.g., if a feature refers to the used
implementation framework, core and the ∆-models can be
seen tuples containing the specifications of the core and
∆-models in the respective modelling formalisms, while
the general variability structure is preserved.

The step from a feature model of a product line to the
initial core model and the set of ∆-models is a creative
process, since product line variability can in general be
represented in different ways. The variability structure pro-
vided by the initial modelling level provides the variability
structure of the lower, more refined modelling levels
(cf. Figure 1). A core model is refined to a more detailed
core model. ∆-models are refined to more detailed ∆-
models with the same application condition. An important
property of the refinement between two modelling levels
is that it commutes with model configuration by ∆-
application. This means that a refined configured prod-
uct model can be obtained in the following two ways.
First, the product model for a feature configuration is
configured from the core model and the applicable ∆-
models and afterwards refined. Second, the core model
and the ∆-models are refined, such that afterwards the
refined product can be configured. This commutativity
property provides the basis for an incremental model-
based development process by stepwise model refinement.

Example We illustrate variability modelling based on
∆-models at the case example of a software product line
of trading systems. The Common Component Modeling
Example (CoCoME) [23] describes a software system
handling payment transactions in supermarkets. It was
extended to a software product line in [24]. The variability
of the products are expressed in the feature diagram [4]
shown in Figure 2. Mandatory features are represented
by a filled circle, optional features with an empty circle.
Alternative features are specified with a filled triangle if at
least one feature has to be selected or by an empty triangle
if exactly one features has to be selected. Constraints
between features are represented by explicit links. A

Figure 2. Feature Model for the CoCoME Software Product Line

product in the trading system product line has different
payment options, i.e., cash payment or payment by credit
card, prepaid card or electronic cash. At least one payment
option has to be chosen for a valid configuration. Product
information can be entered using a keyboard or a scanner,
where at least one option has to be selected. Furthermore,
the system has optional support to weigh goods, either at
the cash desks or at separate facilities. A trading system
can be configured as a single-desk system with only one
cashier or as a multi-desk system with several of cashiers.
A multi-desk system can optionally comprise an express
mode which requires cash payment or a self-service mode
requiring non-cash payment.

A core model represents a product for a valid fea-
ture configuration. Thus, it can be developed by well-
established single application engineering techniques as
a standard product model. In the example, the feature
configuration containing the keyboard, the cash payment
and the single-desk system features is selected as core
configuration.

Component Modelling Level In our example, we start
the model-based development process at the component
level by representing the core model by a UML component
diagram [25] and its variability by component diagram ∆-
models that are an extension of UML component diagrams
with annotations for the specified changes. In a second
step, the component diagrams are refined to UML class
diagrams showing in more detail how the components
are implemented. Figure 3 depicts the component diagram
specifying the core product of the trading system product
line with the keyboard, cash payment and single-desk sys-
tem features. It contains a Cash Desk component dealing
with cash payment and an Inventory component keeping
the store inventory. Every time a product is entered at the
cash desk, the price of the product is requested from the
inventory.

Cash DeskInventory

Bank

Inv

Bank
Cash Desk

Inv

+!

Cash DeskInventory

Inv

BankBank

Figure 3. Core Component Diagram

VaMoS 2010

87

Cash DeskInventory

Bank

Inv

Bank

Cash Desk

Inv

!

Cash DeskInventory

Inv

Credit Card

Bank

Bank

+

+

Figure 4. Component Diagram ∆-Model

Figure 4 depicts the component diagram ∆-model con-
taining the modifications of core component diagram to
include credit card functionality. A Bank component has
to be added specified by the + annotation at the Bank
component. Additionally, the Cash Desk component has
to be modified to handle credit card payment which
indicated by ∗ annotation at the Cash Desk component.
In order to realize the communication with the Bank
component, an required interface and a corresponding
connection to the bank component have to be added. The
application condition of this ∆-model (in the top right
hand corner) defines that the modifications are carried
out if the credit card feature is selected. In Figure 5, the
component diagram for a single-desk system containing
keyboard input, cash payment and credit card payment is
depicted that results from applying the ∆-model for credit
card payment (cf. Figure 4) to the core component diagram
(cf. Figure 3).

Class Modelling Level Each component of the trading
system product line can be refined to a class diagram. The
class diagram represents the internal component structure
and can be used as basis for an implementation. The
interactions between the components are not considered on
the class diagram level because they are already captured
on the component modelling level. In the ∆-modelling
approach, core and ∆-models are refined independently. A
refined product model is obtained by applying the refined
∆-models to the refined core model.

Figure 6 shows the class diagram for the Cash Desk
component contained in the core. It comprises a Cash
Desk class implementing the main functionality of the
cash desk, a Keyboard class handling the input from
the keyboard and a Display class providing output to a
display. Figure 7 depicts the class diagram ∆-model spec-
ifying the modifications of the core class diagram Cash
Desk component to incorporate the credit card feature.
In order to provide credit card payment functionality, a
Card Reader class is required. The Cash Desk class is
modified by adding a reference to the bank, by adding
methods to deal with the credit card payment and by
modifying the existing payment methods.

Cash DeskInventory

Bank

Inv

Bank

Cash Desk

Inv

+!

Cash DeskInventory

Inv

Credit Card

Bank

Bank

Figure 5. Product Component Diagram

Cash Desk Keyboard

Display

-Order

Figure 6. Core Class Diagram

Model Refinement and Configuration The class dia-
gram for the configured Cash Desk component with the
basic features and the credit card feature can be obtained
in two different ways. First, the core model and the ∆-
model on the component modelling level (cf. Figure 3
and 4) can refined to a core and ∆-model on the class
diagram level (cf. Figures 6 and 7) and configured to a
class diagram by the standard configuration procedure.
Second, a component diagram including the Cash Desk
component with the basic features and the credit card
feature can be configured on the component diagram level
(cf. Figure 5). Afterwards, the configured Cash Desk
component can be refined to a class diagram specifying
the component’s structure in more detail.

Model refinement and model configuration commute in
the example because the refinement of the component di-
agram ∆-models is compatible with model configuration.
Compatibility requires that for a component added (or
removed) by a component diagram ∆-model, in the class
diagram refinement of this ∆-model, all parts of the class
diagram are specified as added (or removed) as well. If a
component is modified in a component diagram ∆-model,
in the refined class diagram, the parts of the class diagram

Cash Desk

Card Reader

CashDesk

CashDesk

Keyboard

CashDeskDisplay

Printer

ConnectionAgent

CardReader

+void enable()
+void disable()
+void enterPinCode()

Bank

+bool validatePaymentData(int, int, float)

Bank Server

CreditCard

CashDesk

1 *

1 1

+

+

+void activateNonCashControllers()
+void deactivateNonCashControllers()

+void creditCardScanned(int)
+void creditCardPinEntered(int)
-void connectWithBank()

+

*

+Bank getBank()
+void registerBank(Bank)

+

+

Credit Card

-Bank

!

+

+void CreditCardScanned(int)
+void CreditCardPinEntered(int)
-connectWithBank()

+

+void startPaymentProcess()
!

+

Figure 7. Class Diagram ∆-Model

VaMoS 2010

88

may be specified as added, modified or removed. However,
the change operations resulting from refinement of a
modification operation have to satisfy a local refinement
compatibility condition. This condition requires that the
class diagram obtained by applying the refined component
∆-model to the class diagram of a refined core component
is the same as the class diagram refinement of the same
component configured on the component diagram level.

IV. FORMALIZING ∆-MODELLING

Variability modelling using ∆-models is a general ap-
proach that is not limited to specific modelling concepts,
such as component or class diagrams used in Section
III. ∆-modelling can be applied to any modelling or
implementation language by defining the semantics of
the change operations specified in the ∆-models for the
concrete language. The number of modelling layers also
depends on the concrete application and is not limited by
the ∆-modelling approach. For instance, in Section III,
use case diagrams separated into core and ∆-diagrams
could be used to represent the requirements of the set of
systems under development and subsequently be refined
to component diagrams.

In order to show the general applicability of ∆-
modelling, we base the following formalization on a gen-
eral notion of models. A model contains a set of modelling
elements E that can, for instance, represent components or
classes (by their names). The set of modelling elements
E describes the (domain-specific) concepts used in the
models. Furthermore, a model contains relations between
modelling elements representing correspondences, such as
connections between required and provided interfaces in
component diagrams. For simplicity, we restrict our notion
of a model to contain only one binary relation R over the
set of modelling elements E. This allows us to consider
relations formally while keeping the model and its formal
treatment simple. In a concrete model instantiation, a set of
relations can be defined to express different relationships
between elements.

Definition 1 (Models): Let E be a set of modelling
elements. A model M is a tuple M = (E,R) where
R ⊆ E × E is a relation over the modelling elements.

A core model represents a product for a valid feature
configuration. This allows treating the core model in the
same way as any product model. We define the set of valid
feature configurations as a subset of the powerset of the
set of features.

Definition 2 (Core and Product Models): For a set of
features F = {f1, . . . fn}, let F ⊆ P(F) denote the
set of valid feature configurations. A core model (product
model) is a triple C = (E,R, f) where f ∈ F is a valid
feature configuration, and (E,R) is a model representing
the feature configuration f .

A ∆-model specifies changes to a core model to model
other products. For a core model C = (E,R, f), a ∆-
model defines additions, modifications and removals of
modelling elements e ∈ E, and additions and removals of

tuples in the relation R. A ∆-model has an application
condition determining under which feature configurations
the specified changes have to be carried out. Application
conditions are logical (e.g., Boolean) constraints over the
features contained in the feature model. A ∆-model does
not necessarily refer to exactly one feature, but potentially
to a combination of features. This allows very flexible
∆-models as combinations of features can be handled
individually. For example, if a feature model contains
two features A and B, the Boolean constraint (A ∧ ¬B)
denotes that the modifications are only carried out for a
feature configuration if feature A is selected and feature
B is not selected. The granularity of the application
conditions determines the number of ∆-models that have
to be created to ensure that all features present in the
feature model are appropriately captured.

Definition 3 (∆-Models): A ∆-model over a model
M = (E,R) is a tuple ∆ = (ϕ,Op) where the appli-
cation condition ϕ is a constraint over the set of features
F = {f1, . . . fn} and Op = {op1, . . . , opm} is a set of
modification operations over the model M with

opi ::= add e | mod e | rem e | add r(e1, e2) | rem r(e1, e2)

In order to obtain a product model for a feature con-
figuration f ∈ F , all ∆-models with valid application
condition for the feature configuration f are applied to
the core model. This can involve different ∆-models that
are applicable for the same feature. To limit the occur-
rence of conflicts between changes targeting the same
modelling elements and relations, first all additions, then
all modifications and finally all removals are performed.
In order to express this ordering formally, we assume
that ∆-models are normalized, i.e., their change opera-
tions contain only additions, only modifications, or only
removals. A ∆-model ∆ = (ϕ,Op) can be normalized by
splitting it into three disjoint normalized ∆-models ∆a =
(ϕ,Opa), ∆m = (ϕ,Opm) and ∆r = (ϕ,Opr) such that
Op = Opa] Opm] Opr. We call a set of ∆-models
∆ = {∆1, . . . ,∆n} sorted if and only if there exist i, j
with 1 ≤ i ≤ j ≤ n, such that ∆1, . . . ,∆i contain only
additions, ∆i+1, . . . ,∆j contain only modifications, and
∆j+1, . . . ,∆n contain only removals. The operation ν(∆)
transforms a set of ∆-models into a set of normalized and
sorted ∆-models. The application function apply(M,Op)
modifying a model M by the change operations Op is
defined in Definition 5.

Definition 4 (Configuration): Let C = (E,R, fc)
be a core model and ∆ = {∆1, . . . ,∆n} be a
sequence of normalized and sorted ∆-models with
∆i = (ϕi, Opi) for all i. For a feature configuration
f ∈ F , a product model Pf = (EP , RP , f) is con-
figured by conf ((E,R), {∆1, . . . ,∆n}, f) where for a
model M = (EM , RM), its configuration is defined by
conf (M, {∆1, . . . ,∆n}, f) =

conf (apply(M,Op1), {∆2, . . . ,∆n}, f) if f |= ϕ1

conf (M, {∆2, . . . ,∆n}, f) otherwise

and conf (M, ∅, f) = (EM , RM , f).

VaMoS 2010

89

The ordering in which the change operations specified
in a single ∆-model are applied to a model is not fixed,
which can also be seen as simultaneous application of the
specified changes. The same modelling element can be
added several times, but only occurs once in the model.
Similarly, a tuple in the relation is added only once, if the
related modelling elements are contained in the model.
The modification of a modelling element also causes that
the element is replaced in all relational tuples in which the
original modelling element is contained. If an element is
removed, also all relational tuples containing this element
are removed from the relation. The application of a change
operation is undefined if a modelling element e is modified
that is not contained in the core or added before by another
∆-model, or if a modelling element or a relational tuple is
removed, that is not contained in the core or added before
by another ∆-model.

Definition 5 (∆-Application): The application of a set
of change operations Op = {op1, ..., opn} to a model
M = (E,R) is defined by the application function apply:
• apply(M, ∅) = M
• apply(M,Op) = apply(apply(M,opi), Op \ {opi})
• apply(M, add e) = (E ∪ {e}, R)
• apply(M, mod e) = (E \ {e} ∪ {e′}, R′), if e ∈ E

where e′ ∈ E is the result of the modification of
e ∈ E and R′ = {(e1, e2) | (e1, e2) ∈ R,
e1, e2 6= e} ∪ {(e′, e2) | (e, e2) ∈ R, e2 6= e}
∪ {(e2, e′) | (e2, e) ∈ R, e2 6= e}
∪ {(e′, e′) | (e, e) ∈ R}

• apply(M, rem e) = (E \ {e}, R′) , if e ∈ E where
R′ = {(e1, e2) | (e1, e2) ∈ R ∧ e1, e2 6= e}

• apply(M, add r(e1, e2)) = (E,R ∪ {r(e1, e2)}), if
e1, e2 ∈ E

• apply(M, rem r(e1, e2)) = (E,R \ {r(e1, e2)}), if
e1, e2 ∈ E and r(e1, r2) ∈ R.

Despite using normalized and sorted ∆-models during
configuration, there can still be conflicts between the
change operations specified in different ∆-models. A
conflict occurs if a modelling element or tuple in a relation
is added and removed by two different ∆-models, if a
modelling element is modified and removed by two dif-
ferent ∆-models or if a modelling element is modified by
two different ∆-models. This indicates that the granularity
of the ∆-models and their application conditions is too
coarse. Conflicts can be removed by splitting ∆-models
and refining them to explicitly cover the conflicting feature
combinations.

Definition 6 (Conflicts in ∆-Models): A set of ∆-
models ∆ = {∆1, . . . ,∆n} contains a conflict if for a
feature configuration f ∈ F , there are ∆-models ∆i and
∆j with i 6= j, f |= ϕi and f |= ϕj , and there exists
e ∈ E, or e1, e2 ∈ E and r(e1, e2) ∈ R, such that one of
the following holds:
• add e ∈ Opi and rem e ∈ Opj

• add r(e1, e2) ∈ Opi and rem r(e1, e2) ∈ Opj

• mod e ∈ Opi and rem e ∈ Opj

• mod e ∈ Opi and mod e ∈ Opj

A core model C = (E,R, fb) and a set of ∆-models
∆ are well-defined if for all valid feature configurations
f ∈ F , all applications of ∆-operations are defined and
there are no conflicts between any two ∆-models. Well-
definedness is a prerequisite for commutativity of model
configuration and model refinement.

V. MODEL REFINEMENT AND CONFIGURATION

Based on the formalization of the ∆-modelling ap-
proach in Section IV, model refinement of core and ∆-
models can be defined. A model is transformed to a more
detailed model by refining the contained modelling ele-
ments to models themselves, as in the example in Section
III, components are refined to class diagrams showing their
internal structure. Relations between modelling elements
are not considered for refinement, such as connections
between components are only relevant on the component
modelling level.

Definition 7 (Model Refinement): The refinement
operation refine maps every modelling element e ∈ E to
a model M such that refine(e) = Me = (Ee, Re). The
refinement M ′ of a model M = (E,R) is defined by
refine(M) = ({M ′′ |M ′′ = refine(e), e ∈ E},

{r(refine(e1), refine(e2)) | r(e1, e2) ∈ R})
The core model and all other product models can be

refined using the above definition of model refinement. In
order to refine ∆-models, the specified addition, modifi-
cation and removal operations on modelling elements and
relations have to be refined. The addition of a modelling
element is refined to a set of addition operations for the
elements and the relational tuples of the model obtained
by refining the modelling element. The removal of a
modelling element is refined to a set of remove operations
for the modelling elements and relational tuples of the
model resulting from refining the modelling element. The
modification of a modelling element is refined to a set of
addition, modification and removal operations for mod-
elling elements and relational tuples obtained by refining
the modelling element. Change operations for relations are
removed during ∆-refinement. The application condition
of a ∆-model remains unchanged such that the variability
structure is preserved. In the example in Section III, the
component diagram ∆-model (cf. Figure 4) is refined to
a class diagram ∆-model (cf. Figure 7) according to the
following definition.

Definition 8 (∆-Refinement): The refinement of a
∆-model ∆ = (ϕ,Op) is defined by refine(∆) =
(ϕ, refine(Op)) where refine({op1, ..., opn}) =
{refine(op1), ..., refine(opn)} and
• refine(add e) = {add e′ | e′ ∈ Ee} ∪
{add r(e′1, e′2) | r(e′1, e′2) ∈ Re, e

′
1, e
′
2 ∈ Ee}

• refine(rem e) = {rem e′ | e′ ∈ Ee} ∪
{rem r(e′1, e′2) | r(e′1, e′2) ∈ Re, e

′
1, e
′
2 ∈ Ee}

• refine(mod e) = {op e′ | e′ ∈ Ee} ∪
{op r(e′1, e′2) | r(e′1, e′2) ∈ Re, e

′
1, e
′
2 ∈ Ee} where

op ∈ {add, rem, mod}
• refine(add r(e1, e2)) = refine(rem r(e1, e2)) = ∅

VaMoS 2010

90

The configuration of a refined model for a feature
configuration f ∈ F is performed in three steps. First,
the original model on the higher abstraction level is
configured subject to the feature configuration f . Second,
for every modelling element e included in the resulting
product model, the refined core model restricted to the
modelling element e is configured using the refined ∆-
models restricted to the modelling element e subject to
the feature configuration f . If a modelling element e is
not contained in the core model, but introduced by a
∆-model, the refined core model restricted to the mod-
elling element e is an empty model. Third, the refined
modelling elements replace their non-refined version in
the configured original model. The result is a model
that contains models as modelling elements and relations
between these models. In the example in Section III,
a configured, refined model is a component diagram in
which the components contain class diagrams showing
their detailed internal structure. The restriction of a core
model C = (E,R, fb) to a modelling element e ∈ E is
defined by C|e = ({e}, ∅) if e ∈ E and by C|e = (∅, ∅),
otherwise. Further, we define ∆|e = {∆1|e, . . . ,∆n|e} as
the set of ∆-models only modifying element e ∈ E where
∆i|e = (ϕi, {op e ∈ Opi}) for op ∈ {add, rem, mod}.

Definition 9 (Configuration of Refined Models): Let
C = (E,R, fc) be a core model, ∆ = {∆1, . . . ,∆n}
a set of normalized and sorted ∆-models and f ∈ F
a feature configuration. Let Pf = (EP , RP , f) =
conf ((E,R), {∆1, . . . ,∆n}, f) be the configured
original model for the feature configuration f . Further,
let Me = conf (refine(C|e), ν(refine(∆|e)), f) be the
refined configured modelling element for e ∈ EP .

The refined configured model is defined by Pr =
conf ref (refine(E,R), refine(∆), f) with Pr =

({Me | e ∈ EP }, {r(Me1 ,Me2) | r(e1, e2) ∈ RP }, f)

The commutativity of model refinement and model
configuration by ∆-application constitutes the basis for the
incremental model-based development of software product
lines by stepwise refinement of core and ∆-models. The
requirement for commutativity is that the refinement of
the change operations specified in ∆-models is compat-
ible with model configuration. For addition and removal
operations, compatibility is ensured by the definition of ∆-
model refinement in Definition 8. For the refinement of the
modification operations, a local refinement compatibility
condition has to be established. This local refinement
compatibility condition requires that the result of applying
the refined modification operation to the refined modelling
element in core model is the same as the refinement of the
modelling element that has been configured on the non-
refined modelling level.

Definition 10 (Refinement Compatibility): Let e′ ∈ E
be the result of applying the modification operation mod e
to the modelling element e ∈ E. The local refinement
compatibility constraint for the operation mod e holds iff

apply(refine(e), refine(mod e)) = refine(e′)

The following theorem states that model refinement and
model configuration commute if all modification opera-
tions satisfy refinement compatibility.

Theorem 1 (Commutativity): For a feature
configuration f ∈ F , a core model C = (E,R, fc)
and a set of well-defined ∆-models ∆ = {∆1, . . . ,∆n}
and a refinement refine on the modelling elements
e ∈ E, if all modification operations mod e ∈ Opi

satisfy the refinement compatibility condition,
then it holds that refine(conf ((E,R),∆, f)) =
conf ref (refine(E,R), refine(∆), f).

Proof: By induction on the set of ∆-models and a
case distinction on their add, mod, rem operations. For
add and rem operations, the definition of ∆-refinement in
Definition 8 is used. For mod operations, the refinement
compatibility condition from Definition 10 is assumed.

Commutativity of model refinement and model con-
figuration provides that basis for an incremental model-
driven development process for software product lines.
After the initial core and ∆-models have been created to
capture the variability of the feature model, this initial
variability structure is preserved on each modelling level
by the independent refinement of core and ∆-models.

VI. CONCLUSION

∆-modelling is an variability modelling approach for
model-driven development of software product lines. Prod-
uct variability is expressed by core and ∆-models on all
modelling levels that are preserved under model refine-
ment. For a concrete development process, the semantics
of ∆-application has to be defined for the language
concepts used on each modelling level. Model configu-
ration by ∆-application can be automated, e.g., by aspect-
oriented model weaving techniques [6], [7], [13] or model
superimposition [14]. In [21], the ∆-modelling approach
has been implemented using frame technology.

For future work, we aim at providing tool support and
guidelines how to develop initial core and ∆-models for
a given feature model. This will be complemented by
modular analyses establishing conflict-freedom and well-
definedness of core and ∆-models using existing vari-
ability analysis techniques based on confluence analysis.
Besides, we want to extend ∆-modelling with explicit
conflict resolution by imposing a partial order between ∆-
models in order to avoid the normalization of ∆-models
during configuration.

Acknowledgments The author wants to thank Arnd
Poetzsch-Heffter and Alexander Worret for initial collab-
oration on the subject of this work.

REFERENCES

[1] B. Selic, “The Pragmatics of Model-driven Development,”
IEEE Software, Sept 2003.

[2] P. Clements and L. Northrop, Software Product Lines:
Practices and Patterns. Addison Wesley Longman, 2001.

VaMoS 2010

91

[3] K. Pohl, G. Böckle, and F. van der Linden, Software
Product Line Engineering - Foundations, Principles, and
Techniques. Springer, Heidelberg, 2005.

[4] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak,
and A. S. Peterson, “Feature-Oriented Domain Analysis
(FODA) Feasibility Study,” Carnegie Mellon Software En-
gineering Institute, Tech. Rep., 1990.

[5] K. Czarnecki and M. Antkiewicz, “Mapping Features to
Models: A Template Approach Based on Superimposed
Variants,” in GPCE, 2005.

[6] F. Heidenreich and C. Wende, “Bridging the Gap Between
Features and Models,” in Aspect-Oriented Product Line
Engineering (AOPLE’07), 2007.

[7] M. Völter and I. Groher, “Product Line Implementation
using Aspect-Oriented and Model-Driven Software Devel-
opment,” in SPLC, 2007, pp. 233–242.

[8] T. Ziadi, L. Hélouët, and J.-M. Jézéquel, “Towards a
UML Profile for Software Product Lines,” in Workshop on
Product Familiy Engineering (PFE), 2003, pp. 129–139.

[9] C. Atkinson, J. Bayer, , and D. Muthig, “Component-
Based Product Line Development: The KobrA Approach,”
in SPLC, 2000.

[10] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, and A. Sol-
berg, “An MDA-based framework for model-driven prod-
uct derivation,” in Software Engineering and Applications
(SEA), 2004.

[11] H. Gomaa, Designing Software Product Lines with UML.
Addison Wesley, 2004.

[12] D. Batory, J. Sarvela, and A. Rauschmayer, “Scaling Step-
Wise Refinement,” IEEE Trans. Software Eng., vol. 30,
no. 6, 2004.

[13] N. Noda and T. Kishi, “Aspect-Oriented Modeling for
Variability Management,” in SPLC, 2008.

[14] S. T. Sven Apel, Florian Janda and C. Kästner, “ Model Su-
perimposition in Software Product Lines,” in International
Conference on Model Transformation (ICMT), 2009.

[15] S. Deelstra, M. Sinnema, J. van Gurp, and J. Bosch,
“Model Driven Architecture as Approach to Manage Vari-
ability in Software Product Families,” in Workshop on
Model Driven Architecture: Foundations and Applications
(MDAFA 2003), 2003.

[16] G. Botterweck, L. O’Brien, and S. Thiel, “Model-driven
Derivation of Product Architectures,” in Automated Soft-
ware Engineering (ASE), 2007, pp. 469–472.

[17] G. Botterweck, K. Lee, and S. Thiel, “Automating Prod-
uct Derivation in Software Product Line Engineering,” in
Software Engineering, 2009, pp. 177–182.

[18] G. Perrouin, J. Klein, N. Guelfi, and J.-M. Jézéquel, “Rec-
onciling Automation and Flexibility in Product Derivation,”
in SPLC, 2008.

[19] Ø. Haugen, B. Møller-Pedersen, J. Oldevik, G. Olsen, and
A. Svendsen, “Adding Standardized Variability to Domain
Specific Languages,” in SPLC, 2008.

[20] R. Lopez-Herrejon, D. Batory, and W. Cook, “Evaluating
Support for Features in Advanced Modularization Tech-
nologies,” in ECOOP, 2005.

[21] I. Schaefer, A. Worret, and A. Poetzsch-Heffter, “A Model-
Based Framework for Automated Product Derivation,” in
Model-driven Approaches in Software Product Line Engi-
neering (MAPLE 2009), 2009.

[22] S.Trujillo, D. Batory, and O. Dı́az, “Feature Oriented Model
Driven Development: A Case Study for Portlets,” in ICSE,
2007.

[23] S. Herold et al., “CoCoME - The Common Component
Modeling Example,” in Common Component Modeling
Example, A. Rausch et al., Eds. Springer-Verlag, 2008,
pp. 16 – 53.

[24] A. Worret, “Automated Product Derivation for the CoCoME
Software Product Line: From Feature Models to CoBoxes,”
Master’s thesis, University of Kaiserslautern, March 2009.

[25] J. Rumbaugh, I. Jacobson, and G. Booch, The Unified
Modeling Language Reference Manual. Addison-Wesley
Object Technology, 2004.

VaMoS 2010

92

Using Incremental Consistency Management for
Conformance Checking in Feature-Oriented

Model-Driven Engineering
Roberto E. Lopez-Herrejon

Alexander Egyed
Institute for Systems Engineering and Automation

Johannes Kepler University Linz, Austria
{roberto.lopez, alexander.egyed}@jku.at

Salvador Trujillo
Josune de Sosa

IKERLAN Research Laboratory
Mondragon, Spain

{STrujillo,jdesosa}@ikerlan.es

Maider Azanza
University of the Basque Country

San Sebastian, Spain
maider.azanza@ehu.es

Abstract—Feature-Oriented Model-Driven Engineering
(FOMDE) is an approach that lies at the intersection of
two complementary paradigms for software construction,
Model Driven Engineering (MDE) and Software Product Line
Engineering (SPLE). MDE aims at raising the abstraction level of
application specification and automating the realization of these
abstractions down to the platform level, while SPLE focuses on
the synthesis of applications using a pre-planned set of assets. In
Feature-Orientation, features are modules that contain all assets
needed for their realization. The products of a Software Product
Line (SPL) are synthesized by composing different combinations
of features. When constructed following MDE, features also
contain metamodels, models and model transformations. In this
context, it is crucial to check that models, metamodels, and their
compositions conform to (i.e. meet all the constraints of) their
metamodels and meta-metamodels. In this problem statement
paper we describe how to use incremental consistency checking
to check this conformance. We sketch some of the potential
benefits of this approach and highlight the open questions our
work raised.

Index Terms—incremental consistency management; Model-
Driven Engineering Software Product Lines; Feature Orienta-
tion; conformance checking

I. INTRODUCTION

Feature-Oriented Model-Driven Engineering (FOMDE) is
an approach that lies at the intersection of two complementary
paradigms for software construction, Model Driven Engi-
neering (MDE) [1] and Software Product Line Engineering
(SPLE) [2]–[4]. MDE aims at raising the abstraction level
of application specification and automating the realization of
these abstractions down to the platform level with a set of
model to model and model to text transformations. On the
other hand, SPLE focuses on the synthesis of applications
using a pre-planned set of assets.

Feature-Orientation is an specific approach for constructing
Software Product Lines (SPL) [5], [6]. In this approach,
features are increments in program functionality [7]. Features
are implemented in modules that contain all assets, that is,
artifacts that they require for their realization. For example,
a feature may be implemented with UML diagrams, scripts,
XML files, configuration files, etc. The members of the SPL

are synthesized by composing different combinations of fea-
tures. Tools that implement this approach provide mechanisms
to compose these distinct artifact types in a uniform way.
For the combination of Feature-Orientation and MDE, the
features typically contain multiple models, metamodels and
transformations [8].

In this context, it is crucial to check that models, meta-
models, and their compositions conform to (i.e. meet all
the constraints of) their metamodels and meta-metamodels
respectively. The driving motivation of our problem statement
paper is describing an approach to check this conformance.

Consistency checking derives from work on Multi-View
Modeling (MVM) [9]. MVM advocates that multiple, different
and yet related models are required to represent the perspec-
tives and information needs of diverse system stakeholders
throughout the development process [10], [11]. The elements
in these distinct views have semantic relationships that must
be expressed and maintained. Consistency rules capture and
serve to enforce these semantic relationships. An example of
MVM is UML where the different types of diagrams can
represent the distinct views of a system [12]. A classical
example of consistency rule in UML, between sequence and
class diagrams, is that if a sequence diagram has a message
m whose target is an object of class C, the class diagram of
class C must contain method m.

Our work raises consistency checking beyond the traditional
MVM perspective. We show how incremental consistency
checking, a special form of consistency checking, can be
used to check conformance as described above. The key is
treating both model and metamodel composition similarly and
generating conformance rules based on the well-formedness
rules defined at the meta-metamodel. We sketch some of the
potential benefits of this approach and highlight the open
questions our work raised.

II. BACKGROUND

Our work brings together two, until now, disjoint research
areas. In this section we present the basic background of both.

VaMoS 2010

93

Fig. 1. Scenarios where model conformance is used

A. Feature-Oriented Model-Driven Engineering

Feature Oriented Model Driven Engineering (FOMDE) is a
blend of Feature Oriented Programming (FOP) [6] and MDE
that shows how products in an SPL can be synthesized in an
MDE way by composing features to create models, and then
transforming these models into executables [8]. FOP and MDE
are complementary paradigms [13] and several case studies
show the advantages of combining them [14], [15]. However,
in these cases, features were implemented using XML and they
were composed using XAK [16], that is, feature composition
was purely text-based. This work laid out the foundations for
our current research on FOMDE. The lack of conformance
checking in FOMDE captured our interest and motivated this
research.

Recent work on Domain Specific Languages (DSL) has
raised the need of reusing metamodels as features of a
SPL [17], [18]. The selection of different features produces
thus different DSLs that are tailored to particular application
scenarios. For this scenario to work properly, it is crucial to
check that the composition of metamodels conforms to the
meta-metamodel used and their corresponding models are kept
conformant when their metamodels change.

In summary, in the context of FOMDE there are three
main scenarios where checking conformance is important: i)
model conformance to metamodel, ii) conformance during
model composition, and iii) conformance during metamodel
composition. These three scenarios are depicted in Figure 1.
In this figure, m stands for model and mm for metamodel, and
the dot indicates composition.

B. Incremental Consistency Checking

There exists an extensive body of work in consistency
checking. Recent literature surveys identified over 30 ap-
proaches which rely on different formalisms to represent
and validate consistency [19], [20]. They typically have in
common that consistency is expressed via rules. A recent trend
in consistency checking is work on incremental approaches
which react to changes and evaluate only those rules on
those model elements that are affected and can potentially
cause an inconsistency. An advantage of these approaches is
reduced verification time over systems that follow a batch
strategy. A leading tool among the incremental approaches is
UML/Analyzer [21], [22]. In this tool, when a model change

Fig. 2. Pictorial view of Incremental Consistency Checking

occurs, it automatically, correctly and efficiently identifies
what consistency rules to evaluate and on what model ele-
ments. If inconsistencies are detected, they are highlighted for
the user to take an appropriate corrective action.

Incremental consistency in UML/Analyzer works as fol-
lows. First the tool loads the model to analyze. Then it
identifies the places where each consistency rule defined can
be applied. A consistency rule instance is an application of a
consistency rule, and its scope is the set of model elements
that are part of the instance.

It is common that a model element is part of the scopes of
multiple and distinct consistency rules instances. An example
of this scenario is shown in Figure 2. This figure shows
three consistency rules cm1 , cm2 , and cm3. For notational
convention we denote these constraint rules with a suffix m,
that stands for metamodel because these rules are defined in
terms of metamodel elements, and a number subscript. We
use a second subscript to denote instances of the constraint
rules. Figure 2 shows instances of these rules such as cm1,1

and cm2,1. In this figure, model elements m7 and m9 belong
to two distinct scopes.

The work of UML/Analyzer has been mostly used in the
context of UML models; however, its underlying principles
are applicable to any types of models and constraints [21],
[22]. In the next section we show how these principles are
adapted for checking model and metamodel conformance in
the context of FOMDE.

III. CONFORMANCE CHECKING

In this section we draw a connection between incremental
consistency checking and conformance checking for the three
scenarios described above and sketch the potential benefits of
this connection.

A. Conformance of Model to Metamodel

Let us illustrate the key ideas of UML/Analyzer with an
example. Consider a hypothetical SPL of questionnaires. A
typical questionnaire has a title and a brief introduction. The
questions are grouped in blocks that have a header and a
description. A block needs to have at least one question, and
for each question requires two to four answer options. Figure 3
presents the metamodel for the features of this product line as
an Ecore metamodel (a subset of UML class diagram).

VaMoS 2010

94

Fig. 3. Questionnaire metamodel

In FOMDD a feature contains models that are instances of
a metamodel. Feature F, depicted in Figure 4, is an example
in our questionnaire product line. For sake of simplicity we
use an abbreviated object model to denote instantiation of
the metamodel and annotate the relations amongst the objects
using the aggregation names of the metamodel (formedBy,
asks, and offers). This feature contains a block B1 with
two questions (A and B), each with two answer options.

Fig. 4. Feature F, model instance of Questionnaire metamodel

The key for leveraging incremental consistency checking
is using conformance rules as the consistency rules to check
against. In other words, conformance rules and consistency
rules have in common that they evaluate a portion of a model
and return a boolean result, true if the rule holds or false
otherwise. Consistency checkers can thus be used readily to
check conformance rules. In our Questionnaire one of
such conformance rules can be defined as follows 1:

Conformance rule for aggregation. Let A and B be two
classes. If an aggregation between A and B exists, an object
of type A can aggregate n objects of type B where lower ≤
n ≤ upper.

Now we describe how to check conformance of the model
in Figure 4 against this rule. In this figure, there are four
instances of the conformance aggregation rule. The first in-
stance contains Question A and its two Option answers
from offers aggregation. Similarly, the second instance

1To be more precise, the filled rhomb in this association denotes contain-
ment such that an object of type B can only be associated with one object of
type A. For simplicity, we do not utilize this part of the standard semantics
of this symbol as it is not relevant for our current exposition.

Fig. 5. Feature F with scopes

contains Question B and its two answers Option. The
third instance contains a Block and the two questions, from
asks aggregation. Finally, the fourth instance contains a
Questionnaire object and one Block, from formedBy
aggregation. In this model, the number of objects aggregated
falls within the lower and upper limits of the corresponding
rule instances, thus it conforms to its metamodel, according
to this rule.

Notice however that this general conformance rule can be
fine-tuned according to the types of the classes participating in
the aggregation and their cardinality. We call this adaptation
process constraint rule generation. For our Questionnaire
metamodel the generated conformance rules are:

∙ cm1 = Aggregation rule with A is Question and B is
Option

∙ cm2 = Aggregation rule with A is Block and B is
Question

∙ cm3 = Aggregation rule with A is Questionnaire and
B is Block

The four instances of these generated rules are depicted in
Figure 5. Thus, every feature will have an associated set of
conformance rule instances with their corresponding scopes.
In this figure the scopes are 2:

∙ cm1,1 = {A, O1, O2}
∙ cm1,2 = {B, O3, O4}
∙ cm2,1 = {B1, A, B}
∙ cm3,1 = {Survey, B1}
Our conformance rule for aggregation is a simplified exam-

ple of the well-formedness rules that are commonly defined
for meta-metamodels such as Ecore [23] and MOF [24].
Therefore, to check conformance of a model to a metamodel it
is required to define all well-formedness rules from which con-
formance rules can be generated for a particular metamodel.

In addition to the well-formedness rules, it is possible to
include constraints that are specific to a domain. An example
in our domain questionnaire would be requiring that the
maximum number of questions per questionnaire be 40 ques-
tions irrespective of how they are grouped into blocks. These

2For notational simplicity, we equate the scopes with the rule instances.

VaMoS 2010

95

Fig. 6. Feature G, instance of Questionnaire metamodel

domain-specific conformance rules are treated identically to
those generated from well-formedness rules.

In summary, the conformance of a model to a metamodel
can be checked using incremental consistency checking where
the constraints rules are: i) rules generated from the well-
formedness rules of the meta-metamodel that apply in a
metamodel, ii) domain-specific constraints defined for the
metamodel.

B. Conformance during Model Composition

Let us describe now how model conformance is checked
during model composition. Consider the feature G in Figure 6.
This feature also has a block B1 with Question B with
three new Option answers, and another Question C with
its two Option answers. It is clear from our description
above that this feature conforms to its metamodel as all
the conformance rules instances are valid. Regardless of the
technology used [25], model composition can be seen as
applying a successive set of changes to an existing model.
In our example, the composition of this second feature G to
feature F in Figure 4 adds three new options to question B,
and a new question C with its options.

The first step prior to start composition is cloning copies of
the features involved and their scopes. On these copies will
composition and conformance checking be performed. This
step is necessary because features can be used to compose
different products. In FOMDE, features are composed hier-
archically starting from the root element. Elements that have
the same name and type at the same hierarchical level are
composed together, elements that do not have a corresponding
matching element are copied along hierarchically. In our
example, elements Survey, B1 and B from feature G have
a matching element in feature F thus they will compose
hierarchically. The remaining elements in feature G are copied
along at their corresponding level.

As composition proceeds, a rule instance is re-evaluated
if a change in its scope elements is detected. Additionally,
if model elements are deleted or new ones are added, new
rule instances can be removed or created. The result of
composing our two features is depicted in Figure 7 with their
corresponding consistency rule scopes. For visual simplicity,

Fig. 7. Composed feature with scopes

the types Option of the objects of question B are omitted in
the figure.

In our example, the addition of options O5, O6, and
O7, causes a re-evaluation of rule instance cm1,2. Recall
that rule cm1 checks the aggregation between Option and
Question, such that each question has from two to four
possible answers. Therefore, this instance re-evaluation detects
a violation of this rule because Question B now has five
available options. It is important to notice that this violation
is signaled as soon as option O7 is added. This immediate
notification allows the developer to take any corrective actions
deemed necessary. A possibility is backtracking composition
to trace the source of the non-conformance.

Continuing with the composition, the addition of the new
Question C creates a new instance cm1,3 whose evaluation
meets the conformance rule. Because there was a change in the
scope of cm2,1 resulting from the addition of a new question,
this instance is also re-evaluated. Recall that rule cm2 checks
aggregations between Block and Question such that a
block has at least one question. Thus the re-evaluation of cm2,1

does not detect any inconsistencies. In conclusion, the only
non-conformance to the metamodel of the composed features
is because five options are available for Question B.

Summarizing, conformance during model composition fol-
lows the same process described in the previous section. The
insight here is considering the composition of a feature with
another as applying a set of finer-grain model changes to
another model.

C. Conformance during Metamodel Composition

The same principles of incremental consistency checking are
applicable for composing metamodels. To illustrate that, first
consider Figure 8 that shows a metamodel feature that has an
aggregation for Block to itself, and a navigable association
from Block to a new class Scale. We will compose this
metamodel with Base metamodel in Figure 3.

Let us explain how incremental consistency works when
metamodels are composed. The first consideration to keep
in mind is that a metamodel is in itself an instance of a
meta-metamodel. Thus a metamodel can be viewed as a set
of instances of meta-metaclasses. For example, using Ecore

VaMoS 2010

96

Fig. 8. Scale metamodel and feature

[23], Figure 9 shows a simplified view of the question-
naire metamodel in Figure 3. A package (meta-metaclass
EPackage) aggregates zero or more classes (meta-metaclass
EClass) in an aggregation called eClassifiers. In
turn, each EClass instance aggregates its attributes (meta-
metaclass EAttribute) and its references to other classes
(meta-metaclass EReference). Note that these references
are the aggregations between the metaclasses in Figure 3.
For example, the EReference formedBy in EClass
Questionnaire corresponds to the formedBy aggrega-
tion between metaclasses Questionnaire and Block3.

Using this perspective of considering metaclasses as in-
stances (model elements) of the meta-metamodel, we can
apply exactly the same process we followed for checking con-
formance with model composition. First, clone copies of the
metamodels and their scopes are made to apply composition
and conformance checking on them.

Two conformance rules that check aggregation, but now at
the metamodel level, can be generated. We use suffix mm to
denote these rules as they are now defined in terms of meta-
metamodel elements as follows:

∙ cmm1 = Aggregation rule with A is EPackage and B is
EClass

∙ cmm2 = Aggregation rule with A is EClass and B is
EStructuralFeature

3For simplicity the endType of the EReference is not depicted. For instance
in the case of formedBy this type is metaclass Block.

Fig. 9. Simplified metamodel view in terms of metaclasses

Fig. 10. Simplified metamodel view of Scale

In Ecore, EStructuralFeature is an interface imple-
mented by both EClass and EReference. Furthermore, we
can now identify the following instances of these rules and
their corresponding scopes in Questionnaire metamodel:

∙ cmm1,1 = {Base, Questionnaire, Block,
Question, Option}

∙ cmm2,1 = { Questionnaire, title,
introduction, formedBy }

∙ cmm2,2 = {Block, header, description,
asks }

∙ cmm2,3 = {Question, test, offers}
∙ cmm2,4 = {Option, id, answer}
Using this same perspective, the metaclasses view of Scale

metamodel is depicted in Figure 10. Metamodel composition,
performed along the lines illustrated in previous section,
modifies the scopes of the rule instances cmm1,1 and cmm2,2

(changes are underlined) and creates a new rule instance
cmm2,5 as follows:

∙ cmm1,1 = {Base, Questionnaire, Block,
Question, Option, Scale }

∙ cmm2,2 = {Block, header, description,
asks, contains, definedUsing }

∙ cmm2,5 = {Scale, name, author}
Consequently instances cmm1,1 and cmm2,2 need to be re-

evaluated, and instance cmm2,5 evaluated for a first time.
In this case these instances do not cause any conformance
violations as they meet the constraint given that a package
can have zero or more classes, and a class can have zero or
more attributes and references. In other words, the composed
metamodel conforms to the meta-metamodel.

Despite of not causing any inconsistency, the changes in
the metamodel can still trigger the generation of new rule in-
stances as new metaclasses can be added. In this example, the
addition of EReference contains causes the generation
of a new instance cm4 of the aggregation rule with A is Block
and B is Block. This generation in turn triggers a search for
instances of cm4 at the model level. In our model composition
examples we have no such case, so the checking process stops
there.

In summary, checking conformance of metamodel composi-
tion follows the same process as the case of model composition

VaMoS 2010

97

but with the additional step that changes at the metamodel
level can trigger the generation of new rule instances or the
re-evaluation of existing instances at the model level.

D. Potential benefits
Based in our experience, early conformance checking of

features by means of incremental consistency checking can
offer three major advantages when compared to that batch
checking:

∙ Consistency of modeling artifacts throughout the entire
development process, including their correctness and
well-formedness [26].

∙ Earlier identification of inconsistencies.
∙ Traceability of the origin of the inconsistency.

IV. RELATED WORK

There is extensive research on models, model composition
and SPL. In this section we shortly present those pieces of
research that most closely relate to our work.

Safe composition is the guarantee that programs composed
according to the product line constraints are type safe [27], i.e.
they do not have undefined elements to structural elements
such as classes, methods, and fields. Contrary to this paper
that focuses on checking conformance of a given product, safe
composition focuses on validating properties for all members
of a product line. Our recent work has shown how to use
UML consistency rules as the constraints to validate safe
composition in UML-based SPL [28].

There are several approaches and technologies to perform
model composition [25]. Only a few are specific to SPL. Tru-
jillo et. al motivate the need of realizing variability not only at
model level but also at metamodels and model transformations
[18]. FeatureHouse uses model superimposition to compose
basic UML models at the XMI level [29], and MATA uses
graph transformations as composition mechanisms for UML
models [30]. However, in these two approaches it is unclear
how (if at all) conformance checking is performed.

Another approach implements feature composition uses
Maude, a high-performance logical framework [31]. In this
work, feature composition is expressed in terms of rewrite
rules. Conformance checking becomes reduction according to
the rewrite rules, which in our context effectively are our
conformance rules. In other words, if a composed model
reduces to a canonical form (one that cannot be further
reduced), the model conforms, otherwise an error can be
detected. We have not investigated how this approach could
be tailored to represent arbitrary domain-specific constraints.
This issue is part of our future work.

V. OPEN QUESTIONS

In this section we sketch some of the open questions we
identified in our work, as such, they are venues for our future
work.

Living with inconsistencies. In this paper we assumed that
the composition of models and metamodels should at any-
time conform respectively to their metamodels and metameta-
models. However, there may be intermediate stages during

composition at which this assumption may not hold, but still
yield a conforming result at the end. For example, if the
composition paradigm used were non-monotonic (permitting
to remove model elements) and our features F and G were
composed with a third feature that removed one of the options
of Question B, the result would be a conforming model
in despite of the partial composition of F and G being
non conformant. This type of inconsistency is tolerable as
composition may potentially be able to ”fix” it. There may be
also cases where an inconsistency cannot be remedied. A case
from our Questionnaire metamodel would be a feature
that contains two Option objects without any associations.
This type of inconsistency is intolerable because for this
feature to be composable the Question, the Block, and the
Questionnaire the options belong to must be also defined.
Thus, living with inconsistencies [32], [33] (tolerating some
of them) also plays an important role in our work. Character-
izing, identifying and managing both types of inconsistencies
may have an impact on how we define and implement our
conformance rules.

Impact of a change. We expect changes not to be isolated.
Constraint instances may have complex relationships amongst
them in such a way that a single change may trigger a cascade
of inconsistencies for which subsequent fixes may be required.
Efficiently determining the impact of a change and computing
an order in which to fix the triggered inconsistencies may be
a crucial point for our approach to adequately scale.

Consistency at other development stages. Conceivably,
there are other scenarios where changes can also occur and
thus conformance checking may become necessary. An exam-
ple is when features, either models or metamodels, themselves
change as consequence of changes in the requirements. These
changes may themselves trigger conformance checks of the
modified models and metamodels. Another possible scenario
is when concrete products evolve and such changes must be
propagated back into the SPL architecture and its features.
In summary, we plan to study all other possible scenarios
where conformance checking may be needed and evaluate the
applicability of incremental consistency to them.

Consistencies between feature artifacts. Our paper fo-
cused on checking conformance within an artifact type, namely
models or metamodels. However, it is common that a feature
involves more than one artifact type, such as code, models,
XML files, script files, etc. Thus it is important to keep
consistency amongst the elements of a feature. Our recent
work has started to address this issue with UML artifacts [28].

Evolution direction. In our work, when changes occur at
the metamodel level, other changes can be triggered down at
the model level. However, it is conceivable that changes may
flow in the opposite direction. This means that a change com-
mitted at the model level imposes changes at the metamodel
level which in turn may trigger other changes at other instances
of the metamodel.

Safe composition. The work presented in this paper fo-
cuses on checking the conformance of one concrete product.
The goal of safe composition is the verification that certain

VaMoS 2010

98

constraints are met in all the possible configurations (allow-
able combinations of features) of a product line. However,
because SAT solvers are used for this validation, there may
be scalability issues as the size of feature models, the types of
constraints, and number artifact types increase. Knowing those
potential limitations could help provide guidance on how to
extend safe composition to address the above mentioned open
questions.

Consistency between variability space and solution
space. This goes a step beyond safe composition by not only
detecting violation of the variability at the implementation
level but also in attempting to keep consistent variability
defined in a feature model with its realization across multiple
artifacts. We believe that the intensive ongoing research in
formal analysis of feature models can provide a foundation to
address this question [34]–[36].

VI. CONCLUSIONS AND FUTURE WORK

In this paper we drew a connection between FOMDE and
incremental consistency checking. A crucial need in FOMDE
is checking conformance in different scenarios: model to
metamodel, during model composition, and during metamodel
composition. We showed that the underlying principles of
incremental consistency checking are applicable for checking
conformance in these three scenarios. The key is using as con-
sistency rules the conformance rules that are generated from
meta-metamodel well-formedness specifications or constraints
that are domain-specific.

As a first step, we plan to develop a metamodel-independent
framework to facilitate the specification of constraint rules and
their subsequent generation. We will use this framework to
evaluate our approach in industry-motivated cases studies and
address the identified open questions.

ACKNOWLEDGMENT

We thank Laura Vozmediano for her help with the ques-
tionnaires domain. This research is partially sponsored by the
Austrian FWF under agreement P21321-N15. This work is co-
supported by the Spanish Ministry of Science and Innovation,
under contracts TIN2008-06507-C02-01 and TIN2008-06507-
C02-02.

REFERENCES

[1] J. Bézivin, “On the unification power of models,” Software and System
Modeling, vol. 4, no. 2, pp. 171–188, 2005.

[2] K. Czarnecki and U. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[3] K. Pohl, G. Bockle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[4] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[5] D. S. Batory, R. E. Lopez-Herrejon, and J.-P. Martin, “Generating
product-lines of product-families,” in ASE. IEEE Computer Society,
2002, pp. 81–92.

[6] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling Step-Wise
Refinement,” IEEE TSE, vol. 30, no. 6, 2004.

[7] P. Zave, “Faq sheet on feature interaction,”
http://www.research.att.com/ pamela/faq.html.

[8] S. Trujillo, D. Batory, and O. Diaz, “Feature Oriented Model Driven
Development: A Case Study for Portlets,” in ICSE, 2007.

[9] A. Finkelstein, J. Kramer, B. Nuseibeh, L. Finkelstein, and M. Goedicke,
“Viewpoints: A framework for integrating multiple perspectives in
system development,” International Journal of Software Engineering
and Knowledge Engineering, vol. 2, no. 1, pp. 31–57, 1992.

[10] A. Finkelstein, D. M. Gabbay, A. Hunter, J. Kramer, and B. Nuseibeh,
“Inconsistency handling in multperspective specifications,” IEEE Trans.
Software Eng., vol. 20, no. 8, pp. 569–578, 1994.

[11] B. Nuseibeh, J. Kramer, and A. Finkelstein, “A framework for expressing
the relationships between multiple views in requirements specification,”
IEEE Trans. Software Eng., vol. 20, no. 10, pp. 760–773, 1994.

[12] “Unified Modeling Language (UML),” 2008, http://www.uml.org.
[13] D. S. Batory, M. Azanza, and J. Saraiva, “The objects and arrows of

computational design,” in MoDELS, ser. Lecture Notes in Computer
Science, K. Czarnecki, I. Ober, J.-M. Bruel, A. Uhl, and M. Völter,
Eds., vol. 5301. Springer, 2008, pp. 1–20.

[14] G. Freeman, D. S. Batory, and R. G. Lavender, “Lifting transformational
models of product lines: A case study,” in ICMT, ser. Lecture Notes in
Computer Science, A. Vallecillo, J. Gray, and A. Pierantonio, Eds., vol.
5063. Springer, 2008, pp. 16–30.

[15] E. Uzuncaova, D. Garcia, S. Khurshid, and D. S. Batory, “A
specification-based approach to testing software product lines,” in
ESEC/SIGSOFT FSE, I. Crnkovic and A. Bertolino, Eds. ACM, 2007,
pp. 525–528.

[16] F. I. Anfurrutia, O. Diaz, and S. Trujillo, “On the Refinement of XML,”
in International Conference on Web Engineering ICWE, 2007.

[17] J. White, J. H. Hill, J. Gray, S. Tambe, A. S. Gokhale, and D. C. Schmidt,
“Improving domain-specific language reuse with software product line
techniques,” IEEE Software, vol. 26, no. 4, pp. 47–53, 2009.

[18] S. Trujillo, A. Zubizarreta, X. Mendialdua, and J. de Sosa, “Feature-
oriented refinement of models, metamodels and model transformations,”
in FOSD, ser. ACM International Conference Proceeding Series, S. Apel,
W. R. Cook, K. Czarnecki, C. Kästner, N. Loughran, and O. Nierstrasz,
Eds. ACM, 2009, pp. 87–94.

[19] F. Lucas, F. Molina, and A. Toval, “A systematic review of UML
model consistency management,” in To appear Information and Software
Technology, 2009.

[20] M. Usman, A. Nadeem, T.-H. Kim, and E.-S. Cho, “A survey of
consistency checking techniques for uml models,” in Advanced Software
Engineering and Its Applications, 2008. ASEA 2008, 2008, pp. 57–62.
[Online]. Available: http://dx.doi.org/10.1109/ASEA.2008.40

[21] A. Egyed, “Instant consistency checking for the uml,” in ICSE, L. J.
Osterweil, H. D. Rombach, and M. L. Soffa, Eds. ACM, 2006, pp.
381–390.

[22] ——, “Fixing inconsistencies in uml design models,” in ICSE ’07: Pro-
ceedings of the 29th International Conference on Software Engineering.
Washington, DC, USA: IEEE Computer Society, 2007, pp. 292–301.

[23] D. Steinberg, F. Budinsky, M. Paternostro, and E. Merks, EMF: Eclipse
Modeling Framework, 2nd ed. Addison-Wesley Professional, 2008.

[24] OMG, “Meta Object Facility (MOF),” 2010, http://www.omg.org/mof.
[25] C. Jeanneret, “An analysis of model compostion approaches,” Master’s

thesis, Ecole Polytechnique Federal de Lausanne, 2008.
[26] F. Heidenreich, “Towards systematic ensuring well-formedness of soft-

ware product lines,” in FOSD, ser. ACM International Conference
Proceeding Series, S. Apel, W. R. Cook, K. Czarnecki, C. Kästner,
N. Loughran, and O. Nierstrasz, Eds. ACM, 2009, pp. 69–74.

[27] S. Thaker, D. S. Batory, D. Kitchin, and W. R. Cook, “Safe composition
of product lines,” in GPCE, C. Consel and J. L. Lawall, Eds. ACM,
2007, pp. 95–104.

[28] R. E. Lopez-Herrejon and A. Egyed, “Detecting inconsistencies in multi-
view models with variability,” submitted for publication.

[29] S. Apel, C. Kästner, and C. Lengauer, “Featurehouse: Language-
independent, automated software composition,” in ICSE. IEEE, 2009,
pp. 221–231.

[30] P. Jayaraman, J. Whittle, A. Elkhodary, and H. Gomaa, “Model Compo-
sition and Feature Interaction Detection in Product Lines using Critical
Pair Analysis,” in MoDELS, 2007.

[31] R. E. Lopez-Herrejon and J. E. Rivera, “Realizing feature oriented
software development with equational logic: An exploratory study,” in
JISBD, A. Vallecillo and G. Sagardui, Eds., 2009, pp. 269–274.

[32] R. Balzer, “Tolerating inconsistency,” in ICSE, 1991, pp. 158–165.
[33] S. Fickas, M. Feather, and J. Kramer, “Living with inconsistency. icse

workshop, boston, usa,” 1997.

VaMoS 2010

99

[34] D. Benavides, A. R. Cortés, D. S. Batory, and P. Heymans, “First
international workshop on analysis of software product lines (aspl’08),”
in SPLC. IEEE Computer Society, 2008, p. 385.

[35] J. White, D. C. Schmidt, D. Benavides, P. Trinidad, and A. R. Cortés,
“Automated diagnosis of product-line configuration errors in feature
models,” in SPLC. IEEE Computer Society, 2008, pp. 225–234.

[36] D. Batory, “Feature Models, Grammars, and Propositional Formulas,”
in Proceedings of the International Software Product Line Conference
(SPLC), 2005, pp. 7–20.

[37] Software Product Lines, 12th International Conference, SPLC 2008,
Limerick, Ireland, September 8-12, 2008, Proceedings. IEEE Computer
Society, 2008.

[38] S. Apel, W. R. Cook, K. Czarnecki, C. Kästner, N. Loughran, and
O. Nierstrasz, Eds., Proceedings of the First International Workshop
on Feature-Oriented Software Development, FOSD 2009, Denver, Col-
orado, USA, October 6, 2009, ser. ACM International Conference
Proceeding Series. ACM, 2009.

VaMoS 2010

100

The CVM Framework —
A Prototype Tool for Compositional Variability Management

Andreas Abele (Continental AG, DE), Rolf Johansson (Mentor Graphics, HU), Henrik Lönn (Volvo Technology, SE),
Yiannis Papadopoulos (University of Hull, UK), Mark-Oliver Reiser (Technische Universität Berlin, DE),

David Servat (Commissariat a l’Energie Atomique, FR), Martin Törngren (Kungliga Tekniska Hgskolan, SE) and
Matthias Weber (Technische Universität Berlin, DE)

Abstract—This article announces the first public release of
an experimental research tool for variability management,
called “CVM framework” and provides an overview of the
tool’s capabilities and architecture.

I. INTRODUCTION

Over the past few years, an experimental variability
management tool was developed at Technische Univer-
sität Berlin, called “CVM framework”. It was mainly
intended for the evaluation of several research approaches
developed in a number of industrial cooperations, esp.
with Daimler AG and Carmeq GmbH / Volkswagen AG
and the European research project ATESST2 (the name
“CVM” originated from one of these approaches called
“compositional variability management” [12]).

This paper announces the first public release of the
tool [4]. We provide an overview of the tool’s capabilities
(Section II) and architecture (Section III) and briefly report
on recent applications (Section IV) before concluding with
a discussion of related work and an outlook.

II. KEY CAPABILITIES OF THE FRAMEWORK

The key functionality of the tool can be divided into the
four areas of (a) basic feature modeling and configuration,
(b) multi-level feature modeling, (c) configuration links,
and (d) configuration graphs.

A. Feature Modeling & Feature Configuration

The CVM framework is heavily based on feature modeling
[9], [5]. It was an important design goal to not reinvent
the wheel by defining a novel feature modeling approach,
but instead making the tool as compatible as possible to
classic feature modeling techniques from the literature.
Its main basis was cardinality-based feature modeling of
Czarnecki et al. [6], but with several extensions from other
authors. We cannot provide a comprehensive list here, but
an excellent overview of feature modeling techniques with
a multitude of further references can be found in [14]. The
editing support for feature modeling comprises:

• essential feature editing capabilities (creating and
deleting features, moving features within the feature
tree hierarchy, ...)

• optional, mandatory and cloned features
• feature groups
• feature inheritance (often called “feature references”

in the literature)

• feature links (for simple dependencies between a
single start and a single end feature, such as “needs”
and “excludes”)

• feature constraints (for more complex dependencies
beyond the expressiveness of feature links)

• parameterized features (sometimes called “feature
attributes” in the literature)

• explorer-style tree views as well as graphical views
of the feature models

• editing of configurations of feature models
• a simple type system for checking the validity of

values of parameterized features during configuration
• customizable user attributes for project-specific meta-

information (which can be attached to most elements)

Figure 1 shows a simple feature model in both the tool’s
explorer-style model editor and the graphical feature di-
agram editor. For feature diagrams, the implementation
follows the common model/diagram pattern: for a single
feature model, several feature diagrams may be defined
that provide different views on the model. This means that
some parts of the model, i.e. some features, may show up
in a particular diagram while others do not, and if they
appear in more than one diagram, all the diagrams show
the same model objects.

As mentioned above, a configurator is provided to
support configuration of feature models, i.e. to select and
deselect their features and provide values for parameter-
ized features if they are selected. Figure 2 shows this
for the feature model from Figure 1. Optional features
are presented with a check box (e.g. CruiseControl
or Radar). The check box has three states: unde-
cided, included and excluded. For example, feature
CruiseControl is currently undecided as indicated
by the small question mark in the check box. Optional
features that are in a feature group of cardinality [1]
are presented with radio buttons to indicate that they are
mandatory alternative (e.g. Standard and Adaptive
below the cruise control). Cloned features with a max-
imum cardinality greater than 1 (e.g. Wiper[0..2])
are special in that they cannot be selected or deselected.
Instead, instances have to be created for them. To achieve
this, the user right-clicks on the cloned feature and selects
“Create instance ...” from the context menu. In the exam-
ple, two instances of Wiper were created: frontWiper
and rearWiper. The value of a parameterized feature
can be set by right-clicking the feature and then selecting

VaMoS 2010

101

Figure 1. Feature modeling in CVM: the model editor (left) and the diagram editor (right).

“Set Value ...” from the context menu. In the example,
Radar was not yet supplied with a value which is
indicated by the label “<undefined>”.

B. Multi-Level Feature Modeling

Multi-level feature modeling is an approach to pragmat-
ically manage several related product lines as a global,
composite product family without introducing a rigid
product line infrastructure on the global level [13]. It is
supported by CVM through the following core function-
alities:

• defining reference feature models
• propagating features from a referring model to a

reference model and vice versa
• finding deviations in a referring model with respect to

its reference model and determining the conformance
state of a referring model

C. Configuration Links

Configuration links are a concept for defining a relation
between two or more feature models with respect to
their configuration. In other terms, a configuration link
defines how to configure one or more target feature models
depending on a given configuration of one or more source
feature models. With this information, it is then possible
to automatically derive configurations of the target feature
models whenever configurations of the source feature
models are provided. This concept can be used to manage
variability within a complex product line by (a) defining
orthogonal views on feature models and by (b) consistently
managing the variability in component hierarchies, called
compositional variability management, [12], [11].

A configuration link is defined as a set of so-called
configuration decisions; each such configuration decision
represents a single, conditional rule on how to configure

Figure 2. The CVM configurator.

the target feature models, e.g. “if feature USA is selected in
the source feature model, then select feature CupHolder
in the target feature model”.

Providing prototypical tool support for the evaluation of
this approach was the main motivation and driver for im-
plementing the CVM framework tool. Key functionalities
for supporting configuration links are:

• essential editing of configuration links and their con-
figuration decisions (creation, deletion, etc.)

• exploring configuration decisions and their impact
on the target configuration(s) comfortably, including
special markers that highlight the areas where con-

VaMoS 2010

102

Figure 3. Editing support for configuration decisions with the configuration preview (here shown in “test-drive” mode).

figuration decisions affect the target configurations
• testing the interaction of several selected configu-

ration decisions or a complete configuration link
seamlessly while editing is in progress (“test-drive
mode”)

• basic supportive analyses to spot contradictions be-
tween the configuration decisions within a single
configuration link

• automatic configuration derivation, i.e. application of
a configuration link on existing configurations of the
link’s source feature models, resulting in one or more
target configurations

In addition to manually editing the configuration rule
captured in a configuration decision, the tool provides
means to conveniently edit this information in a special
view, called “Configuration Preview”, as presented in
Figure 3. The left side of the configuration preview shows
configurations of all source feature models of the config-
uration link while the right side shows configurations of
the target feature models.

This preview has two distinct modes of operation: an
editing mode that allows to edit configuration decisions
and a test-drive mode to test the current configuration
definition by experimentally configuring the source feature
models (left side of the preview) and verifying that the
automatically generated configuration of the target feature
models (right side of the preview) is correct.

D. Configuration Graphs

Several configuration links can be combined by using the
target feature models of a first configuration link as source
feature models to a second configuration link, and so on.
This way, it is possible to form chains and networks of
inter-related feature models, called configuration graphs
(or more precisely, directed acyclic graphs, in which nodes
represent feature models and the edges are realized by
configuration links, [11]). A configuration of such a graph,
called a graph configuration, is a set of ordinary feature

model configurations, one for each feature model / node
in the corresponding graph. The tool supports:

• definition and management of configuration graphs
of arbitrary complexity

• support for reuse of configuration graphs with a
class/instance concept

• editing and automatically deriving graph configura-
tions

It may seem as if configuration graphs are merely a
consecutive application of configuration links. However,
sophisticated modeling elements and tool support was
required to support a feasible management of such con-
figuration graphs and graph configurations, which is the
reason for treating these capabilities in a dedicated section,
here.

E. Textual Variability Specification

Most variability modeling supported by the framework can
be performed on a textual level by way of the built-in
Variability Specification Language (VSL). Figure 5 shows
the feature model from Figure 1 defined as a textual VSL
specification. A single VSL file can contain several feature
models, configuration links and configuration graphs. As
can be seen, the syntax was inspired by programming
languages such as Java, but several optimizations were
introduced to better fit the application area of variability
specification. For example, all names such as those of fea-
tures may contain special characters or white-space, which
is simply achieved by enclosing them in quotation marks
(e.g. "Body Electronics System"). The tree hi-
erarchy in a feature model can be specified using a
straightforward notation: each feature may be followed by
a comma-separated list of child-features in brackets; each
child feature may also have a list of children, and so on.
Cardinalities can be specified following the feature name
(e.g. Wiper[0..2]); the default cardinality is [0..1], i.e.
optional. A cardinality without a name denotes a feature
group (e.g. in Figure 5 below feature CruiseControl).

VaMoS 2010

103

Variability Specification
Language (VSL)

CVM Data Model
(EMF Based)

Configurator VSL Editor Model & Diagram Editor

Figure 4. The five main constituents of the CVM framework.

III. CONSTITUENTS AND ARCHITECTURE

The CVM framework is divided into five main con-
stituents, which are illustrated in Figure 4.

Data Model. The data model for variability manage-
ment is the core of the entire framework. It provides
the functionality to programmatically manage variability-
related information in memory, for example setting of an
object’s values, management of bidirectional associations
and containment, event notification. In addition, it supports
saving and loading the data to/from an XMI file.

Variability Specification Language (VSL). A formal
language to textually specify all variability-related infor-
mation supported by CVM. A parser is provided that
transforms VSL specifications to instances of the data
model. Also the reverse direction, exporting information
from the data model to VSL, is supported.

Model Editor. This is the main editor of CVM and
provides a means to interactively navigate and manipulate
feature models and other variability-related information.

Diagram Editor. Closely connected to the model editor
is the diagram editor for visual editing of feature diagrams
and configuration graphs.

Configurator. A configurator is provided to create and
edit configurations of feature models. It supports partial
configurations with undecided states and management of
entire networks of feature model configurations, called
graph configurations (cf. Section II-D).

VSL Editor. A text editor with specific support for VSL
(e.g. syntax highlighting)

The framework is designed as an Eclipse plug-in. The
data model is based on the Eclipse Modeling Framework
EMF [3], i.e. an EMOF meta-model of all information
entities of CVM was used to generate the Java code of
the data model with the EMF code generator. In addition,
several manual adaptations and extensions were required.
The graphical editing functionality was implemented using
the Graphical Editing Framework GEF [7].

IV. APPLICATIONS

The CVM framework has been applied in several smaller
industrial experiments, mainly at Daimler AG and Carmeq
GmbH / Volkswagen AG. In addition, it has been used

in lectures and various student projects at Technische
Universität Berlin. Its main application, however, is in the
European FP7 project ATESST2 [2], where it forms an
integral part of the project’s tool platform. ATESST2 is
aimed at defining a comprehensive architectural descrip-
tion language for the automotive domain, called EAST-
ADL2, comprising artifacts on several abstraction layers,
thus providing a seamless transition from early develop-
ment phases (features and requirements on vehicle level),
via intermediate levels (functional analysis architecture
and design architecture) down to implementation level.

The variability modeling approach of ATESST2 is
heavily based on feature modeling. One or more feature
models are used on vehicle level to define the variability
of the complete system, i.e. the vehicle, on a high level of
abstraction: in the so-called core technical feature model
the system’s global variability is defined with a technical
perspective; other vehicle-level feature models can be
added to realize orthogonal views on this technical vari-
ability, such as a marketing-driven packaging of variability
for immediate end-customer configuration. Configuration
links are used to realize the mapping of these orthogonal
views onto the core technical feature model, thus enabling
an automatic derivation of a configuration of the core
technical feature model from any given configuration of
the orthogonal views.

In addition, EAST-ADL2 supports variability within the
functional analysis architecture and design architecture.
This means the artifacts on these levels can be defined
in variable form, mainly by marking individual elements
as optional. Configuration graphs, as presented in Section
II-D above, can then be used to manage the variability in
these artifacts all across the system’s component hierarchy.
In the end, CVM’s graph configuration functionality then
provides a means to derive an entire system configuration
from given configurations of the vehicle level feature
model(s).

EAST-ADL2 and CVM are also being applied in the
European project HAVEit [8] to model the architecture of
various advanced driver assistance functions, such as an
automatic queue assistance (AQuA) and a temporary auto
pilot (TAP).

VaMoS 2010

104

1 featureModel BodyElectronicsFM {
2 "Body Electronics System" (
3 CruiseControl (
4 [1] (
5 Standard,
6 Adaptive (
7 Radar : float[16.38..*] = 24.0
8)
9)

10),
11 Wiper[0..2] (
12 Constant[1], // mandatory
13 Adaptive (RainControlled)
14)
15);
16

17 link Radar < excludes > Wiper.Adaptive;
18 }

Figure 5. A sample VSL specification.

V. RELATED WORK —
OR: YET ANOTHER FEATURE EDITOR ?

There already exist several tools that provide feature edit-
ing functionality, available both as commercial products
(e.g. pure::variants [10]) as well as in the form of research
prototypes (e.g. CaptainFeature and FMP [1] or XFeature
[15]). It therefore only makes sense to come up with a new
feature editing tool if the implementation effort is justified
by factual necessities.

The primary motivation for implementing the proto-
typical CVM framework with its own feature editor was
the fact, that the feasibility of the underlying concepts,
especially of multi-level feature modeling and of config-
uration links, is closely linked to how they are embedded
in the overall feature-editing facility and it was therefore
necessary to experiment with different forms of editing
functionality. In addition, when building on an existent re-
search demonstrator there would always be the risk that its
development is broken off or that the team working on the
demonstrator decides to introduce fundamental changes
to the tool’s architecture or concepts which could lead
to irreconcilable conflicts with assumptions made in the
own project. Finally, building basic editors for your own
newly introduced domain specific methodologies became
a lot easier thanks to latest achievements in model driven
development, for example the Eclipse Modeling Frame-
work (EMF), the Graphical Editing Framework (GEF),
and associated projects.

VI. DISCUSSION AND OUTLOOK

Though not intended for application in mission-critical
projects, the CVM framework as presented in this article
may be of interest for use in teaching or other experimental
applications; also the diagramming functionalities might
prove useful when drawing models for presentations or
publications. The tool is available for download from [4].
In the future, we will continue to use the tool in our own
projects and will extend and adapt it accordingly.

Acknowledgments. The research leading to the CVM tool as
presented in this article was partly supported by a research
scholarship of Daimler AG and received funding from the
European Community’s 7th Framework Programme under grant
agreement no. 224442.

REFERENCES

[1] Michal Antkiewicz and Krzysztof Czarnecki. FeaturePlu-
gin: Feature modeling plug-in for Eclipse. In Proceedings
of the 2004 OOPSLA Workshop on Eclipse Technology
eXchange (ETX 2004), pages 67–72. ACM Press, 2004.

[2] ATESST Project Web-Site, 2008. www.atesst.org.

[3] Frank Budinsky, David Steinberg, Ed Merks, and Raymond
Ellersick. Eclipse Modeling Framework. Addison Wesley,
2003.

[4] CVM-Framework Project Web-Site, 2009.
www.cvm-framework.org.

[5] Krzysztof Czarnecki and Ulrich Eisenecker. Generative
Programming. Addison-Wesley, 2000.

[6] Krzysztof Czarnecki, Simon Helsen, and Ulrich Eisenecker.
Formalizing cardinality-based feature models and their spe-
cialization. Software Process: Improvement and Practices,
10(1):7–29, 2005.

[7] Eclipse Foundation Web-Site, 2008. www.eclipse.org.

[8] HAVEit Project Web-Site, 2009. www.haveit-eu.org.

[9] Kyo C. Kang, Sholom G. Cohen, James A. Hess,
William E. Novak, and A. Spencer Peterson. Feature-
oriented domain analysis (FODA) – feasibility study. Tech-
nical Report CMU/SEI-90-TR-21, Software Engineering
Institute (SEI), Carnegie Mellon University, 1990.

[10] Pure-Systems GmbH Web-Site, 2008.
www.pure-systems.com.

[11] Mark-Oliver Reiser. Core concepts of the Compositional
Variability Management framework (CVM). Technical
Report, no. 2009-16, Technische Universität Berlin, 2009.

[12] Mark-Oliver Reiser, Ramin Tavakoli, and Matthias We-
ber. Compositional variability. In Proceedings of the
42nd Hawaii International Conference on System Sciences
(HICSS-42). IEEE Computer Society Press, 2009.

[13] Mark-Oliver Reiser and Matthias Weber. Multi-level feature
trees – a pragmatic approach to managing highly complex
product families. Requirements Engineering, 12(2):57–75,
Apr 2007.

[14] Pierre-Yves Schobbens, Patrick Heymans, Jean-Christophe
Trigaux, and Yves Bontemps. Generic semantics of feature
diagrams. Computer Networks, 51(2):456–479, 2007.

[15] XFeature Feature Editor Web-Site, 2008.
www.pnp-software.com/XFeature/home.html.

VaMoS 2010

105

VaMoS 2010

106

Conflict Resolution Strategies during Product Configuration

Alexander Nöhrer

Johannes Kepler University

Institute for Systems Engineering

and Automation (SEA)

Linz, Austria

alexander.noehrer@jku.at

Alexander Egyed

Johannes Kepler University

Institute for Systems Engineering

and Automation (SEA)

Linz, Austria

alexander.egyed@jku.at

Abstract—During product configuration, users are prone to

make errors because of complexity and lack of system

knowledge. Such errors cause conflicts (i.e., incompatible

choices selected) and current state-of-the-art configurators

require users to undo earlier decisions made or restart the

decision process altogether. This paper discusses these and

other conflict resolution strategies; even ones that allow users

to introduce conflicts and solve them at a later time of their

choosing. This is analogous to the notion of living with

inconsistencies which is not only tolerated but deemed

necessary in modeling. We will discuss that allowing conflicts

to exist during the configuration process (living with conflicts)

is likewise beneficial during the configuration process because

it is easier to resolve conflicts at a later time when the user’s

intention is better understood (i.e., more input was provided).

However, the dilemma with living with conflicts is that

traditional reasoning mechanisms become inadequate. For

example, it is common during configuration to eliminate

choices of future decisions (unanswered questions) based on

decisions that have already been provided and we will discuss

how to continue doing so in the presence of conflicts.

Furthermore, we will discuss that understanding the order

(history) of decisions made is beneficial for better resolving

conflicts later.

Keywords-Product Line Engineering; Formal reasoning;

User Guidance

I. INTRODUCTION

User guidance during product configuration is perceived
to be a straightforward activity where a user answers a set of
pre-defined questions, usually by selecting among their
choices. For example, an online laptop configurator is such a
system. It typically has predefined questions for building a
laptop, each question with a predefined set of choices (e.g.
RAM 4GB or 8GB).

Without detailed expert knowledge, users are confronted
with the exponentially complex task of navigating among
interdependent choices and their implications without
explanations. It is state-of-the-art to support users by asking
questions in a predefined order and presenting only those
choices of the remaining questions that are still available [1].
For example, after selecting a 32-bit operating system for the
laptop, the 8GB RAM choice becomes unavailable. Initially
all choices are available, these are then incrementally
reduced as the user answers questions (decides on a choice).

Current approaches to product configuration are able to
restrict user choices based on decisions already provided, as
for instance covered in [2-4] and other commercial and
research prototype configurators. However, if the
configurator does not support conflicts and a desired choice
is already eliminated then the user has only one option: undo
previous decisions and trying alternative combinations that
might be acceptable without knowing whether the
alternatives will lead to such dead ends again! For example,
once the user encounters that the 8GB RAM choice is not
available, then this requires undoing the operating system
choice. However, without domain knowledge this would be
hard to guess. Moreover, the user might be uncertain as to
whether changing the laptop type would resolve the problem
also. This leads to exponentially increasing combinations on
how to resolve such conflicts. Without good tool support,
users will find it very hard indeed to navigate this jungle of
questions and choices – particularly, if the user is not an
expert user which is the case in most situations.

To help the user in this complex conflict resolution task,
for example the works by [5] could help identify those
decisions that are in conflict with a desired choice. Only
these decisions must be revisited (i.e., undone) which is more
efficient than revisiting all decisions. We can think of such
an approach as a selective undoing of conflicting decisions to
be used at the time where a desired choice is not available.
While such an approach reduces the complexity of the
problem, it does not avoid the fundamental problem: the user
still needs to navigate alternative choices of those questions
in the hopes of identifying those that do not eliminate the
desired choice. Moreover, in the case where multiple,
alternative options exist on how to resolve the conflict; the
user has to make a suboptimal decision of which answer to
undo. A decision is suboptimal because the undoing would
not consider future user decisions for a more optimal
reasoning.

To avoid making suboptimal decisions, the alternative is
to resolve conflicts at the end – after all questions have been
answered. For instance the approach by [6] advocates such
an alternative by helping identify conflicting decisions at any
point in time, to find the one valid (partial) configuration that
closest matches the desired decisions (valid configuration
with minimal deviation from the user selected configuration).
Such an approach allows users to select conflicting choices.
However, the disadvantage of resolving conflicts at the end

VaMoS 2010

107

o

o

o

o
x

x

x
o

x

S0:

x

o o

Figure 1. Normal working mode.

is that users then lose the ability to have choices reduced
automatically and incrementally as answers are provided –
an important feature discussed earlier. This downside exists
because existing reasoning engines (e.g., Theorem proofing
to check for satisfiability also known as SAT solvers [7]) do
not readily function in the presence of contradicting
information. The user is on his/her own which may be ok for
the choices the user wanted to have despite the conflicts, but
unnecessary for the other choices where multiple choices
would have been acceptable. Moreover, reasoning as it is
currently done, ignores the order in which questions are
answered (and conflicts are encountered) which we will see
later weakens the kinds of analyses we can do.

The ideal solution would be one that allows users to
select conflicting choices, however, still supports
incremental reasoning, such as the elimination of choices.
This requires reasoning in the presence of conflicts. This is
not unlike software modeling where reasoning in the
presence of inconsistencies is not only tolerated [8] but even
advocated as a normal way of life [9]. This paper discusses
our approach of living with conflicts during product
configuration. For completeness, we describe all possible
conflict resolution strategies, from simple ones where living
with conflicts is not necessary up to complex ones, which
require living with conflicts. All of them are useful and
suitable in different situations of the configuration process.
All of them have a right to exist.

The main contribution of this paper is the ability to
reduce the remaining choices of questions despite the
presence of conflicts because this aspect is new and novel
(i.e., not covered in related work). This is done by
conservatively excluding offending decisions from the
reasoning core and continuing reasoning with the subset of
non-conflicting decisions. Another contribution is the use of
the history of decisions made (the order in which questions
are answered) as meta information for identifying the
offending decisions. In essence, if a user desires a choice and
accepts introducing a conflict, then this choice must be more
important to the user than some previous decisions. Our
approach makes use of this knowledge which is another
reason why it is beneficial to still have the ability to reduce
choices in the presence of conflicts to deal with multiple
conflict situations. The history thus gives insights on what
the user’s intentions are while he/she is still configuring a
product. Depending on these intentions different strategies
can be utilized to resolve conflicts.

This paper is structured as follows: In Section II we
describe the scenario and problem we address. This is
followed by the vision of how we want to tackle the problem
in Section III. In Section IV we discuss the state-of-the-art
and related work. In Section V we describe in detail how our
vision can be realized. The bigger picture is discussed in
Section VI. Finally we draw a conclusion and give an
outlook to future work in Section VII.

II. SCENARIO AND PROBLEM

During product configuration the preferred working
mode is to answer questions by sequentially iterating over
features until decisions on all variation points are made.

Since there are often dependencies among these questions
(variation point, or feature), answering a question may affect
other questions: it may enable them, it may reduce some of
their choices, and it may even answer or eliminate them.

As a real example for a decision-oriented product-line we
investigated the laptop configuration system on the DELL
website [10] (during the period of February 9

th
 till February

12
th

 2009) and reverse engineered its product-line model. For
illustration purposes we picked three questions about the
Screen Resolution, the Screen Size, and whether a Webcam is
integrated into the screen. The choices for each question
range from more complex enumerations (e.g. WXGA
1280x800, WUXGA 1920x1200, XGA 1024x768, etc. for the
Screen Resolution) to a simple yes or no (for the Webcam).
In this model, many relations between questions exist;
relations can also be described as dependencies and
constraints respectively. For example since no laptop with a
12.1″ Screen Size and a WUXGA Screen Resolution exists,
these two decisions would not be compatible and result in a
conflict. This and other relations are included in the model
together with the choices.

Current state-of-the-art has ample tool support for
eliminating choices that are no longer available after a user
decision (an answer to a question). In our example this
would mean, that the decision WUXGA for Screen
Resolution would eliminate 12.1″ as a Screen Size amongst
other effects. As a result of these eliminations, a question
may even be answered automatically, if all its choices but
one are eliminated. Figure 1 S0 depicts this desired
configuration process. It represents a decision tree (flipped
sideways) where the big circles represent the decisions made.
The leafs at each level represent the alternative choices that
were available, but were not chosen by the user (o) or the
alternative choices that were eliminated due to earlier
decisions and their effects (x) – and thus were not available
to the user at the time the question was being answered. The
cone indicates the fact that the more questions the users has
answered, the closer the user is to an actual configuration.
When the last question is answered then the system is fully
configured (and all variability is resolved). The cone thus
denotes the number of possible configurations, which gets
reduced the more questions are answered. As long as users
make no decisions that conflict with earlier decisions, this
approach works very well and is also well supported in [2,
11].

VaMoS 2010

108

I
o

o

o

o
x

x

o

xx

o o

o

Figure 2. Vision.

During the configuration process, users lacking precise
system knowledge may discover at one point that a choice
they desire to have is no longer allowed anymore because of
earlier decisions – meaning the tool eliminated a desired
choice because of dependencies. At this point in the
configuration process several aspects come into play:

� Users may want an explanation why the choice is no
longer available (and perhaps desire to reconsider earlier
decisions made).

� Users may want to continue configuring the product and
resolve the problem later.

Note, the DELL example is quite analogous to software
engineering product lines which we also studied [12]. This is
a small instance of a larger engineering challenge. Until a
few months ago, DELL laptops could only be configured
through a pre-defined order of questions at a predefined
starting point (e.g., what type of laptop). Recently, DELL
changed this to allow multiple starting points by means of
filtering their products according to specific criteria (e.g.,
memory, screen size). This filtering seems not to work in
every case, and not to be exact. This points to software
engineers maintaining this feature independently. Also,
DELL follows a rather simplistic and unsatisfactory (but
easy to implement) notion of living with conflicts. Choices
are not eliminated – analogous to the Continue Manually
strategy discussed later in Section V.A.2)a). Clearly,
software engineers facing similar problems to the DELL
configuration system would benefit from our approach to
allow arbitrary starting points and still being able to reason in
the presence of conflicts.

III. VISION

Our general vision is to guide and support users but also
engineers in situations that cannot be automated. This
guidance should be systematic, non intrusive and most
importantly allow users the highest degree of freedom,
meaning:

1) Users are allowed to make decisions in any order (if so

desired).

2) Users are allowed to resolve conflicts at any time of

their choosing.

3) Users should not be bothered with questions that can be

answered through reasoning, meaning the interaction

should be reduced to the necessary minimum.

Of course, the users should continue to benefit from the

kinds of automations they expect despite these freedoms –
for example, still eliminating choices that are no longer
available based on previous answers or in reducing the
needed user/engineer input to a minimum [12]. Finally, no
additional annotations should be required from the user. In
other words, the user should not be subjected to providing
input that goes beyond what is traditionally done during
product configuration.

To accomplish those goals we are going to tailor a
reasoning engine to support reasoning in the presence of
conflicts and we are going to use timeline information of the
configuration process itself (when happened what). Both
concepts have not been used before to resolve configuration
errors, to the best of our knowledge. This will enable us to
apply different strategies according to different assumptions
in combination with the current state in a configuration
process – all of which we will describe in detail in the next
section.

This work also builds a bridge to the community that
works on the problem of living with inconsistencies. Without
a similar notion of “living with conflicts”, users would not be
allowed to introduce conflicts or would be forced to fix them
right away, which are both situations that are not always
desirable. The conflict resolution strategies emphasized in
this paper are thus strategies where conflicts are tolerated to
some degree. This implies that users must be allowed to
create conflicting situations.

Our envisioned optimal configuration process is shown in
Figure 2, which illustrates the introduction of a conflict into
the normal working mode. The I denotes the decision that
introduced the conflict (inconsistency) and the shaded circles
represent the decisions that I is in conflict with. Again the
cones denote the number of possible choices left to choose
from, without violating any constraints (which is analogous
to how close the user is to a configuration). As a result of
getting closer to a configuration the user’s intentions get
more evident and could thus be used as a basis for reasoning.
Also if users choose to continue making decisions before
resolving the conflicts, the tool should still support them.
This support should be realized by eliminating choices of the
remaining questions based on the previous answers that are
not involved in the conflict. As a consequence, the
configuration process is still able to detect new conflicts.
Since conflicting answers are no longer used to eliminate the
choices of remaining questions, there are likely more choices
available. The cone after a conflict is thus bigger again.

In the following, we will discuss resolution strategies for
conflicts. As an example for such a conflicting situation we
will build on the DELL example discussed earlier -
specifically three decisions. The first decision is 12.1″ as a
Screen Size, the second XGA 1024x768 as a Screen
Resolution, and the last yes for Webcam. The problem with

VaMoS 2010

109

those three decisions is that DELL does not sell a laptop
fulfilling all three decisions. Only laptops with any two of
those decisions are sold. The Vostro 1310 with a Webcam
and XGA Screen Resolution, the Inspiron Mini 12 with a
Webcam and 12.1″ as a Screen Size, and the Latitude E4200
with 12.1″ as a Screen Size and XGA Screen Resolution. So
assuming the user has not answered the question about the
laptop Model yet, the Latitude E4200 should be excluded
because it has no Webcam. Furthermore the decision whether
it should be the Vostro 1310 or the Inspiron Mini 12 Model
(other available models are left out for brevity), would in fact
point to the real conflict in the configuration.

IV. STATE OF THE ART

Currently different technologies exist to support the
proposed normal working mode; but also to detect, explain
and fix conflicts. To enable the normal working mode a few
key questions need to be answered:

1) What are the immediate effects of a decision and the

elimination of a choice respectively?

2) What are the ripple effects of a decision and the

elimination of a choice respectively?

Once the system is modeled as a constraint satisfaction

problem (CSP), these effects can be calculated with SAT- or
CSP-Solvers and used for eliminating conflicting choices
[11]. Translating configuration problems/feature models/
decision to CSPs is solved and described for example in [13].

As soon as the user leaves the normal working mode and
introduces a conflict, other approaches are needed in addition
to the checking of satisfiability. With a SAT-Solver conflicts
can be detected as a result of the system not being satisfiable
anymore, but normally it is not possible to explain where the
conflict is coming from or even how many conflicts there are
in one configuration. As a consequence different
technologies are needed to detect/explain/fix a conflict.

For detecting and explaining conflicts in feature models
abductive reasoning can be used as described in [5]. In the
UML modeling world Egyed [14] proposed a method for
instant checking and as a result detection of inconsistencies
(can also be seen as a conflict). Furthermore this approach
also implicitly explains why an inconsistency occurred, by
pointing to the consistency rules that were violated.

Egyed also proposed methods for fixing inconsistencies
in UML models [15, 16]. This technology is able to identify
the concrete model elements that are violating a given
consistency rules. Applied to our work, model elements are
our questions and consistency rules are the relations that
trigger conflicts. We believe that this technology can be used
to efficiently and correctly identify offending question in
case of a conflict. White et al. proposed a method for
diagnosing product-line feature models in [6] that in addition
proposes minimal solutions to the user. Felfernig et al. also
proposed methods for resolving conflicts or as they call it:
computing reconfigurations [4]. These technologies are very
useful but for our approach we are going to need more than
one or several solutions. One single solution or even a few

different solutions almost never actually involve changes in
all decisions that are involved in the conflict. Since our
vision is to resolve the conflict with new decisions and
reason about choices of yet not made decisions, knowing
only a few solutions (not all decisions involved in the
conflict) is not enough. Including decisions involved in the
reasoning about future decisions would bias the results.

In the field of SAT-Solvers minimal solutions can be
obtained by searching for a minimal unsatisfiable subset
(MUS) of a CNF formula [17]. With the help of such a
MUS, decisions that have to be changed to get to a valid
configuration can be easily identified. Identifying the
maximum number of satisfied constraints, and CNF clauses
respectively, in a conflicting configuration is also a
possibility. This can be achieved for example with
algorithms that solve the Maximum Satisfiability problem
(Max-SAT) [18] or solutions to over-constrained Constraint
Satisfaction Problems [19]. But again the problem is that not
all the decisions involved in the conflict are necessarily
identified with these approaches. Nevertheless those
technologies are useful for resolving conflicts and are part of
the resolving strategies described in the next Section, but not
applicable for our envisioned working mode.

As mentioned in the vision in Section III to ensure that
users have the highest degree of freedom depends on two
things. With regard to the first point that our current work
[12] describes how to order questions so that the user input
gets minimized without imposing the order onto the user.
The order is determined automatically based on effects
decisions would have on other questions. This is an
incremental process that happens after each decision made
by users. In addition to supporting users choosing the next
question, engineers also profit from this approach as they do
not need to think about an optimal order during modeling.
But engineers can influence the outcome of the proposed
order through special relations if they wish to do so.

V. CONFLICT RESOLVING STRATEGIES

In this paper, we keep the resolving strategies simple and
focused on product configuration, but we believe that the
basic strategies discussed here also apply to more general
user-guided scenarios. The most important concept that we
are using is the history of user decisions, as we mentioned
earlier. The pieces of information the sequence reveals are
very important to us and need in our opinion to be
considered to effectively find solutions on how to fix
conflicts. Moreover, automatically made decisions (or
eliminated choices) should not be considered as important as
user made decisions when taking the sequence and history of
decisions into account.

Next we describe the different strategies. First and
foremost, we must distinguish two basic cases:

1) No valid configuration exists: this happens when the

user configures a product that in this manner does not

exist. Eventually a conflict is found which reveals this

problem. This problem can only be fixed by identifying a

valid configuration that is “close” to the intent of the

VaMoS 2010

110

I

I

S1:

S3:

IS2:

Figure 3. Fix right away strategies.

user. The works by White et al. [6] solved this problem

with respects to a minimal solution so we do not address

it here.

2) A valid configuration exists but a conflict was

encountered. This is possible if a previous question was

answered erroneously or if the configuration process

“forced” the user to answer an earlier question without

the user understanding the true implications of the

choices. As a consequence, a valid solution does exist,

albeit some of the questions need to be answered

differently.

Note that the two cases are similar in that both find a

conflict. The difference is simply in the argument whether an
error was made earlier that needs to be fixed (case 2) or
whether no error was made and the desired configuration is
simply not available (case 1). In case 1, a heuristic needs to
be explored to find a “close enough” solution the user might
be satisfied with (even if not desired quite as such). In case 2,
we have a clear error that must be identified and fixed. No
heuristics, no approximations are necessary. We will mostly
focus on case 2 in section A below. Case 1 will be briefly
discussed in section B.

A. Identifying the Error in a Conflicting Configuration

1) Fix right away: At the exact moment the user

introduces a conflict into the system by selecting a choice

that has been eliminated through some relation; a fixing

strategy can be applied to return the configuration to a

consistent state immediately. Fixing a conflict right away

ensures that the model stays consistent and never contains a

conflict (no reasoning in the presence of conflicts is

necessary). It is fairly simple to realize and handle with

reasoning engines, since the knowledge base stays

consistent. Different strategies to fix a conflict right away

are illustrated in Figure 3, where the same notation is used

as in Figure 2, for sake of brevity the alternatives choices

for the decisions and cone are left out. To illustrate the

different strategies we again use the example given in

Section II. The shaded circles represent the decisions 12.1″

as a Screen Size and XGA 1024x768 as a Screen Resolution.

The I represents the decision Webcam yes, the other white

circles represent other decisions that are not conflicting with

each other. Such decisions could be for examples about the

CPU, RAM, hard disk, and other laptop components. Next

the strategies are described in detail:

a) Single Undo: The simplest way to fix a conflict and

return to normal working mode is to retract the decision that

caused the conflict as illustrated in Figure 3 S1. The user is

told to try something else instead. Often this is not desired

by the user since he/she wants the offending choice. In a

more general modeling scenario it could also be the case

that a different developer is continuing the work on a model

he is not completely familiar with; in such a case Undo

might not be such a bad idea. In approaches that do not care

about the sequence this could also be the solution identified

as the minimal solution, since it typically is less effort than

changing other conflicting decisions. Applied to our

example this would mean retracting the decision Webcam

yes which certainly would resolve the conflict but may not

be desired.

b) Multiple, Sequential Undo: Assuming the decision

that caused the conflict is important to the user and therefore

correct, the problem must be an earlier decision. To find the

root of the problem the simplest way is to retract the given

decisions until the desired choice for the most recent

decision is available. This could also imply retracting

decisions that did not contribute to the conflict as illustrated

in Figure 3 S2 (unshaded circles), which is not desirable. In

addition to this it could be the case that it is sufficient

enough to retract only one of the conflicting decisions.

Multiple, sequential undo would retract the most recent one

first which could fix the conflict but may not be the desired

one. This is also the case in our example, since retracting

either the Screen Size or the Screen Resolution would be

sufficient to resolve the conflict, which one gets retracted

would depend on the order the decisions were made in.

c) Selective (Multiple) Undo: To avoid retracting valid

decisions that do not contribute to the conflict, the involved

decisions need to be identified. This can be accomplished

with abductive reasoning mentioned earlier (Section IV).

After the responsible decisions are identified they can be

retracted directly as illustrated in Figure 3 S3. This approach

helps reducing the needed user input compared to the

multiple, sequential undo approach (obvious valid decisions

do not have to be made more than once). Nevertheless in

situations where the desired choice is excluded because of

the combination of other decisions, it is not that simple.

Retracting one decision or the other could be sufficient,

however without further information this cannot be decided

automatically. Either all participating decisions or randomly

selected among them are retracted, or the user has to be

asked which one he/she wants to retract – a question the

VaMoS 2010

111

user may not be able to answer correctly! Again this

situation can also be found in our example, since retracting

either the Screen Size or the Screen Resolution would be

sufficient to resolve the conflict, but this cannot be

automatically decided. Selecting one of those decisions

randomly or both of them is not a desirable solution. As

mentioned above also asking the user about which decision

to retract might not be the best thing to do.

The “fix right away” strategies are thus valid but often
not desirable. However, in the absence of reasoning in the
presence of conflicts, they are the only options available. The
following “allow conflicts” strategies present additional
options by living with conflicts:

2) Allow Conflicts: Instead of fixing a conflict right

away, it is more beneficial to let the user answer more/all

questions. The more information is collected, the better any

reasoning we plan on using works. This additional

information may, for example, help in deciding between two

alternative options for resolving a conflict. It should be the

user’s decision when he/she wants to resolve the conflict.

Different strategies to continue the configuration process

with a conflict are illustrated in Figure 4, where again the

same notation as in Figure 2 is used. These strategies are

described in detail here:

a) Continue Manually: Since reasoning with conflicts

is hard, the simplest way to continue the configuration

process is to let the user continue answer questions without

such reasoning. However, without reasoning, the user no

longer benefits from knowledge of how choices are affected

by decisions; i.e., what choices are still valid as illustrated in

Figure 4 S4. The negative effect would be that the user is not

guided through the remaining questions and as a

consequence has to memorize the constraints limiting the

product configuration options. This is realistically not

possible and unless the user is an expert user, this resolution

strategy leads to follow-on conflicts where the user un-

intentionally makes additional errors. For any reasonably

complex system, asking the user to configure a system

without automated guidance is a recipe for failure.

b) Continue with Trust: Continue with trust means, that

assumptions are made on how much certain answers

provided by the user can be trusted. For example, the

decision that introduced the conflict is a decision that could

be trusted to be important to the user – and perhaps even to

be final. After all, if a choice is no longer available and the

user insists on selecting that choice then the user states that

this choice is a “must have”. Obviously, all decisions made

earlier that are participating in the conflict could thus be

considered less trustworthy. Based on this implicit trust

(implied through the order in which questions were

answered), the remaining decisions could still be reasoned

about – at the very least to conservatively reason about

which remaining choices to exclude. With this approach the

user is still guided through the remaining questions and

informed about decisions that would cause new conflicts as

illustrated in Figure 4 S5.

The last strategy S5 Continue with Trust thus is the

strategy that fulfills all our requirements presented in our
vision in Section III. Applied to our example this would
mean: Assuming the first decision was about the RAM, the
second 12.1″ as a Screen Size, the third XGA 1024x768 as a
Screen Resolution, and the fourth introducing the conflict yes
for Webcam. The next question could be about the laptop
Model. Since reasoning occurs based on implicit trust the
Latitude E4200 would be eliminated since it has no Webcam.
In addition the remaining choices Vostro 1310 or the
Inspiron Mini 12 would help to locate the error, since the
Vostro 1310 is in conflict with 12.1″ as a Screen Size too and
the Inspiron Mini 12 is in conflict with the XGA Screen
Resolution. As required by our vision the requirement that
the user can continue making decisions without resolving the
conflict is fulfilled. He/she was even supported in doing so
through the elimination of choices that would introduce new
conflicts and finally the follow up decisions helped in
resolving the conflict by pointing to the error.

In addition to the implicit trust described in the Continue
with Trust section, trust could also be based on user queries:
As mentioned in the Undo section, in more general scenarios
different users can be involved in making decisions. In such
cases it could be interesting to ask the user different
questions to get a better feeling of what decisions to trust.
These questions could range from high-level questions like:
How familiar are you with the given model on a scale from 1
to 5? to low-level questions like: Select the decisions that are
important to you (and thus can be trusted) from the list of
conflicting decisions. This idea has yet to be elaborated and

I
o

o

o

o
x

x

o

xx

o o

I
o

o

o

o
x

x

o
o o

o

o
o

S4:

S5: x

Figure 4. Allow conflicts strategies.

VaMoS 2010

112

tested to work out the details. But we think that it could
provide useful information and help to assist users even
better. In any case the decisions that can be trusted to be
valid are used for a conservative reasoning process just like
in the described in the strategy.

B. Identifying a Suitable Alternative

In case the assumption that a solution exist is wrong,
meaning that the conflict cannot be resolved with the user
satisfied, different strategies have to be exercised to guide
the user to an acceptable solution. The details of these
strategies have yet to be worked out as well, but the main
ideas to get to nearest solution are:

Users can weight their decisions according to the
importance to them. To avoid additional user input another
possibility would be to somehow automate the weighting
according to the decision history. With the help of such
weights an optimal compromise could then be found via
algorithms like the ones used to solve the Knapsack problem
[20]. Of course also less complex solution, like finding the
nearest solution as described by White et al. [6] or Felfernig
et al. [4], could be sufficient.

VI. USER GUIDANCE – THE BIGGER PICTURE

Indeed, looking at the bigger picture, our vision is to
provide such guidance not only to product configuration but
also to design modeling and traceability management. We
discuss in [12] that the user guidance problem during product
configuration is not that different from the user guidance
problem elsewhere. For example we want to use
technologies developed in this modeling scenario also for
modeling with the UML in the context of semantic
constraints to ensure different UML views of a system to be
coherent [15].

VII. CONCLUSIONS AND FUTURE WORK

In this work, we presented our vision of user guidance for
model scenarios, especially product configuration. We
described strategies of how to manage and resolve conflicts
during the configuration process, which we hope will also be
applicable for UML and other modeling scenarios. These
strategies are used for resolving conflicts during the
configuration process, the reasoning occurs incrementally
and is refined with every decision users make.

Once we have evaluated and validated these concrete
strategies for the product configuration scenario and
demonstrated that they are effective, we are planning to
apply our techniques to UML modeling scenarios. During
this transition we also plan to refine the roughly outlined
strategies for Trust based on user queries and Identifying a
Suitable Alternative. Open issues that also need to be
investigated are how to handle several independent conflicts
during the configuration process and how these strategies
could be applied to a multi-user configurator.

ACKNOWLEDGMENT

This research was funded by the Austrian FWF under
agreement P21321-N15.

REFERENCES

[1] D. Dhungana, R. Rabiser, P. Grünbacher, K. Lehner, and C.

Federspiel. DOPLER: An Adaptable Tool Suite for Product

Line Engineering. in 11th International Software Product

Line Conference (SPLC 2007), Proceedings: The Second

Volume. 2007. Kyoto, Japan: Kindai Kagaku Sha Co. Ltd.,

Tokyo.

[2] T. Asikainen, T. Männistö, and T. Soininen, Using a

Configurator for Modelling and Configuring Software

Product Lines based on Feature Models, in Workshop on

Software Variability Management for Product Derivation in

conjunction with Software Product Line Conference. 2004:

Boston, Massachusetts, USA.

[3] B. Yu and H.J. Skovgaard, A Configuration Tool to Increase

Product Competitiveness. IEEE Intelligent Systems, 1998.

13(4): p. 34-41.

[4] A. Felfernig, G. Friedrich, D. Jannach, and M. Zanker.

Intelligent Support for Interactive Configuration of Mass-

Customized Products. in Industrial and Engineering

Applications of Artificial Intelligence and Expert Systems

IEA/AIE. 2001. Budapest, Hungary.

[5] P. Trinidad and A. Ruiz-Cortés, Abductive Reasoning and

Automated Analysis of Feature Models: How are they

connected?, in VaMoS. 2009: Sevilla, Spain. p. 145-153.

[6] J. White, D.C. Schmidt, D. Benavides, P. Trinidad, and A.

Ruiz-Cortés, Automated Diagnosis of Product-Line

Configuration Errors in Feature Models, in Software Product

Lines, 12th International Conference. 2008: Limerick,

Ireland. p. 225-234.

[7] M. Davis, G. Logemann, and D. Loveland, A machine

program for theorem-proving. Commun. ACM, 1962. 5(7): p.

394-397.

[8] R. Balzer. Tolerating Inconsistency. in Proceedings of 13th

International Conference on Software Engineering (ICSE).

1991.

[9] S. Fickas, M. Feather, and J. Kramer, Proceedings of ICSE-97

Workshop on Living with Inconsistency. . 1997, Boston, USA.

[10] DELL Website. [Accessed February 12th, 2009]; Available

from: http://www.dell.com/.

[11] M.L. Rosa, W.M.P.v.d. Aalst, M. Dumas, and A.H.M.t.

Hofstede, Questionnaire-based variability modeling for

system configuration. Software and System Modeling, 2009.

8(2): p. 251-274.

[12] A. Nöhrer and A. Egyed, Optimizing User Guidance during

Product Configuration. 2009: unpublished.

[13] D. Benavides, P. Trinidad, and A. Ruiz-Cortés, Automated

Reasoning on Feature Models, in CAiSE. 2005. p. 491-503.

VaMoS 2010

113

[14] A. Egyed. Instant Consistency Checking for the UML. in

Proceedings of the International Conference on Software

Engineering (ICSE). 2006.

[15] A. Egyed. Fixing Inconsistencies in UML Design Models. in

Proceedings of the International Conference on Software

Engineering 2007.

[16] A. Egyed, E. Letier, and A. Finkelstein. Generating and

Evaluating Choices for Fixing Inconsistencies in UML Design

Models. in Proceedings of the 23rd International Conference

on Automated Software Engineering (ASE). 2008. L'Aquila,

Italy.

[17] H.v. Maaren and S. Wieringa. Finding Guaranteed MUSes

Fast. in 11th International Conference, SAT. 2008.

Guangzhou, China.

[18] C.M. Li and F. Manyà, MaxSAT, Hard and Soft Constraints,

in Handbook of Satisfiability, A. Biere, et al., Editors. 2009,

IOS Press.

[19] R.J. Wallace and E.C. Freuder, Heuristic Methods for Over-

Constrained Constraint Satisfaction Problems, in Over-

Constrained Systems, M. Jampel, E.C. Freuder, and M.J.

Maher, Editors. 1995, Springer.

[20] G. Borradaile, B. Heeringa, and G.T. Wilfong, Approximation

Algorithms for Constrained Knapsack Problems. CoRR,

2009. abs/0910.0777.

VaMoS 2010

114

Optimizing Non-functional Properties of Software
Product Lines by means of Refactorings

Norbert Siegmund, Martin Kuhlemann, Mario Pukall
Department of Computer Science

University of Magdeburg

Magdeburg, Germany

Email: {nsiegmun,mkuhlema,pukall}@ovgu.de

Sven Apel
Department of Informatics and Mathematics

University of Passau

Passau, Germany

Email: apel@uni-passau.de

Abstract—Today, software product line engineering concen-
trates on tailoring the functionality of programs. However, we and
others observed an increasing interest in non-functional proper-
ties of products. For example, performance, power awareness,
maintainability, and resource consumption are important non-
functional properties in software development. Current product
line techniques have the potential to flexibly optimize non-
functional properties. In this paper, we present our vision of
optimizing non-functional properties in software product lines.
We show how such an optimization can be achieved using
refactorings and present first results of a case study.

Index Terms—software product lines; non-functional proper-
ties; product derivation;

I. INTRODUCTION

Software product lines (SPLs) are used to generate a variety

of related programs that are tailored to specific use cases [1],

[2]. By reusing assets in different variants (i.e., programs),

SPLs achieve a rapid product deployment and reduce costs.

To generate a tailor-made variant, a stakeholder selects the

features (functionality) according to her requirements. This

way, users can avoid an overhead in functionality for a variant

such as a full featured database system in an embedded system.

However, tailoring the variant regarding functionality alone

is often not sufficient. In practice, non-functional properties
(NFP) gain momentum. Power awareness, as a non-functional

property, is a promising research field [3], [4]. In Green
IT, alternative implementations of special algorithms such as

sorting [5], are developed to reduce power consumption. Non-

functional properties are especially important in the field of

resource-constrained systems in which binary size and mem-

ory consumption are limiting factors. These heterogeneous

non-functional requirements often lead to a redevelopment of

already existing functionality.

Software product line engineering has been proven to be

useful to tailor a variant for functional and non-functional

requirements without the negative impact of redeveloping large

parts of a software. Variability provided by an SPL should

enable the generation of variants that are equal with respect

to functionally but differ in their non-functional properties. To

this end, SPLs should provide alternative implementations of

the same functionality that are optimized for specific NFPs.

For instance, by implementing a feature in different ways,

e.g., a performance optimized variant and a footprint opti-

mized variant of a feature. These implementations introduce

new variation points in the SPL to be exploited during the

configuration process [6], [7].

Our aim is to provide differently optimized variants of an

SPL based on a single architecture which is different from

other approaches [8], [9]. The positive effect of having a

single architecture is that software evolution and maintain-

ability is easier. While the general idea of optimizing NFPs

includes also the selection of alternative implementations, in

this paper, we focus on refactorings. Refactorings are changes

in the structure of source code without altering the program

semantics [10]. We categorize suitable refactorings according

to their influence on non-functional properties in Section

III-0a. For example, refactoring Inline Method can increase

the performance, however, it might also have a negative effect

on binary size. Based on our categorization, a user chooses

suitable refactorings that optimize the source code during the

configuration process. Each refactoring is defined in a single

module, called refactoring feature module (RFM) [11], and

is applied based on the configuration process. This way we

can change a variant according its non-functional properties

independently of the compiler or programming language, e.g.,

by decreasing the binary size by selecting the Pull up Method
refactoring or by increasing the performance through Method
Inlining. We make the following contributions: (a) We present

an overview of tasks that are required to optimize NFP of SPL

variants. (b) We show a concrete optimization technique based

on refactorings including a proof of concept.

II. VISION

The configuration of an SPL is guided by a feature model.

A feature model is created by a domain engineer to define

the features of the SPL [12], [13]. Using a feature model as

the basis for the variant configuration, it should be possible to

optimize NFP of the desired variant. Before a variant can be

optimized for an NFP, we have to provide mechanisms that

allow a user to measure and configure the property. This is

a non-trivial task because the properties are heterogeneous in

their nature. For example, even though we can easily measure

the binary size of individual features and can aggregate these

values for a specific variant, it is difficult to measure Security

VaMoS 2010

115

and Reliability. The reason is that it is difficult to define

a metric for those properties and even harder to find a

meaningful aggregation function in order to compare different

variants.

There are some models in literature that classify non-

functional properties across the software life cycle [14], [15].

Whereas these classifications provide a good overview of

possible non-functional properties, they are insufficient for our

needs. In order to enable the configuration of such properties,

we need a new classification in which each class provides dif-

ferent measurement techniques and configuration mechanism.

In [6], we presented three classes of non-functional properties.

The first class, called Directly Assigned Properties, contains

the properties that cannot be quantified. This is the case for

Security or Reliability, for which a domain expert cannot

define comparable values. These properties can be seen as

non-functional features because their configuration completely

correspond to the common feature selection. However, not

every NFP can be represented as a single non-functional fea-

ture, e.g., the footprint of features.The missing quantification

affects the optimization and configuration because we have no

comparable values, we cannot define optimizations. However,

we can hint the user to features that have a positive or negative

impact on the required NFP; we directly assign the property

to corresponding features in the feature model.

For the category Inferred Properties, we can measure the

influence of a feature regarding a property, e.g., the influence

of a feature on the binary size of a variant. Using different

user-defined metrics, we can measure or estimate values for

single features and annotate these values to the corresponding

feature in the feature model. This allows us to compute

in advance the aggregated value for a variant which, for

example, can be used to compute the influence of differently

selected alternative implementations of a single feature. As a

result, a user can define objective functions for desired non-

functional properties and an optimizer can then select the best

configuration. For example, a user might want to minimize the

Power Consumption and keep the footprint below 200 KBytes.

Considering V is the set of all valid variants of an SPL and

Footprint represents the binary size of a variant whereas Power
the power consumption respectively. Then she could define the

following objective function to derive the optimal variant vopt:

vopt = vi ⇔ vi(Power) ≤ vj(Power)

∧vi(Footprint) < 200KB ∧ vi,j ∈ V ∧ i, j ∈ N ∧ i �= j

The last category covers Runtime Properties which emerge

only in a running variant. This makes these NFPs difficult

to measure because we first have to configure, compile, and

run a candidate variant in order measure its NFPs. Prominent

examples of Runtime Properties are Performance and Memory

Consumption. Due to the measurement effort, we propose

the configuration process to incrementally reduce the number

of candidate variants so that only a few variants have to be

executed [6].

A. Configuration of Non-functional Properties

The configuration of a variant begins with a user’s feature

selection. This step defines the functionality a variant has to

provide. During the next step, a stakeholder selects the features

that improve a non-functional property (category Directly
Assigned Properties). Although, such a selection is only an

extension of the feature selection phase, it is important for the

optimization of non-quantifiable properties. A tool can support

the stakeholder in this phase by highlighting and grouping

suitable features. Thus, the difference between step 1 and 2 is

the reason for the feature selection, i.e., a user selects features

for purpose of required functionality in step 1 and in step 2 for

NFP-optimizing features. During the subsequent step, a user

defines constraints regarding non-functional properties, e.g., a

variant must not exceed a footprint more than 200 KBytes.

These constraints reduce the number of possible acceptable

variants, which is important for the measurement of Runtime
Properties. Afterwards, a user can define an objective function

for optimizing a certain property. Based on such a function, the

respectively best implementations are automatically selected

for runtime measurements.

Whereas in current approaches, the configuration of a

variant’s functionality constitutes the end of optimization, we

apply further optimizations through refactorings. We apply

refactorings that have an impact on non-functional properties

but do not alter the functionality. These refactorings, defined

by a developer or automatically generated during the configu-

ration, can be seen as additional configuration options of the

SPL for improving desired NFPs. User defined refactorings

can then be selected in step 2. When a refactoring is not part of

the SPL but would contribute to the desired NFP, we generate

an RFM accordingly. In Section III, we present in detail which

refactorings can be automatically applied to improve a certain

variant and where manually defined refactorings should be

used.

To realize our vision, we have to extend the common

SPL development process [13]. In Figure 1, we provide an

overview1 of such an enriched development process. In the

upper part, the usual SPL development process is shown. It

starts with the domain analysis in which features are identified

and the granularity of the variability is specified. Developers

continue to implement the defined features. Different tech-

niques are possible which also impact the configuration and

optimization of NFPs.

SPLs are often implemented with preprocessor statements

like #IFDEFS in C and C++ or with components. Also

new techniques, e.g., aspect-oriented programming [16] and

feature-oriented programming (FOP) [17], [18] can be used.

FOP is a technique to encapsulate feature code in distinct

feature modules (FM) (see Figure 1). By selecting features in

the product derivation step, the corresponding feature modules

are composed to create the desired product. We propose to

add a new concurrent process which focus on non-functional

1Note, that the SPL development is usually separated in domain and
application engineering.

VaMoS 2010

116

Inline Method

RFM

Core SPL

Feature DExtract Method

Feature B

Feature C

Feature A
FMFMFM FM

FMFM

Domain Analysis Implementation Product Derivation

FM

Alternative
Implementations

Assigned
Inferred
Rutime

Non-functional
Properties

Categories

RFM
RFM

Refactoring Feature
Modules

Feature Modules

Fig. 1. SPL development including the optimization of non-functional properties.

properties. An additional development team is responsible

to identify important properties for the domain, to develop

alternative implementations, and to define refactorings (in-

side RFMs) for these properties. The development of such

additional feature models is separated from the common

implementation of functionality, e.g., the implementation of

alternatives for a new customer with specific needs in a NFP.

This way, the development of functionality is independent

from the optimization of NFPs. With such an enriched product

line engineering approach, we can improve the maintainability

of the SPL’s source code (separated feature modules for

different NFPs). Additionally, we can decrease time-to-market,

because one engineering team focuses on the functionality

while another team is responsible for tailoring the SPL vari-

ants regarding NFP requirements or target systems. As the

presented additional process does not affect the common SPL

development, existing SPLs can adapt this methodology.

B. Measurement Framework

Due to the large area in which SPLs can be applied, metrics

for the same NFP can often not be reused across different

SPLs. Commonly, a domain has a strict specification for NFPs

and the corresponding metrics. For example, Performance

metrics in the area of database management systems are often

evaluated with benchmarks whereas the same property, e.g.,

in SOA, is often expressed in terms of system response time.

The metrics and corresponding optimizations, we have already

implemented and tested, are specific to the actual domain, but

we need a general methodology that allows users to integrate

their own specific metrics and aggregation functions.

Based on this insight, we claim that a framework for
measuring and aggregating NFPs is required in which SPL

developers can plug in their domain specific metrics. The

framework should provide basic functions that measures in-

dividual features (Inferred Property) or variants (Runtime
Property) based on these metrics. Inside a plugin, a developer

can use an existing tool (e.g., for measuring the cyclomatic

complexity), of a program or feature. The framework could

pass automatically each feature into the plugin which in turn

can pass the feature to the desired measurement tool. The

results can then be annotated to the respective feature in a

feature model. To aggregated the values of different features

for a variant the plugin must also define an aggregation

function, e.g., for cyclomatic complexity it might be the

”maximum”. During the configuration, a user can now define

a constraint to keep the complexity below a certain number.

Using the aggregation function, variants that cannot fulfill

this requirement are removed. We use a first implementation

of this framework for our refactorings in order to generate

refactorings based on user-defined metrics.

We have given an overview how non-functional properties

are related to SPLs. We described a classification to highlight

that the optimization and configuration of non-functional prop-

erties require different methodologies and reflected some op-

timization possibilities. In the following section, we present a

new technique that does not affect the architecture of a variant,

i.e., the selected features and feature modules. Therefore, this

technique can be used on top of already existing approaches

and provides further opportunities to tailor a variant according

non-functional properties.

III. OPTIMIZING NFPS WITH REFACTORINGS

Refactorings alter the structure of source code without

changing the application behavior [10]. Depending on the

type of refactoring, different non-functional properties can

be affected. For example, the Inline Method refactoring can

improve the execution time because it replaces the method

call with the body of the called method. A recent study has

shown that removing delegation can improve the performance

of a program by 50% [19].

Applying refactorings provides new optimization possibili-

ties to a user. We want to exploit these possibilities and select

refactorings according to the given optimization goals. Besides

such an optimization, a further advantage of this approach is

compiler and platform independence because the refactorings

are applied to the source code of a variant. Furthermore,

VaMoS 2010

117

developers are not forced to implement their SPL in a par-

ticular way, e.g., coding guidelines defined by a customer can

be realized after development. The developers can define the

refactorings seperately and keep the core architecture of the

SPL stable for maintenance. Besides the definition of refac-

torings by the developers, it should be possible to generate

refactorings according to a certain metric. For example, if a

user wants to optimize the performance with a given metric

for method inlining, a tool should automatically select suitable

refactorings or generate them if they do not already exist in

the SPL.
Given these requirements, we developed a technique to

define and reuse refactorings in SPLs like feature modules.

Refactoring feature modules (RFMs) integrate refactorings

with feature-oriented programming (FOP) [11]. The goal of

both techniques, RFM and FOP, is to successively transform a

base program. Whereas modules in FOP transform the func-

tionality of the base program, RFMs transform the structure of

the base program. Once defined or generated, RFMs become

user-selectable features in a feature model.
The main focus of RFMs so far was in program integra-

tion [11]. RFMs are defined by the programmer as part of

the product line design and selected by the user in order to

overcome incompatible structure of a variant with an external

application. For instance, to reuse an existing library in a client

application, classes of this library might need to be renamed

in order to be compatible [11].
We use RFMs to manipulate non-functional properties.

While RFMs can be defined and selected manually for integra-

tion purposes, their manual definition and selection becomes

unfeasible when they should adapt NFPs. The reason is that,

to improve the NFP Performance, potentially hundreds or

thousands of RFMs must be defined and selected, of which

each inlines one method (Inline Method refactoring).
a) Selection of Refactorings: There are numbers of

refactorings described in literature. Our study builds on the

refactorings defined by Martin Fowler [10]. In a first step, we

analyzed the refactorings and came up with an approximated

influence on NFPs for every refactoring. The analysis based

on the known influence of different program executions when

applying different refactorings, e.g., removing setter methods

can result in less compiler instructions and thus may improve

the performance. We plan to evaluate in a detailed case study

the influence of the most common refactorings. The results are

given in Table 1. Note, that applying a refactoring can improve

or degrade a property but does not have to. We need additional

metrics, e.g., those for method inlinings used in compilers, to

achieve the desired effect. In the following, we describe the

results of our analysis exemplary for some NFP:

• Performance. To reduce the execution time for method

calls a programmer can apply refactorings like Inline
Method, Inline Class, Remove Middleman. This is done

by replacing a call with the called method’s body. The

method call is removed but the same actions happen

as before, so performance is improved. However, when

methods grow too large, this results in cache mismatches

of the processor [20]. These mismatches arise because

the method is too large to fit in the cache completely and

instead must be reloaded, which increases the execution

time. To overcome such problems different metrics exist,

e.g., for compilers to achieve the best performance.

• Footprint. The footprint of an application is the sum

of the footprint of each compiled file. For Java, we

measure the class files that contain intermediate byte

code. By removing (setting) methods or code clones (e.g.,

by transforming members to parent classes using Pull up
Field or Pull up Method refactorings), the footprint can

be reduced. Note, that these refactorings often have only

a small influence to shrink the binary size. In contrast, for

example inlining methods in multiple other methods may

result in an expanded footprint. This must be considered

when footprint constraints are defined.

• Coding styles. Coding styles are important if products

are sold as source code libraries to multiple customers

where each customer has its own styling guideline.

There are different tools that check the validity of code

against coding rules, e.g., Checkstyle2. For such rules,

refactorings (e.g., Extract Method or Rename Method)

can be automatically generated and applied on demand.

Although, this approach might be a possible way to pass

a program validator, the maintainability for developers

will rather be decreased because of generated names for

methods and variables. A possible solution are developer-

defined RFMs that are selected on demand. With RFMs

functional requirements of an SPL are separated from

non-functional requirements, e.g., different code guide-

lines of different customers. A variant can be quickly

adapted to fit the needs of new customers when existing

RFMs are reused.

We have collected some possible use cases for optimizations

using refactorings. The suitability of each refactoring depends

on the program and on the quality of the metric that defines

which refactorings have to be used. Both types of usage,

generation and manual definitions are required. Automatically

generated refactorings are useful if a high number of refac-

torings is necessary. Manually implemented RFMs should be

used if developers knowledge is necessary and soft properties

like ”Readability” must be improved.

IV. PROOF OF CONCEPT

Currently, we are developing a tool which tackles the fol-

lowing requirements: (a) configuration of a variant regarding

functionality and Directly Assigned Properties, (b) definition

of objective functions for NFPs, (c) automated selection of op-

timal implementations regarding NFPs, and (d) the definition,

selection, and appliance of RFMs. The NFP optimizer sup-

ports SPLs implemented with feature-oriented programming

(FeatureC++ [21] and JAK [18]). In [6], we have shown a

possible solution to compute an optimal selection of alternative

2http://checkstyle.sourceforge.net/

VaMoS 2010

118

Non-functional property Improve Decrease

Performance Inline Method, Inline Class, Remove Middleman, Remove
Setting Method, Replace Delegation with Inheritance, Re-
place Temp with Query, Inline Temp

Encapsulate Field, Extract Class, Extract Method, Form Tem-
plate, Introduce Assertion Method, Hide Delegate, Replace
Inheritance with Delegation, Self Encapsulate Field, Change
Unidirectional to Bidirectional, Decompose Conditional

Footprint Collapse Hierarchy, Pull up Constructor Body, Pull up
Field, Pull up Method, Remove Middleman, Remove Setting
Method

Decompose Conditional, Encapsulate Field, Extract Class,
Extract Interface, Hide Delegate, Inline class, Inline Method,
Inline Temp, Introduce Assertion, Introduce Explaining Vari-
able, Push down Field, Push down Method, Remove Assign-
ments to Parameters, Self Encapsulate Field

Styling Guidlines and
Code Metrics

Extract Method, Replace Conditional with Polymorphism,
Replace nested Conditional with Guard Clauses, Extract
Method, Create Template Method, Consolidate Duplicate
Conditional Fragments

Inline Method, Replace Exception with Test, Inline Method

Readability Extract Class, Extract Subclass, Extract Superclass, Inline
Method

Collapse Hierarchy, Consolidate Conditional Expression, De-
compose Conditional, Encapsulate Field, Extract Method,
Hide Delegate, Inline Class

Object Size Inline Temp

TABLE I
OVERVIEW OF REFACTORINGS AND THEIR INFLUENCE ON NON-FUNCTIONAL PROPERTIES.

implementations for the NFPs Cyclomatic Complexity, Foot-

print, and Performance without using refactorings. We extend

the tool to support our approach by using RFMs. After the

derivation of a variant, the user has now the opportunity to

further improve a certain non-functional property. Currently,

we only support Performance, however, in future we will

provide optimizations for additional NFPs.

After a variant is configured, we use JastAdd3 to analyze

the abstract syntax tree of the composed variant. In particular,

we search for methods where refactorings can be applied

in order to improve performance. We additionally analyze

where inlinings might be reasonable, e.g., method calls in

loops. However, we exclude methods that are polymorphic and

recursive, as inlining those methods is not yet implemented.

The output of this analysis is a list of candidate methods (see

left part of Figure 2).

Such a listing is interesting for stakeholders with pro-

gramming skills because methods can be manually marked

for inlining where a positive effect can be foreseen. This

is the same as the inline keyword in C or C++.4 However,

normally a user defines a metric that defines when methods

should be inlined, see top right in Figure 2. This enables a

compiler-independent definition of an inlining metric and has

therefore effects independent of the underlying system. After

defining refactorings beneficial for NFPs of SPL variants, we

compute and generate (or reuse existing) RFMs to reach the

optimization goals. The selected refactorings are shown to the

user (right part of Figure 2). Subsequently, the tool applies

the RFMs and compiles the new variant. The performance

of the synthesized product is measured and compared to the

performance of the product without refactorings. Although, we

currently support only inline method refactorings, the results

in Figure 3 show that we achieve performance improvements

3http://jastadd.org
4The inline keyword is used in front of method declarations to force the

compiler to inline the method.

for certain cases (when we applied RFMs, we never produced

an inferior result compared to the non-optimized variant).

b) Case Study: We present our first results for the

optimization of NFP using RFMs. For our case study, we used

the micro benchmark presented in [19], which implements a

delegation chain.

After the analysis, the system came up with 980 possible

methods for inlining. We defined a metric to restrict the

method size to 1000 statements and the maximal inline depth

to 10. Applying more sophisticated metrics that cover more

setup possibilities, e.g., preferred inlining in loops, is left for

future work. Our tool computed 120 Inline Method refactor-

ings based on our metric. As no RFMs were present in the

SPL before, our tool generated all of them. After applying

these RFMs, we measured the performance 10.000 times to get

significant data. The results are given in Figure 3. The X-axes

shows the intervals for time needed to pass the performance

test. For each interval, we counted the number of executions

which are depicted in the Y-axis. In the result, the execution

times were significantly better with our optimizations than

without. We found that refactorings can be successfully ap-

plied to an already optimized variant to further improve an

NFP. The refactorings have also an influence on the footprint

property. In the unoptimized version the sum of all class files

requires 705,569 bytes whereas the variant optimized using

refactorings consumes 833,021 bytes. We see our assumptions

according the influence of refactorings to NFPs approved and

expect additional optimization benefits if more refcatorings are

supported.

V. RELATED WORK

Product derivation tools try to guide the user through the

whole derivation process. There are commercial tools like

pure::variants [22] and Gears [23] that contain mechanisms to

maintain and develop an SPL as well as scientific tools [24],

[25], [26]. These tools allow developers to create feature

models and guide users through the configuration process with

VaMoS 2010

119

Fig. 2. Generating and applying refactorings in the NFP optimizer tool.

0

1000

2000

3000

4000

5000

6000

N
um

be
ro

fM
ea
su
re
m
en

ts

Time needed in ns

PerformanceMeasurement
RFMs

Original

Fig. 3. Results for measuring a variant with and without RFMs.

special visualization techniques. Neither the measurement of

non-functional properties nor the optimization for NFPs is

supported for SPLs.

Benavides et al. [27], [28] presented a technique based

on Constraint Satisfaction Problems (CSP) solvers to seek

an optimal variant. The solver evaluates values attached to

features in the feature model and then computes an optimal

configuration for a small number of features. White et al. [7],

[29] extended this approach to resolve resource constraints in

the variant selection process. For large scale problems they

propose a Filtered Cartesian Flattening to approximate a good

variant. We see both approaches promising for an integration,

e.g., for selecting optimal feature modules. However, we

further provide an optimization technique based on RFMs and

a framework to measure the values needed for optimization.

Other approaches use model-driven engineering techniques

to generate different architectures optimized for certain quality

attributes. In [8] components can be differently connected and

interfaces are generated to obtain a valid program with mod-

ified quality attributes. Kim et al. [9] propose a framework,

called DRAMA, which captures the requirements of users.

Based on these requirements, different architecture styles,

e.g., Layers or Model View Controller, can be applied to

improve or degrade a NFP. The framework can also compare

alternative implementations and chose the one with the best

quality attributes. This approach is similar to our configuration

of optimal implementations. We additionally include user

selectable refactorings on source code level to further optimize

a variant for NFPs and the measurement of NFPs.

Smith [30] uses correctness-preserving transformations in

his tool Kids to improve the performance of a program. These

transformations are similar to refactorings. Unlike Smith’s

VaMoS 2010

120

transformations, RFMs can be seamlessly integrated into the

SPL development process because RFMs represent reusable

modules that can be described like features. Critchlow et

al. [31] present an approach to use refactorings to change the

architecture in order to improve certain quality attributes. They

consider refactorings not at source code level but at architec-

ture level to flexibly change the components architecture of a

variant. We focus on refactorings that are applied to the source

code and after a variant is created.

The Skoll project [32] targets on testing and measuring

applications with large configuration spaces. The project tries

to overcome the problem of having a huge amount of products

by using a large number of users that share their computation

power. For measuring runtime properties, this might be a

suitable approach. However, the effort is very high and it will

not scale with a large SPL. Our refactoring feature modules

can be applied independent from the variant space.

Zhang et al. propose to use Bayesian Belief Network in

order to analyze and predict non-functional properties based

on the experience of the development of similar products and

domain experts [33], [34]. The knowledge is captured and

used for the development of new products to achieve suitable

decisions for optimizing a certain non-functional property.

This approach targets on architectural design and decisions

during the design phase. Our approach can be applied after an

SPL is developed and is therefor independent of architectural

decisions.

VI. CONCLUSION

We presented our vision of optimizing non-functional prop-

erties (NFPs) of variants of software product lines (SPLs).

We outlined difficulties in measuring and configuring NFPs

and motivated the need for a framework that allows users

to plugin their own metrics. Based on the measured values,

our tool selects alternative implementations to optimize certain

NFPs. We presented a new approach for optimization based

on refactoring feature modules (RFMs). RFMs, defined by

developers or automatically generated, are part of the SPL and

can be selected like features to further improve NFPs. First

results based on automatically generated Method Inline refac-

torings show that performance improvements can be achieved.

In future work, we will support additional refactorings to

further increase performance. In addition, we will support the

optimization of other NFPs. Our long term goal is to provide

a framework for which developers can implement plugins that

optimize NFPs.

ACKNOWLEDGMENT

Norbert Siegmund is funded by the German Ministry of

Education and Science (BMBF), project 01IM08003C. Mario

Pukall is funded by German Research Foundation (DFG),

project SA 465/31-2. Apels work is supported in part by

DFG project #AP 206/2-1. The presented work is part of the

ViERforES5, RAMSES6, and FeatureFoundation7 projects.

REFERENCES

[1] P. Clements and L. Northrop, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[2] C. W. Krueger, “New methods in software product line development,”
in Proceedings of the International Software Product Line Conference
(SPLC). IEEE Computer Society, 2006, pp. 95–102.

[3] R. Jain, D. Molnar, and Z. Ramzan, “Towards understanding algorithmic
factors affecting energy consumption: Switching complexity, random-
ness, and preliminary experiments,” in Proceedings of the Workshop on
Foundations of Mobile Computing. ACM Press, 2005, pp. 70–79.

[4] C. Bunse, H. Höpfner, S. Roychoudhury, and E. Mansour, “Choosing the
”best” sorting algorithm for optimal energy consumption,” in Proceed-
ings of the International Conference on Software and Data Technologies
(ICSOFT), 2009, pp. 199–206.

[5] S. Rivoire, M. A. Shah, P. Ranganathan, and C. Kozyrakis, “JouleSort:
A balanced energy-efficiency benchmark,” in Proceedings of the 2007
International Conference on Management of Data. ACM Press, 2007,
pp. 365–376.

[6] N. Siegmund, M. Rosenmüller, M. Kuhlemann, C. Kästner, and
G. Saake, “Measuring non-functional properties in software product lines
for product derivation,” in Proceedings of the 15th International Asia-
Pacific Software Engineering Conference (APSEC). IEEE Computer
Society, 2008, pp. 187–194.

[7] J. White, D. C. Schmidt, E. Wuchner, and A. Nechypurenko, “Automat-
ing product-line variant selection for mobile devices,” in Proceedings
of the International Software Product Line Conference (SPLC). IEEE
Computer Society, 2007, pp. 129–140.

[8] P. O. Rossel, D. Perovich, and M. C. Bastarrica, “Reuse of architectural
knowledge in SPL development,” in Proceedings of the 11th Interna-
tional Conference on Software Reuse (ICSR). Springer-Verlag, 2009,
pp. 191–200.

[9] J. Kim, S. Park, and V. Sugumaran, “Drama: A framework for domain
requirements analysis and modeling architectures in software product
lines,” Journal of Systems and Software, vol. 81, no. 1, pp. 37 – 55,
2008.

[10] M. Fowler, Refactoring: Improving the Design of Existing Code.
Addison-Wesley, 1999.

[11] M. Kuhlemann, D. Batory, and S. Apel, “Refactoring feature modules,”
in Proceedings of the International Conference on Software Reuse, 2009,
pp. 106–115.

[12] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Software Engi-
neering Institute, Carnegie Mellon University, Tech. Rep. CMU/SEI-90-
TR-21, 1990.

[13] K. Czarnecki and U. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[14] J. A. Mccall, P. K. Richards, and G. F. Walters, “Factors in software
quality. Volume I. Concepts and definitions of software quality.” Gen-
eral Electric CO Sunnyvale California, Technical Report ADA049014,
November 1977.

[15] “Software engineering - Product quality, Part 1: Quality model,” 2001.
[16] G. Kiczales, J. Lamping, A. Mendhekar, C. Maeda, C. V. Lopes, J.-

M. Loingtier, and J. Irwin, “Aspect-oriented programming,” in Pro-
ceedings of the European Conference on Object-Oriented Programming
(ECOOP), ser. Lecture Notes in Computer Science, vol. 1241. Springer
Verlag, 1997, pp. 220–242.

[17] C. Prehofer, “Feature-oriented programming: A fresh look at objects,” in
Proceedings of the European Conference on Object-Oriented Program-
ming (ECOOP), ser. Lecture Notes in Computer Science, vol. 1241.
Springer Verlag, 1997, pp. 419–443.

[18] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise
refinement,” IEEE Transactions on Software Engineering (TSE), vol. 30,
no. 6, pp. 355–371, 2004.

[19] S. Götz and M. Pukall, “On performance of delegation in Java,” in
Proceedings of the International Workshop on Hot Topics in Software
Upgrades. ACM Press, 2009, pp. 1–6.

5http://vierfores.de
6http://wwwiti.cs.uni-magdeburg.de/iti db/forschung/ramses/
7http://www.fosd.de/ff

VaMoS 2010

121

[20] J. Dean and C. Chambers, “Towards better inlining decisions using
inlining trials,” in Proceedings of the ACM conference on LISP and
functional programming. ACM, 1994, pp. 273–282.

[21] S. Apel, T. Leich, M. Rosenmüller, and G. Saake, “FeatureC++: On
the Symbiosis of Feature-Oriented and Aspect-Oriented Programming,”
in Proceedings of the International Conference on Generative Pro-
gramming and Component Engineering (GPCE), ser. Lecture Notes in
Computer Science, vol. 3676. Springer Verlag, Sep. 2005, pp. 125–140.

[22] D. Beuche, H. Papajewski, and W. Schröder-Preikschat, “Variability
Management with Feature Models,” Science of Computer Programming,
vol. 53, no. 3, pp. 333–352, 2004.

[23] Big Lever, “Gears,” http://www.biglever.com.
[24] D. Streitferdt, M. Riebisch, and I. Philippow, “Details of formalized

relations in feature models using OCL,” in International Conference
on Engineering of Computer-Based Systems (ECBS). IEEE Computer
Society, 2003, pp. 297–304.

[25] G. Botterweck, D. Nestor, A. Preußner, C. Cawley, and S. Thiel,
“Towards supporting feature configuration by interactive visualization,”
in Proceedings of Workshop on Visualisation in Software Product Line
Engineering, 2007, pp. 125–131.

[26] E. Cirilo, U. Kulesza, and C. P. de Lucena, “A product derivation
tool based on model-driven techniques and annotations,” Journal of
Universal Computer Science, vol. 14, no. 8, pp. 1344–1367, 2008.

[27] D. Benavides, A. Ruiz-Cortés, and P. Trinidad, “Automated reasoning
on feature models,” in Advanced Information Systems Engineering: 17th
International Conference, CAiSE 2005, ser. Lecture Notes in Computer
Science, vol. 3520. Springer Verlag, 2005, pp. 491–503.

[28] D. Benavides, S. Segura, P. Trinidad, and A. R. Cortés, “FAMA:
Tooling a Framework for the Automated Analysis of Feature Models,”
in Proceedings of the Workshop on Variability Modelling of Software-
intensive Systems (VaMoS), 2007, pp. 129–134.

[29] J. White, B. Dougherty, and D. C. Schmidt, “Selecting highly optimal
architectural feature sets with filtered cartesian flattening,” Journal of
Systems and Software, vol. 82, no. 8, pp. 1268–1284, 2009.

[30] D. R. Smith, “Kids: A semiautomatic program development system,”
IEEE Trans. Softw. Eng., vol. 16, no. 9, pp. 1024–1043, 1990.

[31] M. Critchlow, K. Dodd, J. Chou, and A. van der Hoek, “Refactoring
product line architectures,” in International Workshop on Refactoring:
Achievements, Challenges, and Effects, 2003, pp. 23–26.

[32] A. Memon, A. Porter, C. Yilmaz, A. Nagarajan, D. Schmidt, and
B. Natarajan, “Skoll: Distributed continuous quality assurance,” in
Proceedings of the International Conference on Software Engineering
(ICSE), 2004, pp. 459–468.

[33] H. Zhang, S. Jarzabek, and B. Yang, “Quality prediction and assess-
ment for product lines,” in Advanced Information Systems Engineering
(CAiSE). Springer, 2003, pp. 681–695.

[34] H. Zhang and S. Jarzabek, “A bayesian network approach to rational
architectural design,” International Journal of Software Engineering and
Knowledge Engineering, vol. 15, no. 4, pp. 695–718, 2005.

VaMoS 2010

122

Automating the Configuration of
Multi Software Product Lines

Marko Rosenmüller, Norbert Siegmund
School of Computer Science

University of Magdeburg, Germany
{rosenmue,nsiegmun}@ovgu.de

Abstract—The increased use of software product lines (SPLs)
results in complex software systems in which products of multiple
SPLs communicate and interact with each other. Such a system
of interdependent SPLs has to be considered as a whole to
achieve compatibility between different SPL instances. In this
paper, we present an approach to design and configure multi
software product lines (MPLs), i.e., product lines that consist
of multiple interdependent SPLs. Therefore we use composition
models that describe how an MPL is composed from multiple
SPL instances. This allows us to automate the configuration of
MPLs which is required to handle the resulting complexity. We
also show how to automatically derive configuration generators
to further simplify the configuration process and we report from
experiences of applying the presented approach.

I. INTRODUCTION

Software product lines (SPLs) enable reuse by generating
software from a common set of assets, e.g., by composing
components [5]. The instances of an SPL, i.e., the products,
can be programs, libraries, and also components. Hence, prod-
ucts of an SPL can also be used for building more complex
SPLs [17]. For example, a component can be developed as
an SPL and can be combined with other components in a
larger SPL. Due to the success of SPLs, more and more
programs are developed as product lines and integrated in
complex systems. This results in product lines of product lines
or nested product lines [11]. We call arbitrary compositions of
SPLs multi software product lines (MPLs).

As an example for an MPL, consider a sensor network
(SNW) that consists of network nodes (SNW-Nodes) which
are small embedded devices. The software running on network
nodes differs in functionality because the nodes have to accom-
plish different tasks: there are sensor nodes for sensing data,
access nodes that provide access to the sensor network, and
data nodes that aggregate and store data [12], [14]. Developing
an SPL for network node software, allows a user to generate
tailor-made variants for the different node types. The software
of a single network node consists of multiple programs and
libraries. For example, a data management system might be
used for data storage, cryptographic libraries ensure confiden-
tiality of data, and communication libraries might be used to
provide basic communication functionality. These programs or
libraries are more and more developed as SPLs to increase
reuse and to minimize the functional overhead especially
needed in the domain of embedded systems. This results in
SPLs that use other SPLs for their realization.

SNW-Node

CommPL

SecurityPL

SensDB
«uses»

«uses»«uses»

«uses»

Fig. 1. Uses relationships between different product lines.

An example for this uses relationship between SPLs in a
sensor network is shown in Figure 1. The SNW-Node SPL
uses an SPL for data storage (SensDB) and a communication
product line (CommPL). Product lines CommPL and SensDB
encrypt transferred and stored data using the security product
line (SecurityPL) which provides cryptographic algorithms.
Hence, there are four interdependent SPLs and each of them
has to be configured according to the requirements of the other
SPLs.

In contrast to a single SPL, we have to consider the
functional dependencies between the different instances of all
involved SPLs. That is, modifying the configuration of one
instance might require a different configuration of other SPL
instances. Already manual configuration of single SPLs is
highly complex and error prone. Manual configuration of large
networks of interdependent SPLs migth be impossible if many
features and dependencies between features are involved. Fur-
thermore, the configuration process has to be repeated when
the configuration or the implementation of one SPL changes.
Ideally, a user only has to configure one SPL that describes
the whole application scenario, e.g., a sensor network product
line, and does not have to care about implementation details
of underlying SPLs. A solution could be to integrate multiple
feature models into a single feature model. This, however,
results in a large feature model that mixes different domains
and provides configuration options that are not important for
the problem domain.

In this paper, we present an approach to automate the con-
figuration of MPLs based on composition models as described
in [13]. A composition model integrates multiple SPLs by
describing for each SPL which instances of other SPLs it
uses. It thus describes dependencies between concrete SPL
instances. In order to integrate composition modeling in the
SPL engineering process, we show how a composition model
can be semi-automatically derived from the domain models

VaMoS 2010

123

Bluetooth

OR

alternative

optional

mandatory

SNW-Node

DataStorage Communication

Radio Wi-Fi

SensorEncryption

Fig. 2. Feature diagram of a sensor network node (SNW-Node) SPL.

of the SPLs of an MPL. Finally, we present an approach to
generate configuration generators for MPLs, i.e., programs that
are used to derive configurations for all SPL instances of an
MPL.

II. MODELING MPLS

While SPL engineering is well understood and programs
can be automatically generated from SPLs, the configuration
of multiple interdependent SPLs (i.e., MPLs) is mostly not
considered. In the following, we describe how the feature
modeling approach can be used for modeling MPLs. However,
we will show that feature models do not provide a suitable
solution for describing dependencies in arbitrary MPLs, e.g.,
when multiple instances of the same SPL are used in an MPL.
Furthermore, using only feature models for MPL modeling
results in complex solutions. For that reason we introduce
composition models and show how they overcome existing
problems.

A. Feature Models

An SPL is used to create similar programs that share a com-
mon set of features. The features of an SPL are distinguishable
characteristics that are of interest to some stakeholder [5].
SPLs can be described using feature models that are often
visualized using feature diagrams [9], [5]. An example for
a sensor network node (SNW-Node) product line is depicted
in Figure 2. A concrete program or instance of an SPL is
defined by a selection of required features. Domain constraints
of a feature model are used to ensure only valid feature
combinations in an SPL configuration. For example, requires
and mutual-exclusion relations are used to describe dependen-
cies between features [5]. In general, arbitrary propositional
formulas might be used [2].

Domain constraints can not only be used to describe de-
pendencies within a single SPL but also between different
SPLs [6]. For example, a requires constraint

SnwNode.Bluetooth ⇒ CommPL.Bluetooth (1)

describes that when a user selects feature BLUETOOTH of
the SNW-Node SPL (SnwNode.Bluetooth; cf. Fig. 2) also
feature BLUETOOTH of the communication framework SPL
(CommPL.Bluetooth; cf. Figure 1) has to be selected. How-
ever, if multiple instances of the same SPL are required, there
can also be constraints between SPLs that cannot be described
on the domain level. For example, communication between
nodes in a sensor network, requires support for the same

«SPL»
SNW-Node

«SPL»
SensorNode

«SPL»
AccessNode

«SPL»
DataNode

«SPL»
SensDB

-db

Fig. 3. Composition model with an SPL for sensor network nodes (SNW-
Node) and specialized SPLs SensorNode, AccessNode, and DataNode. The
SNW-Node SPL uses an instance of a sensor database (SensDB).

communication protocol in the nodes (e.g., RADIO in Fig. 2).
That is, two instances of the same SPL (e.g., one instance for
sensor nodes and one instance for access nodes) have to be
configured to support the same protocol. A domain constraint
cannot describe this dependency because SPL instances cannot
be distinguished in the domain model.

A similar problem occurs when an SPL A uses two different
instances b1 and b2 of SPL B. Since the domain model does
not include SPL instances, it is hard to use domain constraints
to describe such dependencies. For example, to describe that
feature f3 of instance b2 has to be selected whenever feature
f1 of SPL A is selected, we might use a listing of the
distinguishing features of b2 as part of the constraint:

A.f1 ∧ (B.f1 ∧B.f2) ⇒ B.f3 (2)

where (B.f1 ∧ B.f2) describes instance b2. At first glance,
this correctly represents the required constraint; however, it
is also valid for other instances of B that include features
f1 and f2 which is not intended. A direct representation of
SPL instances could avoid such problems and simplify the
configuration at the same time. Furthermore, a constraint as
shown in Equation 2 is not part of the problem domain of
SPL A. Actually, it is an implementation issue of A and for a
different scenario SPL B might be replaced by a different SPL.
Hence, this implementation knowledge should be separated
from the domain model of A.

B. Composition Models

In order to overcome the presented problems, we introduced
composition models that describe an MPL by modeling a
composition of multiple SPL instances [13]. This allows us to
describe the dependencies of all SPLs and to provide means
for automatically configuring the SPLs according to these
dependencies. In the following, we review composition models
and show how these are used to describe MPLs.

SPL Instances: A composition model uses the concept of
aggregation of classes known from OOP to represent the uses
relationships between SPLs. Each class represents an SPL and
a class instance represents an instance of an SPL. In Figure 3,
we depict the UML representation of a composition model
for the sensor network example. SNW-Node and SensDB are
SPLs and the aggregation relation between them denotes that
SNW-Node uses an instance of SensDB with name db.

Specialization: In product line engineering, specialized
SPLs are used to describe a subset of the variants provided by
an SPL [6]. We include SPL specialization into composition

VaMoS 2010

124

models using inheritance between SPL classes. This allows
us to easily reuse SPL configurations in different MPLs. In
Figure 3, SensorNode, AccessNode, and DataNode are special-
izations of the SNW-Node SPL. For example, SensorNode is a
partial configuration of SNW-Node in which feature SENSOR
is mandatory.

Constraints: In order to achieve compatibility between
SPL instances of an MPL, we use composition model con-
straints. A constraint in a composition model is a propositional
formula1 consisting of features similar to a feature model
constraint [2]. A feature in that expression can be referenced
using the name of an SPL or the name of an SPL instance.
When using an SPL name, it refers to the feature in all
instances of that SPL (i.e., a usual domain constraint between
feature models) and when using the name of an SPL instance,
it refers only to a feature in that concrete instance which we
call instance constraint. The constraint shown in Equation (2)
thus simplifies to A.f1 ⇒ b2.f3, where A denotes an SPL
and b2 denotes an SPL instance. If needed, instances can
be fully qualified with the name of the SPL an instance
belongs to. For example, A.b2 refers to instance b2 defined
in SPL A. Constraints might also include specialized SPLs.
For the sensor network example in Figure 3, we can specify
constraints:

SensorNode.Radio ⇒ AccessNode.Radio (3)
SnwNode.Encryption ⇒ SnwNode.db.Encryption. (4)

Constraint (3) describes a dependency between SensorNode
and AccessNode specializations of the SNW-Node SPL.
Selecting feature RADIO in SensorNode requires to select
feature RADIO in all instances of AccessNode to ensure
a compatible communication protocol between sensors and
access nodes. In contrast, instance constraint (4) addresses
only the SensDB instance db defined in SNW-Node. Hence,
different instances of SensDB can be configured differently,
e.g., with or without encryption, depending on the kind of the
node.

Constraints are part of an SPL and are inherited when
creating a specialized SPL. For example, SPL SensoreNode
in Figure 3 inherits all constraints stored in SNW-Node,
e.g., constraint (4). Constraints can also be redefined in a
specialized SPL. However, since a specialization represents a
subset of the variants represented by its parent, a constraint can
only be redefined by adding propositions using a conjunction.
That is, constraint redefinitions can only reduce the number
of possible variants.

Conditional Dependencies: Sometimes an SPL instance
of an MPL is only required when some optional feature is
available in a configuration. For example, the instance of
SensDB in Figure 3 is only needed when feature DATAS-

1First order logic might also be used, e.g., to provide constraints for sets of
SPL instances. However, we think that propositional logic might be sufficient
because a limited number of SPL instances should be the usual case and
thus quantification is not required. Nevertheless, when using more complex
constraints in domain models [7] the same kind of constraints should be used
for composition models.

TORAGE of SNW-Node is selected (cf. Fig. 2). To describe
this, we use conditional dependencies which define optional
SPL instances that are only needed when a particular feature
or a set of features is present in a configuration [13]. This
simplifies the configuration process because the SPL only has
to be configured when the according feature is selected.

III. AUTOMATING THE CONFIGURATION OF MPLS

In order to automate MPL configuration and to integrate
MPL modeling into the development process for SPLs, we
extend the product line engineering process with composition
modeling which is part of the domain design process. A com-
position model connects domain model and implementation of
an MPL by describing the SPL instances used to implement
an MPL. As illustrated in Figure 4, the following steps are
required for creating MPLs:

• creating a feature model for an MPL,
• generating and refining composition models,
• deriving a configuration generator.

In the following, we describe the required steps in detail and
discuss experiences when creating the example sensor network
MPL in Section IV.

A. Feature Models for MPLs

We describe an MPL using the feature models of all
contained SPLs and a composition model that defines how
the SPL instances are combined. Depending on the SPLs, we
can differentiate between hierarchical and flat MPLs.

Hierarchical MPLs: The dependencies between the SPL
instances of an MPL often result in a hierarchy of SPLs.
In Figure 3, SNW-Node uses an instance of SensDB and
thus defines a hierarchy between both SPLs. The dependency
between the SPLs is directed: SNW-Node depends on SensDB
but SensDB is independent of SNW-Node. An SPL hierarchy
may have multiple levels, e.g., as shown for SNW-Node in
Figure 1, resulting in a three level hierarchy. We call SNW-
Node the top-level SPL of the hierarchy because there is
no other SPL that depends on SNW-Node. Usually, we can
describe the variability of a whole MPL using the feature
model of the top-level SPL.

Flat MPLs: There can also be MPLs that do not exhibit
a hierarchy which we call flat MPLs. Examples are MPLs of
communicating programs such as in a client-server architecture
where client and server are developed as distinct SPLs and
have to be configured to achieve compatibility. For example,
a mail client and a mail server have to support the same
communication protocol, e.g., IMAP. Flat MPLs also occur
when multiple instances of the same SPL are combined in an
MPL. For example, an MPL of replicated DBMS stores data in
a master DBMS and in a slave for replication. Such a system
can be developed as a single SPL from which differently
configured instances for master and slave can be generated.
The MPL thus consists of multiple instances of the same
SPL. Usually, the dependencies between the SPLs of a flat
MPL are not directed but each of the SPLs depends on the
other. In contrast to hierarchical SPLs, there is no top-level

VaMoS 2010

125

SPL1

SPL2
SPL2

SPL1

SPL

Configuration
GeneratorGenerate Generate / Compile

Domain Models Composition Model Configuration Generator

SPL1

SPL2

SPL

Fig. 4. Generating composition models and configuration generators for MPLs.

Encryption

SensorNetwork

DataStorage

Integrity

Security Streaming

Fig. 5. Feature diagram of the SensorNetwork MPL.

feature model that describes the MPL. Imposing a hierarchy
by defining one or the other SPL as the top-level SPL is
usually not sufficient because one SPL does not describe the
whole MPL and variability of the other SPL is hidden. For
example, the feature model of a mail server is inappropriate
for configuring the whole MPL, i.e., mail server and mail
client. A better solution is to introduce a hierarchy by creating
a new top-level feature model for the MPL. This way, we
can describe the variability of the whole MPL using only a
single feature model while variability of the constituent SPLs
is hidden, e.g., a feature model for a replicated DBMS that
describes the whole MPL and abstracts from underlying SPL
instances for master DBMS and slave for replication.

In the sensor network example, a product line of sensor
network nodes (cf. Fig. 1) is a hierarchical MPL since it uses
multiple other SPLs. In a complete sensor network scenario,
however, there are different specializations of network nodes
used (SensorNode, AccessNode, DataNode) which results in
a flat sensor network MPL. We thus create a new top-level
feature model that represents the whole sensor network, as
depicted in Figure 5. It describes which functionality the
sensor network provides and abstracts from the underlying
specializations of the SNW-Node SPL. We use features like
DATASTORAGE to represent an optional data node of the
sensor network which is implemented by the specialized
DataNode SPL. Which features are to be included in an MPL
feature model we discuss in Section IV.

B. Creating Composition Models

Based on the feature models of an MPL, the composition
models can be created in a step-wise manner. In fact, this
will be the usual scenario because a developer of an SPL
will create a composition model for her SPL that can be

reused in higher level SPLs and hides underlying SPLs. Each
composition model defines the directly used SPL instances
and is independent of higher level SPLs which is important for
reusing the model. For example, we can easily replace SensDB
(cf. Fig. 3) with a different DBMS product line. This requires
to store the composition model of each SPL separately. The
composition models of different SPLs are implicitly connected
via the uses-relationships between SPLs defined as instance
variables (e.g., instance db in Figure 3). Hence, the compound
composition model of an MPL is the union of all composition
models of the underlying SPLs. Replacing an SPL thus only
requires to modify the instance variable that defines the type of
an SPL instance, e.g., modify the db instance of SNW-Node
to be of a type other than SensDB.

As shown in Figure 4, we use a composition model gen-
erator to create initial composition models and their UML
representation. The model can be created at any time in the
design process and can be updated when SPLs change or
different specialized SPLs become available. For generating
composition models, we use the integration of C# and UML
in Microsoft Visual Studio 2008. The generator creates a C#
class for every SPL and a inheritance relation to represent
SPL specialization. The use of the partial class concept of C#
and the integration with UML class diagrams allows an SPL
developer to edit the composition model using either the UML
representation or the C# code while the generated correspond-
ing representation is automatically updated. The classes of the
composition model are subclasses of an abstract SPL class,
as shown in Figure 6. This abstract class implements generic
functionality of the configuration generator as we describe
later.

A composition model can be visualized using a UML
diagram which is also used by the SPL developer to define
SPL instances. An integrated visualization of a complete MPL
composition model can be generated by including all SPL
classes in a single UML diagram, as shown for the sensor
network example in Figure 7. Such an integrated view of the
whole model is usually not necessary, since it is sufficient to
edit the models of all SPLs separately.

SPL Instances and Constraints: The initially generated
composition model is refined by an SPL developer who creates
instance variables to represent the uses-relationships between

VaMoS 2010

126

Fig. 7. Screenshot of the compound composition model for the SensorNetwork MPL.

«SPL»
SNW-Node

«SPL»
SensorNode

«SPL»
AccessNode

«SPL»
DataNode

«SPL»
SensDB

-db«SPL»
SensorNetwork

-sensorNode -accessNode -dataNode

SPL

Fig. 6. A composition model for a SensorNetwork SPL that uses a network
node SPL (SNW-Node).

SPLs. The SPL instance variables connect individual compo-
sition models. For example, instance variable sensorNode
of the SensorNetwork SPL in Figure 6 represents an instance
of the specialized SPL SensorNode and connects both SPLs.
SPL instances can be added via the UML representation of a
composition model or by directly changing the source code of
the SPL classes.

A domain modeler creates composition model constraints
to define which features from used SPL instances are required
by a higher level SPL depending on its configuration. As dis-
cussed above, constraints are arbitrary propositional formulas
between features of the involved SPLs but may refer only
to concrete SPL instances if required. For example, we can
define constraints that refer only to the dataCrypt instance
of FameDB and do not affect the commCrypt instance of
CommPL (cf. Fig. 7). Finally, conditional dependencies are
created to represent optional SPLs that are only needed when
a particular feature is selected. For example, a data node is
only needed when a user selects the DATASTORAGE feature
of the SensorNetwork SPL.

C. Configuration Generators for MPLs

Having an MPL, described by feature models of all SPLs
and an integrated composition model, we can automatically
derive a configuration generator. This configuration generator

is used in an interactive configuration process and asks a user
for configuration decisions (i.e., feature selections) required to
configure all SPL instances of an MPL and checks for violation
of constraints.2

We implemented a generic configuration generator using
C#. The configuration generator provides a graphical user
interface that asks a user for feature selections of all required
SPL instances for an MPL scenario. It checks for violations of
model constraints and creates the SPL instances required for
an MPL configuration. Parts of the generic implementation
are provided by abstract class SPL, as shown in Figure 4.
The generic implementation of the configuration generator
is extended by MPL specific code which is the composition
model of the MPL (subclasses of SPL in Fig. 4 and 7). Each
MPL specific class extends the functionality of the abstract
SPL class by defining instance variables for the used SPL
instances. The configuration generator code (generic code
plus MPL specific composition model) is compiled into an
executable program.

IV. EXPERIENCE REPORT AND DISCUSSION

In the following, we shortly report about our experience of
modeling and configuring MPLs using the sensor network ex-
ample. Since we observed different possible ways for creating
feature models for MPLs and defining constraints, we discuss
benefits of the respective solutions.

A. Handling MPL Variability

For the sensor network example, we defined specialized
SPLs of the SNW-Node SPL (SensorNode, DataNode, and
AccessNode), as shown in Figure 6. Since it is a flat MPL,
we created a feature model that represents the whole MPL as
already described (cf. Fig. 5). We think that such an additional
feature model for flat MPLs is often useful for several reasons:

2Currently, the configuration generator does not support redefinition of
model constraints in specialized SPLs.

VaMoS 2010

127

FameDB Buffer
Manager Encryption

Integrity

SecurityPL

Encryption AES

MAC
RIPEMD-160

SHA1

Symmetric

Asymmetric

3DES

Fig. 8. Excerpts of the feature diagrams of FameDB and SecurityPL.

• It provides a simple structure for an MPL and simplifies
the configuration process because only a single feature
model is needed. Moreover, some of the features of the
SPLs are not important for configuring the MPL, e.g.,
because they are mandatory in the particular MPL.

• It reduces configuration options, e.g., by creating features
that imply a set of features of lower level feature models.

• It avoids invalid configurations, e.g., it implicitly defines
constraints that otherwise had to be expressed as propo-
sitional formulas.

• It allows developers to define new features representing
features of lower level feature models. For example, it is
simpler for a domain expert not familiar with cryptog-
raphy to configure a feature ENCRYPTION instead of a
feature AES that represents the encryption algorithm.

An MPL feature model is useful to reduce the configuration
space to valid combinations of SPL instances and to provide
only configurations that are meaningful in a special context,
e.g., to simplify testing and maintenance of an MPL by
supporting only a predefined subdomain. However, restricting
the variability using an MPL feature model also means that
features important for a particular application scenario might
not be available in the MPL’s feature model. In order to be
able to create configurations also for such scenarios a user can
additionally configure the underlying SPLs.

For some MPLs, it might be useful to avoid an additional
feature model, e.g, when most of the features of the lower level
feature models have to be repeated in the MPL’s feature model.
Including all features in a single feature model is usually
not a solution because it results in large feature models that
are probably unmanageable. Furthermore, it is a question of
additional effort for creating and maintaining the additional
feature model.

B. Composition Model and Constraints

Based on the feature models, we generated four com-
position models for SPLs CommPL, FameDB, Node, and
SensorNetwork consisting of eight classes representing SPLs
or specialized SPLs (cf. Fig. 7). We extended the composition
model to define SPL instances and constraints. SPL instances
can be defined by editing each model separately but also using
an integrated view, as shown in Figure 7.

We use several constraints to ensure valid configurations
of the sensor network SPLs. For example, the FameDB SPL
requires only AES and SHA1 algorithms of the SecurityPL
(cf. Fig 8) and does not use all provided algorithms. We
describe this with instance constraints between SPLs FameDB
and SecurityPL:

FameDb.Encryption ⇒ FameDb.dataCrypt.AES (5)
FameDb.Integrity ⇒ FameDb.dataCrypt.SHA1 (6)

Constraint (5) defines that the AES encryption algorithm of
the SecurityPL is required when feature ENCRYPTION is
selected in FameDB. Constraint (6) defines that the SHA1
hash algorithm is required when feature INTEGRITY is selected
in FameDB. Instance constraints are stored as part of the
composition model of the according SPL which simplifies their
reuse. For example, constraints (5) and (6) are stored as part of
FameDB and can be reused in other compositions of FameDB.

Instance Constraints vs. SPL Specialization: As an alter-
native solution to instance constraints, we can create special-
izations of an SPL. For example, we can create a specialization
of SecurityPL that is used for data encryption and integrity
only in FameDB. This specialization can already include
features AES and SHA1 thus avoiding instance constraints.

In contrast to instance constraints, SPL specialization pro-
vides better means for reuse in other MPLs. The reason is
that instance constraints are defined per instance variable (e.g.,
FameDb.dataCrypt) and cannot easily be reused. On the
contrary, specialized variants can be reused simply by defining
the corresponding instance variables. However, specialization
does not scale because different application scenarios with
different constraints result in an exponentially growing number
of specializations. Hence, there is a tradeoff between simpler
reuse of specializations and an increasing effort for defining
and managing an increasing number of specializations. In
general, it seems to be more favorable to create a specialized
SPL when it can be used multiple times and includes many
configuration decisions. Constraints are to prefer when reuse is
limited and many specializations with few design decisions can
be avoided. In many cases, this probably results in a mixture
of specialization and instance constraints as we observed it for
the sensor network.

C. The Configuration Process
Based on domain and composition models, we automatically

derive a configuration generator and use it to configure all
SPLs used in an MPL. The configuration process starts with
the top-level feature model and an empty feature selection.
In our example, this is the SensorNetwork feature model.
Based on mandatory features, the configuration generator
creates a configuration for each instance variable and continues
recursively. For example, SensorNode and AccessNode are
always required in a sensor network and thus a sensor and
access configuration is created according to the composition
model in Figure 7. Initially there is no configuration for
SPL DataNode because a conditional dependency defines that
instance data of SensorNetwork is only available when

VaMoS 2010

128

feature DATASTORAGE is selected. This configuration is only
added when the feature is selected by the user. Similarly,
selecting feature ENCRYPTION adds an instance of SecurityPL
to SPLs FameDB and CommPL.

When the user has provided a configuration for all Sensor-
Network features, the configuration of the SensorNetwork SPL
is finished. This should be the usual scenario, but a detailed
configuration process of lower-level SPLs might be needed.
For example, the FameDB SPL can be manually configured
with features that influence the performance of the DBMS,
like special index data structures. Such additional configura-
tions are also required if configuration decisions are missing.
Each time a user changes a configuration, the configuration
generator checks the validity of the whole composition.3

D. Avoiding Code Duplication

For some application scenarios it is important to avoid code
duplication of SPL instances that are used multiple times in an
MPL. For example, SensDB and CommPL use an instance of
SecurityPL for encrypting and decrypting data (cf. Fig. 7). In a
scenario without product lines, e.g., using a library for security
algorithms, we could reuse this library for data storage and
communication, e.g., to reduce the binary size or used working
memory of the resulting compound system. Reusing product
lines in the same way is not always possible, because the
required configurations of the instances might be contradicting.
For example, when two alternative features of SecurityPL are
needed (cf. Fig. 7) two different instances of the same SPL
are required, one for SensDB and one for CommPL.

In order to optimize an MPL configuration with respect to
code reuse, the configuration generator detects possible SPL
instances that can be reused. However, it cannot always be
decided automatically whether an instance can be reused or
not. For example, even when reusing an SPL instance with
more features than needed, the semantics of the reused SPL
might be different, e.g., it might be required to initialize
additional features. Furthermore, due to the feature interaction
problem [4], the behavior of one feature might change when
adding another feature. Finally, reuse is problematic if it
means to reuse a running program or component including
its internal state. In order to avoid such errors, a user can
select whether an SPL can be reused or not. However, to
provide a practical solution, there should be more sophisticated
configuration mechanisms included in the future, e.g., using
insights from component based software development to solve
issues regarding the internal state of an SPL instance.

V. RELATED WORK

As described in Section II, approaches to model SPLs
can also be applied to model MPLs. Czarnecki et al. use
cardinality-based feature models with constraints to specify
specializations and constraints in feature models where mul-
tiple selections of one feature are possible [6], [10]. The
used feature model references and feature cloning can also

3Currently, we detect violation of constraints and do not check satisfiability.

be applied to model compositions of SPL instances as needed
for MPLs. The tool FeaturePlugin furthermore allows for con-
figuring multiple feature models that are integrated via feature
model references [1]. Including multiple feature models into
a single MPL feature model via feature model references
results in highly complex domain models for large MPLs.
Furthermore, it mixes domain modeling with SPL implemen-
tation because lower level SPLs are used for implementing
higher level SPLs and the domains are only related due to the
implementation. An approach that integrates feature models of
different hardware and software product lines was presented
by Streitferdt et al. [15]. The presented integration of multiple
product lines does not consider SPL instances or constraints
between them which is not needed in their context.

In contrast to the modeling approaches presented above, we
propose to model SPL instances and dependencies between
them. Our approach is an extension of existing SPL modeling
techniques and we think that their combination is required to
sufficiently model MPLs. We think that domain constraints are
required for describing dependencies between the SPLs of an
MPL but implementation issues like constraints to lower level
SPLs, used for implementation of higher level SPLs, should
be handled separately, i.e., in composition models.

Czarnecki et al. showed that feature models provide less
descriptive power than ontologies but are easier to use due
to their specialization [7]. The relationship of composition
models to ontologies is similar: Compositions of SPL instances
can also be modeled using ontologies and a composition model
is a special view representing dependencies between related
SPLs. Hence, feature models and composition models are
special techniques with a focus on certain aspects of SPL
modeling. Ontologies might be used to integrate both for a
more complete description of an MPL.

Product populations built from Koala components are de-
scribed by van Ommering [17]. Koala components can be built
by composing smaller components at configuration time which
is different from our work. We aim at describing how SPLs
have to be composed to build a larger product line, i.e., an
MPL, and not concrete products, i.e., Koala components. With
our approach, the composition of a complex product (e.g., a
component), built from other products, automatically changes
depending on a feature selection, which is a modification
of the composed architecture. This is different from manual
composition of components to derive a larger component.

Fries et al. present an approach to model SPL compositions
for embedded systems [8]. They use feature configurations, a
selection of features, to describe a group of instances that share
these features. Feature configurations are similar to specialized
SPLs in staged configuration but do not allow a user to
describe multiple configuration steps. A composition model,
as described in [8], is defined for a complete composition of
product line instances. We create a composition model for each
SPL of an MPL and integrate them to describe MPLs which
eases reuse of composition models. Implementation issues or
reusing SPL instances are not addressed in [8].

SPLs consuming different other SPLs in a SOA environment

VaMoS 2010

129

are described by Trujillo et al. [16]. Their focus was on
modeling the interfacing between SPLs in a service-oriented
environment. This includes service registration and service
consumption.

Tools like pure::variants4 and Gears5 allow a domain engi-
neer to build feature models and describe dependencies among
them. Both tools support modeling dependencies between
SPLs and Gears explicitly supports nested product lines that
can be reused between different feature models. guidsl is a
tool to specify composition constraints for feature models
using a grammar [2]. It provides means to check models and
interactively derive a configuration for a feature model. All
these tools support model checking using constraints similar
to our approach. However, they do not consider different
instances of an SPL within one composition and guidsl does
not consider the integration of multiple SPLs at all.

Batory et al. have shown that SPL development using
layered designs scales to product lines of program families [3].
The focus of their work is on generating families of programs
from a single code base and reasoning about program families.
The work does not address composition of SPLs developed
independently or compositions of SPL instances.

VI. SUMMARY

With increasing importance of SPLs, techniques to model,
develop, and configure compositions of multiple interacting
SPLs have to be provided. In this paper, we presented an
approach to model and configure such multi software product
lines (MPLs) that are built from multiple interdependent SPLs.
The presented work is a first step to extend current SPL engi-
neering with a new process that describes the implementation
of MPLs on an abstract level using a composition model
of involved SPL instances. We thus bridge the gap between
domain modeling and implementation of MPLs using a high-
level abstraction.

We have shown that composition models for MPLs can be
generated which reduces the effort for modeling MPLs and
integrates composition modeling into product line engineering.
Based on domain and composition models of an MPL, we
can automatically create configuration generators that help to
automate the configuration process of MPLs. In order to reuse
composition knowledge, we use a separate composition model
for each SPL that can be easily used in different MPLs. The
composition model of a whole MPL is derived by combining
the composition models of all constituent SPLs.

As a next step, we want to evaluate the approach using
existing product lines and analyze how the configuration
process of large MPLs can be further simplified. For example,
by checking satisfiability we could provide early feedback to
the user that configures an MPL.

ACKNOWLEDGMENT

The work of Marko Rosenmüller is funded by German
Research Foundation (DFG), project number SA 465/34-1.

4http://www.pure-systems.com
5http://www.biglever.com

Norbert Siegmund is funded by German Ministry of Education
and Research (BMBF), project number 01IM08003C. This
work is part of the projects MuliPLe6 and ViERforES7.

REFERENCES

[1] M. Antkiewicz and K. Czarnecki, “FeaturePlugin: Feature Modeling
Plug-in for Eclipse,” in Eclipse ’04: Proceedings of the 2004 OOPSLA
workshop on eclipse technology eXchange. ACM Press, 2004, pp. 67–
72.

[2] D. Batory, “Feature Models, Grammars, and Propositional Formulas,”
in Proceedings of the International Software Product Line Conference
(SPLC), ser. Lecture Notes in Computer Science, vol. 3714. Springer
Verlag, 2005, pp. 7–20.

[3] D. Batory, R. E. Lopez-Herrejon, and J.-P. Martin, “Generating Product-
Lines of Product-Families,” in Proceedings of the International Con-
ference on Automated Software Engineering (ASE). IEEE Computer
Society Press, 2002, pp. 81–92.

[4] M. Calder, M. Kolberg, E. H. Magill, and S. Reiff-Marganiec, “Feature
Interaction: A Critical Review and Considered Forecast,” Comput. Netw.,
vol. 41, no. 1, pp. 115–141, 2003.

[5] K. Czarnecki and U. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[6] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Staged Configuration
Using Feature Models,” in Proceedings of the International Software
Product Line Conference (SPLC), ser. Lecture Notes in Computer
Science, vol. 3154. Springer Verlag, 2004, pp. 266–283.

[7] K. Czarnecki, C. H. P. Kim, and K. T. Kalleberg, “Feature Models
are Views on Ontologies,” in Proceedings of the International Software
Product Line Conference (SPLC). IEEE Computer Society Press, 2006,
pp. 41–51.

[8] W. Friess, J. Sincero, and W. Schroeder-Preikschat, “Modelling Compo-
sitions of Modular Embedded Software Product Lines,” in Proceedings
of the 25th Conference on IASTED International Multi-Conference.
ACTA Press, 2007, pp. 224–228.

[9] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-
Oriented Domain Analysis (FODA) Feasibility Study,” Software Engi-
neering Institute, Carnegie Mellon University, Tech. Rep. CMU/SEI-90-
TR-21, 1990.

[10] C. H. P. Kim and K. Czarnecki, “Synchronizing Cardinality-Based
Feature Models and Their Specializations.” in European Conference
on Model Driven Architecture Foundations and Applications (ECMDA),
2005, pp. 331–348.

[11] C. W. Krueger, “New Methods in Software Product Line Development,”
in Proceedings of the International Software Product Line Conference
(SPLC). IEEE Computer Society Press, 2006, pp. 95–102.

[12] S. R. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong, “TinyDB:
An Acquisitional Query Processing System for Sensor Networks,” ACM
Transactions on Database Systems, vol. 30, no. 1, pp. 122–173, 2005.

[13] M. Rosenmüller, N. Siegmund, C. Kästner, and S. S. ur Rahman,
“Modeling Dependent Software Product Lines,” in GPCE Workshop on
Modularization, Composition and Generative Techniques for Product
Line Engineering (McGPLE), no. MIP-0802. Department of Informatics
and Mathematics, University of Passau, Oct. 2008, pp. 13–18.

[14] M. Rosenmüller, N. Siegmund, H. Schirmeier, J. Sincero, S. Apel,
T. Leich, O. Spinczyk, and G. Saake, “FAME-DBMS: Tailor-made
Data Management Solutions for Embedded Systems,” in EDBT’08
Workshop on Software Engineering for Tailor-made Data Management
(SETMDM), Mar. 2008, pp. 1–6.

[15] D. Streitferdt, P. Sochos, C. Heller, and I. Philippow, “Configuring
Embedded System Families Using Feature Models,” in Proceedings of
Net.ObjectDays. Gesellschaft für Informatik, 2005, pp. 339–350.

[16] S. Trujillo, C. Kästner, and S. Apel, “Product Lines that Supply Other
Product Lines: A Service-Oriented Approach,” in SPLC Workshop:
Service-Oriented Architectures and Product Lines - What is the Con-
nection?, Sep. 2007.

[17] R. van Ommering, “Building Product Populations with Software Com-
ponents,” in Proceedings of the International Conference on Software
Engineering (ICSE). ACM Press, 2002, pp. 255–265.

6http://wwwiti.cs.uni-magdeburg.de/iti db/research/MultiPLe
7http://www.vierfores.de

VaMoS 2010

130

Variability in Time — Product Line Variability and
Evolution Revisited

Christoph Elsner∗, Goetz Botterweck†, Daniel Lohmann‡, Wolfgang Schröder-Preikschat‡
∗ Siemens Corporate Technology & Research, Erlangen, Germany

christoph.elsner.ext@siemens.com
† Lero – The Irish Software Engineering Research Centre, Limerick, Ireland

goetz.botterweck@lero.ie
‡ Friedrich-Alexander University Erlangen-Nuremberg, Erlangen, Germany

{wosch,lohmann}@cs.fau.de

Abstract—In its basic form, a variability model describes the
variations among similar artifacts from a structural point of
view. It does not capture any information about when these
variations occur or how they are related to each other in time.
This abstraction becomes problematic as soon as time-related
aspects become essential for the modeling purpose, e.g., when
providing long-term support for a product line or when planning
its future strategy.

In this paper, we provide an overview of approaches that
deal with time-related aspects in variability, which is summa-
rized under “variability in time”. In contrast, the modeling
of structural commonalities and differences is referred to as
“variability in space”. We take an inductive approach and
survey different uses of the term “variability in time”, which
turn out to be orthogonal. We generalize the uses and identify
three different types: variability of linear change over time
(maintenance/evolution), multiple versions at a point in time
(configuration management), and binding over time (product
derivation). We validate the types by using them to describe
complex product line evolution scenarios where they exhibit
expressive and discriminatory power. Finally, we go into depth
for the first type (maintenance/evolution) and identify the tasks
and aspects to be considered when building a detailed evolution
research agenda in the future.

I. INTRODUCTION

Variability can be seen as “the ability of a software system
or artefact to be efficiently extended, changed, customized or
configured for use in a particular context.” [30]. Similarly,
variability modeling techniques “aim at representing the vari-
ability in a product family”. [27] Well-known techniques are
feature modeling [14], orthogonal variability modeling [22],
COVAMOF [28], and decision modeling [2].

These techniques, however, describe the variability of a
product line for one particular moment in time only. Given
the inevitable change of a software system over time, several
authors added the time dimension to variability. Whereas the
classical notion of variability is referred to as “variability in
space” the new dimension is called “variability in time”1 [22],
[9], [24], [32], [16], [19], [4]. For ease of reading, when we use
the term variability without any qualification in the following,
we actually refer to “variability in space”.

1We regard the terms “variability in time” and “variability over time”, both
in singular or plural, as synonyms.

The topic of “variability in time” is of considerable impor-
tance and has also been discussed in projects and workshops
([21], [33], [15]). However, recent uses and definitions of the
term refer to widely differing time-related variability issues.
Authors claiming to address “variability in time”—according
to their definition—therefore actually only address a subset of
time-related problems. Whereas there exists substantial work
and a common understanding on what “variability in space” is
about, this is not the case for “variability in time”. For time-
related variability issues in product line engineering, an estab-
lished body of knowledge, which allows for decomposing and
structuring the problem in an appropriate way, is still missing.
This paper performs first steps towards such a common body
of knowledge.

We take an inductive approach and survey different uses
of “variability in time” (Section II). They turn out to be
orthogonal, so we generalize them and identify three types
of variability in time: variability of linear change over time
(maintenance/evolution), multiple versions at a point in time
(configuration management), and binding over time (product
derivation) (Section III). This gives an expressive terminology
for characterizing complex time-related variability interrela-
tions, which we illustrate for several product line evolution
scenarios (Section IV). Finally, we go into depth for the first
type (maintenance/evolution), for which we define tasks and
aspects (future planning, present modeling and tracking, past
analysis) (Section V), serving as a prerequisite for defining a
research agenda in the future.

II. VARIABILITY IN TIME IN THE LITERATURE

In this section we report on the uses of the term “variability
in time” in recent work. Interestingly, it only appears in papers
within the product line context. The term has been used to
describe three different problem areas: product line evolution,
product line versioning, and product line binding variability.

A. Product Line Evolution Variability

One definition recited several times [19], [12], [34] is of
Pohl et al. [22]: “Variability in time is the existence of different
versions of an artefact that are valid at different times.” This
definition is not without problems. Having different versions

VaMoS 2010

131

of an artifact is obviously not specific to software product
lines. It holds for every evolving software system. However,
even for single system development, it is common that one
product is released in different versions and, thus, one has to
deal with different artifact versions at the same time. This
definition, however, implicates that there is a straight flow
of artifact versions, each new version actually invalidating its
predecessor.

Other authors [24], [7] use the term “variability in time”
to describe not only the change of the artifact versions over
time, but also of their variability dependencies (denoting the
“variability in space”) over time. As requirements change over
time, the product line must evolve as well. For a product line
this means adding, removing, or changing features, as well as
adding, removing, or changing variability dependencies (e.g.,
mandatory, optional, alternative). Still, however, they do not
address multiple artifact versions valid at the same time.

B. Product Line Versioning Variability

In [32], in turn, the problem of “variability in time” is
seen as a problem of dealing with multiple valid versions
at the current moment in time. Maintaining one product in
different versions in parallel is already a challenge for single
product development, as each product consists of a multitude
of artifacts of specific versions. For product lines this problem
is even more difficult; a multitude of products, each possibly
having several released versions, must be related to the correct
artifact version for maintenance.

C. Product Line Binding Variability

Other authors, finally, use the term “variability in time”
to describe the creation time and binding time of variability
[4], [6], [12], [13]. During domain engineering, at certain
phases of system development (e.g., analysis, design, coding
compilation, linking, distribution, installation, start-up, or run-
time) variation points are “made explicit”, meaning foreseen,
designed, or implemented in a dedicated way. In application
engineering, these variation points are successively bound to
specific variants, decreasing the variability until at the end one
specific system is the end product.

III. ASSIGNING THE DIFFERENT NOTIONS TO TYPES

As can be seen from the previous section, the notion of the
term “variability in time” varies considerably, each adopting a
different viewpoint. However, the uses actually are orthogonal.
Thus, in this section, we assign the different notions of
the term to types, which will help to reason about product
line variability over time providing a reasonable terminology.
We generalize the three above notions and subordinate more
time-related variability research, both from general software
engineering and product line research, to which we will give
exemplary literature references. We distinguish between the
following three types of variability in time: variability of
change over time (maintenance/evolution), multiple versions
at a moment in time (configuration management), and binding
over time (product derivation).

A. Variability of Linear Change over Time:
Maintenance and Evolution

Meta-studies indicate that 50 to 90 percent of costs refer
not to development of software products but to their chang-
ing [17]. As described in Section II, the popular definition of
“variability in time” in [22] denoting the existence of different
artifact versions at different times does not address this issue
appropriately in the context of software product lines.

The discipline of software engineering providing compre-
hensive concepts, methods, and tools for changes is called
software maintenance or software evolution. For this paper,
we will not strictly distinguish between both terms. However,
commonly, the term maintenance has a rather “reactive” con-
notation (i.e., corrective or adaptive maintenance according to
[18]), whereas evolution tends to be used in a more “proactive”
way (i.e., perfective or preventive maintenance in [18]). In the
following we will use the more appropriate term, respectively.

Evolving a product line is much more complex as in the case
of single systems, since the variability (in space) changes over
time as well. Formalizing the different types of product line
changes to ensure consistency is a big challenge specific to
product line engineering. A taxonomy for the different types
of product line evolution operators with a special focus on
requirements level changes is given in [26], for example. A
more empirical approach categorizing the findings of two case
studies into an approach relating the reasons of product line
changes to their architectural impact can be found in [29].
Finally, a framework for decentralized evolution of product
line feature models is presented in [23]. It facilitates speci-
fying explicitly which change operations are permitted on a
feature model by defining allowed deviations with respect to
a reference feature model.

B. Variability of Multiple Versions at a Moment in Time:
Configuration Management

From a simplified point of view, software maintenance may
be seen as a continuous flow of versioning over time, each
new version invalidating its predecessor. In this form, it does
not concern multiple versions of the same artifact at the same
time. This is a task of configuration management.

Software configuration management (SCM) is often defined
as a holistic discipline comprising tools, techniques, and
processes for tracking and controlling everything related to
versioning and changing of software-related artifacts (e.g.,
[20]). Version management tools such as SVN or ClearCase
constitute the technical side of SCM. In this paper, we will
use the term configuration management in a narrower sense:
managing different versions of the same artifact throughout the
software lifecycle, or, as stated informally in [20]: “eliminating
the confusion and error brought about by the existence of dif-
ferent versions of artifacts”. Thus, it deals with maintaining the
integrity of products considering that they may be comprised
of artifacts of different versions.

Once a product is delivered to a customer, keeping it in
sync with the product line core assets is often not part of
the contract or even feasible (e.g., due to hardware changes).

VaMoS 2010

132

Linear change over time Multiple versions at a moment in time Binding over time
Focus Change as continuous flow Managing artifact versions in parallel Binding VPs as process in time
Off focus Multiple artifact versions Evolving artifacts Evolution and versioning of VPs
Software engineering field Maintenance/Evolution Configuration management Product derivation
Exemplary PL challenge Consistent evolution of ViS Consolidating versions and ViS Time flexibility for binding ViS

PL: product line | VPs: variation points | ViS: variability in space

TABLE I
OVERVIEW OF THE THREE TYPES OF “VARIABILITY OVER TIME”.

However, the released products have to be maintained as
well, for instance by bug-fixing (corrective maintenance) or
for possible future update requests (perfective maintenance).
Therefore, the configuration of the specific product (i.e., all
its artifacts in their specific version) must on the one hand
be frozen in time. On the other hand, the product must keep
in contact with the evolving core asset base to support the
product’s maintenance.

Consolidating versioning and software product lines vari-
ability is an important research challenge of product line en-
gineering. It has both been addressed in research prototypes by
integrating product line functionality into version management
tools (e.g., [31]) or vice versa (e.g., [32]).

1) Versions over Time and Continuity: According to
Aoyama [1] evolution can be continuous or discontinuous.
Continuous evolution corresponds to a set of requirement
changes that is small enough, so that only little architec-
tural reengineering is required. Above a certain threshold of
changes, it is necessary to re-engineer the architecture, leading
to substantial architectural and implementational differences.
When the continuity is interrupted, a new product line genera-
tion arises and, for a certain period of time, both product lines
have to be maintained in parallel. Major architectural reengi-
neering leads to differences that are difficult to track. Dealing
with those problems is a further challenge for configuration
management.

C. Variability of Binding in Time:
Product Derivation

A considerable amount of variability of a product line is
planned early in the software product line lifecycle, during
scoping [25]. The actual implementation of the variability
(foreseeing and implementing variation points) can be per-
formed at different moments in domain engineering, as well
as the binding of these variation points to variants for product
derivation in application engineering [4]. Various binding
techniques ranging from coding time to run-time may be
applied.

Although the term “variability in time” has been used in
the context of variation point creation and binding, one might
argue that it is a rather trivial observation that this is usually
done in a process over time. However, we believe that it is
possible to gain some remarkable insights if seen in a broader
scope. Creation and binding of variability successively over
time is also known as multi-level and staged configuration,
respectively [8]. Such an approach is required, if it is neces-

sary to model so-called “software ecosystems”, this is when
software product lines themselves pass through several distinct
organizations until the variability is completely bound [3].

A further variability aspect is introduced if the variation
points are designed in a way that it is possible to bind them
at different stages (e.g., either at compile time or at run-time).
Then, additional variability, so-called “timeline variability”
[10] is introduced, leading to an even more complex product
configuration over time.

D. Intermediate Summary

Table I summarizes the three aforementioned types of
“variability in time”. They differ in what is in and off their
focus and in the fields of classical software engineering
that address them. To indicate that “variability in time” has
specific product-line–related challenges, we also mention one
exemplary challenge tackled by recent product line research.
Providing a complete list of all relevant challenges is beyond
the scope of this paper.

IV. SCENARIOS

In the following, we apply the three different types of
“variability in time” to describe several complex product line
scenarios where they exhibit expressive and discriminatory
power, giving evidence that they provide the right abstraction
for talking about variability over time.

Scenario 1: Interaction of Product Line and Products.
Figure 1 shows a product line scenario containing each of the
types of “variability in time”. The first type—linear change
over time (maintenance)—develops in parallel with the time
flow (horizontal axis). The vertical axis, in turn, corresponds to
the binding of variability. Interaction of the upper product line
evolution and the lower product maintenance corresponds to
configuration management, which is the third type. It becomes
necessary, for example, when a product bug-fix is fed back
into the product line core assets (bottom-up), or, vice versa,
a product receives a feature upgrade from the core asset base
(top-down).

The figure may be interpreted as follows: For the version of
the product line in 2009, binding of variability (the derivation
of the product A and B) is done in a single step. The product
line evolves and, in 2010, product C (V1) is derived. This
product has to be maintained in parallel to the evolving core
asset base. After creation of a maintenance release in 2011 C
(V2), the adaptations are merged back into the product line,
which is a configuration management task. Product D is bound

VaMoS 2010

133

2009
Time

2010 2011 2012 2013

V
a

ri
a

b
il
it

y

Product Line
(full variability)

Partially configured product
(some variability left)

Fully configured product
(no variability left)

P
ro

duct
 L

in
e

in
 2

00
9

P
ro

duct
 L

in
e

in
 2

01
0

P
ro

duct
 L

in
e

in
 2

01
2

P
ro

duct
 L

in
e

in
 2

01
1

P
ro

duct
 L

in
e

in
 2

01
3

PD

PL E
vo

PD

P
ro

duct
 A

 in
 2

00
9

P
ro

duct
 C

 V
1

in
 2

01
0

PM

Merg
ing

 C
ha

ng
es

int
o t

he
 P

L

P
ro

duct
 B

 in
 2

00
9

P
ro

duct
 C

 V
2

in
 2

01
1

PD

PD

P
ro

duct
 D

 in
 2

01
2

P
ar

tia
lly

-c
onfig

ure
d

P
ro

duct
 L

in
e

P
ar

tia
lly

-c
onfig

ure
d

P
ro

duct
 L

in
e

(H
an

ded
 o

ve
r
fr
om

 X
 to

 Y
)

PD

PD

PL E
vo

PL E
vo

PL E
vo

O
rg

an
iz

at
io

n
X

O
rg

an
iz

at
io

n
Y

P
ro

duct
 E

 in
 2

01
3

Fig. 1. Product line evolution scenario.

in separate steps (staged configuration [8]). Finally, in 2013,
product E results from staged configuration involving multiple
parties. The supplier (organization X) hands over the partially-
configured product line to its customer (organization Y), which
binds the remaining variation points and completes product
derivation. This is also referred to as software ecosystems [3].

Scenario 2: Interaction of Product Lines. The following
scenario (Figure 2) illustrates continuity and discontinuity of
product lines. Again, maintenance corresponds to the hor-
izontal axis, configuration management, here not between
products and their product line, but between distinct product
lines, to the vertical axis. Product derivation is not shown in
the figure. Subsequently, we distinguish between product line
generations, releases, and revisions using version numbering
(<gen>.<rel>.<rev>). This terminology is similarly used
in other publications (e.g., [29], [1]) and can be found likewise
in various software projects.

Starting in 2009 with development of the product line,
version n.m.0 is released in 2010, and, one year later in
an updated revision (n.m.1). In 2011, a new release is split
up from n.m.2. Both releases now have to be maintained
in parallel. Usually, the older release then primarily experi-
ences corrective and maybe adaptive maintenance, whereas
the newer one keeps evolving further (perfective, preventive
maintenance). Until the end of maintenance of release m,
considerable interaction between m and m+1 may occur (e.g.,
backporting of functionality), making complex configuration
management (“release management”) tasks necessary between
the product lines.

An even more profound break is the change of generations.
According to [1] this is the case when the prospected changes
are beyond a level of tolerance, so that it is necessary
to reengineer the software architecture completely. This is

the case starting from year 2012 where generation n+1 is
launched. The current state of the art in development and the
lessons learnt from the previous generation build the input for
creating a new product line architecture. Although the overall
architecture is build from scratch, successful core assets of the
prior generation may be ported (year 2014). Similarly as in a
case of release change, maintenance operations performed on
one product line generation may need to be transferred to the
other one (e.g., forwardporting). This task is more challenging
though, as, due to the differing product line architectures,
the previously common core assets may have drifted apart
considerably. This could be called “product line generation
management”.

V. PRODUCT LINE EVOLUTION IN DEPTH

In the previous sections, we identified three types of
“variability over time” and applied them to two evolution
scenarios. Now, it is necessary to further decompose and
to identify the relevant tasks and aspects to be considered
within each type. This will serve as a foundation to define
a research agenda for giving appropriate support with tools
and methods in the future. For the type of product derivation,
there already exists substantial research, even on advanced
topics (e.g., staged configuration, software supply chains and
ecosystems) [8], [11], [3]. For this paper, we will only perform
this decomposition for “product line evolution”; addressing
versioning-related variability issues is out of scope for this
paper and will be future work.

Product line evolution just is starting to get a foundation
suitable for modeling. In [26] a set of evolution operations is
defined, and [5] presents initial concepts for evolution-enabled
feature modeling. For defining the tasks and aspects relevant
for product line evolution, we run through a complete iteration
of what may be called the “evolution lifecycle”. Depending

VaMoS 2010

134

Extraction of selected components

R
el

ea
se

 n
.m

Revision

2009
time

2010 2011 2012 2013 2014

Revision Revision

R
el

ea
se

 n
.m

+1

Revision Revision Revision Revision Revision

E
nd

 o
f

m
ai

nt
en

an
ce

Branch

2015 2016

Branch
...

G
en

er
at

io
n

n
G

en
er

at
io

n
n+

1

R
el

ea
se

 n
+1

.0

Re
wr

ite
fro

m
 S

cr
at

ch

Revision Revision Revision

Branch

Accumulated
Knowledge

Internal
Prototype

Lessons Learnt

...

Internal
Baseline

n.m+1.0 n.m+1.1 n.m+1.2 n.m+1.4n.m+1.3

Internal
Baseline

n.m.0 n.m.1 n.m.2

n+1.0.0 n+1.0.1 n+1.0.2

...

Backport of changes

E
nd

 o
f

m
ai

nt
en

an
ce

Forwardport of changes

Fig. 2. Evolution paths of product lines (revisions, releases, and generations).

on the intention of an observer, product line evolution has the
following lifecycle phases: future planning, present tracking,
present/past analysis, and correction/realignment. Figure 3
illustrates this.

Proactive Planning. Scoping [25] is a crucial task for a
product line; its future development has to be planned. This
means, in the first case, planning the features and their vari-
ability for a certain moment in the future. This is however not
the only relevant planning task. Additionally, it is necessary
to plan the steps, how to reach the future plan (product line
evolution). Next to the (proactive) evolution of the product line
core assets, the maintenance of released products and previous
product line releases and generations must be planned and
aligned.

Tracking. Tracking a product line includes both logging
its current state and the changes performed on it. When
considering the state of a product line as its current features
and their dependencies, this can be done by using variability
modeling (e.g., feature modeling with versioned features and
dependencies) and change recording. This tracks the main-
tenance/evolution of the product line variability. However,
changes to released products (bug-fixes, updates) should con-
sequently also be tracked. This might be difficult, for example
in the context of software ecosystems and supply chains [3],
[11], as a product line supplier might not even know about the
actual products derived from its base product line for the end
customers.

Analysis. Given that the product line evolution has been
appropriately planned and tracked, we envision three types
of analyses: evolution state analysis, evolution step analysis,
evolution conformance analysis.

• Analyzing the evolution state means checking the consis-
tency at a moment in time. This may involve that each
feature on model level must have assigned implementa-
tion artifacts, or that dependencies on feature level may
not contradict to those on implementation level.

• An evolution step is valid if it transforms one valid
evolution state to another valid one. For one concrete
evolution state as input, this is easy to check (simply
applying the evolution step and checking the result for
consistency). However, it might be possible to prove that
an evolution step produces always a valid result given a
valid input.

• Analyzing evolution conformance, finally, means check-
ing whether the current and past evolution states and
the transition steps performed comply to the evolution
how it has been planned. The result of the evolution
conformance analysis may not only comprise the actual
deviation but also recommendations about evolution steps
to perform to get on track again.

Each of these analyses will usually comprise the following
tasks: gathering the data, performing the analysis, and report-
ing of the outcomes, for example by visualization. This also
holds true for the maintenance of released products, which
must be analyzed as well.

Correction and Realignment. Based on the results of
the analyses it might be necessary to correct and realign the
development efforts or the product line evolution plan.

As we address a complete iteration of the evolution life-
cycle, we are confident that we cover the crucial tasks and
aspects to be considered when defining a research agenda for
product line evolution in the future.

VaMoS 2010

135

Product Line
at beginning
of evolution

Planned Goal
for Evolution Phase

A

Planned Goal
for Evolution Phase

B

Product Line after
Evolution Step A1

Product Line after
Evolution Step A2

Time

Constraints describing
the evolution path

Deviation
Detection

Correction
Conformance

Analysis

Fig. 3. Planning, tracking, analysis, and realignment of evolution.

VI. DISCUSSION

The aim of the paper is to perform first steps towards a com-
mon body of knowledge for variability over time. Validation of
the results achieved is difficult, as a common terminology and
understanding on concepts is missing. Addressing this problem
best possible, we base our research both on existing work
and exemplary validation. More precisely, our typification of
“variability in time” is based on a literature survey and we
referred to related work and assigned it to the corresponding
types wherever appropriate. Second, we exemplarily validated
the identified types by applying them to complex product line
scenarios, where they exhibited expressiveness.

VII. CONCLUSION

Current authors address different time-related variability
issues when talking about “variability in time”. Without a
common framework of concepts, it will be difficult to relate
advancements to each other, finally hindering progress. In this
paper, we performed the first steps to approach this problem.
We surveyed the different uses and found out that their notions
are actually orthogonal. By generalization, we received three
types of “variability in time”: variability of linear change
over time (maintenance/evolution), multiple versions at a point
in time (configuration management), and binding over time
(product derivation). We applied the three types to two product
line scenarios, where they exhibited expressive and discrimi-
natory power, giving evidence for their usefulness as part of
a body of knowledge for time-related variability issues.

As a first step towards further refinement, we extracted
the necessary tasks and aspects relevant for the type mainte-
nance/evolution, thereby covering a complete iteration of the
“evolution lifecycle”. These results can be used for defining a
research agenda for developing tools and methods supporting
product line evolution. Obviously this paper can only be seen
as a first step towards a common body of knowledge, which
has to be developed in vital discussion with the research
community. However, we hope that our work stimulates further
researchers to engage with the various dynamic properties of
product lines and the challenges imposed by this fact.

ACKNOWLEDGMENT

This work was supported, in part, by Science Foundation
Ireland grant 03/CE2/I303_1 to Lero – the Irish Software
Engineering Research Centre, http://www.lero.ie/.

We thank Christa Schwanninger for her valuable comments
on a draft of this paper.

REFERENCES

[1] M. Aoyama, “Continuous and discontinuous software evolution: aspects
of software evolution across multiple product lines,” in Proceedings
of the 4th International Workshop on Principles of Software Evolution
(IWPSE ’01). New York, NY, USA: ACM Press, 2001, pp. 87–90.

[2] C. Atkinson, Component-Based Product Line Engineering with UML.
Addison-Wesley, 2001.

[3] J. Bosch, “From software product lines to software ecosystems,” in
Proceedings of the 13th Software Product Line Conference (SPLC ’09),
2009, iSBN 978-0-9786956-2-0.

[4] J. Bosch, G. Florijn, D. Greefhorst, J. Kuusela, H. Obbink, and K. Pohl,
“Variability issues in software product lines,” in Proceedings of the
4th International Workshop on Software Product-Family Engineering.
Heidelberg, Germany: Springer-Verlag, 2001.

[5] G. Botterweck, A. Pleuss, A. Polzer, and S. Kowalewski, “Towards
feature-driven planning of product-line evolution,” in Proceedings of the
1st International Workshop on Feature-Oriented Software Development
(FOSD’09). New York, NY, USA: ACM Press, 2009.

[6] R. Capilla, A. Sánchez, and J. C. Dueñas, “An analysis of variability
modeling and management tools for product line development,” in
Proceedings of the Workshop on Software and Services Variability
Management. Concepts, Models and Tools, 2007.

[7] J. O. Coplien, “Multi-paradigm design,” Dissertation, Vrije Universiteit
Brussel, 2000.

[8] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Staged configuration
through specialization and multilevel configuration of feature models,”
Software Process: Improvement and Practice, vol. 10, no. 2, pp. 143–
169, 2005.

[9] S. Deelstra, M. Sinnema, J. Nijhuis, and J. Bosch, “COSVAM: A
technique for assessing software variability in software product fam-
ilies,” in Proceedings of the 20st IEEE International Conference on
Software Maintainance (ICSM’04). Washington, DC, USA: IEEE
Control Systems Magazine, 2004.

[10] E. Dolstra, G. Florijn, M. de Jonge, and E. Visser, “Capturing timeline
variability with transparent configuration environments,” in Proceedings
of the International Workshop on Software Variability Management, May
2003.

[11] H. Hartmann, T. Trew, and A. Matsinger, “Supplier independent feature
modelling,” in Proceedings of the 13th Software Product Line Confer-
ence (SPLC ’09), 2009, iSBN 978-0-9786956-2-0.

VaMoS 2010

136

http://www.lero.ie/

[12] A. Hubaux and A. Classen, “Taming time in software product lines,”
University of Namur, Rue Grandgagnage, 21, B-5000 Namur, Belgium,
Tech. Rep., July 2008.

[13] M. Jaring and J. Bosch, “Representing variability in software product
lines: A case study,” in Proceedings of the 2nd Software Product Line
Conference (SPLC ’02). London, UK: Springer-Verlag, 2002, pp. 15–
36.

[14] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” Carnegie Mellon
University, Software Engineering Institute, Pittsburgh, PA, Tech. Rep.,
Nov. 1990.

[15] P. Knauber and J. Bosch, “Icse workshop on software variability
management,” in Proceedings of the 25th International Conference on
Software Engineering (ICSE ’03), vol. 0. Los Alamitos, CA, USA:
IEEE Control Systems Magazine, 2003, p. 779.

[16] P. Knauber and S. Thiel, “Session report on product issues in product
family engineering,” in Proceedings of the 4th International Workshop
on Software Product-Family Engineering. Heidelberg, Germany:
Springer-Verlag, 2001.

[17] J. Koskinen, “Software maintenance costs. updated: Sept. 28,
2004.” http://users.jyu.fi/~koskinen/smcosts.htm, P.O. Box 35, 40014-
Jyväskylä, Finland, 2004.

[18] B. P. Lientz and B. E. Swanson, Software Maintenance Management.
Boston, MA, USA: Addison-Wesley Longman Publishing Co., Inc.,
1980.

[19] D. Nestor, L. O’Malley, A. Quigley, E. Sikora, and S. Thiel,
“Visualisation of variability in software product line engineering,” in
Proceedings of the 1st International Workshop on Variability Modelling
of Software-intensive Systems (VAMOS), 2007. [Online]. Available: http:
//www.vamos-workshop.net/2007/files/VAMOS07_0038_Paper_7.pdf

[20] L. Northrop and P. Clements, Software Product Lines: Practices and
Patterns. Addison-Wesley, 2001.

[21] K. Pohl, G. Böckle, P. Clements, H. Obbink, and D. Rombach, Eds.,
Product Family Development Seminar No. 01161, April 2001.

[22] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer-Verlag,
2005.

[23] M.-O. Reiser and M. Weber, “Multi-level feature trees: A pragmatic

approach to managing highly complex product families,” Requirements
Engineering, vol. 12, no. 2, pp. 57–75, 2007.

[24] J. Savolainen and J. Kuusela, “Volatility analysis framework for product
lines,” in Proceedings of the 2001 Symposium on Software Reusability
(SSR ’01). New York, NY, USA: ACM Press, 2001.

[25] K. Schmid, “A comprehensive product line scoping approach and its
validation,” in Proceedings of the 24th International Conference on
Software Engineering (ICSE ’02). New York, NY, USA: ACM Press,
2002.

[26] K. Schmid and H. Eichelberger, “A requirements-based taxonomy of
software product line evolution,” Electronic Communication of the
EASST, vol. 8, 2007.

[27] M. Sinnema and S. Deelstra, “Classifying variability modeling
techniques,” Information & Software Technology, vol. 49, no. 7, pp.
717–739, 2007. [Online]. Available: http://dx.doi.org/10.1016/j.infsof.
2006.08.001

[28] M. Sinnema, S. Deelstra, J. Nijhuis, and J. Bosch, “COVAMOF: A
framework for modeling variability in software product families,” in
Proceedings of the 11th Software Product Line Conference (SPLC ’07).
Heidelberg, Germany: Springer-Verlag, 2007.

[29] M. Svahnberg and J. Bosch, “Evolution in software product lines: Two
cases,” Journal of Software Maintenance, vol. 11, no. 6, pp. 391–422,
1999.

[30] M. Svahnberg, J. van Gurp, and J. Bosch, “A taxonomy of variability
realization techniques,” Software - Practice and Experience, vol. 35,
no. 8, pp. 705–754, 2006.

[31] C. Thao, E. V. Munson, and T. N. Nguyen, “Software configuration
management for product derivation in software product families,” in
Proceedings of the 15th Annual IEEE Int. Conf. and Workshop on the
Engineering of Computer Based Systems. Washington, DC, USA: IEEE
Control Systems Magazine, 2008, pp. 265–274.

[32] A. van der Hoek, “Design-time product line architectures for any-
time variability,” Science of Computer Programming. Special Issue on
Software Variability Management, vol. 53, no. 3, pp. 285–304, 2004.

[33] F. van der Linden, “Software product families in Europe: The Esaps &
Café projects,” IEEE Software, vol. 19, no. 4, pp. 41–49, 2002.

[34] ——, “Applying open source software principles in product lines,”
UPGRADE – European Journal for the Informatics Professional, vol. 10,
no. 3, pp. 32–40, 2009.

VaMoS 2010

137

http://users.jyu.fi/~koskinen/smcosts.htm
http://www.vamos-workshop.net/2007/files/VAMOS07_0038_Paper_7.pdf
http://www.vamos-workshop.net/2007/files/VAMOS07_0038_Paper_7.pdf
http://dx.doi.org/10.1016/j.infsof.2006.08.001
http://dx.doi.org/10.1016/j.infsof.2006.08.001

VaMoS 2010

138

Using Collaborations to Encapsulate Features?

An Explorative Study

Martin Kuhlemann, Norbert Siegmund

Faculty of Computer Science

University of Magdeburg

Magdeburg, Germany

{mkuhlema,nsiegmun}@ovgu.de

Sven Apel

Department of Informatics and Mathematics

University of Passau

Passau, Germany

apel@uni-passau.de

Abstract—A feature is a program characteristic visible to an
end-user. Current research strives to encapsulate the implemen-
tation of a feature in a module. Jak is a language extension to
Java that allows programmers to encapsulate implementations
of features in the form of a collaboration. In prior work, we
and others faced problems when using collaborations in Jak and
alike languages with too high expectations, e.g., to encapsulate
widely scattered code of features such as transaction management
in data bases. In this paper, we explore which criteria feature
implementations must fulfill so that they can be encapsulated in
Jak. The criteria that we found decisive are: granularity of code
elements that should be encapsulated in a collaboration, object-
level extension by features, and object-oriented connections of a
feature’s code elements. We finally present a general guideline
when to encapsulate a feature with a collaboration in Jak. Prac-
titioners can now evaluate in advance whether Jak collaborations
are suited to encapsulate their feature or not.

I. INTRODUCTION

Collaboration-based design (CBD) extends object-oriented

design by the concept of a collaboration [1]. A collaboration

is a module that encapsulates code fragments of an object-

oriented program, e.g., statements, members, and classes. A

collaboration can be composed flexibly with other collabora-

tions to obtain complete software products. Usually, the code

of one collaboration implements one complete feature, i.e., a

user-visible program characteristic [2]. By flexibly compos-

ing collaborations, stakeholders can select features of a pro-

gram [1].

Jak is a language that adds the collaboration concept to

Java [1]. In prior work, we and others faced problems when

we tried to encapsulate features with collaborations in Jak and

alike languages, e.g., problems of granularity [3], parameter

passing [4], or code replication [5]. Often the problems were

encountered too late to make an easy design shift so the

developers often refrained from reimplementing the features

and instead tried to circumvent the problems (often with bad

designs [3], [4]). We argue that developers can benefit from

a guideline that describes for which kind of feature Jak col-

laborations are appropriate and for which features they are

not. We propose such a guideline to avoid design flaws and

reimplementation effort.

We conducted a case study and then we developed the

guideline. In this study, we transformed implementations

of a number of features from object-oriented Java code to

collaboration-based Jak code. The features we choose were

implemented using object-oriented design patterns [6].1 We

choose them because their patterns occur in many places con-

tributing to many feature implementations.

We developed general criteria which a feature must fulfill so

that it can be encapsulated properly with a Jak collaboration.

The guiding criteria that we found decisive are: granularity

of code elements related to a feature, object-level extension

by features, and object-oriented connections of features’ code

elements. Based on these criteria we defined a guideline on

how to use Jak-like collaborations. Developers can evaluate

in advance whether collaborations can encapsulate the feature

properly that is to be developed.

II. BACKGROUND:

COLLABORATION-BASED DESIGN WITH JAK

Jak adds support for collaborations to Java [1]. A collab-

oration encapsulates a set of classes and class refinements.

A class refinement encapsulates members, which are added

to classes or wrap methods of classes. Wrapping of methods

allows programmers to add statements to the beginning and

end of methods. The elements encapsulated in a collaboration

can be composed with elements of other collaborations. Com-

posing multiple collaborations finally synthesizes a compilable

program.

In Figure 1, we show the two collaborations Base and

PointObserver. Base contains a class Point. PointObserver con-

tains a class refinement, which adds members and statements

to the previously added class Point. It adds a field observer

and a method setObserver to Point (Lines 7-10). Method setY

of refinement Point (in PointObserver) refines method setY of

class Point of Base, i.e., it adds statements to this method with

an overriding mechanism (Jak’s overriding keyword is Super,

Line 12). The refinement adds the subject role of the Observer

design pattern to Point.

In our study we will analyze granularity of transformations.

For that, we consider member and class introduction as well

1Design patterns are descriptions of recurring development tasks and their

according standard solutions [6]. A pattern instance is code that implements

a pattern. Many Jak implementation approaches for patterns were introduced

before [7]. However in [7], we did not evaluate Jak for implementing features

but just compared mechanisms of Jak-like languages.

VaMoS 2010

139

Collaboration Base

1 public class Point {
2 private int y;
3 public void setY(int newY) {
4 this.y=newY;
5 }}

Collaboration PointObserver

6 refines class Point {
7 private IObserver observer;
8 public void setObserver(IObserver newO) {
9 observer=newO;

10 }

11 public void setY(int newY) {
12 Super.setY(newY);
13 observer.update();
14 }}

Fig. 1. A sample class refinement in Jak.

as method wrapping coarse-grained transformations and trans-

formations targeting statements or parts of statements as fine-

grained.

III. CASE STUDIES

For different features, we encapsulated code, that imple-

ments a feature, into collaborations – each feature we selected

for our study is implemented using an isolated pattern. For sev-

eral features, we also applied collaboration concepts to reim-

plement the pattern’s solution (e.g., of wrapping). We argue

that the structure of the studied features reoccurs in the struc-

ture of many other features because pattern implementations

occur frequently and expose various shapes. If features are

implemented without design patterns our criteria and guideline

might not match.

Study setup: We encapsulated in collaborations code of

features which are implemented by instances of the Gang-of-

Four design patterns [6]. Specifically, in the three programs

JHotDraw2, Berkeley DB3, and Expression Product Line [8]

we transformed object-oriented implementations of Gang-of-

Four patterns into collaboration-based implementations.4 JHot-

Draw (30K lines of code) is a GUI framework; Berkeley

DB (90K lines of code) is an embedded database engine for

Java; Expression Product Line is an evaluator for mathematical

expressions.

A. Results

We summarize interesting problems encountered during our

study. We group these problems into categories granularity,

data type changes, object-level extension, and object-oriented

connections between code elements:

Granularity: In JHotDraw, an Adapter pattern instance is

used to implement the Undo functionality for deleting figures.

We analyzed different variants to implement this adapter with

2http://sourceforge.net/projects/jhotdraw/
3http://www.oracle.com/database/berkeley-db/je/
4When (a) transforming the whole implementation of a pattern instance

includes repetitive tasks and (b) the effort to perform them all (manually) was

too high then we concentrated on a sub-implementation requiring these tasks

to be performed less often.

Command Adapter Command

Command

+undo

+undo

AdapterCommand

Base

Adapter

Adapter

+undo

transformation

class

collaboration

Base

AdapterLegend

(a) Initial design (b) Var. #1 (c) Var. #2

Fig. 2. Transforming the Adapter instance towards collaborations.

collaborations in which adapter methods are added with re-

finements (1) to an empty adapter class or (2) to the adapted

class. With regard to variant #1 (Fig. 2b), we cannot separate

calls to adapter methods into collaborations, which already en-

capsulate the adapter methods, because the calls were located

in between other statements or were expressions inside other

statements – Jak refinements however only may wrap methods.

As a workaround, we added hook methods (or decomposed

the methods in other cases) such that we can wrap these new

methods. In variant #2 (Fig. 2c), we had to transform adapters

that were composed from superclasses. We ended up with

either few big collaborations, which replicate code, or with

numerous small collaborations with less code replication but

complex inter-dependencies.

Jak does not allow fine-grained extensions, e.g., adding

formal parameters to methods, method calls to arbitrary meth-

ods, or changes to the return type. This caused problems

for implementing instances of the patterns Bridge, Mediator,

Observer, Prototype, and Template Method and hampered us

or prevented us to implement Jak refinements.

Data type changes: To reuse code of an existing implemen-

tation of the pattern Composite, we had to change a field’s

type. Jak does not support such transformation so we changed

the code by hand (we changed a field’s type from Vector to

List). If the transformed code would have been generic [9] our

adjustment would have been less problematic.

Object-level extension: Strategy and State pattern instances

allow developers to choose algorithms for objects of a context

class [6]. In our study, we planned a design where we choose

an algorithm by selecting a collaboration. The selected collab-

oration then should refine the context classes to add the strat-

egy or state implementation statically to them. Unfortunately,

strategy objects are polymorphic and assembled dynamically

with delegation. So we cannot design an individual refinement

which can be selected statically and which comprises one

strategy or state algorithm. Additionally, references to objects

of the pattern’s classes are set to null and tested for null and

code is executed based on this test. These tests require object

semantics and cannot be modeled with Jak-like collaborations.

Hence, the transformations failed for Strategy and State.

For the pattern instance of Singleton, we faced problems

when moving its code into a collaboration (replacing con-

structors with factory methods that are refined to return the

same object at every call). We could not encapsulate all the

VaMoS 2010

140

BorderDecorator

NodeFigure

+draw

NodeFigure

+draw

BorderDecorator

+draw

NodeFigure

+draw

TextFigure

+draw

TextFigure

+draw

<<decorated>>

Base

TextFigure

+draw

(a) Initial design (b) Transformed CBD

Fig. 3. Transformation of a Decorator instance (simplified).

1 refines class BinaryTreeLeaf implements VisitableNode {

2 public void accept(Visitor visitor) {
3 visitor.visitLeaf(this);
4 }}

(a)

1 refines class LineConnection {

2 public void visit(FigureVisitor visitor) {
3 visitor.visitFigure(this);
4 }}

(b)

Fig. 4. Name conflict prevents reuse for Visitor code.

feature-related code into the collaboration because we could

not determine which code is related to the feature or depends

on the pattern instance respectively. In particular, we could

not determine execution paths which semantically rely on the

pattern instance – a so-called feature mining problem [10].

Object-oriented connections between code elements: The

object-oriented implementation of Decorator allows a decora-

tor object to wrap objects of multiple classes which are con-

nected by inheritance. When turning a decorator class into a re-

finement of a decorated class, we must replicate the refinement

for every decorated class that can be instantiated. In the initial

object-oriented design (Fig. 3a), objects of BorderDecorator

class decorate objects of classes TextFigure and NodeFigure

which both can be instantiated. However, refining both classes

with the decorator’s code (Fig. 3b) applies the decoration twice

accidentally for objects of NodeFigure. Objects of NodeFigure

of which methods are decorated inherit and override methods

of TextFigure which are decorated as well. A super call in the

method NodeFigure.draw then causes the decoration to execute

for TextFigure.draw and for NodeFigure.draw.

When we transformed the object-oriented implementation of

pattern Proxy, more classes remained than we expected. That

is, in the object-oriented design, single proxy objects wrap

objects of different classes but some methods of the proxy ob-

jects do not wrap anything. Proxy methods that wrapped meth-

ods before became refinements of the methods they wrapped.

Methods of the proxy class, which did not wrap anything,

were not removed from the proxy class. But, as collaborations

cannot encapsulate methods outside classes, the proxy classes

remained to encapsulate these connected members. Collabora-

tion names are no qualifiers of encapsulated code and cannot

be used to reference this code.

For the Visitor pattern in our study we tried to reuse refine-

ments, which add accept methods and visitor classes, from an

existing CBD Visitor implementation [7]. However, we failed

reusing because methods and classes have incompatible names

in JHotDraw and the existing implementation. Specifically, we

could not reuse a refinement of class BinaryTreeLeaf (Fig. 4a)

but had to implement a similar refinement for class LineCon-

nection (Fig. 4b). We thus had to introduce a kind of code

replication.

Other patterns: We were able to transform the implementa-

tions of Abstract Factory, Command, Facade, Factory Method,

Flyweight, Interpreter, Iterator, and Chain of Responsibility

to collaborations without new interesting problems. We faced

problems for transforming the Memento instance but they do

not allow us to conclude on the expressiveness of Jak [11].

IV. DISCUSSION

In our case studies, we faced more problems to implement

or encapsulate the features with Jak than we expected:

Granularity: Most of the transformations were problematic

or failed because Jak collaborations could not encapsulate fine-

grained code elements, like formal parameters or method calls.

Extensions to Jak that support fine-grained changes to code

thus appear promising.

Object-level extension: Some patterns target to add a prop-

erty to individual objects. A Jak-like refinement adds a prop-

erty to all objects of a class but not just to individual objects.

We argue that object-level properties conflict with class-level

refinements, and thus CBDs as in Jak inherently cannot en-

capsulate instances of such patterns.

Object-oriented connections between code elements: We

faced problems when different refined classes participate in the

same inheritance hierarchy. We also observed a problematic

balance between complex collaboration dependencies and code

replication. Both are possible fields of future research.

Generally, we found it disturbing that a collaboration name

is not a qualifier usable to reference the collaboration’s code.

To use this code, we put it into publicly accessible classes

(which can be referenced), although members in these classes

are referenced from within one collaboration only. We argue

that there are situations in which implementation details of

a separated pattern instance should only be visible within

the encapsulating collaboration or visible to features which

explicitly extend this collaboration.

The transformations that we performed were simple but

laborious.5 We had to implement these transformations man-

ually because there is no sufficient support to restructure and

transform code of CBDs.

A. Guideline

Now we give a conservative guideline so that developers

can evaluate in advance whether Jak collaborations are suited

to encapsulate a pattern instance. We allow cases in which

Jak collaborations could be appropriate although our guideline

5For some object-oriented implementations the transformation into collab-

orations took up to three days (on average it took a few hours) because we

had to restructure a major part of the program.

VaMoS 2010

141

denies this issue, i.e., we allow false negatives. We found that

Jak collaborations can encapsulate pattern instances whose im-

plementation (1) is coarse-grained, e.g., whose implementation

involves adding just classes and methods, (2) does not extend

classes connected through inheritance, and (3) does not apply

properties to individual objects of one class only. When pattern

instances are known to become fine-grained, known to extend

connected classes, or known to extend single objects of one

class, Jak collaborations should not be used to encapsulate

them.

V. RELATED WORK

Several researchers proposed languages similar to Jak,

e.g., [12], [13]. Evaluating these languages is possible future

work. We conjecture that the general criteria, which we found,

are decisive to implement features in these languages, too.

Kästner et al. and Ye et al. observed that granularity is a

decisive criterion when encapsulating features in modules [3],

[14]. We confirm these results – we often had to add hook

methods to encapsulate statements of method calls. In addition

to prior work, we identified the criteria of object-oriented

connections and object-level extension to be decisive for en-

capsulating features with Jak collaborations.

In another line of research, Kästner analyzed whether As-

pectJ is suitable for encapsulating features with aspects [15].

In contrast to his work, we concentrated on encapsulating code

of various design pattern instances rather than code of self-

chosen features. We argue to ensure this way that the features,

which we encapsulated, cover the shape of a wide range of

features. In addition, we determined general criteria that decide

when Jak collaborations can encapsulate a feature.

Several researchers proposed to encapsulate design pattern

instances in modules, e.g., [16], [17]. However, they all do

not deal with CBDs and they all do not determine which

general criteria decide language concepts’ applicability. In

prior work [7], we analyzed aspect-based implementations of

patterns [17] and transformed them into Jak implementations.

Here, we reuse the Jak implementation approaches (and tried

to reuse code) side by side with new approaches in non-trivial

programs to develop a general guideline for Jak.

VI. CONCLUSION

Collaborations are intended to encapsulate features in pro-

grams. In a study, we evaluated this aim for a variety of

features implemented by design patterns. We found that col-

laborations can encapsulate some pattern implementations but

not every implementation of collaborating program elements

can be encapsulated with collaborations as in Jak.

By analyzing the problems we found, we identified criteria

which guide whether Jak collaborations are well-suited to

implement a particular feature: (1) the granularity of the code

to encapsulate in a collaboration, (2) object-level extension by

the feature to encapsulate, and (3) object-oriented connections

between code elements of the feature to implement. Based on

these criteria, we presented a guideline when to use collabo-

rations in Jak-like languages in order to encapsulate a feature.

ACKNOWLEDGMENTS

The authors thank Don Batory and Maider Azanza for help-

ful comments on this work. Martin Kuhlemann was supported

and partially funded by the DAAD Doktorandenstipendium,

number D/07/45661. Norbert Siegmund was funded by the

German Ministry of Education and Research (BMBF) in

the ViERforES project (http://vierfores.de/), project num-

ber 01IM08003C. Sven Apel’s work was supported in part

by the German Research Foundation (DFG), project num-

ber AP 206/2-1.

REFERENCES

[1] D. Batory, J. N. Sarvela, and A. Rauschmayer, “Scaling step-wise re-

finement,” IEEE Transactions on Software Engineering, vol. 30, no. 6,

pp. 355–371, 2004.

[2] K. Kang, S. Cohen, J. Hess, W. Novak, and A. Peterson, “Feature-

oriented domain analysis (FODA) feasibility study,” Software Engineer-

ing Institute, Carnegie Mellon University, Tech. Rep. CMU/SEI-90-TR-

21, 1990.

[3] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in software prod-

uct lines,” in Proceedings of the International Conference on Software

Engineering, 2008, pp. 311–320.

[4] M. Rosenmüller, M. Kuhlemann, N. Siegmund, and H. Schirmeier,

“Avoiding variability of method signatures in software product lines: A

case study,” in Workshop on Aspect-Oriented Product Line Engineering,

2007, pp. 20–25.

[5] S. Apel, “The role of features and aspects in software development,”

Ph.D. dissertation, Faculty of Computer Science, University of Magde-

burg, 2007.

[6] E. Gamma, R. Helm, R. Johnson, and J. Vlissides, Design patterns:

Elements of reusable object-oriented software. Addison-Wesley, 1995.

[7] M. Kuhlemann, S. Apel, M. Rosenmüller, and R. E. Lopez-Herrejon,

“A multiparadigm study of crosscutting modularity in design patterns,”

in Proceedings of the International Conference Objects, Models, Com-

ponents, Patterns, 2008, pp. 121–140.

[8] R. E. Lopez-Herrejon, D. Batory, and W. R. Cook, “Evaluating support

for features in advanced modularization technologies,” in Proceedings

of the European Conference on Object-Oriented Programming, 2005,

pp. 169–194.

[9] S. Apel, M. Kuhlemann, and T. Leich, “Generic feature modules: Two-

staged program customization,” in Proceedings of the International Con-

ference on Software and Data Technologies, 2006, pp. 127–132.

[10] N. Loughran and A. Rashid, “Mining aspects,” in Workshop on Early

Aspects: Aspect-Oriented Requirements Engineering and Architecture

Design, 2002, pp. 12–18.

[11] M. Kuhlemann, “Transforming object-oriented design pattern structures

into layers,” Faculty of Computer Science, University of Magdeburg,

Tech. Rep. 9, 2008.

[12] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. G.

Griswold, “An overview of AspectJ,” in Proceedings of the European

Conference on Object-Oriented Programming, 2001, pp. 327–353.

[13] S. Herrmann, “Object teams: Improving modularity for crosscutting col-

laborations,” in Proceedings of the International Conference NetObject-

Days on Objects, Components, Architectures, Services, and Applications

for a Networked World, 2002, pp. 248–264.

[14] P. Ye, X. Peng, Y. Xue, and S. Jarzabek, “A case study of variation

mechanism in an industrial product line,” in Proceedings of the Inter-

national Conference on Software Reuse, 2009, pp. 126–136.

[15] C. Kästner, “Aspect-oriented refactoring of Berkeley DB,” Master’s the-

sis, University of Magdeburg, Germany, Mar. 2007.

[16] B. Meyer and K. Arnout, “Componentization: The Visitor example,”

IEEE Computer, vol. 39, no. 7, pp. 23–30, 2006.

[17] J. Hannemann and G. Kiczales, “Design pattern implementation in Java

and AspectJ,” in Proceedings of the International Conference on Object-

Oriented Programming, Systems, Languages, and Applications, 2002,

pp. 161–173.

VaMoS 2010

142

Modeling Variability of Augmented Software Product Lines

Johannes Müller
Information Systems Institute

University of Leipzig
Leipzig, Germany

jmueller@wifa.uni-leipzig.de

Abstract—Software product lines are an emerging
paradigm enabling cost reduction while improving the over-
all quality of software products. This possibly allows an
enhanced competitiveness and finally higher profits for a
company, which establishes a software product line (SPL).
One main subject of interest in SPL research is modeling and
managing variability among systems of a SPL. Most research
efforts address variability caused by technical differences
between systems of a software family. However, recent
marketing research reveals that customers perceive a product
as a complex bundle of benefits. Beside technical features
these benefits are also realized by non-technical features.
With respect to the perceived value the paper relates the
three sphere model of products to SPLs. It is argued that
focusing on additional variability increases the profit of SPLs.
Furthermore, additional sources of variability, such as license
metrics, settlement options, revenue sources, services, and
prices are discussed.

Keywords-Software Product Line; Feature Modeling; Mar-
keting; Management; Economics

I. INTRODUCTION

The SPL research community has developed tools
and techniques reducing the cost of software production
while—at the same time—improving the quality of pro-
duced software systems. The major advantage of reduced
costs is an improved competitiveness of a software busi-
ness and thus an enhanced profitability (Π = R − C).
However, the reduction of costs (C) is just one lever to
increase profitability. Raising the revenue (R) the other.
Revenue (R = P ∗X) depends on price (P) and quantity
(X). Hence, setting the optimal price and enlarging the
quantity of sold units increases the profit.

Marketing science works on understanding and captur-
ing the value products provide to customers, who “see
products as complex bundles of benefits that satisfy their
needs” [1]. Marketing science distinguishes three spheres
of a product to get a clear idea about what the customer
really values on an offering. Fig. 1 depicts these three
spheres core benefit, actual product, and augmented prod-
uct.

The core benefit comprises the characteristics of a prod-
uct, which address the underling problem customers want
to solve. For example a word processor solves the problem
to perform writing activities faster, less error prone, and
of higher quality. These core benefits have to be clearly
communicated by the second sphere, the actual product.
It is necessary that the offered features, the design, the
name, and the packaging suggest that the product can solve

the problems of the customers. Finally, to create the most
satisfying user experience, a company has to create an
augmented product by adding complementary benefits to
the actual product. In case of the word processor a 24/7
help desk is a complementary offer, which could support
the writing efficiency of the customer. Other additional
benefits might be flexible ways of payment.

Figure 1. Spheres of a product [1]

The model of the three spheres is also useful for
products of a SPL. In the first and second sphere the
core benefits, the product’s features, and its quality level
[2] are located. These are usually its functional and non-
functional properties. How to model and to implement
them within a family of software systems is subject of
known research activities (cf. e.g. [3], [4]).

However, the augmented product, is not part of today’s
SPL research even though “being able to choose between
several variants can significantly increase the customers
perceived value of a product” [5]. Therefore, adding
complementary benefits to a SPL provides some chances
to raise the profit of a SPL business. A SPL augmented
with complementary offers is called an augmented SPL
afterwards. The analysis of augmented SPLs comprises
two questions:

1) Which additional offers enrich a SPL?
2) How to handle the variability introduced by these

additional product characteristics?

The paper discusses both questions separately and wraps
up with a discussion of related work and ongoing research.

VaMoS 2010

143

II. EXTRA VARIABILITY INTRODUCED BY
AUGMENTED SOFTWARE PRODUCTS

Literature about the management and marketing of
digital products and software in particular (e.g. [1], [6]–
[10]) mention especially five sources of variability, which
are able to increase the customers perceived value of a
software product. These different sources of variability
are subsequently called marketing features. The variability
caused by these features is called augmented variability.
They are discussed afterwards.

License Metrics: License metrics are an integral part
of software license agreements and define the units a price
of a software product is applied to. Hence, they define
what a user get per unit of price he or she pays [10].
According to [8] often used types of license metrics are
Concurrent User, Per Seat (named user), Per Processor.
Processor Core, Usage Based, and Financial Based.

Settlement: The settlement can be done in two ways:
recurring and non-recurring. Recurring settlement ac-
counts software within a subscription model. The payment
recurs in fixed time periods—i.e after certain number of
transactions or similar units [7]. Non-recurring settlement
accounts the final price to fully compensate the due.

Revenue Source: Revenue sources can be either di-
rect or indirect [7]. Direct revenue sources comprise usage
related sources such as payment per transaction or non-
usage related sources such as connection fees or other
license fees. Indirect revenue sources are mainly sponsored
by advertising or by selling user related data.

Services: A service is “any act or performance that
one party can offer to another that is essentially intangible
and does not result in the ownership of anything” [11].
Software companies focus particularly on services such as
support, maintenance, warranties, or software as a service.
Offering additional customized services gives a company
the opportunity to differentiate itself from its competitors
in order to increase profitability [6].

Product Specification: The product specification pro-
cess can be supported in two ways or by a combination
of these ways: Either consultants assist the customers or
the customers specify the product by means of a domain
specific language (DSL). If consultants assist the cus-
tomers, additional customers require additional personnel
and generate costs—the approach does not scale. DSLs do
not produce additional costs if more customers demand
products of the product line—the approach scales. The
price can help to convince the customers to use a DSL.

Price: The price (P) of a product influences the cus-
tomer experience of a product and in most markets it is the
ultimate mean of competition. However, the price is not
an independent variable directly affected by the customer.
Rather it is a dependent variable of all other features (fi)
of an augmented SPL (P = f(f0, f1, . . . , fn)).

A promising approach to design f(. . .) is value-based
pricing [10], [12]. It relates the price to the customer’s
perceived value of a product instead of to the production
costs.

Nevertheless, the price needs to be modeled somewhere
to track and document its relationship to the features of
a product line. The following part discusses how to use
existing modeling approaches for this task.

III. MODELING OF MARKETING FEATURES

A profound body of research has been done in mod-
eling functional features of SPLs (e.g. [5], [13]–[15]).
Therefore, it seems reasonable to start with these results
to model marketing features. Nevertheless, an appropriate
approach has to fulfill some requirements:

• Capture marketing features
• Link marketing feature and functional features
• Facilities to logically separate marketing- and func-

tional features
• Constrain feature selection for unsupported combina-

tions
In order to discuss market related issues of software

product lines, it is important to distinguish between two
related but different concepts:

1) Product line: “is a group of products sharing a
common, managed set of features that satisfy the
specific needs of a selected market” [16].

2) Product family: “is a group of products that can be
built from a common set of assets” [16].

To foster reuse, a product line has to be based on one or
more product families.

Marketing features of augmented software products are
customer visible characteristics and therefore belong to a
product line instead of to a product family behind.

A prominent variability modeling approach is feature
modeling introduced as part of the Feature Oriented
Domain Analysis (FODA) method [13]. Feature models
capture and visualize variability of an SPL in terms
of features. Other approaches are Orthogonal Variability
Models [5], or decision tables.

One prominent part of feature models are feature dia-
grams. They capture commonalities and variability among
systems of a product line in terms of features. A feature
is “a distinguishable characteristic of a concept [. . .]
that is relevant to some stake holder of a concept” [17].
Feature diagrams arrange features hierarchically. Features
can be grouped. Features as well as feature groups can
have cardinalities to restrict their occurrence in a final
configuration [15]. Further diagram elements are feature
attributes and feature diagram references [15]. These enu-
merated characteristics of feature diagrams are appropriate
to model augmented SPLs.

A domain model of a SPL is augmented with marketing
features by relating a supporting domain of marketing
issues. The domain marketing issues comprises the vari-
ability and commonality depicted in Fig. 2.

Two cases can be distinguished. If the final product is
marketable as a whole, the concept node gets a direct
subfeature marketing issues. It covers all commonalities
and variability introduced by augmenting the SPL. If
the final product comprises features that are accounting
units on their own, all marketable subfeatures get an

VaMoS 2010

144

Figure 2. The concept marketing issues

additional feature marketing issues. Each specializes the
feature marketing issues of the concept node, i.e. possible
overlapping selections are overriden in the marketable
subfeature.

For example, a customer orders a word processor but
uses the mail merge functionality seldom. In this case, the
customer could purchase the product on a per user basis
with a perpetual fee but the mail merge functionality is
accounted on its own and settled on a subscription model
based on a usage based metric.

The legal consequences of all selected features of the
feature marketing issues have to be combined in a final
contract. This non-code artifact should be generated auto-
matically to preserve the scalability of a SPL [18].

The additionally introduced marketing features are con-
strained by selected functional features and vice versa. To
model restrictions, feature modeling offers constraints and
default dependency rules [17].

Effective pricing often relies on market segmentation.
One challenge is to identify the market segment of a
specific customer. The pricing approach versioning is a
method to let customers identify themselves by offering
different versions of a product. All versions have some
characteristics that are uniquely desired by customers
of one market segment. The selection of some specific
features of a product line should therefore reveal the
market segment of a customer. These marker features can
be used to classify the customers.

Modeling also marketing features of a SPL bloats the
feature model and reduces its readability. Two existing
concepts can help to reduce these effects by clearly
separating the different addressed concerns. Feature model
references [15] relate outsourced sub-feature-models by
referencing their concept node in the source tree. The Fea-
ture Oriented Reuse Method (FORM) introduces layered
feature models to separate different concerns of a product
line architecture in distinct but related feature models [19],
which are layered on each other. If combined, both can
help to separate the technical from the marketing concerns

and therewith improve the readability and understandabil-
ity of the overall model.

IV. RELATED WORK

The work [20] uses value-based techniques to improve
the product specification process but does not consider
value-based pricing. Helfrich et al. put marketing of SPLs
onto the research agenda [21]. They also identify the
importance of distinguishing the concepts of product fam-
ilies and product lines, when analyzing marketing related
questions [22]. Kang et al. emphasize the importance of
marketing for SPLs but mainly to improve the scoping of
SPLs [23].

The work [15] indicates that feature models can serve
as a source for pricing decisions. A pricing procedure
for SPLs is introduced in [24] but it lacks of some
characteristics for an effective use. Primarily, it neither
exhibits facilities to concentrate on customer value to
segment markets, nor takes it the discussed marketing
features into account.

To align production planning by means of variation
modeling to meet the business goals of a company is sug-
gested in [25]. However, the authors ignore the variability
introduced by augmenting software products.

V. CONCLUSION AND FUTURE WORK

The paper introduces augmented SPLs and suggests that
considering marketing features can expand the turnover
of a SPL. Further, different product characteristics are
identified, which can augment the actual software product.
Modeling these additional features with feature models
was discussed.

The modeling of augmented SPLs is a further step
towards an overall pricing method [26]. Feature models
are promising to model augmented SPLs. Additionally, the
contained data can serve as a basis for pricing a product
of a SPL.

Further research is required to eventually develop a
method to manage marketing features and to calculate
prices almost automatically based on information provided
by feature models. For that reason, tool support is of
great importance. The appropriateness of existing feature
modeling tools for pricing has to be surveyed. Another
question is how to incorporate the modeling of marketing
issues, especially pricing, into a overall domain engineer-
ing process.

The pricing of products is a delicate and even risky
decision for every business. To foster the application of
a pricing method for SPLs, it is vital that case studies or
experiments are available in order to convince companies
that the pricing method can improve their overall prof-
itability.

REFERENCES

[1] P. Kotler and G. Armstrong, Principles of Marketing,
11th ed. Upper Saddle River, NJ: Pearson/Prentice Hall,
2006.

VaMoS 2010

145

[2] L. Etxeberria, G. Sagardui, and L. Belategi, “Modelling
variation in quality attributes,” in VaMoS ’07, K. Pohl,
P. Heymans, K.-C. Kang, and A. Metzger, Eds. Limerick:
Lero, Januar 2007.

[3] P. Clements and L. Northrop, Software Product Lines:
Practices and Patterns, 6th ed., ser. SEI Series in Soft-
ware Engineering. Boston: Addison-Wesley Professional,
August 2007.

[4] F. J. v. d. Linden, K. Schmid, and E. Rommes, Software
Product Lines in Action: The Best Industrial Practice in
Product Line Engineering. Secaucus, NJ, USA: Springer-
Verlag New York, Inc., 2007.

[5] K. Pohl, G. Böckle, and F. J. van der Linden, Eds., Software
Product Line Engineering: Foundations, Principles and
Techniques. Berlin: Springer, September 2005.

[6] M. Kratochvil and C. Carson, Growing Modular: Mass
Customization of Complex Products, Services and Software.
Berlin: Springer, 2005.

[7] A. Zerdick, A. Picot, K. Schrape, A. Artopé, K. Gold-
hammer, U. T. Lange, E. Vierkant, E. Lopez-Escobar, and
R. Silverstone, E-Conomics – Strategies for the Digital
Marketplace. Berlin: Springer, 2000.

[8] o.a.V., “Key trends in software pricing and licensing:
A survey of software industry executives and their
enterprise customers,” SIIA, Macrovision, SoftSummit,
SCPMA, CELUG, Santa Clara, CA, Studie 2006–07,
2006. [Online]. Available: http://softsummit.com/pdfs
registered/SW Pricing Licensing Report 20062007.pdf

[9] G. Gruman, A. S. Morrison, and T. A. Retter, “Software
pricing trends: How vendors can capitalize on the shift to
new revenue models,” PWC, Survey, jan. 2007.

[10] T. T. Nagle and J. E. Hogan, The Strategy and Tactics
of Pricing: A Guide to Growing More Profitably, 4th ed.
Upper Saddle River, NJ: Prentice Hall, 2006.

[11] P. Kotler, Marketing management, 11th ed. Upper Saddle
River, NJ: Pearson/Prentice Hall, 2003.

[12] S. R. Faulk, R. R. Harmon, and D. M. Raffo, “Value-based
software engineering (vbse): a value-driven approach to
product-line engineering,” in SPLC ’00. Norwell, MA,
USA: Kluwer Acad. Pub., 2000, pp. 205–223.

[13] K. C. Kang, S. G. Cohen, J. A. Hess, W. E. Novak, and
A. S. Peterson, “Feature-oriented domain analysis (foda)
feasibility study,” Carnegie-Mellon University Software En-
gineering Institute, Tech. Rep., November 1990.

[14] K. C. Kang, J. Lee, and P. Donohoe, “Feature-oriented
product line engineering,” IEEE Software, vol. 19, no. 4,
pp. 58–65, 2002.

[15] K. Czarnecki, S. Helsen, and U. W. Eisenecker, “Formal-
izing cardinality-based feature models and their specializa-
tion,” Software Process: Improvement and Practice, vol. 10,
no. 1, pp. 7–29, 2005.

[16] J. Whitey, “Investment analysis of software assets for prod-
uct lines,” SEI, Carnegie-Mellon University, Pittsburgh, PA,
Tech. Rep. CMU/SEI-96-TR-010, November 1996.

[17] K. Czarnecki and U. W. Eisenecker, Generative Program-
ming Methods, Tools, and Applications. Boston: Addison-
Wesley, 2000.

[18] J. Müller and U. Eisenecker, “The applicability of common
generative techniques for textual non-code artifact genera-
tion,” in McGPLE, Nashville, TN, October 23, 2008, no.
MIP-0802. University of Passau, Oktober 2008, pp. 47–
51.

[19] K. C. Kang, S. Kim, J. Lee, K. Kim, E. Shin, and M. Huh,
“Form: A feature-oriented reuse method with domain-
specific reference architectures,” Annals of Software En-
gineering, vol. 5, no. 1, pp. 143–168, 1998.

[20] R. Rabiser, D. Dhungana, P. Grünbacher, and
B. Burgstaller, “Value-based elicitation of product
line variability: An experience report,” in VaMoS ’08,
ser. ICB Research Report, P. Heymans, K. C. Kang,
A. Metzger, and K. Pohl, Eds., 2008, pp. 73–79.

[21] A. Helferich, K. Schmid, and G. Herzwurm, “Product man-
agement for software product lines: an unsolved problem?”
Commun. ACM, vol. 49, no. 12, pp. 66–67, 2006.

[22] ——, “Reconciling marketed and engineered software
product lines,” in SPLC ’06. Washington, DC, USA: IEEE
Computer Society, 2006, pp. 23–28.

[23] K. C. Kang, P. Donohoe, E. Koh, J. Lee, and K. Lee,
“Using a marketing and product plan as a key driver for
product line asset development,” in SPLC ’02. London,
UK: Springer-Verlag, 2002, pp. 366–382.

[24] D. Sewerjuk, “Pricing of software product lines,” in MKWI
’08, M. Bichler et al., Eds. Berlin: GITO, 2008.

[25] G. J. Chastek and J. D. McGregor, “Modeling variation in
production planning artifacs,” in VaMoS ’09, D. Benavides,
A. Metzger, and U. Eisenecker, Eds., no. 29. Universität
Duisburg Essen, Januar 2009, pp. 45–50.

[26] J. Müller, “Towards a pricing method for software product
lines,” in MKWI ’10. Univ.-Verlag Gött., 2010, to appear.

VaMoS 2010

146

A Method Based on Association Rules to Construct Product

Line Models

Alberto Lora-Michiels
1, 2

 Camille Salinesi
2
 and Raúl Mazo

2,3

1
 Baxter International Inc, Lessines-Belgium

2
 CRI, Panthéon Sorbonne University, 90, rue de Tolbiac, 75013 Paris, France.

3
 Ingeniería de Sistemas, Universidad de Antioquia, Medellín-Colombia.

albertoloram@gmail.com, camille.salinesi@univ-paris1.fr, raulmazo@gmail.com

Abstract—The success of a product line is the ability to

improve application engineering, heavily depends on the

quality of Product Line Models (PLMs). This paper reports

on our effort to develop a method that exploits mining

techniques such as the apriori algorithm, independence tests

and the like to automate the construction of a PLM specified

with FORE, starting from a collection of Product Models

(PMs). Using these techniques, the proposed method guides

the identification of candidate features, group cardinalities

and dependencies. These can be used to progressively

construct the PLM consistently with the existing PMs. The

method was developed and tested in an industry setting

starting with bills of materials as a collection of PMs. One

interesting lesson learn from this experiment is that while the

PLM is constructed, the domain engineer discovers errors in

PMs. We believe that this advocates for a tighter intertwining

between domain engineering and application engineering.

I. INTRODUCTION

Product Line (PL) based development is a promising

approach to develop software intensive systems in a reuse

approach. Promises are multiple: reduced time to market, lower

development costs, more trustworthy products, etc.

 Approaches to construct PLMs are often focused on using

clustering methods to elicitate, prioritize and triage

requirements. Rather than a systematic process, the

construction of an initial product line model from product

requirement specifications somehow remains a “black art” and

still mostly relies on the experience and expertise of domain

engineers. Proposing new methods, techniques and tools that

guide the construction of PLMs is thus a challenge [1].

Our method starts with a collection of PMs and produces

PLMs in the FORE [2] notation. The method starts by

arranging features of the collection of product models into a

matrix of occurrences. Then, the process guides the

construction of the general tree architecture by detecting

candidate father-son dependencies, mandatory and optional

relationships and completes it with group cardinalities. Last it

guides the identification of other dependencies such as requires

and excludes. The domain of statistics provides several mining

techniques that could be used to support this process [3], [4],

[5]. The research challenge was thus to identify which

techniques could be used to efficiently detect the target items at

each step of the method.

Our research strategy was to experiment the available

techniques on a real case. Once a technique was detected,

further work was needed to identify with which parameter it

should be used (e.g. thresholds). Last the overall method was

evaluated on the complete case to identify how many models

would be needed to obtain a “quasi-final” PLM.

The findings are: (i) cross table analysis used to determine

exclude relationships; (ii) association rules analysis help

identified mandatory and optional relationships; (iii) chi-square

independence test combined with association rules are an

effective way to identify require relationships; (iv) while

constructing the PLM, errors are detected in PMs. The overall

PLM construction process should thus be iterative and

intertwined with PM correction; and (v) the techniques are

efficient enough to be applied even on a large collection of

PMs.

The rest of the paper is structured as follows. The next

section presents mining techniques that we considered while

developing the method. Section 3 presents our method and

reports the rationale for the technique actually used at each

step. Section 4 reports our evaluation in a real case. The

concluding section presents related and future works.

II. MINING TECHNIQUES

Some mining techniques can be used in order to find

relationships among a collection of variables. The better

adapted to discover constraints between features are:

A. Cross Table Analysis

The cross table analysis consists in a paired based

comparison among the different features. Normally, it is

represented as a 𝑛 × 𝑛 matrix that provides the number of co-

occurrences or conditional probabilities between features.

B. Association Rules

The objective of association rule mining [6] is the

elicitation of interesting rules from which knowledge can be

derived. Those rules describe novel, significant, unexpected,

nontrivial and even actionable relationships between different

features or attributes [7], [8]. Association rule mining is

commonly stated as follows [9]: Let 𝐼 = 𝑖1, 𝑖2 , … , 𝑖𝑛 be a set

of items, and D be a set of transactions. Each transaction

consists of a subset of items in I. An association rule, is defined

as an implication of the form 𝑋 → 𝑌 where 𝑋, 𝑌 ⊆ 𝐼 and

𝑋 ∩ 𝑌 = 𝜙. Support, confidence, Chi square statistic and the

minimum improvement constraint among others might be

considered as measures to assess the quality of the extracted

rules [10]. Support determines how often a rule is applicable to

VaMoS 2010

147

a given data set of an attribute and it represents the probability

that a transaction contains the rule. The confidence of a rule

𝑋 → 𝑌 represents the probability that 𝑌 occurs if 𝑋 have

already occurred 𝑃(𝑌 𝑋); then it estimates how frequently

items 𝑌 appear in transactions that contain 𝑋. Chi square

statistics combined with its test (see next section) might be

used as a measure to estimate the importance or strength of a

rule from a given set of transactions and by this way to reduce

the number of rules [11]. Finally the minimum improvement

constraint measure not only indicates the strength of a rule but

it prunes any rule that does not offer a significant predictive

advantage over its proper sub-rules [12].

In this work, in the process for obtaining rules, we consider

the Apriori Algorithm [9] that is supported on frequent item

sets and is based on the following principle:

“If an itemset is frequent, then all of it subsets must also be frequent”

Conversely “If an item set is infrequent, then all of it supersets must

be infrequent to”.

For the purpose of this work items will be considered as

features and transaction as PMs and the result of this pair wise

is what we call the binary features matrix.

C. Chi Square and Independence Test

This test is based on Chi square value measure [11]. The

measure is obtained by comparing the observed and expected

frequencies, and using the following formula:

 χ2 =
(Oi − Ei)

2

Ei

 1 ,

where 𝑂𝑖 stands for observed frequencies, 𝐸𝑖 stands for

expected frequencies, and i runs from 1,2, … , 𝑛, where 𝑛 is the

number of cells in the contingency table.

 The value obtained in equation 1 is then compared with an

appropriated critical value of Chi square. This critical value

chi-square χ0
2 depends of the degrees of freedom and level of

significance. The critical value chi-square 𝜒0
2 will be

calculated with 𝑛 − 1 degrees of freedom and 𝛼 significance

level. In other words, when the marginal totals of a 2 x 2

contingency table is given, only one cell in the body of the

table can be filled arbitrarily. This fact is expressed by saying

that a 2 x 2 contingency table has only one degree of freedom.

The level of significance 𝛼 means that when we draw a

conclusion, we may be (1 − 𝛼) % confident that we have

drawn the correct conclusion (normally the 𝛼 value is equal to

0.05). For 1 degree of freedom and a significance level of 0.05

critical value chi-square χ
0
2 =3.84.

The most common use of the test is to assess the probability

of association or independence of facts. It consists on testing

the following hypothesis:
Hypothesis null H0: The variables are independent.

Alternative hypothesis H1: The variables are NOT independent.

In every chi-square test the calculated χ2 value will either

be (i) less than or equal to the critical χ0
2 value OR (ii) greater

that the critical χ0
2 value. If calculated χ2 ≤ χ0

2 we conclude

that there is sufficient evidence to say that cross categories are

independent; otherwise can think on dependency.

III. PROPOSED METHOD

A. Method Overview

The main concerns in PLM construction are:

1) Preparation: to begin with our approach it is necessary to

dispose of a collection of related features or artefacts for each

application. Artefacts or features could be extracted from

repositories and by means of clustering process the hierarchical

relation could be established [3].

In another hand, a part generalization is required. Text

mining techniques are used to deal with this generalization. In

fact i.e Romanowski in [13] uses a neural network based text

analysis program to generalize parts.

2) Structural Dependency Identification: to determine parent

child relationships and also characterize which of them are

mandatory and or optional;

3) Transversal Dependency Specification: to study the behavior

among features that are not member of the parent child link and

exploit not only all the possible mutual exclusive relationships

known as “excludes”, but also distinguish all the relationships

that indicate where a specific features may “require” the

selection of another feature.

4) Grouped Cardinality Specification. Optional features that

have the same father can be bundled, and constraints can be

specified to indicate how many (at most and at least) features

of the bundle can be selected together in a single product;

5) Consolidation. Results from previous concerns are evaluated

by an expert.

Each of the following sections explain in which mining

technique is proposed to support each of these phases

B. Preparation

Our approach is based on constructing a product line model

based on existent product models. Then, to consider our

approach and to successfully implement it, it is strictly required

to get a collection of product models or related artifacts or

features.

In order to execute our approach, we need a set of

refinement relationships between features, that is, child-father

tuples in two forms a list of relationships and its derivate

matrix of feature occurrence in PM. This matrix is obtained by

highlighting the features presence in product models.

P1 , F1

F1 , F5

F1 , F6

P2 , F1

F1 , F6

F1 , F4

F1 , F5

a)

 F1 F2 F3 F4 F5 F6 F7

P1 1 0 0 0 1 1 0

P2 1 0 0 1 1 1 0

b)

Fig. 1. a) List of relationships. Column left represents fathers and right their
childs. P1 is father of F1, F1 father of F5 and so on. b) PM -Feature binary matrix.
The feature takes the value 1 if it is present in a product model and zero

otherwise.. For instance F1, F4, F5, and F6 are present in P2 and contrary F2 and
F7 are never taken into consideration by any product model.

C. Structural Analysis

From a collection of product models and their structure it is

possible to determine i) bundles, parents and children; ii) the

feature binary matrix, input for the association rule mining.

VaMoS 2010

148

This step is handled by means of the Apriori algorithm to then

obtain the mandatory and optional relationships.

Step 1: Identifying Structural Patterns. Due to the nature of

input the identification of parents, sons and bundles consists on

browsing this relational structure of a product model. The most

representative example is the bill of material in manufactured

finish good. The composition of the finish good is represented

as a relational table that mainly integers the parent item and its

components or children

Step 2: Running Association Rules Apriori Algorithm. Once

the binary feature matrix is built, we have the input to apply the

association rule data mining tool, that permit us not only to

explore the relationships and dependencies but also to handle a

huge amount of data in an optimal way. However, such

algorithms developed are sometimes limited to the memory

because of its size and calculus that they perform.

In fact the most complex task of the whole association rule

mining process is the generation of frequent itemsets (in this

part an itemset is considered as feature set). Many different

combinations of features and rules have to be explored which

can be a very computation-intensive task, especially in large

databases. By setting the parameter association rule length

equals to 1 for the Apriori algorithm, we can study only singles

relations between features to avoid those computation

complexities. Often, a compromise has to be made between

discovering more complex rules and computation time.

To filter those rules that might be not valuable, it is

important to calculate its support. As we have already seen, the

support determines how frequent the rule is applicable to the

product P. This value compared with the minimum support

accepted by an expert (min support threshold), prunes the

uninteresting rules.

To evaluate the interestingness and pertinence; that is it the

reliability of the inference made by a rule, it is useful to

evaluate its confidence. The task is now to generate all possible

rules in the frequent feature set and then compare their

confidence value with the minimum confidence (which is again

defined by the expert). All rules that meet this requirement are

regarded as interesting. All the final discovered associations

with their support and confidence values, therefore, may be

presented to stakeholders.

Furthermore the calculation of other measures is relevant to

refine the process of selecting the appropriate association rule.

For that we propose to calculate the Chi-square and to indicate

the strength of a rule. The minimum improvement constraint

measure not only gives us an idea about the strength but also

prunes any rule that does not offer a significant predictive

advantage over its proper sub-rules. This increases efficiency

of the algorithm, but more importantly, it presents the user with

a concise set of predictive rules.

Step 3: Identifying Mandatory Relationships Using

Association Rules. Removing all association rules that do not

satisfy the minimum improvement constraint, offers us the

most relevant and significant rules available for the study.

It is obvious that those relationships that are always present

in all the product models may be considered as mandatory.

Now, if some ambiguous information is present in the database

and this one is not reliable at λ%, in order to obtain mandatory

relationships, the analyst may establish as a minimum

confidence threshold the value (100- λ)%. Those rules whose

confidence is greater than the (100- λ)% may be considered as

mandatory relationships. Bidirectional rules such as 𝐹1 → 𝐹2

and 𝐹2 → 𝐹1 may be also considered as mandatory

relationships [14].

The relationship is classified as mandatory if at least one of

the two properties mentioned before (high frequent features

and bidirectional rules) occurs and, of course, the relationships

belong to a parent child.

Step 4 Identifying Optional Relationships. Once parent

child and as well mandatory relationships are identified the

remaining parent child relationship may be classified as

optional.

D. Transversal Analysis

By combining some results obtained from the previous

sections such as the PM feature binary matrix and parental

relationships with a cross tabulation analysis among features

and an independence test to detect strong relationships, it is

possible to identify exclude and requires relationships.

Step1: Identifying Exclude Relationships. Feature cross

table display relationships between features. Let 𝐹 =
 𝐹1, 𝐹2, … , 𝐹𝑛 be a set of 𝑛 features. 𝐹 × 𝐹 can be represented

as a 𝑛 × n cross table describing the joint occurrence between

the feature i and j. When the joint distribution of (𝐹𝑖 , 𝐹𝑗) for all

𝑖 ≠ 𝑗 is equal to zero, that can be interpreted that there is no

probability that 𝐹𝑖 and 𝐹𝑗 may occur at the same time. Thus,

they are mutually exclusive and the relationship between 𝐹𝑖

and 𝐹𝑗 is considered as an exclude relationship.

A further analysis of contingency table could give us

valuable information about some types of relationships such as

mandatory, optional and requires.

Step2: Identifying Requires Relationships To identify

requires relationships it is necessary to apply a Chi-square

independence test. The test is performed for each single rule

with 1 degree of freedom in order to prove with a significance

level α =0,05 that the relationships between non parent-child

features 𝐹𝑖 , 𝐹𝑗 for all 𝑖 ≠ 𝑗 are independent or not.

Thus, the association between 𝐹𝑖 , 𝐹𝑗 for all 𝑖 ≠ 𝑗 is considered

as dependent if the χ2 value for the rule with respect to the

whole data exceeds the critical χ2 =3.84 (χ2 critical value with

one degree of freedom and a significance level α =0,05)

otherwise it is considered as independent.

E. Grouped Cardinality Analysis

This process helps the analyst in assigning the group

cardinality value. It is interesting for the analyst to have a tool

that allows him to estimate the cardinality for each non

mandatory optional bundle.

Step1: Identifying All Possible Feature Sets for Each Bundle.

All the possible optional features sets in each bundle are

captured by browsing the product line model structure.

Step2: Counting feature’s occurrences for each product model

and optional bundle set obtained in step 1.Here we evaluate

each PM and display how many features from the group are

VaMoS 2010

149

present in the configuration. As a feature in our work is

considered as a binary variable, by examining the presence of

the group and the related features related in each product

model, it is possible to obtain the group occurrence by adding

their respective feature values.

IV. STUDY CASE

Our method was validated with the construction of the Baxter

Bioscience Lessines product line model. Baxter Biocience at

Lessines-Belgium develops, manufactures and markets

products for hemophilia and immune disorders.

To construct the packaging product line model, we focused our

study around all the components that constitute the packaging

process of the different treatments that Baxter Bioscience

produces. We have worked with 536 packaging bill of

materials (BOM) as product models and we have also handled

more than 1500 items. After generalizing items, we proceed to

apply our approach and evaluate the results obtained by

estimating the algorithm time complexity and the scalability

generating the desired constraints. First, examining the time

complexity of the algorithm that supports our approach, we

have observed that it is really efficient but it presents some

limitations when studying group cardinalities. Second,

performing a paired comparison of constraints generated from

different random products samples (Fig. 2). We can observe

structural dependencies show a high predictive capacity: 95%

of the mandatory and optional relationships are founded when

we take a random sample size of at least 350 products. The

totality of the mandatory relationships are then discovered

when the random sample size is greater than 450 products,

however excludes and, especially, requires relationships, seem

to depend to the problem size that is it, the number of

constraints increases when sample size increases. This can be

explained by examining the nature of the data used in our study

case. Structural relationships mainly depend on the

composition of the product; thus they depend of the parent

child relationships or BOM composition and transversal

dependencies are related to relationships attributes. More

products means more attributes, and at the end, this means that

more transversal relationships to be discovered.

Fig. 2. Relationships matching (different sample size comparison)

V. CONCLUSIONS AND FUTURE WORKS

Our work is one of the first real scale experience of

automation of the construction process of PLMs. To our

knowledge, it is on of the first approaches that integrates

statistical techniques to identify commonalities and

variabilities in a collection of a non predefined number of

product models.. Indeed, although rigorous, our proposal needs

to be expanded and benchmarked with respect to alternative

strategies explored, and implemented into a marketable tool.

Our experience showed that there is a need for a method

that is able to deal with richer input information. For example,

we had products that are defined with more complex than

Boolean-type features, as for instance scalar variable (e.g.

integer or real values as in performance characteristics of

systems) or set variables (when system features can be

instantiated a varying number of times in the same products).

As a consequence, we believe that more complex relationships

can be needed in the target PL models. How can these be

specified? Remain still an open question for future researches.

Several other fundamental questions are still open and their

solutions are envisaged for future works. For instance: what is

a good quality model to construct a product line model? How

to deal with ambiguous information to construct a product line

model? How to deal with more complex constraints? What

statistical tools could be used to support the aforementioned

questions?

REFERENCES
[1] Marinelli F., de Weck O. ,Krob D. , Liberti L., A General Framework for

Combined Module- and Scale-based Product Platform Design, Second

Internl Symp on Engineering Systems MIT, Cambridge, Mass, 2009.

[2] Streitferdt, D.: FORE Family-Oriented Requirements Engineering, PhD
Thesis, Technical University Ilmenau, 2004.

[3] Chen K, Zhang W, Zhao H, Mei H. An Approach to Constructing Feature

Models Based on Requirements Clustering. Internl Conf on Req Eng. pp
31-40 Paris 2005.

[4] Moon S K., Kumara S R T., Simpson T W. Data mining and fuzzy
clustering to support product family design, Proc of IDETC/CIE 2006.

[5] Al-Otaiby T N, Alsherif M, Bond W. Towards Software Requirements

Modularization using Hierarchical Clustering Techniques. 43rd Southeast
regional Conference, Vol 2, Georgia, pp 223-228, 2005.

[6] Ceglar,J.F Roddick. Association mining. ACM Computing Surveys

(CSUR), Vol 38 Issue 2, 2006.

[7] Agar, B. and Kusiak, A, "Data-mining-based Methodology for the Design

of Product Family," International Journal of Production Research, vol.

42, No. 15, pp. 2955-2969, 2004.
[8] Jiao, J. and Zhang, Y., "Product Portfolio identification based on

Association Rule Mining," Comp.-Aided Design, vol. 27, No. 149-

172,,2005
[9] Agrawal, R., Imielinski, T., Swami, A. “Mining association rules between

sets of items in large databases.” SIGMOD-1993, pp 207-216, 1993

[10]Pang-Ning Tan, Michael Steinbach, Vipin Kumar, Introduction to data
mining. Ch 6: Association Analysis: Basic Concepts and Algorithms.

Addison Wesley 2006

[11]B Liu, W Hsu, Y Ma. Pruning and Summarizing the Discovered
Associations. In ACM SIGKDD International Conference on Knowledge

Discovery & Data Mining (KDD-99), August 15-18, , San Diego, CA,

USA, 1999
[12]Bayardo, R. J.; Agrawal, R.; and Gunopulos, D. Constraint-Based Rule

Mining in Large, Dense Databases. In Proc. of the 15th Int’l Conf. on Data

Engineering, pp 188-197. 1999.
 [13]Romanowski, C.J. and Nagi, R., A data mining approach to forming

generic bills of materials in support of variant design activities, ASME J of

Computing and Information Science in Eng., 4(4), 316–328,2004

[14]Batory, D.; Thaker, S. Towards Safe Composition of Product-Lines. Dept.

Computer Sciences, University of Texas, TR-06- 33, 2006.

0%

20%

40%

60%

80%

100%

120%

50 100 150 200 250 300 350 400 450 500

30 50 100 150 200 250 300 350 400 450

% matched relationships vs sample size

Excludes

Mandatory

Optional

Requires

VaMoS 2010

150

Measuring the Ability to Form a Product Line
from Existing Products
Christian Berger, Holger Rendel, Bernhard Rumpe

RWTH Aachen University
Department of Software Engineering

Aachen, Germany
www.se-rwth.de

Abstract—A product line approach can save valuable resources
by reusing artifacts. Especially for software artifacts, the reuse
of existing components is highly desirable. In recent literature,
the creation of software product lines is mainly proposed from
a top-down point of view regarding features which are visible
by customers. In practice, however, the design for a product
line often arises from one or few existing products that descend
from a very first product starting with copy-paste and evolving
individually. In this contribution, we propose the theoretical basis
to derive a set of metrics for evaluating similar software products
in an objective manner. These metrics are used to evaluate the
set of products’ ability to form a product line.

Index Terms—software product line; software metrics; mea-
surement; software architecture

I. I NTRODUCTION AND MOTIVATION

Recent literature regarding the creation of software product
lines often proposes to use end-user visible characteristics
of several products which are referred to as features [1],
[2]. In most cases, common and variable attributes of a set
of products are identified and a feature model is created
[3], [4]. This is a high-level view and supports a top-down
method for implementing product lines which bases on the
assumption that the code structure can and will be organized
according to the identified features. In practice, however, it
often happens that a product line is only set up after one or
even several similar product variants are implemented. Hence,
it is inevitable to not only look at the desired features but
also at the existing implementation to identify potential for
reuse. Therefore, a bottom-up method is necessary to look
especially at the implementation of these artifacts to identify
commonalities and differences which either support or prevent
the setup of a product line from a set of similar products.

In the following we present an approach which uses the
software architecture and existing software artifacts of a set of
similar products to evaluate their potential to form a product
line. This approach bases on a set of metrics for measuring the
so-calledproduct line-abilityof the considered set of products.

II. RELATED WORK

The authors of [5] and [6] describe the importance of
product line scoping which is a top-down view on a product
line. Reusable assets of existing products can be identified by
a product vs. feature-matrix which can be implemented using
different methodologies like generative programming [3]. The

authors of [7] mention scoping as one aspect in number of
steps when establishing a product line.

Metrics for evaluating product line architectures are dis-
cussed in several publications. The authors of [8] propose
some metrics which are based on provided and required in-
terfaces of components. However, these metrics are useful for
object-oriented architectures only. A very formal specification
of a product line architecture is given in [9] where parts of the
architecture are treated as processes. In [10], some metrics are
proposed to evaluate the quality of a product line which can
only be applied for an existing product line with an already
existing variability model.

The VEIA-project [11] also proposes very detailed metrics
for product line architectures. Based on a function net and
a feature model, these metrics measure the effort to integrate
specific features into the product line. The use of function nets
which define views on a so-called 150%-model of a product
is also discussed in [12].

III. M EASURING THEPRODUCT L INE-ABILITY

In this section the theoretical basis for measuring the ability
of a set of products to form a product line is outlined.
Therefore, a setP containingn similar productsp1 . . . pn

is evaluated. Herein, the termsimilar needs to be precisely
refined by a set of metrics which evaluate the considered
products in an objective manner.

A. Specifying Similar Product Sets

As exemplarily shown in Fig. 1, a setP3 of threesimilar
productsp1, p2, andp3 is shown for evaluatingP3’s product
line-ability. In this figure, three different classes namedC1,
C2, and C3 of relations between two or more products are
analyzed:C1 describes the relation between two products,
C2 describes the reusability relation for commonly available
parts for a specific product, andC3 describes the reusability’s
benefit ratio for shareable parts for a specific product.

For evaluating a given set of similar products, each product
is decomposed intoi = 1 . . . n so called reasonableatomic
piecescpj ,i for a concrete productpj which is self-contained
and reusable. We refer to these ascomponentsas defined in
[2].

To perform a decomposition, all componentscpj ,i must
be identified and formally specified. Thus, we propose an

VaMoS 2010

151

C1

C2

C3

Productp1

p̄1

Productp2

p̄2

Productp3

p̄3

A

B C

D

Fig. 1. Example for evaluating three similar productsp1, p2, and p3.
The circles indicate the set of components for each product;p̄2 denotes the
complementary set of components for productp2 without the setsB, A, and
D. A denotes the set of components which are shared among all products;
thus, all components in this intersection have at least a syntactically identical
signature.B denotes all components which are shared only byp1 andp2; C
andD are calculated in an analog manner.C1, C2, andC3 denote different
classes of relations.

annotated, directed graphGpj
for productpj which reflects

the dependencies between all componentscpj ,i which can for
example be logical or communicative. The graph is defined as
shown in Eq. (1).

G := (V, E) (1)

V := id

E := V × V × P(S) × A

S := id × {N, R, JTYPEK, . . . }

A := {0; 1}

As shown in Eq. (1), the directed annotated graphG

consists of a set of ordered pairs of edges likee1,2 =
(c1, c2, (id, Z), 0) ∈ E. Each edge describes a formal de-
pendency between the source componentc1 and its target
componentc2 which reflects either a formal method call or
a directed communication between componentc1 and c2. In
the former case, it describes the required signatureS in the
target component for a successful method call, in the latter it
defines a message which is sent fromc1 to c2 containing the
specified data inS. Components without any dependencies are
so-calledisolatedcomponents.

The setA can be used to definerequired and optional
components within a product; a value of1 defines an optional
while 0 defines a required dependency. The former defines a
component which is inherently necessary to fulfill a product’s
so called basis functionality, while the latter adds further
functionality like convenience functions; if unspecified, the
edge is regarded asrequired.

In Fig. 2, a graphical representation of the aforementioned
definition for the graph is shown for a product of six compo-
nents is shown. Here,̄pr1

= K, L, M, Q describes one path of
requiredcomponents, whilēpo1

= K, P, Q describes one path
of optionalones. For calculating the setCr of requiredand the

K

L

P

R

M

Q

(s1, N)
(s1, N)

(s3, Z)
(s4, Z)

(s5, R)

(s6, R), (s7, Z) (s8, R)

Fig. 2. An exemplary components’ graph for six componentsK, L, M , P ,
Q, andR. The solid edges represent required communicative dependencies
while the dotted edges represent optional ones. In this example,K sends the
same message toL andP ; L sends an empty message toM and thus simply
calls it. Moreover,K sends a message toR consisting of two data fields.

setCo of optionalcomponents, recursive backtracking is used
for all incident edges of an initially given set of components.
Therefore, all product’s components are initially added to the
setCo. Starting at a given required set of componentsCstart

from the considered product which can be for example some
components for an actuator, all edges to adjacent components
are analyzed. If a required edge is found it is added toCr

which itself is analyzed recursively until all dependent required
components are found. This set is finally subtracted fromCo.
For example in Fig. 2 starting atQ, the following sets are
calculated:Cr = K, L, M, Q, R and Co = P . The afore-
mentioned algorithm does not identify isolated components
because they do not contribute any reasonable data and thus,
their relevance should be analyzed precisely.

B. Metrics for Evaluating the Product Line-Ability

For evaluating the product line-ability of a set ofn similar
products, the setsCp1,r . . . Cpn,r and Cp1,o . . . Cpn,o with
∀n : Cpn

≡ Cpn,r ∪ Cpn,o are calculated. Now, these sets
can be evaluated according to Fig. 1. Therefore, different
intersections between all sets are calculated which are used to
evaluate different ratios and relations. For the sake of clarity, it
is assumed that the denominator would not be 0 which means
that two products do not share any components and thus, their
comparison is not meaningful.

Size of Commonality.

SoC=

∣

∣

∣

∣

∣

⋂

i=1...n

Cpi

∣

∣

∣

∣

∣

=

∣

∣

∣

∣

∣

⋂

i=1...n

Cpi,r

∣

∣

∣

∣

∣

+

∣

∣

∣

∣

∣

⋂

i=1...n

Cpi,o

∣

∣

∣

∣

∣

. (2)

In Eq. (2), theSize of Commonalityis shown which is
calculated from setA in Fig. 1 containing the number of
identical components. It can be calculated by comparing the
components’ signatures: Two components are syntactical iden-
tical if they have the same signature. IfSoCis 0, no commonly
reusable components could be identified. This comparison is
calledsyntactical signature identitywhich is at leastnecessary
but not sufficient. Therefore,semantic signature identityfor
two components must additionally be ensured which can be for
example be evaluated automatically by using the component’s
test suites in an entangled manner which have to ensure path
coverage at least.

VaMoS 2010

152

Impact of Commonality.

IoC =
|
⋂

i=1...n Cpi,r|

SoC
. (3)

In Eq. (3), the Impact of Commonalityis shown which
relatesSoCto all commonly shareable components. Obviously,
the greater this ratio the more important are the commonly
shareable components.

Product-related Reusability.

PrRi =
SoC
|Cpi

|
. (4)

The ratio in Eq. (4) describes the reusability ofSoC for
a specific productpi: The greater this ratio the better is its
reusability. This ratio is denoted byC2 in Fig. 1.

Impact of Product-related Reusability.

IPrRi =

∣

∣

∣

⋂

j=1...n Cpj ,r

∣

∣

∣

|Cpi,r|
. (5)

The ratio in Eq. (5) describes the impact of reusability of all
commonly available components related to a specific product
pi which is also denoted byC2 in Fig. 1. Here, the smaller1−
IPrRi for productpi the greater is the impact of all commonly
shared components for this product.

Reusability Benefit.

RBi,j =
SoC

∣

∣Cpi
∩ Cpj

∣

∣

. (6)

In Eq. (6), the pairwisely calculatedReusability Benefitis
shown which is denoted byC3 in Fig. 1. For example, this ratio
for p1 andp2 is calculated by |A|

|A|+|B| . The greatest quotient
among all products describes the pair which shares the least
commonly available components and vice versa.

Relationship Ratio.

RRi,j =

∣

∣Cpi
∩ Cpj

∣

∣

∣

∣Cpi
∪ Cpj

∣

∣

. (7)

In Eq. (7), the relationship between two products is calcu-
lated which is shown asC1 in Fig. 1. Therefore,A together
with the number of components which are shareable between
these two products only is related to the joined set of all
remaining components of both products; the greaterRRi,j

between two productspi and pj the more similar are both
products.

Individualization Ratio.

IRi =

∣

∣

∣
Cpi

\
(

⋃

k=1...n,k 6=i Cpk

)∣

∣

∣

|Cpi
|

. (8)

In Eq. (8), the product-relatedIndividualization Ratiois cal-
culated which describes the product’s individualization related

to the amount of components which are shared with at least
one other product. The smaller this ratio the greater is this
product’s similarity with other products. In Fig. 1, this ratio

is depicted byIR2 = |Cp2
\(Cp1

∪Cp3)|
|Cp2|

for productp2.

IV. A PPLICABILITY OF THE METRICS

In the following, we apply the aforementioned metrics on
a simplified example from the automotive domain for three
different implementations of a door ECU. The first product as
shown in Fig. 3 has only a lock/unlock functionality which
locks the doors automatically at a specific vehicle’s velocity.
In Fig. 4, the product has no auto-lock function but power
windows and a panic button to immediate closing in case
of danger. Finally, in Fig. 5, a component exists to control
window functions while opening or closing the hood of a
convertible; this system also has an auto-lock function. All
depicted signals have the same type.

Function Alarm Activator

Function Lock Uniter

alarmsetsignal

Function Auto Lock

autolocksignal

Function Lock Plausibility

plauslocksignal

plauslocksignal

BSW_IN

statuslamp openclosesignal

BSW_OUT

autolockenabled vehiclespeed lockrequest

Fig. 3. Productp1 “door ECU with auto-lock”.

Function Alarm Activator

Function Lock Uniter

alarmsetsignal

Function Lock Plausibility

plauslocksignal

plauslocksignal

BSW_IN

statuslamp openclosesignal

Function Panic Reaction

paniclocksignal Function Window Uniter

panicclosesignal

opencloseFLsignal opencloseFRsignal

BSW_OUT

lockrequestpanicrequest

FLrequest FRrequest

Fig. 4. Productp2 “door ECU with power windows and a panic button”.

Function Alarm Activator

Function Lock Uniter

alarmsetsignal

Function Auto Lock

autolocksignal

Function Lock Plausibility

plauslocksignal

plauslocksignal

BSW_IN

statuslamp openclosesignal

Function Window Uniter

opencloseFLsignal opencloseFRsignal

Function Hood Control

openclosesignal

BSW_OUT

autolockenabled vehiclespeed lockrequest

FLrequest FRrequest

hoodrequest

Fig. 5. Productp3 “door ECU for convertibles”.

VaMoS 2010

153

To apply our metrics, we first have to determine the sets
of products and their intersections. For the sake of clarity, the
components are referred to by their abbreviation i.e. FLU for
Function Lock Uniter. Therequiredandoptionalcomponents
of the aforementioned products are shown in Tab. I.

TABLE I
REQUIRED AND OPTIONAL COMPONENTS

product required optional

p1 FLP, FLU FAL, FAA
p2 FLP, FLU FAA, FPR, FWU
p3 FLP, FLU FAL, FAA, FWU, FHC

Now we are able to map these components to the corre-
sponding sets as depicted by Fig. 1 and shown in Eq. (9).

p̄1 = ∅ (9)

p̄2 = {FPR, FLUp2
, FWUp2

}

p̄3 = {FWUp3
, FHC}

A = {FLP, FAA}

B = ∅

C =
{

FAL, FLUp1,3

}

D = ∅

The application of different metrics yields the results sum-
marized in Tab. II.

TABLE II
RESULTS OF METRICS FOR EXAMPLE PRODUCTS

all p1 p2 p3 p1,2 p1,3 p2,3

number of
components 4 5 6
SoC 2
IoC 0.5
PrR 0.5 0.4 0.33
IPrR 0.33 0.33 0.33
RB 1 0.5 1
RR 0.29 0.67 0.22
IR 0 0.6 0.33

The results show that potential for reusability exists in
general bySize of Commonality. Impact of Commonalityhas
a value of 0.5 which means that the half of the common
components are required. The productp1 has to contribute
to the product line because it has the highestProduct-related
Reusability. The Impact of Product-related Reusabilityis the
same for all products and thus, no additional recommendation
for a specific product to support the aforementioned ratio
can be deduced. IfPrR and IPrR for a specific product are
small the product should not be part of the considered product
line. The Reusability Benefitof p1 and p3 is the smallest
because they share more than only the components ofA.
Besides, these products have also the highestRelationship
Ratio which means they share the most common components
if pairwisely compared and thus, they are suitable for a product
line. The ratioIR indicates thatp2 has the highest amount of

components which are independent from others. Hence, the
product line should be created starting with the productsp1

andp3; the productp2 should be analyzed to identify potential
for refactoring to improve its specific ratio of reusability.

V. CONCLUSION

This paper outlined a collection of metrics for measuring
the ability for a product line of a given set of products.
First, the mathematical basis was discussed to summarize
the necessary information without relying on a particular
model which can be code excerpts, UML sequence charts,
or AUTOSAR functional components for example. Using the
mathematical model, several metrics are presented and their
importance and benefit for a product line are considered. In
a simplified example, these metrics are exemplarily used to
show their application.

Currently, these metrics are applied at an industrial project
from the automotive domain that should be transformed into a
product line. Here, the goals are to evaluated the proposed
metrics, identify necessary and sufficient commonalities as
well as correlations, and to estimate a set of values which
recommends the creating of a product line. Another goal is
to have a closer look on the models which describe software
artifacts and their transformation into a suitable representation
which we use as basis for the metrics.

REFERENCES

[1] P. Clements and L. Northrop,Software Product Lines: Practices and
Patterns. Addison-Wesley, 2002.

[2] K. Pohl, G. Böckle, and F. Linden,Software Product Line Engineering:
Foundations, Principles, and Techniques. Springer, 2005.

[3] K. Czarnecki and U. W. Eisenecker,Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[4] K. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, “Feature-
oriented domain analysis (foda) feasibility study,” Technical Report
CMU/SEI-90-TR-21, Software Engineering Institute - Carnegie Mellon
University, Tech. Rep., 1990.

[5] J. Bosch, Design and Use of Software Architectures: Adopting and
Evolving a Product-Line Approach. New York, NY, USA: ACM
Press/Addison-Wesley Publishing Co., 2000.

[6] I. John and M. Eisenbarth, “A decade of scoping - a survey,” in
Proceedings of the 13th International Software Product Line Conference,
2009.

[7] P. C. Clements, L. G. Jones, J. D. McGregor, and L. M. Northrop,
“Getting there from here: a roadmap for software product line adoption,”
Commun. ACM, vol. 49, no. 12, pp. 33–36, 2006.

[8] E. Dincel, N. Medvidovic, and A. v. d. Hoek, “Measuring product line
architectures,” inPFE ’01: Revised Papers from the 4th International
Workshop on Software Product-Family Engineering. London, UK:
Springer-Verlag, 2002, pp. 346–352.

[9] A. Gruler, M. Leucker, and K. Scheidemann, “Calculating and mod-
eling common parts of software product lines,”Software Product Line
Conference, International, vol. 0, pp. 203–212, 2008.

[10] T. Zhang, L. Deng, J. Wu, Q. Zhou, and C. Ma, “Some metrics for
accessing quality of product line architecture,”Computer Science and
Software Engineering, International Conference on, vol. 2, pp. 500–503,
2008.

[11] S. Mann and G. Rock, “Dealing with variability in architecture descrip-
tions to support automotive product lines: Specification and analysis
methods,” inProceedings embedded world Conference 2009. Nürnberg,
Deutschland: WEKA Fachmedien, Mar. 3-5, 2009.

[12] H. Grönniger, J. Hartmann, H. Krahn, S. Kriebel, L. Rothhardt, and
B. Rumpe, “Modelling automotive function nets with views for features,
variants, and modes,” inProceedings of ERTS ’08, 2008.

VaMoS 2010

154

A Custom Approach for Variability
Management in Automotive Applications

Fabian Kliemannel, Georg Rock
PROSTEP IMP GmbH

Dolivostr. 11, 64293 Darmstadt, Germany
{fabian.kliemannel, georg.rock}@prostep.com

Stefan Mann
Fraunhofer Institute for Software and Systems Engineering ISST

Steinplatz 2, 10623 Berlin, Germany
stefan.mann@isst.fraunhofer.de

Abstract—Product lines are receiving more and more attention
in software and mechanical engineering processes in the automo-
tive industry. The benefits of using a product line approach are
clearly defined in literature and widely accepted. Nevertheless, un-
til now there are only few applications that exploit the variability
knowledge during a complete development process. In this paper
we argue that all the necessary prerequisites for the handling of
variability are present. What is missing is on the one hand an
integration of these techniques within the typical area specific
development tools (as for example MATLAB / Simulink) and on
the other hand the seamless transition of variant information
between different engineering tools and development levels.

Index Terms—product line engineering; variability manage-
ment; architecture descriptions; MATLAB / Simulink; automotive

I. INTRODUCTION

Product lines are receiving more and more attention in soft-
ware and mechanical engineering processes in the automotive
industry. The benefits of using a product line approach are
clearly defined in literature and widely accepted. Nevertheless,
until now there are only few applications that exploit the vari-
ability knowledge during a complete development process; from
requirements engineering to the specification and execution
of tests. We argue that all the necessary prerequisites for the
handling or management of variability are present, as industrial
tools like pure::variants [2] or the Feature Modeling Plugin
[20] demonstrate. What we think that is missing is on the one
hand a complete integration of these techniques within typical
domain-specific development tools, and on the other hand
the seamless transfer of variant information between different
engineering tools. We previously addressed this problem by
defining a reference process that allows for such an integrated
approach [9], [10]. While we focused in this work on the
early phases of system development as there are requirements
engineering and architectural design, we want to extend this
approach with respect to the implementation phase now. In this
paper, we describe an exemplified integration of variability
management within the domain specific engineering tool
MATLAB / Simulink [14]. The extension of MATLAB / Simulink

This work was partially funded by the Federal Ministry of Education and
Research of Germany in the framework of the EBASO project (German
acronym for “engineering and assessment of variant rich embedded
software”) under grant: 01IS09022. The responsibility for this article
lies with the authors. For further information cf. the project’s website:
http://www.prostep.com/ebaso/

was executed as close as possible to the usual development steps
within Simulink. Thus, the user is not forced to be trained on
a completely new tool. The additional functionality concerning
the handling of variability as there are consistency checks,
interactive configuration, dead feature detection, and switching
between different variants of the Simulink model can be done
without using an external variability management tool.

The rest of the paper focuses on the realization of this work,
and thus constitutes a proof of concept for the before demanded
complete integration of variability management within domain
specific development tools.

II. REALISATION OF MODEL-
BASED VARIABILITY MANAGEMENT

MATLAB / Simulink is a tool for modeling, simulating and
analyzing multi-domain dynamic systems. The main part of
Simulink is a graphical editing language based on block
libraries which are used to specify dynamic systems. There
are standard library blocks which can be used to model
variability: enabled subsystems, configurable subsystems and
model variants, for example. This was already described by the
authors of [3], [7]. But the main purpose of these mechanisms
is to model the behavior of single systems. Thus, we extend
and reinterpret them to explicitly represent variation points in
Simulink. The resulting Simulink extension, which we called

“v.control.mbd”, consists of
• an additional block library for modeling variation points

in Simulink models,
• a consistent data management, and
• a graphical user interface (GUI) for the configuration,

analysis and assessment of variant-rich Simulink models.
Our block library consists of three types of variation points

(Figure 1): There is an optional subsystem block, i.e. a
subsystem which can be present in a configuration, but it
does not have to be present. It can be turned on and off during
a configuration step. The second type, an XOR variation point
block, represents a subsystem which encapsulates subsystem
alternatives. If the XOR variation point itself is present in a
configuration, then exactly one of its children will be present.
The third possibility is a combination of both mechanisms, i.e.
an XOR variation point itself can be additionally optional.

These introduced variability mechanisms can be used within
a hierarchical structure as usual within Simulink. Thus, it is

VaMoS 2010

155

http://www.prostep.com/ebaso/

possible to specify an XOR variation point that again consists
of XOR variation points, for example.

In the implementation of v.control.mbd, optional subsystems
are realized using enabled subsystem blocks of Simulink
connected with a control block (e.g. normalCB in Figure 6).
An optional subsystem can be activated and deactivated by
changing the respective value of its control block. XOR vari-
ation points are realized by standard subsystem blocks. Each
subsystem alternative is again realized by an enabled subsystem
block connected with a control block. It is ensured by the
v.control.mbd implementation that only one alternative is active
at a specific point of time.

Figure 1. Elements of the v.control.mbd block library in Simulink.

The introduced variation points can be easily used within
any Simulink model. The user simply has to insert a block
from the v.control.mbd block library. The tool automatically
creates the respective constraints and the needed variability
data. This data is administered using a structure called VarInfo
(see Figure 2). It contains the complete variability data of the
current Simulink model and is stored in the base workspace of
MATLAB. This approach allows to distinguish between model
elements for the product line structure and model elements
used to specify the functional behavior.

<<MatlabStruct>>
VarInfo

<<MatlabCellArray>>
Configuration

-currentStatus : boolean
-isOptional : boolean
-isXOR : boolean

<<MatlabCellArray>>
VariationPoint

-status : Selection

<<MatlabCellArray>>
SelectionStatus

<<SimulinkBlockHandle>>
ControlBlock

-SELECTED_EXPLICIT
-SELECTED_DERIVED
-DESELECTED_EXPLICIT
-DESELECTED_DERIVED
-NOT_YET_DECIDED

<<Enum>>
Selection

<<MatlabCellArray>>
Constraint

1

1..*

11..*

currentConfiguration1

1 0..*

1

0..1

10..*

1

1..*

Figure 2. Data model of v.control.mbd in Simulink.

The third part of the v.control.mbd plugin is the configuration
and analysis user interface shown in Figure 5. The configuration
GUI is used to interactively specify a configuration of the
Simulink model. A formal analysis engine is used during the
configuration step in order to justify all the user made decisions
and to check whether all the constraints are fulfilled.1 Thus,
the user is guided during the configuration process to guarantee
that the resulting configuration is consistent and respects all the

1A binary decision diagram (BDD) based engine is used in the current
implementation.

automatically generated constraints [12]. Additional constraints
can as well be added by the user in the GUI.

The following section presents a small example to show how
the presented prototype is applied.

III. EXAMPLE APPLICATION OF
THE V.CONTROL.MBD PLUGIN

To illustrate the before introduced concepts, a traffic lights
product line is taken as an example. It consists of signalers
for cars and for pedestrians. The traffic lights have additional
right arrows to independently control cars turning to the right.
Furthermore, there are members of our product line with signal
buttons for pedestrians to request a green phase for them. Two
alternative functionalities are specified for these signal buttons:

• an immediate switching to green, and
• a switching after a specific time period to ensure that cars

will get a minimum time span for their green phase.
The corresponding variability is depicted in the feature model

in Figure 3.

Traffic Lights

 Signaler for CarSignaler for Pedestrian

Yellow Right Arrow Green Right ArrowSignal Button

Switching

ImmediatelyMinimum Time

needs

Figure 3. Feature model of a traffic lights product line.

Based on the feature model and its variability, a logical
architecture (often called a function net) is specified in a next
development step (Figure 4). It is a structural layout of the
product line in the form of functions with input and output
ports, communication relationships, and function variants [12].
The output of this modeling process is the starting point for
the detailed specification of the behavior with the help of
MATLAB / Simulink models.

Our prototypical tool v.control.mbd is capable of generating
a variant-rich Simulink model out of function nets created
for example in v.control [12], [13], [16], which is another
prototype implemented in previous research activities. The
result of this translation process is a Simulink model which
provides the developer not only with a structural framework
of the specified functions, but also with a mechanism to
switch between different product line members within the
Simulink model for simulation, validation or code generation
purposes (see for example the translation of the XOR function
ahead_signaler in Figure 4 into the corresponding Simulink
specification depicted in Figure 6).

The graphical user interface (GUI) which is part of the
v.control.mbd prototype (see Figure 5) allows the developer
to interactively configure the Simulink model and to switch
between different specified configurations. The first column

VaMoS 2010

156

time

traffic_lights

signaler_for_car

signaler_for_pedestrian

ahead_signaler

right_arrow

immediately

minimum_time

normal

green_arrow

yellow_arrow

signal_button

switching

display

Figure 4. Function net of a traffic lights product line.

in Figure 5 shows a representation of the Simulink model
structure. The further columns in the GUI represent different
configurations. A row represents a subsystem (a function) in
the model together with its corresponding configuration status.
The configuration status can interactively be changed simply by
clicking on the respective icon. The status of the corresponding
subsystem in the Simulink model is automatically synchronized
(see Figure 6). Thus, the configuration information is visible
for the user within the Simulink model itself.

In order to simulate a particular configuration in Simulink,
the user simply has to activate this configuration (e.g. the
highlighted configuration immediately in Figure 5) and
simulate the model.

Figure 5. User interface for the configuration of a Simulink model.

If a configuration is changed by clicking on a status in
the configuration GUI, v.control.mbd adjusts the selection
status of all directly or indirectly affected systems. This way

Figure 6. The configured Simulink model (extract): XOR variation point
ahead_signaler.

it is ensured that variability constraints resulting from the
architectural design or from the user input are continuously
valid. All of these features (configuration, consistency check,
constraints editing, simulation) can be done in MATLAB /
Simulink using the v.control.mbd plugin.

IV. RELATED WORK

The main focus of our activities is the application of product
line principles together with a step-wise, function-oriented,
and architecture-centric development. Such a modular and
compositional approach is necessary to tackle the complexity
found in the automotive domain as described in [17], for
instance. AUTOSAR [1] becomes a standard in this domain:
Besides the standardization of basic software in vehicles, it
also consists of architecture description languages (ADLs) for
the specification of application software and hardware. But
it does not prescribe the development methods nor how to
support variability management and product line engineering.
There are other ADLs and methods which can be used for
development steps before AUTOSAR, e.g. [15], [8], [19]. The
latter also aims to directly support the development according
to the AUTOSAR philosophy.

There are already several surveys of the usage of MATLAB /
Simulink for product line engineering. In [5] it was investigated
how code generators interpret Simulink constructs which
were used for modeling variable parts. The construction of a
product model on the basis of model libraries and templates
by selecting features was investigated in [11]. Which Simulink
constructs are suitable to express variability, how they can be
configured, and how product models can be derived from
such models is investigated in [3], [7]. The approach we
presented here is very similar to this work. However, we
have chosen to realize a deep integration of the variability
handling mechanisms within Simulink which allows for a
stand-alone usage of the new functionality in Simulink as well
as for the integration of Simulink within an architecture-centric

VaMoS 2010

157

development methodology [9].
Model elements in application models are annotated with

features in [6]. The features are used to specify presence
conditions for the elements. The approach how application
models (e.g. UML class diagrams, Simulink models etc.) are
configured with the help of features is similar to our work.
Also, we use an analog approach for the verification of feature
models. But in contrast to [6], we have explicitly integrated the
notion of variability into our application models [12]. Thus, we
are able to configure and analyze the variability in application
models without an external feature model.

In [18] a catalog of verification properties that are essential
to a type safe composition of modules are introduced on the
basis of a formal interpretation of feature models. However,
they assume that each feature is implemented by a distinct
module, which is not the case in our approach.

A similar approach for the configuration of variant-rich
(architectural) models with the help of a feature model is
implemented in [4]. As in [12], they integrate a feature model
with the other models by building an internal, unified feature
model which is used for an interactive configuration with
feedbacks.

V. CONCLUSION

Development tasks in the automotive industry are usually
very complex. Not only the complexity, but also the huge size
of data to be handled during a complete product development
lead to the necessity to introduce new development methods
that tackle these problems. One of the most effective way
to overcome the described complexity and size problem is
the proactive, planned and optimized reuse of development
artifacts. A high grade of reuse can be reached using the
development paradigm of product lines. A necessary prereq-
uisite to implement reuse within the development artifacts
is the possibility to express and analyze variability already
during the development. The approach presented in this paper
allows for such an integrated and early specification and
analysis of variability without adding a new paradigm or
tool. Based on the general ideas of feature modeling it is
possible to marry stand-alone applications extended to handle
variability with the overall development process as shown in
the paper. Although we present only one possible witness for
such an integration, we think that it could be extended to many
engineering tools in general. This would lead to a pervasive
variability management approach that will find acceptance
within the industrial development departments.

REFERENCES

[1] AUTOSAR Development Partnership, “AUTOSAR – AUTomotive Open
System ARchitecture.” [Online]. Available: http://www.autosar.org/

[2] D. Beuche, “Modeling and building software product lines with
pure::variants,” in Proc. 12th Int. Software Product Line Conf. (SPLC
2008). Limerick, Ireland: IEEE Computer Society, Sep. 8–12, 2008,
pp. 358–358.

[3] D. Beuche and J. Weiland, “Managing flexibility: Modeling binding-
times in Simulink,” in Proc. 5th European Conf. on Model Driven
Architecture – Foundations and Applications (ECMDA-FA 2009), R. F.
Paige, A. Hartman, and A. Rensink, Eds. Enschede, The Netherlands:
Springer-Verlag, Jun. 23–26, 2009, pp. 289–300, LNCS 5562.

[4] G. Botterweck, A. Polzer, and S. Kowalewski, “Interactive configuration
of embedded systems product lines,” in Proc. Int. Workshop on Model-
driven Approaches in Software Product Line Engineering (MAPLE 2009),
San Francisco, California, USA, Aug. 24, 2009, colocated with the 13th
Int. Software Product Line Conf. (SPLC 2009). [Online]. Available:
http://www.lero.ie/maple2009/

[5] S. Bunzel, U. Judaschke, and E. Kalix, “Variant mechanisms in model-
based design and code generation,” in Proc. MathWorks Int. Automotive
Conf. (IAC 2005), 2005.

[6] K. Czarnecki and K. Pietroszek, “Verifying feature-based model templates
against well-formedness OCL constraints,” in Proc. 5th Int. Conf. on
Generative Programming and Component Engineering (GPCE 2006).
Portland, Oregon, USA: ACM, Oct. 22-26, 2006, pp. 211–220.

[7] C. Dziobek, J. Loew, W. Przystas, and J. Weiland, “Von Vielfalt und
Variabilität – Handhabung von Funktionsvarianten in Simulink-Modellen,”
Elektronik automotive, pp. 33–37, Feb. 2008, (title in English: “Model
diversity and variability – handling of functional variants in Simulink
models”).

[8] P. H. Feiler, D. P. Gluch, and J. J. Hudak, “The architecture analysis &
design language (AADL): An introduction,” CMU-SEI, Technical Report
CMU/SEI-2006-TN-011, Feb. 2006. [Online]. Available: www.aadl.info

[9] M. Große-Rhode, “Architecture-centric variants management for
embedded systems. Results of the project ‘Distributed Development
and Integration of Automotive Product Lines’,” Fraunhofer ISST
Berlin, ISST-Report 89/08, Oct. 2008. [Online]. Available: http:
//veia.isst.fraunhofer.de/

[10] M. Große-Rhode, S. Euringer, E. Kleinod, and S. Mann, “Rough draft
of VEIA reference process,” Fraunhofer ISST Berlin, ISST-Report 80/07,
Jan. 2007. [Online]. Available: http://veia.isst.fraunhofer.de/

[11] S. Kubica, “Variantenmanagement modellbasierter Funktionssoftware
mit Software-Produktlinien,” Ph.D. dissertation, Friedrich-Alexander-
Universität Erlangen-Nürnberg, Institut für Informatik, 2007, Bd. 40,
Nr. 4.

[12] S. Mann and G. Rock, “Dealing with variability in architecture descrip-
tions to support automotive product lines,” in Proc. 3rd Int. Workshop
on Variability Modeling of Software-intensive Systems (VAMOS 2009),
D. Benavides, A. Metzger, and U. Eisenecker, Eds., Sevilla, Spain, Jan.
27–30, 2009, pp. 111–120, ICB-Research Report No. 29, ISSN 1860-
2770 (Print); 1866-5101 (Online).

[13] ——, “Dealing with variability in architecture descriptions to support
automotive product lines: Specification and analysis methods,” in Proc.
embedded world Conference. Nürnberg, Germany: WEKA Fachmedien,
Mar. 3–5, 2009, ISBN 978-3-7723-3798-7.

[14] “Simulink 7,” CASE tool, The MathWorks, 2009, a MATLAB toolbox,
see http://www.mathworks.com/.

[15] J. K. R. van Ommering, F. van der Linden and J. Magee, “The Koala
component model for consumer electronics software,” IEEE Computer,
pp. 78–85, Mar. 2000.

[16] G. Rock and S. Mann, “Assessment of product line architecture
descriptions in v.control,” in Software Quality Engineering – Proc. of
the CONQUEST, I. Schieferdecker and S. Goericke, Eds. Nürnberg,
Germany: dpunkt.verlag, Sep. 16–18, 2009, pp. 163–178, ISBN 978-3-
89864-637-6.

[17] J. Schäuffele and T. Zurawka, Automotive Software Engineering, ser.
ATZ-MTZ-Fachbuch. Vieweg, 2003.

[18] S. Thaker, D. Batory, D. Kitchin, and W. Cook, “Safe composition of
product lines,” in Proc. 6th Int. Conf. on Generative Programming and
Component Engineering (GPCE 2007). Salzburg, Austria: ACM, Oct.
1-3, 2007, pp. 95–104.

[19] The ATESST Consortium, “EAST ADL 2.0 specification,”
Specification 2008-02-29, 2008, draft. [Online]. Available: www.atesst.org

[20] “Feature modeling plugin (version 0.7.0),” CASE-Tool (Eclipse-Plugin),
University of Waterloo, Canada, 2006, see http://gsd.uwaterloo.ca/
projects/fmp-plugin/.

VaMoS 2010

158

http://www.autosar.org/
http://www.lero.ie/maple2009/
www.aadl.info
http://veia.isst.fraunhofer.de/
http://veia.isst.fraunhofer.de/
http://veia.isst.fraunhofer.de/
http://www.mathworks.com/
www.atesst.org
http://gsd.uwaterloo.ca/projects/fmp-plugin/
http://gsd.uwaterloo.ca/projects/fmp-plugin/

Introducing TVL, a Text-based
Feature Modelling Language

Quentin Boucher, Andreas Classen,* Paul Faber and Patrick Heymans
PReCISE Research Centre

Faculty of Computer Science
University of Namur

5000 Namur, Belgium
Email: {qbo,acs,pfaber,phe}@info.fundp.ac.be

Abstract—Feature models are a common way to represent
variability in software product line engineering. For this purpose,
most authors use a graphical notation based on FODA. The main
drawback of those approaches is their lack of scalability: they
generally do not fit real-size problems. Indeed, their graphical
syntax does not account for attributes or complex constraints
and becomes a burden for large feature models.

In this paper, we present TVL, a text-based feature mod-
elling notation that is both light and comprehensive, meaning
that it covers most constructs of existing languages, including
cardinality-based decomposition and feature attributes. The main
objective of TVL is to provide engineers with a human-readable
language supporting large-scale models through modularisation
mechanisms. Furthermore, TVL can serve as an extensible storage
format for feature modelling tools. We illustrate the various
concepts of the language with short code fragments.

I. INTRODUCTION

In software product line engineering (SPLE), Feature Mod-
els (FMs) are a common means to represent the variability
of a software product line (SPL) [1]. Almost all existing FM
languages are graphical notations based on FODA Feature Di-
agrams (FDs) which were introduced in the seminal paper by
Kang et al. [2]. Since this original proposal, several extensions
have been proposed by various authors. In all those dialects,
FMs are represented as trees whose nodes denote features and
whose edges represent top-down hierarchical decomposition
of features. Consider the example FD in Figure 1 modelling a
product line of personal computers. The Computer consists of
a Motherboard, a CPU, a Graphic Card and some Accessories,
which are optional (indicated by the hollow circle); all of
these features are further decomposed. In addition, although
not shown in the figure, each of the features has a price, which
can be modelled as an attribute [3].

While such a graphical representation is supposedly more
accessible to non-technical stakeholders, we believe that work-
ing with large industry-size FDs can become a tricky task
for several reasons. First, to create a large FD, the graphical
syntax is a burden that cannot be mastered without dedicated
tool support (though many FM tools use directory tree-like
representations themselves). Secondly, given that a FD is a tree
on a two-dimensional surface, there will inevitably be large
physical distances between features, which makes it hard to

*FNRS Research Fellow

navigate, search or interpret the FD. Finally, most notations do
not have graphical means to represent constructs like attributes
and constraints which are essential for industrial FMs.

Even though future tools might solve some of these issues,
they would just attack the symptoms of the underlying prob-
lem. We attack its cause and propose to change the medium
of the notation to just plain text. We do not question the need
for a graphical representation, we rather propose an alternative
and complementary textual notation. This would allow one to
view and edit FMs either graphically or textually, depending
on one’s skills and preferences. We thereby hope to facilitate
the dissemination of FMs in industrial settings. The goals for
the new language are to be scalable by being succinct and
modular as well as comprehensive.

Our language is called TVL, for text-based variability
language. Plain text has a number of advantages the most
important of which is the abundance of established tools
dealing with text, generally program code. Moreover, the
syntax of TVL is inspired by the syntax of C and should
appear intuitive to any engineer who has come in contact
with one of the many programming languages with a C-like
syntax. We believe that these choices will also ease acceptance
of FMs in industrial contexts because TVL is similar to the
languages used in such environments and because it does not
need dedicated modelling tools to be deployed.
TVL is scalable because it is succinct (its syntax is very

light, as opposed to XML, for instance) and because it offers
a number of mechanisms for modularisation and separation of
concerns. The language is comprehensive because it integrates
most of the FM constructs proposed in the twenty years since
the advent of FODA.

At this stage, TVL is a language proposal. It is formally
defined with an LALR grammar, a formal semantics [4] and
comes with a reference implementation available online.1 It is
meant to be a basis for discussion and we are mainly interested
in feedback about the language and its syntax.

The remainder of the paper is structured as follows: Sec-
tion II introduces the TVL syntax, we survey related work in
Section III and conclude in Section IV.

1Download at the TVL website http://www.info.fundp.ac.be/∼acs/tvl.

VaMoS 2010

159

http://www.info.fundp.ac.be/~acs/tvl

II. SYNTAX

In this section we present an overview of the TVL syntax
using code snippets. The formal BNF grammar is available
online. The different sub-sections introduce five major parts of
the language i.e. features, attributes, expressions, constraints
and modularisation mechanisms.

The different concepts of TVL will be illustrated using a ba-
sic personal computer product family example FD introduced
in Section I and shown in Figure 1.

Computer

Motherboard CPU GraphicCard Accessories

Asus Aopen CoreI7 NvidiaAthlon ATI KeyboardAndMouse PhilipsScreen SamsungScreen

[0..2]

<<excludes>>
Legend

and-decomposition
xor-decomposition

group cardinality [i..j]
optional feature

[i..j]

Fig. 1. Computer example FD

A. Feature hierarchy

The TVL language has a C-like syntax: it uses braces to
delimit blocks, C-style comments and semicolons to delimit
statements. The rationale for this syntax choice is that nearly
all computing professionals have come across a C-like syntax
and are thus familiar with this style. Furthermore, many text
editors have built-in facilities to handle this type of syntax.

In our example, the root feature, Computer, is decomposed
into four sub-features by an and-decomposition: Motherboard,
CPU, GraphicCard and Accessories. Furthermore, the Acces-
sories feature is optional while the other three features are
mandatory. In TVL, this is written as follows:

root Computer {
group allOf {

Motherboard,
CPU,
GraphicCard,
opt Accessories

}
}

A decomposition type in TVL is defined with the group
keyword. Predefined decomposition operators are allOf, as
used in this example for an and-decomposition, oneOf for
xor-decompositions and someOf for or-decompositions. It is
also possible to specify a cardinality-based decomposition with
the group [i..j] syntax, where i and j are the lower and upper
bounds of the cardinality. When defining a cardinality, one can
use the asterisk character * to denote the number of children
in the group, for instance group [1..*] would be equivalent to
group someOf. Optional features like Accessories are declared
by putting the opt keyword in front of their name.

FMs most commonly have a tree structure but, sometimes,
a directed acyclic graph (DAG) structure – a feature can have

several parents – might be useful [5]. DAG structures can also
be modelled in TVL with the shared keyword associated to a
feature name. It is illustrated in the following example where
feature D has features B and C as parents:

root A
group oneOf {

B group allOf {D},
C group allOf {shared D}

}

B. Attributes

In our example, the Motherboard has four attributes: a
price, a width, an height and a socket type. TVL supports
four different attribute types: integer (int), real (real), Boolean
(bool) and enumeration (enum). Furthermore, in our example,
the price value is limited to values between 0 and 500. In TVL,
this is expressed as follows:

Motherboard {
int price in [0..500];
int width;
int height;

}

Attributes are thus declared by defining their type and name
inside the definition block of the feature they belong to. Each
attribute declaration is terminated by a semicolon. The in
keyword is optional, it can be used to restrict the domain of an
attribute. When declaring an attribute as an enumeration type,
this means that it will take exactly one of a set of predefined
values. The socket, for instance, is either LGA1156 or ASB1.

Motherboard {
enum socket in {LGA1156, ASB1};

}

For enumerations, the in keyword is mandatory. Notice the
use of curly braces here as opposed to square brackets for
the price attribute above. In TVL, square brackets are used to
declare intervals and braces to declare lists.

In many cases, the value of an attribute will be calculated
based on the values of some other attributes. The value of the
price attribute of Accessories, for example, is the sum of the
prices of its children KeyboardAndMouse, PhilipsScreen and
SamsungScreen. Furthermore, the value of an attribute might
also depend on whether its containing feature is selected or
not. All this is written as follows in TVL:

Accessories {
int price is sum(selectedChildren.price);
group [0..2] {

KeyboardAndMouse {
int price is 19;

},
PhilipsScreen {

int price is 99;
},
SamsungScreen {

int price, ifIn: is 149, ifOut: is 0;
}

}
}

The keyword is can be used to set a fixed value for an
attribute, e.g. price of KeyboardAndMouse. The keywords ifIn:

VaMoS 2010

160

and ifOut: are guards that allow to specify the value of the
attribute in the case in which the containing feature is selected
(ifIn:) or not selected (ifOut:). We illustrate this with the price
attribute of the SamsungScreen whose value will be 149 if the
feature is selected and 0 if not.

While the price of the KeyboardAndMouse, PhilipsScreen
and SamsungScreen features is fixed, the price of the Ac-
cessories is calculated: it is the sum (using the aggregation
function sum) of the values of the price attribute of its
selected children (using the selectedChildren keyword). Other
operators are available and will be discussed in next section.
A common modelling pattern for attributes declared for all
features is to compute the value of the parent feature’s attribute
by aggregating the attribute values of its children, up to the
root. The price of a Computer, for example, will be calculated
by summing the prices of its selected sub-features, which in
turn depend on the prices of their sub-features, and so on until
leaf features with fixed price values are reached.

C. Expressions

In TVL, expressions are used to determine the value of an
attribute as well as to express constraints on the FM. The
language is strongly typed, each expression being either of
type bool, real or int.

A basic expression is either an integer, a real, a Boolean, or a
reference to a feature, an attribute or a constant. Those basic
expressions can then be combined using classical operators:
+, -, /, *, abs, for numeric values; !, &&, ||, ->, <-> for
Boolean values as well as comparison operators >, >=, < or
<=. Classical FM cross-tree constraints excludes and requires
can also be used as Boolean expressions.

Furthermore, there are a number of aggregation functions
sum, mul (multiplication), min, max, avg (average), count,
and, or and xor. These aggregation functions can simply
be used on lists of expressions or they can become power-
ful shorthand notations when used in combination with the
children or the selectedChildren keywords. These allow to
aggregate the value of an attribute that is declared for each
child of a feature. The notation is fct(children.attribute),
or fct(selectedChildren.attribute) if the aggregate should be
calculated on selected children only.

D. Constraints

Constraints in TVL are attached to features. They are simply
Boolean expressions that can be added to the body of a
feature definition. As with attribute declarations, they are
terminated by a semicolon. The ifIn: and ifOut: guards we
have previously seen can be used on constraints, too. In
our example, the socket attribute of the Motherboard feature
depends on the choice of the actual motherboard. One way
to model this in TVL is to define a constraint in each child
feature which basically ‘sets’ the value of its parent’s attribute.

Motherboard {
enum socket in {LGA1156, ASB1};
group oneOf {

Asus {
ifIn: parent.socket == LGA1156;

},
Aopen {

ifIn: parent.socket == ASB1;
}

}
}

E. Modularisation mechanisms
TVL offers various mechanisms that can help users to

modularise large models. First of all, custom types can be
defined at the top of the file and then be used in the FM. This
allows to factor out recurring types. For instance, one might
want to define the different sockets upfront and then use it as
a type in an attribute declaration:

enum cpuSocket in {LGA1156, ASB1};
...
Motherboard {

cpuSocket socket;
}

It is possible to define structured types to group attributes
that are logically linked. A dimension, for instance, is a couple
(height, width) and can be declared as such using a structured
type. This type can then be reused inside the Motherboard
feature:

struct dimension {
int height;
int width;

}
...
Motherboard {

dimension size;
}

Users can also specify constants using the const keyword
followed by a type, a name and a value. These constants can
then be used inside expressions or cardinalities.

const int maxRamBlocks 4;

One can also use the include statement, which takes as
parameter the path of a file (relative to the file containing the
root feature). As expected, an include statement will include
the contents of the referenced file at this point. Includes are
in fact preprocessing directives and do not have any meaning
beyond the fact that they are replaced by the referenced file.

include(./some/other/file);

Another mechanism is that features can be defined at one
place and then extended further in the code. Basically, once
a feature has been defined in the group block of its parent
feature, its definition can be extended any number of times.
In order to extend a feature definition, one just adds a feature
block with the same name to the file. This block cannot be
inside another feature, it has to start its own hierarchy. Each
feature block may add constraints and attributes to the feature
body. The children (with the group keyword) can only be
defined in a single one of these blocks.

This mechanism allows modellers to organise the FM ac-
cording to their preferences and can be used to implement
separation of concerns [6]. For example, one could declare
part of the structure of the FM without detailing each feature’s
attributes and instead provide them later on:

VaMoS 2010

161

root Computer {
group allOf {

Motherboard,
CPU,
GraphicCard,
opt Accessories

}
}
Computer {

int price is sum(selectedChildren.price);
}

In this example, the decomposition of the root is defined at
the beginning while its attributes are declared further down.
The advantage of this is that the structure is easily understand-
able because it is not cluttered by attribute declarations.

III. RELATED WORK

By far the most widely used notation in the literature is
the graphical FM notation based on FODA [2]. Most of
the subsequent proposals such as FeatuRSEB [7], FORM [5]
or Generative Programming [8] only slightly modify this
graphical syntax (e.g. by adding boxes around feature names).

One exception is Batory [9] who proposed the GUIDSL
syntax, in which the FM is represented with a grammar. The
GUIDSL syntax is further used as a file format of the feature-
oriented programming tools AHEAD [9] and FeatureIDE [10].
The GUIDSL format is aimed at the engineer and is thus
easy to write, read and understand. However, it does not
support arbitrary decomposition cardinalities, attributes, or the
representation of the FM as a hierarchy.

Van Deursen and Klint [11] proposed the Feature De-
scription Language (FDL), a textual language to describe
features. FDL does not support attributes, cardinality-based
decompositions, DAGs or duplicate feature names.

The SPLOT [12] and 4WhatReason [13] tools use the
SXFM syntax and file format. While the format uses XML
for metadata and the overall file structure, its representation
of the FM is entirely text-based with the explicit goal to
make it suitable for the engineer. It differs from the GUIDSL
format in that it makes the tree structure of the FM explicit
through (Python-style) indentation. It supports decomposition
cardinalities but not attributes.

The feature modelling plugin [14] and the Fama frame-
work [15] both use XML based file formats in which the whole
FM is encoded in XML. These formats were not intended to be
written or read by the engineer and are thus hard to interpret,
mainly due to the overhead caused by XML tags and technical
information that is extraneous to the model.

IV. CONCLUSION

We argue that while graphical FM languages may be more
intuitive, they are not always adapted to large FMs involving
attributes and complex constraints. We propose TVL, a text-
based variability modelling language with a C-like syntax. The
goal of the language is to be scalable, by being concise and
by offering mechanisms for modularity. TVL is also meant
to be comprehensive so as to cover a wide range of FM
dialects proposed in the literature. We acknowledge that for

non IT stakeholders or for informal discussions around the
blackboard, graphical FMs might be more appropriate than
TVL. An advantage of text-based languages is that there
are many well-accepted applications (viz. text editors, source
control systems, diff tools, and so on) that support modelling
and evolution out of the box. Furthermore, choosing a C-
like syntax means lower learning curves for most software
engineers. We hope that this will lead to an easier adoption of
FMs in an industrial context.

At the moment, TVL is a language proposal, and we are re-
questing feedback from the variability modelling community.
We developed a reference implementation for TVL in Java.2

The library has two components; the syntactic component is a
parser that performs type checking, checks well-formedness,
and can normalize a model (eliminate syntactic sugar). Among
other things, it can be used to implement TVL support in
existing FM tools. The semantic component is able to translate
a TVL file to either a Boolean CNF formula (if it does not
contain numeric attributes), or to a CSP problem according to
the formal TVL semantics defined in [4].

ACKNOWLEDGEMENTS

This work was partially funded by the Walloon Region,
the Interuniversity Attraction Poles Programme, Belgian State,
Belgian Science Policy (MoVES project), the BNB, the FNRS.

REFERENCES

[1] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[2] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, “Feature-
oriented domain analysis (FODA) feasibility study,” SEI, CMU, Tech.
Rep., 1990.

[3] D. Benavides, P. T. Martı́n-Arroyo, and A. R. Cortés, “Automated
reasoning on feature models,” in Proceedings of CAiSE’05, 2005.

[4] A. Classen, Q. Boucher, P. Faber, and P. Heymans, “Syntax and
semantics of TVL, a text-based feature modelling language,” PReCISE
Research Centre, Univ. of Namur, Tech. Rep., 2010.

[5] K. C. Kang, S. Kim, J. Lee, K. Kim, G. J. Kim, and E. Shin,
“Form: A feature-oriented reuse method with domain-specific reference
architectures,” Ann. Softw. Eng., vol. 5, pp. 143–168, 1998.

[6] P. Tarr, H. Ossher, W. Harrison, and S. M. J. Sutton, “N degrees of
separation: multi-dimensional separation of concerns,” in ICSE’99, 1999.

[7] M. L. Griss, J. Favaro, and M. d. Alessandro, “Integrating feature
modeling with the rseb,” in Proceedings of ICSR’98, 1998.

[8] K. Czarnecki and U. W. Eisenecker, Generative Programming: Methods,
Tools, and Applications. Addison-Wesley, 2000.

[9] D. S. Batory, “Feature Models, Grammars, and Propositional Formulas.”
in Proceedings of SPLC’05, 2005.

[10] C. Kästner, T. Thüm, G. Saake, J. Feigenspan, T. Leich, F. Wielgorz, and
S. Apel, “FeatureIDE: A tool framework for feature-oriented software
development,” in Proceedings of ICSE’09, 2009.

[11] A. Deursen and P. Klint, “Domain-specific language design requires fea-
ture descriptions,” Journal of Computing and Information Technology,
vol. 10, p. 2002, 2002.

[12] M. Mendonca, M. Branco, and D. Cowan, “S.P.L.O.T. - Software
Product Lines Online Tools,” in Proceedings of OOPSLA’09, 2009.

[13] M. Mendonca, “Efficient reasoning techniques for large scale feature
models,” Ph.D. dissertation, University of Waterloo, 2009.

[14] M. Antkiewicz and K. Czarnecki, “Featureplugin: Feature modeling
plug-in for eclipse,” in Proceedings of the OOPSLA’04 Eclipse Tech-
nology eXchange (ETX) Workshop, 2004.

[15] D. Benavides, S. Segura, P. Trinidad, and A. R. Cortés, “Fama: Tooling a
framework for the automated analysis of feature models,” in Proceedings
of VaMoS’07, 2007.

2See the TVL website at http://www.info.fundp.ac.be/∼acs/tvl.

VaMoS 2010

162

http://www.info.fundp.ac.be/~acs/tvl

XToF – A Tool for Tag-based Product Line
Implementation

Christophe Gauthier, Andreas Classen,*
Quentin Boucher, Patrick Heymans

PReCISE Research Centre
Namur, Belgium

Email: chistophe.gauthier@student.fundp.ac.be
{acs,qbo,phe}@info.fundp.ac.be

Margaret-Anne Storey

University of Victoria
Victoria, Canada

Email: mstorey@uvic.ca

Marcı́lio Mendonça

University of Waterloo
Waterloo, Canada

Email: marcilio@csg.uwaterloo.ca

Abstract—This tool demo paper describes a tool called XToF
which is being developed through a collaboration between the
University of Victoria, the University of Namur and the Univer-
sity of Waterloo. The purpose of the tool is to let programmers
define, maintain, visualise and exploit precise traceability links
between a feature diagram and the code base of a software
product line. The resulting tool supports automated configuration
of a Java or C code base and is minimally intrusive with respect
to development practices.

Index Terms—tool demo; software product line; feature dia-
gram; tagging; programming language; C; Java

I. INTRODUCTION

The tool described in this paper is being developed as part
of the Masters thesis of the first author. The tool extends
a toolchain that was previously assembled/developed by the
University of Namur and Spacebel, a Belgian company that
develops software for space missions.

The purpose of both tools (the old and the new one) is to
let programmers define, maintain, visualise and exploit precise
traceability links between a feature diagram (FD) and the code
base of a software product line. Both tools are meant to be
minimally intrusive with respect to development practices. The
new tool, called XToF1, provides enhanced functionality by
leveraging on two new components: (1) TagSEA, an Eclipse
plug-in developed at University of Victoria, which purpose is
to support navigation and knowledge sharing in collaborative
program development, and (2) S.P.L.A.R. a Java library de-
veloped at University of Waterloo that automates various FD
analyses.

The remainder of the paper is structured as follows. It starts
in Section II with a description of the requirements (Section
II-A) and implementation (Sections II-B and II-C) of the initial
toolchain, together with a list of its limitations (Section II-D).
Then, in Section III, we present the contribution of this paper:
XToF, the new prototype designed to overcome the aformen-
tioned limitations. We describe in turn its components and
principles (Section III-A), its functionalities (Section III-B)
and on-going as well as future development (Section III-C).

*FNRS Research Fellow.
1XToF stands for cross(X)-Tagging of Features

II. THE INITIAL TOOLCHAIN

A. Context and requirements

The assembly/development of the initial toolchain took
place as a collaboration between the University of Namur
and Spacebel. The goal of this collaboration was to turn
the implementation of a flight grade satellite communication
software library into a software product line that would support
the following requirements:

• allow mass-customisation of the library: meaning to be
able to efficiently derive products that only contain the
features required for a specific space mission,

• be compliant with quality standards and regulations in
place for flight software,

• have a minimal impact on current development practices,
• automate the solution as much as possible.

The first and second requirements stem from the strict
constraints that are imposed on flight grade on-board soft-
ware. Components for space usage are developed to deal
with extreme environmental conditions such as cosmic rays,
temperature variation and vibration. This type of hardware is
usually very expensive and several evolutionary steps behind
the consumer hardware we more commonly know. There-
fore, CPU usage and memory footprint typically have to be
minimised. Also, developers often have no other choice than
programming in C and obey strict rules that prohibit usage
of ‘dangerous’ mechanisms, such as dynamic heap memory
allocation, or general-purpose third-party libraries [1]. Along
the same lines, dead code is also to be avoided. In our case,
since specific missions only require part of the protocol’s
functionality, it is important to only deploy those parts (or
features) of the protocol that are going to be used.

The rationale for the third and fourth requirements was
to facilitate adoption of the solution by the company. A
first version of the toolchain was then elaborated jointly by
the academic and industry partners. It is described in detail
elsewhere [2]. In the rest of this section, we just recall its
most important features and limitations to introduce our new
contribution, XToF, presented in Section III.

VaMoS 2010

163

Feature
Modelling ImplementationDesign

Domain engineering

Configuration Code pruning
and compilation

Application engineering

 pure::variants Rhapsody

Parser & C Compiler

Fig. 1. Toolchain as deployed at Spacebel

B. Deployed toolchain

Guided by the above requirements, a first version of the
process and toolchain were developed and successfully de-
ployed in the company. The tool-supported process is depicted
in Figure 1. It is organised after the classical software product
line engineering process [3] which consists of two main
streams: domain engineering (the creation of reusable artefacts
or core assets) and application engineering (the usage and
adaption of the core assets to create final products). In our
case, the core assets are the Feature Diagram (FD), the system
architecture (in UML) and the C code base, made of 6224
lines of code, the two last assets being decorated with tags
pointing to the features of the FD. Application engineering
starts with a configuration step during which some features
are selected and some are discarded. This information is then
used to remove code related to discarded features before the
mission-specific product is compiled. A technical report [2]
describes each of these steps in greater detail. It also gives an
extensive definition of the syntax and semantics of our tagging
language, demonstrates its correctness, provides an illustration
and compares it with other annotative approaches to software
product line implementation such as CIDE [4] and #ifdef
pre-processing statements.

Figure 1 also shows how this process is supported by tools:

• design and implementation are supported by the tools
already in use at the company, namely the Rhapsody
UML CASE tool, and the C compiler;

• feature modelling and configuration are supported by
pure::variants, a commercial off-the-shelf FD-based tool;

• a parser that was developed specifically for this project.
The parser takes two inputs: (1) a valid list of features
provided by pure::variants after configuration, and (2)
an ANSI C source file annotated with tags written in our
tagging language. It returns an ANSI C source file with no
tags and no unnecessary code. The parser is encapsulated
in a make-file and run on every single file of the codebase.

C. The tagging languages

Basically, a feature tag is an annotation of a block of C
code with the names of the features that require the block to
be present. If none of the features listed in a tag is included
in a particular product, then the tagged code block will not
be part of the source code generated for this product. Tags
can be nested and a whole file can be tagged with a special
annotation. Untagged code is assumed to be needed for all
features.

Syntactically, a feature tag is a comment that follows a
predefined pattern. As such, it is displayed in the same colour
as comments in code editors. The syntax of feature tags is:

<fcomment> ::= "/*@feature:" <flist> "@*/" [<filetag>]
<flist> ::= <featurename> (":" <flist>) *
<filetag> ::= "/*@!file_feature!@*/"

where <featurename> identifies a feature of the FD. The
scope of a tag is the functional block, which we define as
a group of statements that belong together, and that can be
removed as a whole without violating the syntax or grammar
of the language. For instance, it would be impossible to remove
only the signature of a function without also removing its body.
Functional blocks thus correspond to elements of the abstract
syntax tree (AST), an idea previously found in [4]. With this
approach, we can guarantee that the pruned code will always
be syntactically correct. The functional block corresponding
to a code tag is determined by the instructions that follow the
tag. More details can be found in the technical report [2].

D. Limitations of the toolchain

The tool-supported process described in the previous sec-
tions turned out to be effective in meeting the requirements
set out by the company. A detailed evaluation [2] revealed that
there was still space for improvements (in order of priority):

• Tighter integration: communication between the tools
was performed only through file exchange. Although this
did not impede usage of the toolchain, it was recognised
that an integrated environment, where loosely coupled
tools play together, could be a significant enhancement.
An important improvement, for example, could be that the
feature editor/configurator could point directly to the code
fragments a feature corresponds to in the code editor, and
vice versa.

• Legibility: according to the company’s developers, the
legibility of the source code was not reduced by the
tags. Indeed, the tagging language was designed to be
concise and is rendered in a different colour in most code
editors. However, the developers found it sometimes hard
to determine the feature(s) corresponding to a specific
source fragment, especially in the presence of nested tags.
Tag-based filtering and visualisation techniques could
alleviate this problem.

• Portability: although pruning dead code is most usually
required in embedded systems where C dominates, C
is not the only language used in embedded systems.
Additionally, our “tag and prune” approach has a wider

VaMoS 2010

164

applicability than embedded systems, hence the idea of
extending the approach to other languages.

• On-the-fly tag generation: the programmers who used
the toolchain estimated that the overhead due to the tags
during the domain implementation phase was 20 to 25%
with respect to tag-free implementation of a ‘maximal’
product (the return on this investment being delayed to the
application implementation phase). However, they also
recognised that the overhead could be decreased if the
tags were systematically captured at the time the feature
is programmed rather than after the fact.

III. THE NEW PROTOTYPE: XTOF

Functionally, XToF, the new prototype, is meant to support
the activities depicted in Figure 1 in a single integrated
environment, and overcome the limitations described in the
previous section.

A. Components and principles of XToF

The opportunity for re-implementing the original toolchain
came from the discovery of an open-source Eclipse plug-in
called TagSEA. TagSEA was developed by Storey et al. [5] to
support asynchronous and collaborative program development.
It enhances navigation and knowledge distribution in the code
based on tags placed by the programmers. The approach and
tool are originally unrelated to software product lines, but
turned out to be applicable in this context.

XToF uses the capabilities of TagSEA to manage tagging
and tags. TagSEA defines waypoints as “locations of software
model elements”[6]. The notion of waypoint as a point of
interest has been extended to a design area of interest in order
to capture blocks of code associated to feature tags. TagSEA
provides mechanisms to filter tags, list waypoints and navigate
to a waypoint. XToF then links TagSEA waypoints to features
and blocks of code.

One of the main enhancements to the first toolchain is that
the FD is now displayed directly in the programming envi-
ronment. The FD is used as an index to code fragments and
as the configuration interface. One can select a set of features
to obtain specific views of the program and to configure it.
XToF adopts the classical layout of Eclipse (see Figure 2):
the FD is displayed as a directory tree (A), some buttons
(B) trigger actions like configuration or tag filtering, while
TagSEA constantly displays the list of waypoints (D) for each
tag (C).

To allow tighter integration of TagSEA with the FD-
related functionalities, we needed full access to their source
code. This was provided by SPLAR2 a powerful Java library
that automates various FD analyses, by which we replaced
pure::variants.

B. Current functionalities

We now take a closer look at the tool’s currently supported
functionalities:

2See http://www.splot-research.org

Fig. 2. XToF’s main screen

• Loading the FD: To be displayed and configured in the
tool, the FD has to be loaded. XToF expects it as an
XML file in the SXFM format.3 The file can be created
in any text editor, but can be more easily produced by the
web-based visual FD editor SPLOT [7], the front-end to
SPLAR. Once the FD is loaded, XToF displays it and lets
the users add tags, navigate and configure. The loaded FD
is copied to the project folder and its path is saved as a
property of the project. The FD is thus made available to
all project contributors who can work in parallel.

• Tagging code fragments: To reduce the time needed to tag
blocks of source code, XToF uses auto-completion from
Eclipse. While typing a tag, feature names are displayed,
and when selected, directly added to the tag.

• Navigation and visualization: XToF feature tags behave
like regular TagSEA waypoints. The user can list the lo-
cation of feature tags, navigate to a tagged code fragment
and display it. Some visualisations have been developed
to answer simple questions such as “Which blocks are
associated to a set of tags?” and “Which set of tags is
associated to a line of source code?”. To answer the first
question, the user can select the set of tags in XToF and
the tagged block of source code is highlighted. Another
mechanism provides the opposite function, i.e. answers
the second question: the features corresponding to the
current line in the active editor window are highlighted in
the FD. Additionally, XToF filters packages and classes
that contain blocks tagged with selected features from
the FD. Finally, we reuse a ‘cloud’ visualization from
TagSEA that shows how tags are used.

• Configuring and pruning: Configuration and pruning are
now integrated. The configuration interface is based on
the FD. Clicking on a feature allows the user to toggle it
from deselected to selected and conversely (see Figure

3See http://gdansk.uwaterloo.ca:8088/SPLOT/sxfm.html

VaMoS 2010

165

Fig. 3. Code highlighting in XToF

Fig. 4. Product configuration in XToF

4). Each decision made on the diagram is propagated
by SPLAR to ensure the validity of the configuration.
Once configuration is completed, the mission-specific
implementation can be generated. To do this, XToF will
clone the project to a new one with a name provided by
the user. It will then prune the source code and remove
code according to the valid list of features.

• Portability: XToF takes advantage of the plug-in platform
provided by Eclipse to support other languages than Java.
Two languages are currently supported: Java and C.

C. On-going and future work

Additional functionalities will be implemented in the future:
• Editing the FD: The current version of XToF does not

support editing of the FD. The objective would not only
be to create it from the same front-end as the rest of the
functionalities, but also maintain the consistency between
the FD and the feature tags. For example, if one modifies
the name of a feature, each tag that uses the feature will
be modified too, thereby supporting co-evolution of the
FD and the program.

• High level visualization: The current visualization is
limited. It is hard to determine which files and packages
are tagged with given features (although not impossible
if one reads the list of tagged blocks). XToF will provide
high level visualization to answer the questions: “Which
files and packages are associated to a set of features and

conversely?” and “Which packages or classes (in the case
of an OO project) have features in common?” XToF will
display links between the files (or classes), packages and
features, and provide mechanisms to restrict the view to
a set of features or files.

• Improve declaration tagging: When the partner company
used the first prototype, they reported that one of the
major sources of errors was incorrect tagging of vari-
able, function and type declarations [2]. This can occur,
for example, when a variable tagged with feature A is
required by a feature B without the developer updating
the tag. The product generated with feature B selected but
feature A deselected will not compile. To prevent such
an error, the ‘using’ feature must declare the variable, or
the ‘declaring’ feature must always be present with the
‘using’ feature. XToF will help the user avoid such issues
by offering a pruning based on the set of features that
are always present with one selected feature [2]. Another
possibility that we will investigate is to take into account
dependencies in the code for automatic generation of tags,
in the spirit of change-oriented programming [8].

IV. CONCLUSION

In this paper, we introduced XToF, a tool prototype support-
ing tag-based product line implementation in Java and C. XToF
is an extension of a toolchain that was initially developed as
joint university-industry project and which has been deployed
in the company. XToF will supersede this toolchain by improv-
ing it in various ways: better tool integration, visualization,
portability to other programming languages and on-the-fly tag
generation. Once finished, XToF will provide an integrated
tool to create a feature diagram, develop a tagged ‘maximal’
product, navigate through the features and the tagged blocks
of code, classes and packages (in the case of OO programs),
support feature-based configuration and generate products
automatically by pruning the source code.

V. ACKNOWLEDGEMENTS

This work is sponsored by the Interuniversity Attraction
Poles Programme of the Belgian State, Belgian Science Policy
(MoVES project), FEDER, BNB and FNRS.

REFERENCES

[1] MISRA, MISRA-C: Guidelines for the use of the C language in critical
systems. Motor Industry Research Association, 2008.

[2] Q. Boucher, A. Classen, P. Heymans, A. Bourdoux, and L. Demonceau,
“Tag and prune: A pragmatic approach to software product line imple-
mentation,” PReCISE Research Centre, Univ. of Namur, Tech. Rep., 2009.

[3] K. Pohl, G. Böckle, and F. J. van der Linden, Software Product Line
Engineering: Foundations, Principles and Techniques. Springer, 2005.

[4] C. Kästner, S. Apel, and M. Kuhlemann, “Granularity in software product
lines,” in Proceedinfs of ICSE ’08, 2008.

[5] M.-A. Storey, L.-T. Cheng, I. Bull, and P. Rigby, “Shared waypoints
and social tagging to support collaboration in software development,” in
Proceedings of CSCW ’06, 2006.

[6] ——, “Waypointing and social tagging to support program navigation,”
in In proceedings of CHI ’06, 2006.

[7] M. Mendonca, M. Branco, and D. Cowan, “S.P.L.O.T.: Software product
lines online tools,” in Proceeding of OOPSLA’09, 2009.

[8] P. Ebraert, A. Classen, P. Heymans, and T. D’Hondt, “Feature diagrams
for change-oriented programming,” in Proceedings of ICFI’09, 2009.

VaMoS 2010

166

Tool Support for Evolution of Product Lines

through Rapid Feedback from Application

Engineering

Wolfgang Heider Rick Rabiser

Christian Doppler Laboratory for Automated Software Engineering

Johannes Kepler University Linz, Austria

{heider | rabiser}@ase.jku.at

Abstract—Product lines are maintained and evolved over many

years. Technology changes, internal enhancements, and cus-

tomer requests lead to new requirements and adaptations of

existing capabilities. New requirements are important as they

drive the evolution of the product line. However, if multiple

application engineering projects are conducted concurrently,

managing new requirements can quickly become a tedious

task. In particular, there is a lack of tools supporting the feed-

back loop from application engineering to domain engineering.

In this paper we propose a tool-supported approach for man-

aging application requirements. The approach aims at support-

ing tracking of requirements in multiple application engineer-

ing projects to foster the definition of new domain require-

ments.

Keywords – reactive product line evolution; requirements

management.

I. INTRODUCTION

Product lines are developed and used for many years and
need to be continuously evolved to remain successful. Man-
aging evolution is therefore success-critical for any product
line approach. Engineers need to consider new requirements
which lead to changes and extensions to the product line’s
assets and the derived products [1]. Some requirements might
only be relevant for specific products while others might
affect the product line as a whole [2][3]. Distinguishing be-
tween application and domain requirements is thus essential
for requirements management in product line engineering. In
the simple case, new requirements might be addressed just by
providing new choices in a variability model. Often, howev-
er, the situation is more challenging. New requirements
might trigger ideas for products in new domains. They might
also have an impact on the product line architecture and
result in significant refactoring. Process and tool support is
thus needed for effective application requirements manage-
ment and the extraction of domain requirements from appli-
cation requirements [4][5].

In this paper we describe our ongoing research on moni-
toring and tracking requirements emerging in concurrent
application engineering projects and tool support we have
been developing for this purpose. Our main aim is to accele-
rate the innovation cycle in product lines by supporting reac-
tive product line evolution. Reactive evolution means that the
product line is iteratively extended after each application
engineering project by considering the newly collected appli-
cations requirements as potential new domain requirements.

Reactive evolution has already proven successful to support
the transition from single-system engineering to product line
engineering [6]. We do not disregard the important role of
proactive product line evolution for innovation [7][8] but
intentionally focus on reactive product line evolution in this
paper. Referring to a classification of the "scope of reuse" of
systems as presented by Deelstra et al. [9], our approach
focuses on software product lines and configurable product
families.

The remainder of the paper is structured as follows: In
Section II we discuss practical challenges of reactive product
line evolution. In Section III we outline our approach of a
continuous innovation cycle that allows fast feedback from
application to domain engineering. In Section IV we briefly
introduce the DOPLER product line engineering tool suite
[10], discuss its features for application requirements man-
agement, and describe tool support for tracking and gathering
requirements in concurrent application engineering projects.
We conclude the paper with a short discussion of issues and
an outlook on future work.

II. REACTIVE PRODUCT LINE EVOLUTION IN

MULTI-PROJECT ENVIRONMENTS

Each application engineering project potentially contri-
butes to the evolution of the product line by giving rise to
new requirements and innovative ideas. In industrial settings
it is common that multiple products are derived concurrently
from one product line. This leads to diverse requirements
affecting the product line and its variability (e.g., additional
functionality or modifications of existing components). Ap-
parently, these new requirements should not directly lead to
modifications of the product line. Instead, the new require-
ments have to be managed and their impact has to be ana-
lyzed. Some requests might be best addressed with product-
specific development. However, there is the danger that en-
gineers do not provide adequate and timely feedback to do-
main engineering due to the constant pressure in projects.
This means that the product line does not evolve as much as
it could.

Figure 1 depicts a typical application engineering process
in a multi-project environment and shows how feedback to
domain engineering usually is managed. The (simplified)
application engineering phase comprises four steps: (1) A
product derivation project is initiated for a new product being
derived for e.g., a new customer. An initial product is derived

VaMoS 2010

167

based on the product line’s existing assets that best match the
requirements of the customer. (2) The sales person or analyst
negotiating with the customer captures new customer re-
quirements that cannot be fulfilled with the existing assets of
the product line. (3) Application engineers address the new
requirements by developing product-specific extensions or
by adapting and reconfiguring existing components. (4) The
product is delivered to the customer.

Application Engineering

Domain Engineering

Product Line (Variability Model, Assets)

RequirementsNew Customer
Requirements RequirementsRequirementsNew Customer

Requirements

Custom
Development

Custom
Development

Custom
Development

Product Line
ManagementProduct Product

A C, D, ...B

RequirementsRequirementsDomain
Requirements

Custom
Development

Product Line
Development

Reengineering

2

3

4
5

6

7

8

Product Derivation
Project

Product Derivation
Project 1

implemented
with

used in
define

inspected
by

addressed
in

followed
by

integrate

considered
for

Figure 1. A typical process for reactive product line evolution: Delayed

feedback is provided to domain engineering after application engineering

projects are finished. This approach often leads to costly reengineering of

project-specific developments and impedes the evolution of the product

line.

In such a process the evolution phase comprises four
steps: (5) Product line managers analyze the requirements
and identify potential candidates for domain requirements.
(6) Product line engineers define domain requirements based
on the selected application requirements by considering the
existing product line and its variability. (7) At the same time
core asset developers analyze product-specific components
regarding their suitability for reengineering and inclusion in
the product line. (8) Product line engineers extend product
line variability models and adapt the product line architecture
based on the results of steps 6 and 7.

Although intuitive and straightforward this process has
several drawbacks:

 Changes to the derived product have to be maintained
after the product has been delivered to the customer. The
customer-specific developments might differ so much from
the initially derived product that the benefits of pursuing a
product line approach are diminished.

 It is hard to decide post-hoc, which of the changes and
additional developments made in multiple application engi-
neering projects can be included in the product line. The lack
of traceability from customer-specific requirements and
product-specific solutions to domain requirements further
complicates this issue.

 Often similar extensions and adaptations are made inde-
pendently of each other in concurrent application engineering
projects. This can lead to unnecessary effort and violates the

principles of reuse. It is also hard to identify similar changes
post-hoc due to different implementation solutions [3].

 Because of the time pressure in application engineering
projects "quick-and-dirty" solutions are likely to be pursued.
In many cases this leads to a high effort for redevelopment
when integrating product-specific developments into the
product line [5][7].

In response to these problems we propose an approach to
better coordinate requirements management in concurrent
application engineering projects. Our goal is to accelerate
product line evolution and innovation by fostering a short
feedback cycle to domain engineering activities. Our aim is
to increase the reuse rate for development and to reduce
custom development.

III. FAST FEEDBACK FROM APPLICATION ENGINEERING

TO DOMAIN ENGINEERING

New customer requirements captured during application
engineering are a driver for evolution and a source of innova-
tion in product line engineering. If the development per-
formed for one specific customer is potentially interesting
and useful for other customers it should be integrated in the
product line as soon as possible [5]. We therefore propose a
rapid feedback loop from application engineering to domain
engineering as shown in Figure 2:

Product Line (Variability Model, Assets)

RequirementsNew Customer
Requirements RequirementsRequirementsNew Customer

Requirements

Custom
Development

Product Line
Management

Product Product

A C, D, ...B

RequirementsRequirementsDomain
Requirements

Custom
Development

Product Line
Development

2

6

7

3

4

5

Rapid Feedback Loop

Application Engineering

Domain Engineering

Product Derivation
Project

Product Derivation
Project 1

implemented
with

used in

define

addressed
in

integrate

inspected
by

Figure 2. A rapid feedback process for reactive product line evolution:

Early and rapid feedback is provided to domain engineering by tracking and

communicating new and changed requirements in concurrent application

engineering projects..

(1) A project is initiated to derive a product from the
product line that suits the requirements of the project and
customer as far as possible. (2) A sales person or project
manager captures new customer requirements during product
derivation that cannot be satisfied with the product line. En-
gineers define relations of newly captured requirements with
existing product line assets and variation points. Rapid feed-
back already triggers evolution in this step: (3) Product line
management analyzes the captured requirements to identify
potential domain requirement candidates. Changes to re-
quirements in concurrent application engineering projects are
tracked and candidates for domain requirements are identi-
fied by aggregating and/or splitting requirements gathered in

VaMoS 2010

168

the projects. (4) The product line engineers select new do-
main requirements from the candidate requirements. Ideally,
the new requirements are already linked to existing product
line assets and variation points (cf. step 2) to streamline the
planning of development. (5) Product line engineers address
the domain requirements by implementing additional com-
ponents and adapting variability models. (6) After integrating
the product derived earlier with newly developed product
line components, application engineers perform custom de-
velopment and product customization for requirements that
can and/or shall not be integrated into the product line. (7)
The product is delivered to the customer.

IV. TOOL SUPPORT FOR RAPID FEEDBACK

This process aiming at early and rapid feedback requires
tool support. We have been extending our DOPLER product
line engineering tool suite [10] for this purpose. DOPLER is
based on decision-oriented variability models and supports
both domain engineering and application engineering activi-
ties [11][12]. Product derivation (cf. step 1) with the
DOPLER tools is based on questionnaires. A project manag-
er answers questions thereby taking decisions and resolving
variability. To support the rapid feedback cycle described
above we rely on DOPLER’s existing features for managing
application requirements (cf. step 2) and on newly developed
features for tracking the evolution in concurrent application
engineering projects (cf. step 3).

A. Application Requirements Management Support

The DOPLER derivation tools already allow capturing
and managing new customer requirements. A user answering
questions can capture newly arising requirements together
with typical attributes (e.g., description, rationale, risk level,
priority, etc.). Traceability is established to other relevant
artifacts: A new requirement is automatically related with its
originating decision(s). It can also be related with assets that
led to the requirement or assets that might need to be
changed when realizing the requirement [12].

However, this existing support for managing application
requirements and tracking their state is not sufficient to pro-
vide rapid feedback from application to domain engineering.
We have thus been developing tool support for tracking the
creation of new and modifications to existing requirements in
multiple projects. This provides product line engineers with a
cross-project view of all requirements to ease the planning
and management of product line evolution.

B. EvoKing: Tool Support for Tracking Changes to

Requirments in Concurrent Projects

We have been developing EvoKing [13], a tool that sup-
ports tracking the evolution of resources in Eclipse work-
spaces used by the DOPLER tools. EvoKing can easily be
configured to recognize changes to arbitrary files, models,
and model elements. For example, EvoKing can track
changes to requirements in concurrent application engineer-
ing projects. Each time a new requirement is captured in a
derivation project, EvoKing stores information about the
change and establishes traceability to related development
artifacts.

Projects with

requirements
EvoKing’s tracked Artifacts

Overview and details with the possibility

to change the state of a requirement

Tracking

Filtering and Handling

Figure 3. EvoKing tracks requirements in application engineering projects

and provides an overview for planning subsequent product line evolution.

The upper right pane in Figure 3 shows a view of changes
to DOPLER workspace elements as tracked by EvoKing. It
visualizes relations between the artifacts in the workspace as
well as changes made to the artifacts (e.g., requirements
created or modified). The lower pane in Figure 3 shows a
requirements view that gives an overview of all features,
variations, and adaptations requested in all concurrent
projects that are monitored by the tool. A product line engi-
neer can mark candidate requirements for evolving the prod-
uct line.

Figure 4 depicts a simple model showing states of re-
quirements we use in our current implementation to support
the rapid feedback loop from application engineering to do-
main engineering.

Appl.
specific

Relevant
for PL

Yes

No

Consider
for PL?

Inspect

 Assign to
application
engineer

Initiate
domain RE

Assigned

Domain
reqt

candidate

Domain Engineering

Requirement
Engineering

Product Line

Application
Customization

Domain
Requirement

Application
Requirement

Application Engineering

Requirement

New- State

Figure 4. Selecting application requirements as domain requirement

candidates.

A new requirement captured in an application engineer-
ing project is inspected by a product line engineer to assess
the requirement’s relevance for the product line. If relevant,
the requirement is elaborated into a domain requirement
candidate. If assessed as application-specific only, the re-
quirement is assigned to developers in charge of custom
development. Domain requirements can be managed in re-
quirements management tools as described in [5]. Processes
for handling and implementing domain requirements are,
e.g., described by Pohl et al. [4] or Moon et al. [14].

VaMoS 2010

169

V. CONCLUSIONS AND FUTURE WORK

Managing the evolution of a product line relies on highly
sensitive and well-advised product line management. In this
paper we discussed the need of providing rapid feedback
from application engineering to domain engineering. Sup-
porting such reactive evolution relies on flexible tool support
for managing product line requirements. In this paper we
have described tool support for collecting and tracking cus-
tomer requirements in concurrent application engineering
projects.

We believe that avoiding product-specific development
as far as possible is a key to the success of a product line
approach in practice. The main aim of our approach is to help
avoiding product-specific development by facilitating fast
feedback from application to domain engineering. However,
our approach bears risk of delaying application engineering
due to the overhead of domain requirements engineering and
because of the extensive synchronization between application
and domain engineers. Also, in practice some application
requirements simply cannot or should not become domain
requirements for various reasons. Fully avoiding product-
specific development will therefore never be possible [9].

In future work we will explore the use of the DOPLER
tool suite for domain requirements management by integrat-
ing domain requirements into the variability models. We will
investigate the usage and integration of existing requirements
engineering tools and the adaptation of already mentioned
processes [4][14] for domain requirements engineering. We
will also evaluate and validate our rapid feedback approach
together with our industry partner.

ACKNOWLEDGMENT

This work has been conducted in cooperation with Sie-
mens VAI Metals Technologies and has been supported by
the Christian Doppler Forschungsgesellschaft, Austria.

REFERENCES

[1] D. Dhungana, T. Neumayer, P. Grünbacher, and R. Rabiser,
"Supporting Evolution in Model-based Product Line Engineering,"
Proc. of the 12th International Software Product Line Conference
(SPLC 2008), Limerick, Ireland, IEEE Computer Society, 2008, pp.
319-328.

[2] M. Svahnberg, and J. Bosch, "Evolution in software product lines:
Two cases, " Journal of Software Maintenance, vol. 11, no. 6, pp.
391-422, 1999.

[3] K. Schmid, and M. Verlage, "The Economic Impact of Product Line
Adoption and Evolution, " IEEE Software, vol. 19, no. 4, pp. 50-57,
2002.

[4] K. Pohl, G. Böckle, and F. van der Linden, Software Product Line
Engineering: Foundations, Principles, and Techniques, Springer,
2005.

[5] C. Kuloor, and A. Eberlein, "Requirements Engineering for Software
Product Lines, " 15th International Conference Software & Systems
Engineering & their Applications (ICSSEA2002), Paris, France, 2002.

[6] R. Buhrdorf, D. Churchett, and C. W. Krueger, "Salion's Experience
with a Reactive Software Product Line Approach, " PFE 2003, pp.
317-322.

[7] P. Knauber, "Managing the Evolution of Software Product Lines," 8th
International Conference on Software Reuse (ICSR-8), Madrid, Spain,
Springer LNCS, 2004

[8] K. Villela; J. Doerr, A. Gross, "Proactively Managing the Evolution
of Embedded System Requirements," International Requirements
Engineering (RE’08), 2008, pp. 13 – 22.

[9] S. Deelstra, M. Sinnema, and J. Bosch, “Product derivation in
software product families: a case study, “ Journal of Systems and
Software, vol. 74, no. 2, Jan., 2005, pp. 173-194.

[10] D. Dhungana, P. Grünbacher, and R. Rabiser, "Domain-specific
Adaptations of Product Line Variability Modeling," Proc. of the IFIP
WG 8.1 Working Conference on Situational Method Engineering:
Fundamentals and Experiences, Geneva, Switzerland, International
Federation for Information Processing, Springer Series in Computer
Science, 2007, pp. 238-251.

[11] R. Rabiser, P. Grünbacher, and D. Dhungana, "Supporting Product
Derivation by Adapting and Augmenting Variability Models," Proc.
of the 11th International Software Product Line Conference (SPLC
2007), Kyoto, Japan, IEEE Computer Society, 2007, pp. 141-150.

[12] R. Rabiser and D. Dhungana, "Integrated Support for Product
Configuration and Requirements Engineering in Product Derivation,"
Proc. of the 33rd EUROMICRO Conference on Software Engineering
and Advanced Applications (EUROMICRO-SEAA’07), Lübeck,
Germany, IEEE Computer Society, 2007, pp. 219-228.

[13] W. Heider, R. Rabiser, D. Dhungana, and P. Grünbacher, "Tracking
Evolution in Model-based Product Lines, " 1st International
Workshop on Model-driven Approaches in Software Product Line
Engineering (MAPLE 2009), Proc. (vol 2) of the 13th International
Software Product Line Conference (SPLC 2009), San Francisco,
USA, Software Engineering Institute, Carnegie Mellon, 2009, pp. 59-
63.

[14] M. Moon, K. Yeom, and Heung Seok Chae, "An Approach to
Developing Domain Requirements as a Core Asset Based on
Commonality and Variability Analysis in a Product Line," IEEE
Transactions on Software Engineering, vol. 31, no. 7, July, 2005, pp.
551-569.

VaMoS 2010

170

Tool Support for Incremental

Consistency Checking on Variability Models

Michael Vierhauser1 Deepak Dhungana2 Wolfgang Heider1 Rick Rabiser1 Alexander Egyed3
1 Christian Doppler Laboratory for

Automated Software Engineering

Johannes Kepler University

Linz, Austria

rabiser@ase.jku.at

2 Lero - The Irish Software

Engineering Research Centre

University of Limerick

Limerick, Ireland

deepak.dhungana@lero.ie

3 Institute for Systems Engineering and

Automation

Johannes Kepler University

Linz, Austria

alexander.egyed@jku.at

Abstract�The complexity of variability models makes it hard

for product line engineers to maintain their consistency over

time. Engineers need support to detect and resolve inconsisten-

cies. In this paper, we describe our initial results towards tool

support for incremental consistency checking on variability

models. The main aim of our research is to improve the overall

performance and scalability of consistency checking. We re-

port on experiences of integrating an existing incremental con-

sistency checker in the DOPLER product line tool suite.

Keywords � variability models, incremental consistency

checking, tool support.

I. INTRODUCTION AND MOTIVATION

Product line variability models are inherently complex.
Independent of the modeling approach used (e.g., feature-
oriented [1], decision-oriented [2], orthogonal [3]) real-world
variability models can easily contain several thousand ele-
ments with diverse and often complex dependencies.
Through the collaboration with our industry partner Siemens
VAI � the world's leading company in engineering and
plant-building for the iron, steel, and aluminum industries �
we have learned that engineers in practice face big challeng-
es in maintaining the consistency of variability models. The
consistency of models is, however, essential for deriving
correct products. It is also critical that variability models
correctly reflect the actual system (e.g., components defined
in the variability model must really exist). Therefore engi-
neers should be supported in detecting and keeping track of
inconsistencies during modeling.

Several consistency checking mechanisms have been re-
ported in the literature and have been applied to various
types of models [4], [5], [6]. A drawback of many of these
approaches is that they are only capable of checking the con-
sistency of entire models in a batch-oriented manner. This
means that the consistency constraints are evaluated for the
entire model at certain points in time (e.g., when saving a
model). Due to the complexity of real-world models (often
containing thousands of model elements and non-trivial de-
pendencies), such a "batch-oriented" approach to consistency
checking leads to performance problems. We also experi-
mented with a batch-oriented approach in the context of our

DOPLER product line engineering tool suite [7]. To improve
performance, we however decided to incorporate an existing
approach for incremental consistency checking of UML de-
sign models [8] in the context of product line variability
modeling. In this paper, we describe our initial results to-
wards tool support for incremental consistency checking on
variability models.

II. CONSISTENCY CHECKING FOR

DOPLER VARIABILITY MODELS

In collaboration with Siemens VAI we have been devel-
oping the decision-oriented product line engineering ap-
proach DOPLER [9].

A. DOPLER modeling language

DOPLER variability models comprise two elements: As-
sets and Decisions. Assets represent the core elements in the
product line (e.g., components). Assets can depend on each
other functionally (e.g., one component requires another
component) or structurally (e.g., a component is part of a
sub-system). DOPLER allows modeling assets at an arbitrary
granularity and with arbitrary attributes and dependencies
(based on a given set of basic types). Users can create do-
main-specific meta-models to define the types of assets, their
attributes, and dependencies [9].

In case of Siemens VAI, the asset types that are part of
variability models are components (representing Spring [10]
XML component descriptions which in turn represent Java
Beans), properties (key-value settings), resources (e.g., con-
figuration files), as well as documents (e.g., user documenta-
tion). Diverse domain-specific dependencies have been de-
fined, for example, a component can require other compo-
nents, a component can require properties, or a document
can contribute to a resource.

In DOPLER variation points are represented with deci-
sions. Decisions have a unique name and a question that is
asked to a user during product derivation. They can depend
on each other hierarchically (if a decision needs to be taken
before another decision becomes �visible�) or logically (if
taking a decision changes the value of another decision).
Possible types of decisions are Boolean, enumeration, string,
and number.

VaMoS 2010

171

Figure 1. Siemens VAI meta-model overview. The upper part depicts the

high-level meta-model. The lower part depicts additional elements needed

to represent the code base of the product line. The relation of model level

and file level is provided via the implements relation.

B. Consistency Constraints

When defining consistency constraints for Siemens VAI,
our goal was to check consistency within the variability
model as well as between the model and the code base of the
product line. Our constraints therefore also check whether
the model elements are consistent with concrete implementa-
tion artifacts like (Spring XML) component definitions and
Java Beans. For constraints between the model level and the
actual code base we generate a model representation of the
code. For that reason the original DOPLER meta-model for
Siemens VAI has been extended to cover information on the
Spring files, the contained Java Beans, their properties, and
the relations among the diverse elements (cf. Figure 1). Ta-
ble 1 shows some examples of constraints that are relevant in
the context of our industry partner.

We differentiate between generic and domain-specific
(Siemens VAI) constraints. The generic constraints are rele-
vant in any DOPLER variability model. For example, it is
important to detect cycles between decisions (either based on
hierarchal or logical dependencies among them) in any
DOPLER model. These constraints are independent of the
domain-specific meta-model (depicted in Figure 1). We
therefore reuse these constraints and provide them as a core
functionality of the consistency checker.

Siemens VAI-specific constraints mainly address model
to code consistency. For instance, the most basic constraint
SVAI1 assures that each component modeled in the variabil-
ity model also exists in the code base of the product line.
This constraint prevents, for example, that components that
aren�t available anymore or are outdated and therefore have
been removed from the file system are not forgotten to be
purged in the variability model as well. The two constraints
SVAI2 and SVAI3 cover the relations between components
in the model, and the relations between Spring XML files in
the file system (these in fact depend on relations between the
Java Beans described in that Spring XML files). Both con-

straints assure that there aren�t any unnecessary relations
between components respectively and that no relations are
missing in the variability model.

TABLE I. EXAMPLES OF GENERIC (G) AND SIEMENS VAI-SPECIFIC

(SVAI) CONSTRAINTS

Constraints

Name Description

G1 List decision
A list decision must have at least

two options to choose from

G2 Mandatory attribute
Mandatory attributes must not

be empty

G3 Decision effect cycle
There must be no cycles caused

by logical decision dependencies

G4
Visibility condition

cycle

There must be no cycles caused

by hierarchical decision depend-

encies (visibility conditions)

G5
Visibility condition self

reference

A visibility condition must not

contain the decision itself

SVAI1 Component matching

Each component in the variabil-

ity model must exist in the prod-

uct line code base

SVAI2 Component relation

Relations between components

in the variability model must

also exist in the product line

code base

SVAI3 Java Bean relation

A relation between Java Beans

must be represented in the varia-

bility model as a component

relation

SVAI4 Variant type relation
Variant types must not have

requires relations

SVAI5 Variant type occurency

If two or more components are

identical, all of them must con-

tribute to a variant type compo-

nent

SVAI6 Variant type consistency

Only identical components must

contribute to a single variant

type component

To illustrate how the defined constraints work we discuss

constraint SVAI2 in detail by showing its high-level opera-
tion sequence: SVAI2 checks the necessity of requires rela-
tions between components. As illustrated in Figure 2, a re-
quires relation between two components in the model is only
needed if it is based on an existing dependency in the prod-
uct line code base. Each component is �implemented�
through a Spring file which in turn contains one or more Java
Beans. If at least one Java Bean defined in Spring file 1 re-
quires a Java Bean defined in Spring file 2, the relation on
component-level is needed. Otherwise the consistency check
will reveal the unneeded relation between component 1 and
component 2.

This consistency constraint is not inherently complex to
understand � indeed, most are of similar complexity. How-
ever, it is important to note that such consistency constraints
may have to be evaluated many times in a model. For exam-
ple, constraint SVAI2 needs to be evaluated for each requires
relationship among two components and there are thousands
of such requires relationships in our models.

VaMoS 2010

172

Figure 2. Schematic view of constraint SVAI 2

III. TOWARDS INCREMENTAL CONSISTENCY CHECKING

SUPPORT FOR VARIABILITY MODELS

In our project with Siemens VAI, we developed a batch-
oriented consistency checker early in the project. It worked
fine as long as we were working with small variability mod-
els and a small number of constraints. The approach however
didn't scale for very large models and a high number of re-
quired consistency checks. The performance problems did
not allow to report inconsistencies to the user after each
change to a model.

We therefore started exploring the use of an incremental
consistency checker, which had been successfully evaluated
for large UML models as part of the UML/Analyzer tool for
instant consistency checking of UML models [8]. The tool
helps designers in detecting and tracking inconsistencies
correctly and quickly with every design change.

A consistency constraint needs to be re-evaluated if and
only if one of the affected model elements changes. We refer
to this set of model elements as the scope of a consistency
constraint. Identifying the scope is simple in principle, how-
ever, it is not possible to predict in advance what model ele-
ments are accessed by any given consistency constraint.

The UML/Analyzer tool circumvents this problem by ob-
serving the run-time behavior of consistency constraints dur-
ing their evaluation. To this end, the equivalent of a profiler
for consistency checking was developed. The profiling data
is used to establish a correlation between model elements
and consistency constraints (and inconsistencies). Based on
this correlation, it then decides when to re-evaluate con-
sistency constraints and when to display inconsistencies �
allowing an engineer to quickly identify all inconsistencies
that pertain to any part of the model of interest at any time.

IV. INTEGRATING THE INCREMENTAL CONSISTENCY

CHECKER IN THE DOPLER TOOL SUITE

We have been integrating the incremental consistency
checker approach in the Eclipse-based DOPLER tool suite.

Figure 3 shows a high-level architecture of our tool and the
main components of the checker.

The DOPLER variability model editor DecisionKing (#1)
supports creating and updating variability models.

The incremental consistency checker (#2) performs con-
straint initialization, management, and persistence and ap-
plies incremental checking to variability models independent
from the domain-specific meta-model used. This guarantees
that the approach can later be easily used with other meta-
models and is not limited to Siemens VAI.

Figure 3. High-level tool architecture of incremental consistency

checking within the DOPLER tool suite.

For instant consistency checking it is necessary to track
user changes during modelling. An event tracking and notifi-
cation mechanism (#3) allows observing changes to the vari-
ability model and the Eclipse workspace at a very detailed
level. It provides information about DOPLER variability
models being opened for editing and manages the propaga-
tion of change notifications from model elements to the in-
cremental consistency checker [1]. As described in the pre-
vious section, incremental consistency checking highly de-
pends on the ability of tracking and processing changes from
various sources. The more fine-grained these change events
can be tracked, the better performance can be achieved, be-
cause with each level of information detail fewer constraint
instances eventually need to be evaluated. Our event tracking
mechanism in the DOPLER tools allows to identify changes
down to the level of model element attributes. Therefore,
very few constraints need to be evaluated during incremental
consistency checking.

The model access tracker (#4) monitors and logs all read
access events to model elements for each single constraint
instance. Each call on a model element by a constraint has to
be done through a �model profiler�, which is capable of cap-
turing and tracking any read access on attribute level. This
evaluation profiling ensures that all necessary constraints are
re-evaluated when a change event occurs.

The consistency constraint definition (#5) uses the
Eclipse extension point mechanism to add constraints to the
incremental checking tool as different application domains
need specific constraints. Note that our approach distin-
guishes the definition of a constraint from its evaluation.

VaMoS 2010

173

The error view (#6) provides feedback to the users on the
inconsistencies detected for the evaluated constraint. Eclipse
provides the marker mechanism, which allows for easy crea-
tion and management of occurring errors. To assure a high
level of flexibility, evaluation results are also provided
through the extension point mechanism to make them utiliz-
able in other plug-ins or in custom views.

V. APPLICATION EXAMPLE

A major goal when developing our incremental con-
sistency checker was to achieve a better usability and re-
sponsiveness for the modeler working with the DOPLER
tool suite and detecting and providing information on incon-
sistencies as early as possible. In the following we will de-
scribe a brief scenario of how a modeler can work with the
tool, and in which way the tool supports detecting and fixing
inconsistencies.

Figure 4 shows a screenshot of the DecisionKing varia-
bility model editor: In the Asset Overview (#1), the modeler
can find an outline of already defined assets. Assets can also
be added or removed here. The Detail View provides infor-
mation about the currently selected asset, their attrib-
utes (#2), as well as relations to other assets (#3). An error
view (#4) provides information on errors in the variability
model, i.e., inconsistencies.

Figure 4. DecisionKing Variability Modeling Tool and Error View

displaying inconsistencies found after changes to the model.

A typical modeling process starts with defining new as-
sets that are relevant in the newly created model. After defin-
ing all needed assets, the relations among them need to be
modeled. The modeler can add or remove relations to other
assets via drag & drop in the detail view (#3). In contrast to
the old batch-oriented approach, manipulating elements in

the model now has an immediate effect. After adding a rela-
tion to an asset all involved constraints are being re-
evaluated. Feedback about an inconsistency in the model is
provided in that second the user takes the wrong action. The
error view (#4) then provides detailed information on the
occurring inconsistency and the source responsible for that.
Assisted by this, the modeler can draw conclusions and re-
solve the occurring inconsistency by (in this example) re-
moving an unneeded relation from the model.

VI. CONCLUSIONS

We presented initial tool support for applying incremen-
tal consistency checking on variability models. Our experi-
ences with large-scale models demonstrate the performance
and scalability of the approach. In future work we will in-
crease the number of types of constraints and will also inves-
tigate how the dependencies among constraints can be ex-
ploited to further improve performance. Moreover, we will
analyze the performance of the approach in detail.

ACKNOWLEDGMENTS

This work has been conducted in cooperation with Sie-
mens VAI Metals Technologies and has been supported by
the Christian Doppler Forschungsgesellschaft, Austria. This
work has also been supported by FWF grant P21321-N15

REFERENCES

[1] K. C. Kang, S. Cohen, J. Hess, W. Nowak, and S. Peterson, "Feature-
oriented domain analysis (FODA) feasibility study," TR CMU/SEI-
90TR-21, Carnegie Mellon Univ., Pittsburgh, PA, USA 1990.

[2] G. H. Campbell, Jr., S. R. Faulk, and D. M. Weiss, "Introduction To
Synthesis," INTRO_SYNTHESIS_PROCESS-90019-N, Software
Productivity Consortium, Herndon, VA, USA 1990.

[3] F. Bachmann, M. Goedicke, J. C. S. do Prado Leite, R. L. Nord, K.
Pohl, B. Ramesh, A. Vilbig: "A Meta-model for Representing
Variability in Product Family Development". PFE 2003: 66-80.

[4] B. Belkhouche and C. Lemus, "Multiple View Analysis and Design,
"Proc. of the Viewpoint 96: Int'l WS on Multiple Perspectives in
Software Development, 1996.

[5] B. H. C. Cheng, E. Y. Wang, and R. H. Bourdeau, "A Graphical
Environment for Formally Developing Object-Oriented Software, "
Proc. of the 6th Int'l Conf. on Tools with Artificial Intelligence, New
Orleans, USA, 1994, pp. 26-32.

[6] A. Tsiolakis and H. Ehrig, "Consistency Analysis of UML Class and
Sequence Diagrams Using Attributed Graph Grammars," Proc. of the
Graph Transformation & Graph Grammars, Berlin, 2000, pp. 77-86.

[7] D. Dhungana, R. Rabiser, P. Grünbacher, and T. Neumayer,
"Integrated tool support for sw. product line engineering, "Proc. 22nd
IEEE/ACM Int'l Conf. on Automated Sw Eng (ASE'07), pp. 533-534.

[8] A. Egyed, "Instant Consistency Checking for the UML," Proc. of the
28th Int'l Conf. on Sw. Eng. (ICSE), Shanghai, China, May 2006.

[9] D. Dhungana, P. Grünbacher, and R. Rabiser, "Domain-specific
Adaptations of Product Line Variability Modeling, "Proc. of the IFIP
WG 8.1 Working Conf. on Situational Method Engineering, Geneva,
Springer Series in CS, 2007, pp. 238-251.

[10] R. Johnson, J. Höller, and A. Arendsen, "Professional Java
Development with the Spring Framework," Wiley Publishing, 2005.

[11] W. Heider, R. Rabiser, D. Dhungana, P. Grünbacher, Tracking
Evolution in Model-based Product Lines. 1st Int'l WS on Model-
driven Approaches in Software Product Line Engineering (MAPLE
2009), Proc. (vol 2) of the 13th Int'l SW. Product Line Conf. (SPLC
2009), San Francisco, CA, 2009, Carnegie Mellon Univ., pp. 59-63.

VaMoS 2010

174

A Support Tool for Domain Analysis

Liana Barachisio Lisboa

RiSE - Reuse In Software Engineering

Bahia - Brazil

Email: liana@rise.com.br

Vinicius Cardoso Garcia

Silvio Romero de Lemos Meira

RiSE and Federal University of Pernambuco

Email: {vcg,srlm}@cin.ufpe.br

Eduardo Santana de Almeida

RiSE and Federal University of Bahia

Bahia - Brazil

Email: esa@dcc.ufba.br

Abstract—Nowadays, companies need to improve their com-
petitiveness. Thus, they seek systematic ways of adopting
software reuse, and domain analysis is one possibility to reach
it. However, it involves the management and analysis of a large
set of interrelated information from several systems. Hence,
due to its complexity, a support tool is necessary. This paper,
presents a tool called ToolDAy, which aims at making the
process semi-automatic and at aiding the domain analyst to
achieve systematic reuse in an effective way. In addition, its
evaluations are also described.

Keywords-Domain Analysis Tool, ToolDAy, Evaluation

I. INTRODUCTION

Nowadays, companies are seeking for ways to improve

their competitiveness, which involves less time-to-market

and high quality for products. The adoption of software reuse

is an option to obtain these benefits. Although the benefits

of software reuse are promising, it is a complex task to put

it into practice. A way to maximize these possible benefits

is through a systematic reuse approach, which is domain

focused, based on a repeatable process, and concerned with

reuse of higher level life cycle artifacts [1]. One of the

ways to accomplish this is through a domain analysis (DA)

process, which is the process of identifying common and

variable characteristics of systems in a specific domain.

The DA process is composed of some interdependent

activities that involve the management of complex and

interrelated information from various sources. Due to this,

the use of human expertise in industrial projects without

automation can contribute to risks in a project.

The development of ToolDAy was based on a system-

atic review of DA tools that analyzed how existing tools

supported the DA process [2]. In this review, the authors

analyzed nineteen relevant tools to extract the results.

From the results, it was identified that tools usually come

from the necessity of supporting a specific process instead

of a generic one. However, this may force companies to

modify or adapt established development processes, which

can lead to a higher learning curve and a bigger impact on

the company development life cycle [2].

Another outcome was the identification of a set of func-

tionalities that any tool should have. They were extracted

from the selected tools and grouped into phases, which were:

(i) Planning, analyze systems to see what is valid or not

Table I
FUNCTIONALITIES GROUPED BY PHASE WITH THEIR PRIORITIES

Functionality Priority

Planning phase

Pre Analysis Documentation Low

Domain Matrix Essential

Evaluation Functions Low

Scope Definition Important

Modeling phase

Domain Representation Essential

Variability Essential

Mandatory Features Essential

Composition Rules Essential

Feature Group Identification Low

Relationship Types Low

Feature Atributes Low

Validation phase

Domain Documentation Essential

Feature Documentation Important

Requirements Management Important

Relationship between Features and Requirements Low

Dictionary Important

Reports Important

Consistency Check Essential

Product Derivation

Product Derivation Important

Product Documentation Important

to be included in the domain scope; (ii) Modeling, model

the defined domain in a visual way; and (iii) Validation,

document and validate the generated artifacts.

Furthermore, functionalities for the product derivation

were also identified in the majority of tools. Finally, a total

of twenty functionalities were recognized, which are shown

in Table I with their priorities. With these analyses, the

reviewers identified that there is not a tool that focus on

all phases, and the majority of them offer support, mainly,

to the modeling phase.

This tool development also came from industrial needs

that were experienced along five years of projects involving

software reuse at C.E.S.A.R1, a Brazilian Innovation Insti-

tute with CMMI level 3.

This paper presents ToolDAy, which goal is to support the

DA process, making it semi-automatic and aiding the analyst

to achieve systematic reuse in an effective way. This work

1Recife Center for Advanced Studies and Systems - http://www.cesar.
org.br

VaMoS 2010

175

extends a previous one [3], in which the main functionalities

of the tool (Table I) were described. This paper makes two

contributions, (i) describing the second iteration of ToolDAy

and (ii) reporting two evaluations.

II. TOOLDAY

Due to lack of space, several artifacts are just mentioned

herein, to see the artifacts and some screen shots go to http:

//www.cin.ufpe.br/∼vcg/toolday.

The DA process starts with the planning phase. ToolDAy

provides a set of documentation fields for pre-analysis doc-

umentation that aids in the identification of what character-

istics should be in the domain. The documentation includes:

identifying the stakeholders; objectives and constraint defi-

nition; market analysis and data collection.

Then, the domain scope can be defined through the

product map (domain matrix in Table I) that relates and

compares characteristics of domain applications, extracted

from pre-analysis documentation, to identify which ones

should be part of the domain through some metrics, called

evaluation functions. Their results, which can be mandatory,

variable or out of the scope, influence the domain scope.

In the modeling phase, ToolDAy performs the domain

representation with a feature model, in which the features

are diagrams and their types are relationships (which can be

alternative, or, optional and mandatory, plus the composition

rules that can be implication and exclusion).

Also regarding the relationships between features, they

can be represented in the model with different line formats.

The types are composition, used if there is a whole-part

relationship; generalization, when features are generalization

of sub-features; and implementation, when a feature imple-

ments the other feature. There is also the default relationship

that has no type.

Besides, features can be grouped according to the infor-

mation they represent. The groups are identified through

different colors in the feature border. They can be: capabil-

ity, characterizes a distinct service or functionality a product

may have; operating environment, represents an environment

attribute in which the product is used; domain technology,

corresponds to a domain specific implementation; and im-

plementation technique, implementation details that can be

reused cross domains.

ToolDAy also implements the inclusion of attributes for

the features. They synthesize the representation of a large

number of possible variations improving the understandabil-

ity of the feature model.

For the validation phase, ToolDAy provides a large

set of documentation. Apart from the domain and features

documentation [3], ToolDAy permits the description of re-

quirements and use cases, which are optional artifacts in

project execution.

The requirement documentation includes priority, type

(functional or non-functional) and description, while the use

case includes pre and post conditions and the execution

flows: main, alternative and exception.

After specifying the requirements, use cases and features,

it is possible to map the traceability among them. This fa-

cilitates the identification of the impact of one modification.

This traceability is done in a visual model with different

diagrams shapes for each artifact.

The consistency checker verifies if the relationships be-

tween features are correct. ToolDAy’s consistency rules are

divided in three categories: redundancy, the same semantic

information is represented in more than one way. Anomalies,

some features configurations are lost and the domain cannot

be completely configurable. And, inconsistency, some rep-

resentation contradicts with other information in the model.

Each category has a set of verifications [4].

Moreover, ToolDAy also supports the inclusion of a dic-

tionary, which purpose is to clarify the terms of the domain.

Furthermore, there is no advantage in proving a large set

of documentation, if they were only available within the

tool environment. Thus, to provide their visualization in

other environments, ToolDAy permits the creation of several

reports in different formats (PDF, Excel or Images).

The product derivation with ToolDAy is done through

the selection of the domain features. This selection occurs

in a tree view representing the domain hierarchy. There

is also a consistency checker for the product, but it has

different validation rules [4] and all of them are classified as

inconsistencies. Once the product is valid, the product model

can be generated. In this model all features are mandatory

and the user can include new features, usually the ones

marked as ”out of scope” in the product map. Each product

has a simple documentation that includes the domain version

it was based on and its description.

III. EVALUATION

To evaluate the described tool, two case studies were

performed. The first was in a controlled environment, while

the second was in a software company.

A. Controlled Environment

The case study followed guidelines from [5]. This study

was performed before the second development iteration.

The goal of the study was to analyze ToolDAy with

respect to its aid in the DA execution and easy to use

environment. To achieve it, some questions were defined

for the subjects. They were, (Q1) if ToolDAy aids in the

execution; (Q2) if there were any difficulties using the tool;

(Q3) if the consistency checker is helpful; and (Q4) if

ToolDAy tutorial is enough to learn how to use it.

The study was conducted in a post-graduation course at

a university lab from November, 2007 to February, 2008

by the students that performed a domain engineering (DE)

project based on a real-world case.

VaMoS 2010

176

The project consisted of four reuse tools, which provided

solutions to increase the organization productivity through

reuse according to its maturity level. At the end of the

DA, they generated a feature model with 64 features, 14

requirements and 38 use cases.

The subjects were six students that played the domain

analyst role. All of them had worked before with the same

platform ToolDAy uses (Eclipse2) and half of them knew

some DA processes, while the other half knew just one.

After the project was concluded, the subjects were asked

to fulfill a feedback form with questions related to it. Their

answers are described next.

Q1: Four subjects considered that the tool aided in the

process execution, another judged that the tool did not help

a lot during the process execution, and the other did not see

the gain in using the tool.

The reasons given by the two subjects for not considering

the tool helpful were: great part of the process can be done

without tool support; lack of integration with the next steps

of DE; and the tool is not completed integrated with the

DA process used. However, ToolDAy focuses is on the DA

process support, a few steps of the product derivation, and

on generating the artifacts that will be later used on the DE

phases, it does not intend to integrate the complete process.

The other subjects explained why they considered the tool

helpful: it helps the process execution steps; and it aids in

the scope definition and in the domain modeling.

They also described some weakness and strengths about

the tool. The weaknesses were: traceability among require-

ments, use cases and features is too simple (in the evalu-

ation, requirements and use cases only had the name and

description and the traceability editor did not exist); lack

of requirement management; and a model with too many

features becomes too polluted. Some of the strengths were

the consistency checker; generation of reports; and the visual

representation of the domain model.

Q2: Only one subject did not have difficulty with the

tool. The other answers were (mutiple answers per subject):

Two said that the navigation is hard (both are familiar with

the platform and some DA processes). Two answered that

there was lack or insufficient explanation for using the tool

(both are familiar with the platform, but one knows few DA

processes and the other just one). A subject related the lack

of knowledge in the DA process (he knows only one DA

process). In addition, a few subjects also informed that the

difficulty occurred because of the symbols used to represent

the relationships and the traceability between the domain

feature model and the product map.

Even though several subjects reported at least a difficulty,

they were mostly related to GUI or to specific aspects of

traceability (which have already being improved) and not to

the main functionalities of the tool.

2http://www.eclipse.org

Q3: Only one subject informed that the consistency

checker did not fully aid the problem identification. The

restriction was the lack of an easier identification of where

the problem is, i.e. the tool should select the exact spot of the

problem. The others considered it sufficient for identifying

and resolving the problems.

Q4: Four subjects considered the information of the

tutorial sufficient for learning how to use the tool and the

other two subjects did not use it. In addition, one that did not

use it was the same who declared that had some difficulty

due to lack or insufficient explanation for using the tool.

Therefore, it indicates that the tutorial may overcome this.

Even with the analysis not being conclusive, the study

indicated that the tool has some strength for the DA sup-

port. On the other hand, aspects related to understanding

(difficulties during the process execution) were the focus of

the second iteration.

Nevertheless, some of the problems described by the

subjects can be resolved if a proper training, before the tool

starts to be used, is performed. After concluding the study,

some aspects should be considered before repeating it.

Training. Instead of the subjects learning how to use it

through the tutorial, a basic training can be applied. The

training can emphasize on unused aspects by the subjects of

this study and on the complaints related to it.

Questionnaires. The questionnaires should be reviewed

to collect more precise data related to where the problems

and difficulties occurred.

According to the feedback, some requirements were iden-

tified and developed in the second iteration. The consistency

checker now selects the exact spot where the problem is.

The requirements and use cases (as described before) are

more detailed and permit the traceability with features. The

traceability model can be exported as an excel document.

Additionally, some visualization filters to models with too

many features were created.

The other improvements from the questionnaires, such

as import the features added in the domain feature model

to the product map and search for features have not been

implemented yet.

B. Industrial Case Study

The industrial case was developed at C.E.S.A.R. and it

is part of the company software reuse effort, as a way to

institutionalize reuse in all of its projects.

The business goals defined for the project were: (a)

increase the productivity and (b) reduce maintenance costs

and development efforts. The pilot project selected was a

web/social network with seven different releases. The project

goal was to adopt a software product line with the benefits

of: (i) better understandability of the project business; (ii)

identification of new market opportunities; (iii) identification

of new functionalities for the product; and (iv) decrease the

maintenance cost.

VaMoS 2010

177

The team goal for the DA phase was to identify existing

features from other tools that were not present in their tool.

They performed the DA documenting the domain, defining

its scope and building a glossary. They created the product

map of the analyzed applications and the features model of

domain with 74 features.

At the end, the team considered that the DA goal was

achieved. Moreover, a better understanding of the domain

being developed was accomplished, since several new fea-

tures were identified and planned to be developed.

The domain analyst did not have any formal DA process,

therefore he followed ToolDAy steps and had no difficulty

in using it. However, improvements were highlighted, such

as the possibility to export the product map as a table.

Even though the goal was achieved and the process result

brought benefits to the team, for the domain analysts there

was no real data that using ToolDAy during the DA process

aided it. However, it is necessary to highlight that since the

user did not follow a specific process, the tool contributed

in the process execution because it provided a guideline to

define the domain scope, its feature model and to document

them. Furthermore, this industrial case worked as a proof of

concept for the tool.

IV. RELATED WORK

The systematic review [2] identified nineteen tools sup-

porting the DA processes. Some concentrate on the planning

phase - like PuLSE-BEAT [6] and DREAM [7] - while

others on the modeling - such as RequiLine [8]. The support

for the validation phase differentiates among them, from

almost all to none support. Two tools outstand in the review

according to the number of essential requirements they

support, Holmes and RequiLine.

Holmes [9] provides functionalities for all identified

phases. It permits pre-analysis, domain documentation, com-

position rules support and validation, along with the domain

scope and a visual representation of the domain. Even

though it supports product instantiation, no documentation

is provided to it and to the features.

RequiLine [8] supports almost all functionalities for the

modeling phase, except feature group identification. It pro-

vides a vast documentation for the domain and features, and

permits the inclusion of requirements that can be related

with the features in the domain. Besides, it supports product

derivation and documentation.

Among the analyzed tools, none of them provides a full

support to the process. The two closer to it still lack few

functionalities. ToolDAy development was planned focusing

on this problem and its development, according to results of

the review, is fulfilled.

V. CONCLUSION

This paper presented ToolDAy, a tool that offers support

to several requirements within the process, which includes

scope definition, domain modeling, documentation and con-

sistency. Furthermore, ToolDAy also supports requirements

for the product derivation.

The support to requirements in every phase and having the

whole support in the same environment is one of ToolDAy

advantages when compared to other DA tools. Even though

it has a defined process, it can be used without following

it, since the artifacts of planning and modeling (domain and

product) can be independently built.

The evaluations highlighted improvements that are being

developed. Furthermore, they indicate that the tool aids in

the process support, but new studies are necessary. For future

work, ToolDAy is being extended with feature interactions;

metrics regarding the domain information and different

visualization views for the domain representation.

ACKNOWLEDGMENT

This work was partially supported by the National Institute of Science
and Technology for Software Engineering (INES3), funded by CNPq and
FACEPE, grants 573964/2008-4 and APQ-1037-1.03/08.

REFERENCES

[1] W. B. Frakes and S. Isoda, “Success factors of systematic
reuse,” IEEE Software, vol. 11, no. 5, pp. 14–19, 1994.

[2] L. B. Lisboa, D. Lucrdio, V. C. Garcia, E. S. Almeida,
S. R. L. Meira, and R. P. M. Fortes, “A systematic review of
domain analysis tools,” Journal of Information and Software
Technology, vol. 52, pp. 1–13, 2010.

[3] L. B. Lisboa, V. C. Garcia, E. S. Almeida, and S. L. Meira,
“Toolday - a process-centered domain analysis tool,” in Brazil-
ian Symposium on Software Engineering - Tools Session,
Brazil, 2007, pp. 54–60.

[4] T. v. d. Massen and H. Lichter, “Deficiencies in feature
models,” in Workshop on Software Variability Management for
Product Derivation, EUA, 2004.

[5] C. Wohlin, P. Runeson, M. Host, M. C. Ohlsson, B. Regnell,
and A. Wessln, Experimentation in Software Engineering: An
Introduction. Kluwer Academic Publishers, 2000.

[6] K. Schmid and M. Schank, “Pulse-beat – a decision support
tool for scoping product lines,” in Software Architectures for
Product Families, Spain, 2000, pp. 65–75.

[7] M. Moon, K. Yeom, and H. S. Chae, “An approach to develop-
ing domain requirements as a core asset based on commonality
and variability analysis in a product line,” IEEE Transactions
on Software Engineering, vol. 31, no. 7, pp. 551–569, 2005.

[8] T. v. d. Massen and H. Lichter, “Requiline: A requirements
engineering tool for software product lines,” in International
Workshop on Product Family Engineering. Italy: Springer
Verlag, 2003, pp. 168–180.

[9] G. Succi, J. Yip, E. Liu, and W. Pedrycz, “Holmes: a system
to support software product lines,” in International Conference
on Software Engineering. Ireland: ACM, 2000, p. 786.

3INES - http://www.ines.org.br

VaMoS 2010

178

Research Tool to Support Feature Configuration in

Software Product Lines

Ciarán Cawley, Patrick Healy, Goetz Botterweck

Lero

University of Limerick

Limerick, Ireland

{ ciaran.cawley | patrick.healy | goetz.botterweck } @lero.ie

Steffen Thiel

Department of Computer Science

Furtwangen University of Applied Sciences

Furtwangen, Germany

steffen.thiel@hs-furtwangen.de

Abstract— Configuring a large Software Product Line can be a

complex and cognitively challenging task. The numerous

relationships that can exist between different system elements

such as features and their implementing artefacts can make the

process time consuming and error prone. Appropriate tool

support is key to the efficiency of the process and quality of the

final product. We present our research prototype tool which

takes a considered approach to feature configuration using

visualisation techniques and aspects of cognitive theory. We

demonstrate how it uses these to support fundamental feature

configuration tasks.

Keywords-visualisation; variability management; software

product lines;

I. INTRODUCTION

Configuring a Software Product Line (SPL) with thousands
of variation points in order to derive a specific product variant
is a challenging process. Each configurable feature can have
numerous relationships with many other elements within the
system. These relationships can impact greatly on the overall
configuration process. Understanding the nature and impact of
these relationships during configuration is key to the quality
and efficiency of the configuration process [1].

Information Visualisation techniques have provided a
variety of ways for stakeholders to view, comprehend and
manage large amounts of related information [2, 3]. However,
although recent work has attempted to incorporate these into
the domain of variability management [4-6], there appears to
be a lack of their explicit consideration in current tools.

In this paper, we present a research prototype tool, which
combines aspects of cognitive theory with specific
visualisation techniques to provide alternative interactive views
on the underlying data.

II. TOOL

The tool has been implemented as an Eclipse Plugin [9]
providing a set of synchronised views that allow the loading,
exploration, comprehension and manipulation of the
underlying data models. These interactive views are designed
with the aim of providing cognitive support to the stakeholder
during feature configuration. Three distinct approaches have
been employed - 2D, 2.5D and 3D.

A. Meta-Model

A data meta-model is used as the basis for our visualisation
approach. It consists of three separate but integrated meta-
models and describes a product line in terms of Decisions,
Features and Components:

• A decision model captures a small number of
high-level questions and provides an abstract,
simplifying view onto features.

• A feature model describes available configuration
options in terms of “prominent or distinctive user
visible aspects, qualities, or characteristics” [11].

• A component model describes the implementation
of features by software or hardware components.

These three models are interrelated. For instance, making a
decision might cause several implementing features to become
selected, which in turn require a number of components to be
implemented. The meta-model also defines intra-model
relationships such as feature requires feature or feature
excludes feature. The details of this meta-model are out of
scope for this paper and the interested reader is guided to a
previous publication [10] for further information.

B. Task Support

As the end result of this work is to provide support to
stakeholders during the feature configuration stages of SPL
product derivation, we set out the tasks for which this support
is being provided.

The activity of configuring a feature is the fundamental
task challenging a stakeholder during the feature configuration
process. At a basic level, this involves the ability to either
include or exclude a feature from the product under derivation.
We would also add that the ability to include/exclude features
in groups based on higher level requirements (decisions) is also
a fundamental task. Whereas these tasks may seem simplistic,
it is the knowledge/understanding (cognition) of the
stakeholder that allows these tasks to be performed correctly.
Drawing on work carried out by others [1, 12], we outline a set
of simple cognitive tasks that aim to support the activity of the
primary task – to decide which features should be included and
which should be excluded.

VaMoS 2010

179

1. Identify / Locate a configuration decision

2. Understand the high-level impact of a decision
inclusion (perception of scale and nature of the impact
- implements/requires/excludes)

3. Identify / Locate a specific feature

4. Identify a specific feature's context - parent feature,
alternative/supporting features, sub-features

5. Understand the high-level impact of a feature
inclusion - a specific feature's constraints
(requires/excludes relationships)

6. Identify the state of a feature - included/excluded and
why.

It is these cognitive tasks that our visualisation approaches
target in terms of providing an interactive visual environment.

C. Interactive Views

1) 2D Approach: Using 2D approaches such as matrices
and graphs to visualise feature models is the traditional way to
allow feature exploration and model manipulation [5, 10]. In
our 2D approach we provide a linear horizontal tree as the
basis upon which we apply a number of visualisation
techniques to support the configuration process. The tree view
was implemented using the prefuse visualisation toolkit [13].

Figure 1 presents a screenshot from our Eclipse [9] based
tool showing our 2D visualisation. For this 2D approach (and
also for the subsequent 2.5D and 3D approaches), a supporting

synchronised view is used. This view in the left of the figure
presents a simple list view of the decisions that identify the
high level functionality/requirements that the system
implements.

Through selection of a decision in the supporting view by
mouse-click, the main tree view in the centre of the figure
displays all implementing features, their location within the
feature model and their immediate sub-features. Animation is
employed during the tree view transition from its previous
visual state to preserve the context. The tree itself is a Degree
of Interest tree and automatically displays features of interest
(path to current node, sibling nodes and child nodes) to the
current selection and hides all other features. The combination
of multiple windows and Degree of Interest aim to provide
Focus+Context.

Colour encoding is employed to highlight what features
directly implement (amber) the selected decision and what
features are required (blue) or excluded (red) by those
implementing features. A colour encoded icon (sphere) to the
left of the label of a highlighted feature identifies if the feature
has been included (green), eliminated (grey) or is un-
configured (yellow).

The stakeholder can explore the tree through mouse-clicks
on nodes of interest. Again the tree, using smooth animation,
automatically expands and collapses nodes depending on the
selected node of interest. The collapsing/hiding of nodes while
exploring the tree can be stopped at the will of the stakeholder
to allow manual collapsing and expanding of branches. Using

Figure 1 2D Tree View

VaMoS 2010

180

the mouse, the stakeholder can perform full zoom and can also
pan the entire tree in any direction. These functions aim to
implement the Details On Demand principle.

2) 2.5D Approach: 2.5D is a term that describes the use of
3D visual attributes in a 2D display [14]. For example, adding
3D attributes such as perspective (e.g. making certain objects
smaller to indicate distance) and occlusion (e.g. overlapping
objects to indicate layers) to a 2D display can be described as
creating a 2.5D display.

Figure 2 presents our 2.5D view. Again, when a selection is
made within the supporting decision view, the main view
displays the implementing features along with all features that
are required or excluded by them.

The view, inspired by Robertson et al.’s cone trees [15],
consists of three stacked planes. Each plane provides a circular
grouping of spheres. In the top plane, each sphere in the circle
represents a grouping of features. When any one of those
groupings in the top plane is selected (by mouse-click) then all
features that comprise that grouping are displayed in the
middle plane in a similar circular format. In the lower plane, all
related (required / excluded) features are displayed (for all
features presented in the middle plane). The innermost circle
on the lower plane identifies features that are directly related
(required, excluded) to features in the middle plane. In order of
ascending radii, each subsequent circle in the lower plane
represents the transitive relationships that exist i.e. required
features can further require and/or exclude other features. In
Figure 2 the stakeholder has selected the “Export Refunds”
grouping in the top plane which groups six features. These six

features are represented on the middle plane while their related
features (required, excluded) are represented on the lower
plane.

By hovering the mouse over any sphere in any of planes, a
description of that element will be displayed in the centre of the
plane. When a sphere is selected in any plane, the circle on
which it is presented will rotate so that that sphere is brought to
the front with its description displayed underneath. These
functions aim to implement Details on Demand.

The colour encoded sphere acts as the representation of a
feature and its relationship. An amber sphere indicates a
feature that implements the current decision selection. A blue
sphere indicates a required feature while a red sphere indicates
an excluded feature.

Multiple windows (and multiple planes) are employed to
separate and distribute decisions, feature groupings, features
and relationships.

3) 3D Approach: Differing reports exist on the
effectiveness of 3D visualisations to support software
engineering but literature suggests that there is acceptance that
it can be effective in specific instances.

Figure 3 presents a 3D view which attempts to provide a
self contained representation of all three models (decisions,
features and components) and their inter-relationships.
However, at any given time, only information of interest is
displayed.

Multiple windows (not shown) are employed to distribute
the information and provide the supporting decision view.

Figure 2 2D Planar View

VaMoS 2010

181

Figure 3 consists of a 3D space containing X, Y and Z axes.
A sequential list of the decisions is displayed along the vertical
Y-axis, a sequential list of the features along the horizontal X-
axis and a sequential list of all the components along the Z-axis
(moving away from the observer).

The key idea here is that a point within this 3D space
identifies a relationship between all three models. In other
words, a sphere plotted at a particular point will identify that
the feature labelled at its X co-ordinate implements the
decision labelled at its Y co-ordinate and is implemented by the
component labelled at its Z co-ordinate. In Figure 3, the
stakeholder has highlighted the sphere that represents the
“Commodities” feature. However, in addition to this, by
looking at the highlighted labels on the axes, we can see that it
also represents the “Export Documents” decision that the
feature implements and the “XTCM.I Include File” component
that implements the feature.

Focus+Context and Details On Demand are the main
techniques guiding this implementation. We argue that all three
models can be perceived to be represented through the listings
on each axis. However, the details of any part of any model or
its relationships are only displayed when required. For
example, when a decision is selected there can be a number of
implementing features. For each implementing feature, a
sphere is plotted in the 3D space as described above. Other
features that are required or excluded by those implementing
features are also similarly plotted as spheres and are given a
specific colour encoding - required features are blue and
excluded features are red.

Pan & Zoom are combined with rotation to allow a full
world-in-hand manipulation of the view in three dimensions
letting the stakeholder position the view depending on the
information of interest.

III. CONCLUSION

In this paper we have presented a research tool prototype
that employs aspects of cognitive theory and visualisation
techniques to support some of the fundamental but challenging
tasks that exist when configuring large software product lines.

ACKNOWLEDGMENT

This work is partially supported by Science Foundation Ireland
under grant number 03/CE2/I303-1.

REFERENCES

[1] S. Deelstra, M. Sinnema, and J. Bosch, "Product Derivation in Software
Product Families: A Case Study," Journal of Systems and Software, vol.

74, pp. 173-194, 2005.

[2] S. K. Card, J. D. Mackinlay, and B. Shneiderman, Readings in
Information Visualisation: Using Vision to Think: Morgan Kaufmann,

1999.
[3] C. Ware, Information Visualisation: Perception for Design, 2nd ed.:

Morgan Kaufmann, 2004.

[4] F. Heidenreich, I. Savga, and C. Wende, "On Controlled Visualisations
in Software Product Line Engineering," in 2nd International Workshop

on Visualisation in Software Product Line Engineering (ViSPLE 2008)
Limerick, Ireland, 2008.

[5] R. Rabiser, D. Dhungana, and P. Grünbacher, "Tool Support for Product

Derivation in Large-Scale Product Lines: A Wizard-based Approach," in
1st International Workshop on Visualisation in Software Product Line

Engineering (ViSPLE 2007) Tokyo, Japan, 2007.
[6] D. Sellier and M. Mannion, "Visualizing Product Line Requirement

Selection Decisions," in 1st International Workshop on Visualisation in

Software Product Line Engineering (ViSPLE 2007) Tokyo, Japan, 2007.
[7] pure-systems GmbH, "Variant Management with pure::variants,"

http://www.pure-systems.com, Technical White Paper, 2003-2004.
[8] Biglever Software, "Gears," http://www.biglever.com.

[9] "Eclipse IDE," http://www.eclipse.org.

[10] G. Botterweck, S. Thiel, D. Nestor, S. B. Abid, and C. Cawley, "Visual
Tool Support for Configuring and Understanding Software Product

Lines," in The 12th International Software Product Line Conference
(SPLC08) Limerick, Ireland, 2008.

[11] K. Kang, S. Cohen, J. Hess, W. Novak, and S. Peterson, "Feature-

oriented domain analysis (FODA) feasibility study. Technical Report
CMU/SEI-90-TR-21," Software Engineering Institute, Carnegie Mellon

University 1990.
[12] M. Sinnema, O. d. Graaf, and J. Bosch, "Tool Support for COVAMOF,"

in Workshop on Software Variability Management for Product

Derivation - Towards Tool Support, 2004.
[13] J. Heer, S. K. Card, and J. A. Landay, "prefuse: a toolkit for interactive

information visualization," in Conference on Human Factors in
Computing Systems Portland, Oregon, USA, 2005.

[14] C. Ware, "Designing with a 2 1/2D Attitude," Information Design

Journal, vol. 3, pp. 255-262., 2001.
[15] G. G. Robertson, J. D. Mackinlay, and S. K. Card, "Cone Trees:

animated 3D visualizations of hierarchical information," in Conference
on Human Factors in Computing Systems New Orleans, Louisiana,

United States: ACM New York, NY, USA, 1991.

Figure 3 3D Plot View

VaMoS 2010

182

���������� � 	
���
�
� �

���
 �������
����

����

	���
�� ��

�����
 �
���������
� ��������

� ����
��

���

 �����!���

��"���� #! $�������

%��&
����� �' ����
��

��� �����
��!
��

���! (! �

���
 "��
� '�� ��
 ��# ���
�)�
�
� *'��" +,-.!

����������� �����	�
�	�����
 ������	�
����������� �����	��

����������
����	��� ������������ ��
 � �����	� ��
�� ����	�����
	��	������ ��� ��� �� ��� �������� ������������ ��	 � �����
������
��������� � ��� �� �����	�� ���� ���� ��� �����	� ��
�� �� ��� �	��
���� ����	
 ��� ��������� �� �� ������������ �� ���� ����	� ��
�	����� ���� !"��� � ���
����
 �����	� ������	����� ����
���� ����������� ��� �	����� �� �����	� ���������� ��� ���
����

�����	� ��������� ���	 ����	���� �����#�� � ��� ��	� ����	�����
���� $%� " �� ��	��	� 	���
���� ����
������

�	
���
�
�����	� ��
������ ��	��������� ������	������

�! �/���0%����/

�

���
����
��
� ��'��
�
 �
&
��)"
�� *���0. ��
�
"
���

���)
�
���" '�� �
�������
�
����
 ��"
�� �'
))���
�����

'��"
 �
� �' �
��
��
 ��'��
�
 ��")��
���! 1
��
))���
�

���� �� ��
 ��"
�� �� ��")��
� '��"
 ��''
�
�� ����
� �'

����
 ��")��
���2
�� '

���
�
�
 ��
� �� �����������

��

))���
���� �� ��
 ��"
��! �

���
 "��
�� �
)�
�
��
�� ��

)
�"���
� ��"���
����� �' '

���
�2
�� �
�
����� '

���
� ��
�

��
� ��
 '

���
 "��
� �� ��
 ���� ��
) ���
�� ��
 �����
���

�'
�
))���
���� +(3-!

��)�
&���� ����2 �
 �
"�����
�
� ��
� ���0 ��
�
''
��

��&
 �
� �� �����
 '
"��� �')����
"�
�� ����
� ��
� ��

)���
�� �' ��"������ ��'��
�
 ��")��
��� ��&
�
 '

���

�
�
����� �
� �

���"
�
� �����
�&
��
� �")�
"
��
����

�
����4�
� +5-2 +,-! ����
 �
����4�
�
���"
 ��
� ��
 ��&
�

'

���
 �
�
����� �� &
���2 �!
!2 ��
� �� ��
�� ��
 '

���
 "��
�2

��� ��
� '

���
 "��
��
�
 �
��
 �� ��")�
62 ����
���")����

�
� �
 ��'����� �� �
���'�!

��

))��
�� ��
� �
�)� �������
���� �� "
���� ��
�� ���

�
���
�� ��
 '

���
 "��
� �
'��
 ��
� �
��� '

���
 �
�
�����!

���! 7! �8#�� *��'��
�
 8������ #��
� �����
 �����.)��&��
�
 '

���

"��
����
����� ��"��
� �� ��
� �' �

���
8����� +(,-! ��������

 ������
���

�
 �
)
�
�
�� �)
���
� ��
 ���9�����&
 ���"
� '��"! �� ����
6
")�
2
¬ (Short− circult) ∨ Conditional �)
���
� ��
 ������
��� ��
� ��
 �
�
�����
�' Short− circuit �
4���
� ��
 �
�
����� �' Conditional!

��
 ��
������
� �
)�
�
��
���� �'
 '

���
 "��
� *
 '

���

��
��
"2
!�! �����
 (.2 �� �
����
�����:
� �� �
 ��
�
4�
�

'�� �
��

6
")�
�2 ������ '
�
��
��
��&
 �
)�
�
��
����� �
&

�

� ��������
�! ��
 ���
��

6�
)���� �� ��
 �

���
8�����

��

 �
)�
�
��
����2
!�!2 �����
 72 �����
����� '��
'���
��

����
��
������ �' �
��
 '

���
 ��
��
"� +(-! %�'�����
�
��2

'�� �
��
��)������ ��"
���2 '

���
 "��
�� �
� �
 �� �
��

��
�
&
� ��
 ��

 �
)�
�
��
���� �
� �

� '���� ��
�
4�
�
!

��������
���2
&
� �' ��
 '

���
 "��
� �� �
������
������2 ��

�
� �
 ��"
������"��� �� "
��
��� &
���
�

 ��&
� '

���
 �
�

�
�����2
�)
��
��� ��
� ��
 '

���
 "��
� ������
�
�������
�

������
���� *
!�!2 ��
 �
�
����� �' ��
 '

���
)�
����
� ��

�
4���
� ��
 �
�
����� �' ���
��.! �� �
�)���
 ��"
 �
�

���
��

�
&
 ��&
����
�
� �
����4�
� '�� �
������ ��
 ��")�
6��� �'

'

���
 "��
�� *
!�!2 ���� �

�;� �������) �� ��
�
��
 ���
��

��� �
����4�
� �� ��'��
�
 8������ #��
� +(5-.2 ����
 ���
��

�
&
 '����
� �� �����
�� "
���������
� ��
� �
��
&
 ����

��
��
��
))���
���� �
&
��)
�� '��")
�'��"��� ��
 �
��!

����"
�
� ����� �
&
 ��
)��
���
� �� �
 �' ��

� �
�
�� ��

��
��
��
")���� �� "
�
 &
��� '

���
 �
�
������! ��
 ��
���

�' �
�

��� �� �
&��
� �� �
����4�
� '��
���"
�
� '

���

�
�
����� +(<-2 ������ ��
�
 ��
&��
��
 ��
� ��
�� �����

)�
'
� �� ���� ���
�
���&
�� ���� '

���
��������
���� ����
"�

�� ��
� �
�
�� ������� �&
� ��
 '

���
 �
�
�����)���
�� ����

�
&
�
���� ��
)��
� �'
���"
���� +=-! �����
� ��
��� �'

VaMoS 2010

183

�
�

���
�"�
�
���"
���
��� &
���
����
 '

���
 �
�
�����

�
����
 '

���
 "��
�! ���
6
")�
2 �
�
�� ���� �����

��� �''���
���
�' ����� *
!�!2 ��
 �>� ����
"�2 ��� ���&
��

�� ��8 ���&
��. �
� �
 ��
� �� &
���
�

 '

���
 �
�
�����

�� ��
��'��"��� ��
 '

���
 "��
� ��
�
))��)��
�
 �
������

)����
" +(7-2 +7-2 +(<-2 +?-2 +@-! ����
))��
�� �
� ��

��
��
�� ��
� �''���
���
�' �����
�
 �'�
� ��'����� �� �
)���

�� �
������ '�� ����� ��
� �
�
 ��� �
����
�! ���
6
")�
2

������
� ��������
 �
���
�
� ����
���
��&
 '

���
 �
�
�����

���� ��
�
 "
�� ��
�� �
� ��"���
�
����� "
�
 *)
���
�.

'

���
 �
�
������
�� �
&
 ����
 �
�
������ &
���
�
�
�
����

 '

���
 "��
�
���"
���
���! �� ��

� �''���
���
�' ���

���&
� '�� '

���
 &
���
����2 ��
 ��� ���&
� ����� �

� �� �

����
��
�
�� ��� �� ��
 �
�&
�! ���� ���
� �

&� ��
�
2 ��

�
�&
� "���� �
 �
4���
� �� ���&
 �
�� ��
&
� �����
�� �'

���)����
"� ��"���
�
�����2
�� ����
 ���&���
 �����
 ���

)����
" �� /8��
��2 ����
�
))��
�� �� ����
���
��&
 '

���

�
�
����� ����� ��� ��
�
!

�� ����)
)
�2 �

6)���
 ��
 ���������� '�� ��������

�
���
�
� '

���
 �������
���� ���� ��
� '
�����
�
� ��
)���
��

�' '

���
 �
�
�����! 	
 �
��
�
 '

���
 ����
" �� �
���
�

'��"
��
")��� ��
����6
�
�� �
��� ������� ��
����

"����)�

�� �����
��� �
�
������2 �
�)
���&
��! ���� �
��� ���

�
�'
�

))

�� �� ��
�� ��� '
"���
� ���� '

���
 ��
��
"� ���

�
��
� ���� "
���� '

���
 �
�
������! �")�
"
��
����
���2 ���

))���
���� �'A�
�� ��
 ���� �' '

���
 �
�
����� &
���
���� ��

��
 ���
���2
������� ��
�
������! ���
�&
�2 '

���
 �
�
�����

&
���
���� ��)
�'��"
�

�� ��"

 ��
� ��
��
�
��)������

�' �
� �
�
�����2 ��
�
��
�������
 ��
� �� ���
���
��
�

��

�����
)���� ��� ��
� �����

''
��� ��
 �&
�
�� &
������ �' �
�

�
�
�����! ��� ����2 ���������2 ������ �)��
 �
�
��� �
�

'��" �
�
�
���� ����2 8#��� +B-2 ����� ���������� '��"� ��
�

)��&��
 ��
�� &���
� '

��
��
����
�����
�� �")��
� &
��
�

� ��
�
��
� �
�
!

��! 8#���� � ���� C1/1�����/ �D��1�

8#��� ��
 ���� '��
���"
���
��� �
�
�
���� �
� '��"�

'��" �����
� �
����)����� �' ����
 '��"�! � �
� '��" �
����
�

�
��
�
� ��
 �
���
�)��)
���
� '��

�� '��" �
��
�� �)
���
�

��
 �
�
�������)� �
��

� �
��� �� �����! 8#��� ��")��
� ��

�
����
�;� �
����)���� ���� $��#
�� E
&
����)�2 ��")�
�

����
�������
�����
�� &
��
�)��)
�
���� ���
! �� ���
��

��
�� ��
 ���
������ "
��
���"�2 �� �� ���������&
 �� ���� ����

�
�
6
")�
!

��F#1 �
�$1 01�#������/ �� ���� ��1#0�!

/
"
 ����
 ��)
 0
����)����

� ��
����6 ����

� ���������
�
1 �
���
��" {1&
��
����2 �
����
} 1&
��
���
� ��
����6 ����

� �)��"�:
�
�� ��
����6 ����

� �����
�� '������
�� ��
����6 ����

� �������������

������
� ��������
 �
� '��" '�� ��
 ��# ���
�)�
�
�

'

���
 "��
�! �����2 �
 �
���
 ��� �� �
)�
�
�� ��
 '

���
�

���! 5! ��
6
")�
 ���)�� �' 8#���2 ����� ���&
��� '��" �
����)�����
���� $��#
�� E
&
����)�! ��
����
��� '

���
 �
�
�����
�� ��� �
��
�
�

���)�
�
� �� ��''
�
�� ������!

�� ��
 "��
�
� �
��� �� ��
 �
� '��"! ��
����6
�
�
 ��
'��

'�� �)����
� '

���
�
�� �
��� �������
�
 ���� '��
��
��
��&

'

���
�! �
��
 � ������
� �&
 '��" �
��� *�2 12 �2 ��2 ��.

�
)�
�
����� ��6 '

���
� *Conditional2 Evaluation2 Machine2

Optimizer2 Constantfolding2 Short − circuit.!

�
����2 �
 �)
��'�
�� ��
 ������
���� ��
� ��
 '

���
 "��
�

�")��
� �� ��
 �
� '��" �
���! �� 8#���2 ������
����
�

�����
� ��
 �
����
�
&
� '�
�"
�� �' ��������
� ����� *��#.!

��� �������
6
")�
 �
4���
� ���

 ������
�����

• ��
 �
�
����� �' Optimizer �
4���
� ��
 �
�
����� �'
���
�

Constant folding �� Short − circuit! �� ��
 �
"
 ��"
2

���
�� Optimizer �� �
�
��
�2 �
���
� �' ��� ������
� �
�

�
 �
�
��
�! ��
�
 ������
����
�
 �)
���
�
� '�������

*<G> � * �	 �� �� . .

$
�
2 �2 ��
�� �� �
'
� �� ��
 �
"
 �' �
��� �
 �
��
�

�� �
��
 �! or
�� <=>
�
 �����
� �)
�
����2 ����� ��&

��
 �����
��&
 ��
 '�������� "

����! H� �� ���
 �'
��

���� �'
���
� �� �� �� �� ����
�
 ���
!I

• ��
 �
�
����� �' Short − circuit �
4���
� ��
 �
�
����� �'

Conditional!

*G> �� �.

• 1���
� Evaluation semantics �� Machine semantics "���

�
 �
�
��
�! ���� ������
��� ��
�'���
� ���
���� �� ��

�
��� ������ ��� ����� �
 ������
�
6)�������!

8#��� ��")��
� ��
 ��� ��
"�
��&
 *�
�� �
����)�����
��

�����
� ������
����. ���� $��#
�� E
&
����)� ��
� �")�
"
���

������
�
�����
�� &
��
�)��)
�
���� ���
! �����
 5 �����

��
 �
���� ��
� 8#��� �
�
�
�
�! ��
��� �������
�
�
� ��&
���

'

���
 �
�
����� *�
�
����� Short − circuit ������� �
�
�����

Conditional
�� Optimizer.
�� ��
 &���
� ��
� 8#��� ��
�

�� ��
���'�
�����
�� ��
�� �
��
�!

���! ���������

��
 ��������� ���� �� ��������
�
� ����� �� �����
 ,!

�� �
�
�
 '

���
 "��
� �����
� ��
 ��")�
 J�# '

���

"��
� '��"
� *�J��.
��)�����
�
 �
� '��" '�� '

���

�
�
����� ��
�)
�'��"� &
���
����

�� ��"
 ��
 ��
� "
�
�

 �
�
�����! ���
��
���2 ��������� ��
��'��"� ��
 '

���

"��
� ����
 �����
� �
� '��" �
����)����
��)
��
� ��

�
���� �� 8#���! ��
��� �
�
�
�
� �
���� ��'��"
����2 �����

��
� ��"���
� ���� 8#���;� ���)��)�����
� ��
 ��
� �
�

VaMoS 2010

184

���! ,! ��
 �&
�
�� ����
" '�� ��
 ��������� �
�
�
���!

'��" '�� '

���
 �
�
�����! �� ���� �
�����2 �
 �������

��

��")��
�� �' ���������!

�� ������ 	
� ��
����
����

��
 C
�
�
��&
 ��'��
�
 0
&
��)"
�� #
�
� ��
 %��&
�����

�' 	
�
���� �
����
� ��
 ��'��
�
 8������ #��
� �����

����� *�8#��. ��)�� ��'��
�
)������ ���
 �
�

��� ����

)�
����
 +(,-! ��
�
��� ��������
�
 ��")�
 J�# '

���

"��
� '��"
� *�J��. ��
� "
�
� ��

�� �� �
��
 '

���

"��
�� �����
 ��")�
 �
6�
�����
�� �������
�
� ��
�� '��"
�

����
 ����
�� �'
���� 53 "��
��! �� ��
� �
 �
� �����:
 ��
�

"��
��
�� ��
��
�&
��
� '

���
 "��
�
�����2 �
 ��
 ��

�J�� '��"
�
� ���)��"
�� '��" �' ��)��!

�����
 < ����� ��� ��� �������
6
")�
 �
� �
 �)
���
�

�� �J��! �� �������� �' ���

 ����
�
"
���� meta2 feature tree

�� constraints! ��
 meta �
����� �� �
�'�
6)�
�
����! ��

feature tree �
����� ����
�)���� ��
 '

���
 ��
��
" ��
�

��
 �
&
�� �� ��
 ��
��
"
�
 �
)�
�
��
� �� �
���
����� ����

�

�' �
�� �� �

) ��
 ��:
 �' J�# ��
� �"
��! ��
 constraints

�
����� �
��
� ������
���� ��� �
)�
�
��
� �� ��
 '

���

��
��
" ���
���� �� ���9�����&
 ���"
� '��"! �� ����
6
")�
2

��
 ������
��� ��
� H��
 �
�
����� �' Short − circuit �
4���
�

��
 �
�
����� �' CoditionalI �� �
)�
�
��
� �� H̃ r 3 9 11 ��

r 1 5I ��")�� "

���� ��
� H r 3 9 11 �")��
� r 1 5I!

�� ��
�������� ������

��
 ��
��'��"
�
����
)
��
�
 '

���
 "��
� �� �J��

'��"
� ���� *�. $��# �
���� �
")�
�
�
�� *��.
 �����
� �
�

'��" �
����)���� '�� 8#���! ��
 ���� ��
"2 ���&
����� �'

��
 '

���
 ��
��
" ��
 �
���
� ��������
 �� ���
����'���
��!

��
 ���� �����
�� ��
�
���
� �� ��
� ��
 ������
� �' ��"

)
�
��
�
 ������
��
�
� �)����
� �
�
������ ��
�
��
��
��&

�
�
������! 	
 ��

� ���� ������
�
� ��
����6
�
�� �
���

�������2 �
�)
���&
��!

�� �������
�
� �� �
����� ��2 8#��� �
4���
�
 �����
� �
�

����)���� �' ��
 '��" �
���
�� ��
 ������
���� �� ����
 �
���!

��
 �
� '��" �
����)���� �������� �' ���

 �
������� ����
��2

��)
�2
�� ������
����! �

 �����
 @! � ����
� �
��
�
����

�
��
� ��
 ���)�
�)��)
���
� '��

�� '��" �
��! 8#��� ��)�

)���� &
����� ����
� *
!�!2 ��
����6
�
�� �
��� �������.2 ���

����
 ��������� �
�
�
�
� ��� ��� �
���� ��'��"
����2 ����

�
����� �
� �
 �����
�! ��
 ��)
 �
����� �
4���
� ��'��"
����

���� ��
)������
 &
��
� '��

�� �
��� ������2 ����

�2 ��

�
��"
�
�
� ����2 ��'��"
���� ��
� ��

����
6��
��
� '��"

��
 �J�� '

���
 "��
�! ��
 ������
���� �
����� �� ��
 "���

���
�
����� �
����� �� ���������! ��
������� �� ��
 H������
����I

<�����	� ��
�� ����GI��#I>
<����>
<
��� ����GI�
����)����I>��")�
 �����"
��� #
���
�
<K
���>
<K����>
<�����	� �	��>
� � ��#* � .

�" #
���
�
* � (.
�" ��")�
 �����"
��� * � (,.
�� ���������
� * � (<.

�" 1&
��
��� * � 7 .
�� * � 7 @ . +(2(-

� 1&
��
���� �
"
����� * � 7 @ B.
� �
����
 �
"
����� * � 7 @ ?.

�� �)��"�:
� * � 5 .
�� * � 5 = . +(2∗-

� �����
�� '������ * � 5 = (3.
� �����−� � ��� � � * � 5 = ((.

<K�����	� �	��>
<�����	�����>
������
��� 7 � L � 5 = ((�	 � (<
<K�����	�����>
<K�����	� ��
��>

���! <! ���� "��
� �� ��

�
� �����
 ����� �8#��;� �

���
 ���
� 1�����!

�
"
�� �' ��
 �J�� '��"
�2 ��������� ������
� ������

���
� ������
���� �")����� �� ��
 '

���
 "��
� ����
�)
�
���

����� �
�
�������)�! ��
�
 ��������
� ������
���� "��� �
 "
�

6)����� '�� 8#��� ����
 �� ��
 �
�
�
��)��)��
 ����
��

������
� �� ��'��"
����
���� ��
 �
"
����� �' '

���
�"��
��!

�� ���
6
")�
2 Optimizer �� ��
)
�
�� �' Constant folding

�� Short − circuit2 ����� �
��
� ��������� �� ������

��
 ������
��� �
4������
� �

�� ��
 �' Constant folding ��

Short − circuit �� �
 �
�
��
� �' Optimizer �� �
�
��
�!

���
 ��
 �����
� �
� '��" �
����)���� �
� �

�
��
"��
�2

��
 ��
��'��"
�)
�'��"� ��� �
���� �� ��")��
� ��
 $��#

�
���� �' �
��� �������
�� ��
����6
�
�� �
��� ��
 �
�

'��" �
����)���� �� 8#��� �������
 ���8 �
4�
��!

�� ���������

���������
"����
� ��
 ��"���
���� �' �J��2 8#���2

�� ��
 ��
��'��"
�
����
! ��
 �
����� �' ��
 ��
��'��"
�

����

�� 8#���
�
 ��"���
� �� ���������
 �
� '��" '��

'

���
 �
�
����� ��
�
 '

���
 &
���
���� ��)
�'��"
� �� �

��

��"
 �� ��
 �
� �����
�! ��� ����
��
2 ��
�
 ��
� �
�
���

Short − circuit ������� �
�
����� Conditional
�� Optimizer2

��
 '��" �""
��
�
�� ���������� ��
 &���
�����2)������� �� ��

VaMoS 2010

185

*	�0C1� �/��1 � (< � �/�� II �01�� I���������
� I ���D#1 �$1�MF�J . *�D81 � (< F��#1�/.
*	�0C1� �/��1 � 7 @ B � �/�� II �01�� I1&
��
���� �
"
����� I ���D#1 �$1�MF�J . *�D81 � 7 @ B F��#1�/.
*	�0C1� �/��1 � 7 @ ? � �/�� II �01�� I�
����
 �
"
�����I ���D#1 �$1�MF�J . *�D81 � 7 @ ? F��#1�/.
*	�0C1� �/��1 � 5 � �/�� II �01�� I�)��"�:
�I ���D#1 �$1�MF�J . *�D81 � 5 F��#1�/.
*	�0C1� �/��1 � 5 = (3 � �/�� II �01�� I�����
�� '������ I ���D#1 �$1�MF�J . *�D81 � 5 = (3 F��#1�/.
*	�0C1� �/��1 � 5 = ((� �/�� II �01�� I�����−� � ��� � � I ���D#1 �$1�MF�J . *�D81 � 5 = ((F��#1�/.
*��/�����/�� ;**G> � 5 = (3 � 5. *G> � 5 = ((� 5 . *�� * � (< . */�� � 5 = ((. . . .

���! @! ��
 ��
��'��"
�
����
 ���&
���
 '

���
 "��
� ��
 �����
� �
� '��" �
����)���� '�� 8#���! 	���
 ��
 �
����)���� �����
��&
 �� #��)����
2
8#��� �� ���
���
� �� ��))���
)��
�� J�# ��)�� '��"
� �� ��
 �

� '����
!

���! B! ��
 ��������� ���������� ���
������ (. ��
 Short− circuit

'

���
 �
4���
� ��
 Conditional '

���
N 7. ��
 Short− circuit '

���
 �
����
�
 ���
�� �
�
��
� ������� �
�
����� �' ���)
�
�� '

���
!

�����
� �������
�
� �� �����
 B!

�>! ��/�#%���/

�� ����)
)
�2 �
)�
�
��
�
 �
���
�
� '

���
 �������
�

���� ���� ��
� '
�����
�
� ��
)���
�� �' '

���
 �
�
�����! ��

��
�����
�'
�
)�����
� �� ��� ���� ������
� '

���
 &
���
����

�")�
"
��
�
����
�� �� ��
 �����
� ��
�
6
���
�

�� ��"

��
� ��
��
� ��
�� �
�
�����2 ��&��� ��
�� �

����"
 '

��
��!

�� ��
 '����
2 �
)�
� ��
6�
�� ��������� ��
�
��

�
��2 �����
��2 ��
&
� �����
��� �' ��
�� �� ����
���
��&
��

"
�

 �����
 '

���
 �
�
�����! 	
 ��)
 �� ��))���
 ���
�

�
��
 �' �
������
������ "
���������
� '�� ����
���
��&
 '

�

���
 �
�
�����2
!�! "����)�
 &�
�� �� "�������
���� +((-2 +<-!

��� �' ���������;� '

���
� �
�
)�� ��)�
�
 �� "
�

6�
������ ��
� ��))��� ����
���
���� ���
����'���
��!

�����2 ��������� �
� �
����
�
�
 �
�
))���
����! F�

�
)������ �� ��
 �
�2 ��
��
�� �&
� ��
 ����� �
�)
�����)
�

�� ��
 '

���
 �
�
�����)���
��
�"��� �""
��
�
�� �
�
��

��
� ���� �

�
��
�� ��
 ��
��
�� �
� �����
�
�� ���
��
�

����
�����! ��
�
��
� �
�
��2 �
�
��
 ��
�
�
 ����� �
�

�����
��2 ��
��
�

��

�� '
"���
� ���� �
��� �)
�
�����

�� ���� �
��"
 ��"'���
��
 '
� "��
 4������ ��
� ��
�

����� ���� �����" ��'��
�
! ��������
���2 �

� �")�
"
�����

�
� �����:

)�
����
 �' �����
�� "
���������
� �
����
�

�� ��")��'� ��
 "
���
�
��

�� ������������ �' "
���&
��

)
�
��
�
))���
�����!

�
����2 ���������)�����
� �
� '��"� ��
�
���� ��
��

�� "
�
 '

���
 �
�
������ ��
� &���
�
 ��
 '

���
 "��
�

*��� ��'��" ��
" �' ��
 "���
�
.! ����
� ���
�'
�

���

����
���
���� �
�
��
 �� �� �
)
��
 �' �
)�
�
����� ��
 9����

'

���
 �
�
����� �' ��"
���� ��
��! 	�
� ����
���
��&
��

"
����
 '

���
 �
�
�����2
 ��
� "���� �
�� �� ��
�� '��"

���
���2 �� ��
 "���� �
�� ��
�� '��" ��
 ����
�� 9����)����
��

�'
�� �
� ����

��
�! ��

���2 ��
 ����� ��
 ��
 �
"
 ���
�'
�

��
���
� �
�
2 ��� ��
� �
4���
� ��
 ���
�'
�
 �� �
)�
�
��

���
��

"
���
"��� ����
���
����2 �����
�
 &���
����� �'

��
 '

���
 "��
�! ����2 ��
�������
� ����&���
� ��
� ��

&���
�
 ��
 '

���
 "��
� *
� �

�� �
")��
����.2 ��� ����)
&
�

��
 �
� '�� ����
���
����!

�1�1�1/�1�

+(- ����
� �����
���:
�� M�:��:��' �:
��
���! �

���
8������ '

���

"��
����)������ '��
���)�
! �� ������ �������� �� ������� ��������

�!��
���2 /
� D���2 /D2 %��2 733,!
+7- 0�� F
����! �

���
 "��
��2 ��
""
��2
��)��)�������
� '��"��
�!
�� ����������� �� ��� "�����
����
� �����
�� ������� ���� ����������2
)
�
� BO732 733<!

+5- 	���
�� ��

�� �
����
� F��"
! F�������
 '
"��� �' ��")��
��! ��
����������� �� ��� #$�� "�����
����
� �����
�� ������� ���� ����������2
733?!

+,- 	���
�� ��

�� �
����
� F��"
! #
���
�
 ��))��� '�� '

���
�
���
��
�)������ ���

����

����! �� ����������� �� ��� ����� "����%

�
����
� &������� �� ��
����%�������� �����
�� '�(��������2)
�
�
5O(32 733=!

+<- M�:��:��' �:
��
���2 ��"�� $
��
�2
�� %����� 	! 1��
�
��
�! ��
�
�
�������
���� ������� �)
��
��:
����
�� "�����
&
� �������
���� �' '

�
���
 "��
��! �����
�� �������) "����(�����
�� ��
�����2 (3*7.�(,5O
(@=2 733<!

+@- ���
��
�"
� ��"
� 1�'
��2 ��"��� 8�����"��
����2
�� ���� M�
�
$�! M����
��
 �
�
� "
���� �� &
���
�
 '

���
 "��
��! �� �����������
�� ��� "�����
����
� �����
�� ������� ���� ����������2 733?!

+B- ��"���� $�������2 E���D� M
�2
�� ����

� C
�
�
�
��! ����"
��� �
�
'��" ������������ &�
)
�
�������
�� ��")��
���� �� �
�
����
� �
�
�
�
�!
�
�����
� �
)���2 %��&
����� �' ����
��2 73(3!

+?- �����
� E
���

�� E��
)� M�����! �

������
���� '

���
 "��
�� ��
����
�����
� �����! �� ����������� �� ��� ##�� "�����
����
� �����
��

������� ���� ����������2)
�
� (5O772 733B!
+=- �����P
Q� E
���
2 C�
�: F���
��
��2 �
�� C�����
2
�� E�
� �
�4�
��
���&
! $�� �� ��")�
�

� ���
�
���&
 �������
����)���
��R ��
���������� �� *+�� "�����
����
� ���������� �� ������� ������ ��

�����
�� ��
����� �� �������� ������� ,����-
.2 73(3!
+(3- M�� �! M
��2 �
9���� M�"2 E

9��� #

2 M�9�� M�"2 1���
�� ����2
��

�����
�� $��! ����� � '

���
����
��
� �
��
 "
���� ���� ��"
���
�)
���� �
'
�
��

�����
����
�! ���� ������ -���2 <�(,5O(@?2 (==?!

+((- M�
���� #

2 M�� ���� M
��2
�� E

9��� #

! ����
)��
��
����
���
� �' '

���
 "��
���� '��)������ ���
 ��'��
�

����

����!
�� ����������� �� ��� /�� "�����
����
� ���������� �� �����
�� 0����2
)
�
� @7OBB2 7337!

+(7- ���
 �
�����! %���� ��������
� ����� '��)������ ���
 "��
� &
���
����!
�� ����������� �� ��� ������ "�����
����
� ���������� �� �����
��

������� �����2)
�
� (B@O(?B2 7337!
+(5- 	������) �� ��
�
��
 ���
���� �
����4�
� '�� ��'��
�
 8������ #��
�!

���)�KK���������!9
���!
�!9)K���#1733=K2 733=!
+(,- ��'��
�
 8������ #��
� �����
 �����! ���)�KK���!�)�����
�

���!���K2

733=!
+(<- E��
� 	���
2 0����
� �! ���"���2 1��� 	����
�2
�� ����
� /
����

)��
���! ����"
����)����������
 &
��
�� �
�
����� '�� "����
 �
&��
�!
�� ����������� �� ��� "�����
����
� �����
�� ������� ���� ����������2
)
�
� (7=O(,32 733B!

VaMoS 2010

186

Previously published ICB ‐ Research Reports

2009

No 36 (December 2009)
Stefan Strecker: Ein Kommentar zur Diskussion um Begriff und Verständnis der IT‐Governance – An‐
regungen zu einer kritischen Reflexion

No 35 (August 2009)
Irene Rüngeler, Michael Tüxen, Erwin P. Rathgeb: Considerations on Handling Link Errors in SCTP

No 34 (June 2009)
 Dimka Karastoyanova, Raman Kazhamiakin, Andreas Metzger, Marco Pistore (Eds.): Workshop on
Service Monitoring, Adaptation and Beyond

No 33 (May 2009)
Heimo Adelsberger, Andreas Drechsler, Tobias Bruckmann, Peter Kalvelage, Sophia Kinne, Jan Pellin‐
ger, Marcel Rosenberger, Tobias Trepper: Einsatz von Social Software in Unternehmen – Studie über
Umfang und Zweck der Nutzung

No 32 (April 2009)
Barth, Manfred; Gadatsch, Andreas; Kütz, Martin; Rüding, Otto; Schauer, Hanno; Strecker, Stefan:
Leitbild IT‐Controller/‐in – Beitrag der Fachgruppe IT‐Controlling der Gesellschaft für Informatik e. V.

No 31 (April 2009)
Frank, Ulrich; Strecker, Stefan: Beyond ERP Systems: An Outline of Self‐Referential Enterprise Sys‐
tems – Requirements, Conceptual Foundation and Design Options

No 30 (February 2009)
Schauer, Hanno; Wolff, Frank: Kriterien guter Wissensarbeit – Ein Vorschlag aus dem Blickwinkel der
Wissenschaftstheorie (Langfassung)

No 29 (January 2009)
Benavides, David; Metzger, Andreas; Eisenecker, Ulrich (Eds.): Third International Workshop on Va‐
riability Modelling of Software‐intensive Systems

2008

No 28 (December 2008)
Goedicke, Michael; Striewe, Michael; Balz, Moritz: „Computer Aided Assessments and Programming
Exercises with JACK“

No 27 (December 2008)
Schauer, Carola: “Größe und Ausrichtung der Disziplin Wirtschaftsinformatik an Universitäten im
deutschsprachigen Raum ‐ Aktueller Status und Entwicklung seit 1992”

No 26 (September 2008)
Milen, Tilev; Bruno Müller‐Clostermann: “ CapSys: A Tool for Macroscopic Capacity Planning”

No 25 (August 2008)
Eicker, Stefan; Spies, Thorsten; Tschersich, Markus: “Einsatz von Multi‐Touch beim Softwaredesign am
Beispiel der CRC Card‐Methode”

No 24 (August 2008)
Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Language Architecture – Revised
Version”

No 23 (January 2008)
Sprenger, Jonas; Jung, Jürgen: “Enterprise Modelling in the Context of Manufacturing – Outline of an
Approach Supporting Production Planning”

No 22 (January 2008)
Heymans, Patrick; Kang, Kyo‐Chul; Metzger, Andreas, Pohl, Klaus (Eds.): “Second International
Workshop on Variability Modelling of Software‐intensive Systemsʺ

2007

No 21 (September 2007)
Eicker, Stefan; Annett Nagel; Peter M. Schuler: “Flexibilität im Geschäftsprozess‐management‐
Kreislaufʺ

No 20 (August 2007)
Blau, Holger; Eicker, Stefan; Spies, Thorsten: “Reifegradüberwachung von Softwareʺ

No 19 (June 2007)
Schauer, Carola: “Relevance and Success of IS Teaching and Research: An Analysis of the ‚Relevance
Debate’

No 18 (May 2007)
Schauer, Carola: “Rekonstruktion der historischen Entwicklung der Wirtschaftsinformatik: Schritte der
Institutionalisierung, Diskussion zum Status, Rahmenempfehlungen für die Lehre”

No 17 (May 2007)
Schauer, Carola; Schmeing, Tobias: “Development of IS Teaching in North‐America: An Analysis of
Model Curricula”

No 16 (May 2007)
Müller‐Clostermann, Bruno; Tilev, Milen: “Using G/G/m‐Models for Multi‐Server and Mainframe Ca‐
pacity Planning”

No 15 (April 2007)
Heise, David; Schauer, Carola; Strecker, Stefan: “Informationsquellen für IT‐Professionals – Analyse
und Bewertung der Fachpresse aus Sicht der Wirtschaftsinformatik”

No 14 (March 2007)
Eicker, Stefan; Hegmanns, Christian; Malich, Stefan: “Auswahl von Bewertungsmethoden für Soft‐
warearchitekturen”

No 13 (February 2007)
Eicker, Stefan; Spies, Thorsten; Kahl, Christian: “Softwarevisualisierung im Kontext serviceorientierter
Architekturen”

No 12 (February 2007)
Brenner, Freimut: “Cumulative Measures of Absorbing Joint Markov Chains and an Application to
Markovian Process Algebras”

No 11 (February 2007)
Kirchner, Lutz: “Entwurf einer Modellierungssprache zur Unterstützung der Aufgaben des
IT‐Managements – Grundlagen, Anforderungen und Metamodell”

No 10 (February 2007)
Schauer, Carola; Strecker, Stefan: “Vergleichende Literaturstudie aktueller einführender Lehrbücher der
Wirtschaftsinformatik: Bezugsrahmen und Auswertung”

No 9 (February 2007)
Strecker, Stefan; Kuckertz, Andreas; Pawlowski, Jan M.: “Überlegungen zur Qualifizierung des wissen‐
schaftlichen Nachwuchses: Ein Diskussionsbeitrag zur (kumulativen) Habilitation”

No 8 (February 2007)
Frank, Ulrich; Strecker, Stefan; Koch, Stefan: “Open Model ‐ Ein Vorschlag für ein Forschungspro‐
gramm der Wirtschaftsinformatik (Langfassung)”

2006

No 7 (December 2006)
Frank, Ulrich: “Towards a Pluralistic Conception of Research Methods in Information Systems Re‐
search”

No 6 (April 2006)
Frank, Ulrich: “Evaluation von Forschung und Lehre an Universitäten – Ein Diskussionsbeitrag”

No 5 (April 2006)
Jung, Jürgen: “Supply Chains in the Context of Resource Modelling”

No 4 (February 2006)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part III – Results Wirtschaftsin‐
formatik Discipline”

2005

No 3 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part II – Results Information Sys‐
tems Discipline”

No 2 (December 2005)
Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:
An interpretive evaluation of interviews with renowned researchers, Part I – Research Objectives and
Method”

No 1 (August 2005)
Lange, Carola: „Ein Bezugsrahmen zur Beschreibung von Forschungsgegenständen und ‐methoden in
Wirtschaftsinformatik und Information Systems“

 The Institute for Computer Science and Business Information Systems (ICB), located at the Essen Campus, is dedicated to research
and teaching in Applied Computer Science, Information Systems as well as Information Management. The ICB research groups
cover a wide range of exper tise:

For more information visit us on the Web: http://www.icb.uni-due.de ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)

Research Group

Prof. Dr. H. H. Adelsberger
Information Systems for Production and Operations
Management

Prof. Dr. P. Chamoni
MIS and Management Science / Operations Research

Prof. Dr. F.-D. Dorloff
Procurement, Logistics and Information Management

Prof. Dr. K. Echtle
Dependability of Computing Systems

Prof. Dr. S. Eicker
Information Systems and Software Engineering

Prof. Dr. U. Frank
Information Systems and Enterprise Modelling

Prof. Dr. M. Goedicke
Specification of Software Systems

Prof. Dr. T. Kollmann
E-Business and E-Entrepreneurship

Prof. Dr. B. Müller-Clostermann
Systems Modelling

Prof. Dr. K. Pohl
Software Systems Engineering

Prof. Dr.-Ing. E. Rathgeb
Computer Networking Technology

Prof. Dr. A. Schmidt
Pervasive Computing

Prof. Dr. R. Unland
Data Management Systems and Knowledge Representation

Prof. Dr. S. Zelewski
Institute of Production and Industrial Information Mangement

Core Research Topics

E-Learning, Knowledge Management, Skill-Management,
Simulation, Art ificial Intelligence

Information Systems and Operations Research, Business
Intelligence, Data Warehousing

E-Business, E-Procurement, E-Government

Dependability of Computing Systems

Process Models, Software-Architectures

Enterprise Modelling, Enterprise Application Integration,
IT Management, Knowledge Management

Distributed Systems, Software Components, CSCW

E-Business and Information Management,E-Entrepreneurship/
E-Venture, Virtual Marketplaces and Mobile Commerce, Online-
Marketing

Performance Evaluation of Computer and Communication
Systems, Modelling and Simulation

Requirements Engineering, Software Quality Assurance,
Software-Architectures, Evaluation of COTS/Open Source-
Components

Computer Networking Technology

Pervasive Computing, Uniquitous Computing, Automotive User
Interfaces, Novel Interaction Technologies, Context-Aware
Computing

Data Management, Artificial Intelligence, Software Engineering,
Internet Based Teaching

Industrial Business Processes, Innovation Management,
Information Management, Economic Analyses

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [595.276 841.890]
>> setpagedevice

