
Frank, Ulrich

Research Report

The MEMO meta modelling language (MML) and language
architecture. 2nd Edition

ICB-Research Report, No. 43

Provided in Cooperation with:
University Duisburg-Essen, Institute for Computer Science and Business Information Systems (ICB)

Suggested Citation: Frank, Ulrich (2011) : The MEMO meta modelling language (MML) and language
architecture. 2nd Edition, ICB-Research Report, No. 43, Universität Duisburg-Essen, Institut für
Informatik und Wirtschaftsinformatik (ICB), Essen

This Version is available at:
https://hdl.handle.net/10419/58154

Standard-Nutzungsbedingungen:

Die Dokumente auf EconStor dürfen zu eigenen wissenschaftlichen
Zwecken und zum Privatgebrauch gespeichert und kopiert werden.

Sie dürfen die Dokumente nicht für öffentliche oder kommerzielle
Zwecke vervielfältigen, öffentlich ausstellen, öffentlich zugänglich
machen, vertreiben oder anderweitig nutzen.

Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen
(insbesondere CC-Lizenzen) zur Verfügung gestellt haben sollten,
gelten abweichend von diesen Nutzungsbedingungen die in der dort
genannten Lizenz gewährten Nutzungsrechte.

Terms of use:

Documents in EconStor may be saved and copied for your personal
and scholarly purposes.

You are not to copy documents for public or commercial purposes, to
exhibit the documents publicly, to make them publicly available on the
internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content
Licence (especially Creative Commons Licences), you may exercise
further usage rights as specified in the indicated licence.

https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/58154
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

�������������������

���
���������������������������
���������������������

Ulrich Frank

2nd Edition

ICB-Research Report No. 43

February 2011

Research Group Core Research Topics

Prof. Dr. H. H. Adelsberger
Information Systems for Production and Operations
Management

E-Learning, Knowledge Management, Skill-Management,
Simulation, Artificial Intelligence

Prof. Dr. P. Chamoni
MIS and Management Science / Operations Research

Information Systems and Operations Research,
Business Intelligence, Data Warehousing

Prof. Dr. F.-D. Dorloff
Procurement, Logistics and Information Management

E-Business, E-Procurement, E-Government

Prof. Dr. K. Echtle
Dependability of Computing Systems

Dependability of Computing Systems

Prof. Dr. S. Eicker
Information Systems and Software Engineering

Process Models, Software-Architectures

Prof. Dr. U. Frank
Information Systems and Enterprise Modelling

Enterprise Modelling, Enterprise Application Integration,
IT Management, Knowledge Management

Prof. Dr. M. Goedicke
Specification of Software Systems

Distributed Systems, Software Components, CSCW

Prof. Dr. V. Gruhn
Software Engineering

Design of Software Processes, Software Architecture, Usabi-
lity, Mobile Applications, Component-based and Generative
Software Development

Prof. Dr. T. Kollmann
E-Business and E-Entrepreneurship

E-Business and Information Management,
E-Entrepreneurship/E-Venture, Virtual Marketplaces and
Mobile Commerce, Online-Marketing

Prof. Dr. B. Müller-Clostermann
Systems Modelling

Performance Evaluation of Computer and Communication
Systems, Modelling and Simulation

Prof. Dr. K. Pohl
Software Systems Engineering

Requirements Engineering, Software Quality Assurance,
Software-Architectures, Evaluation of COTS/Open Source-
Components

Prof. Dr.-Ing. E. Rathgeb
Computer Networking Technology

Computer Networking Technology

Prof. Dr. Enrico Rukzio
Mobile Mensch Computer Interaktion mit Software Services

Novel Interaction Technologies, Personal Projectors,
Pervasive User Interfaces, Ubiquitous Computing

Prof. Dr. A. Schmidt
Pervasive Computing

Pervasive Computing, Uniquitous Computing, Automotive User
Interfaces, Novel Interaction Technologies, Context-Aware
Computing

Prof. Dr. R. Unland
Data Management Systems and Knowledge Representation

Data Management, Artificial Intelligence, Software
Engineering, Internet Based Teaching

Prof. Dr. S. Zelewski
Institute of Production and Industrial Information Management

Industrial Business Processes, Innovation Management,
Information Management, Economic Analyses

ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)

43The MEMO Meta Modelling Language
(MML) and Language Architecture

Die Forschungsberichte des Insti tuts
für Informatik und Wirtschaftsinfor-
matik dienen der Darstellung vorlä u-
figer Ergebnisse, die i . d. R. noch für
spätere Veröffentl ichungen überarbe i-
tet werden. Die Autoren sind desh alb
für kri tische Hinweise dankbar.

All rights reserved. No part of this
report may be reproduced by any
means, or translated.

Contact:

Insti tut für Informatik und

Wirtschaftsinformatik (ICB)

Universität Duisburg-Essen

Universitätsstr . 9

45141 Essen

Tel . : 0201-183-4041

Fax: 0201-183-4011

Email : icb@uni-duisburg-essen.de

Authors’ Address:

Ulrich Frank

Insti tut für Informatik und

Wirtschaftsinformatik (ICB)

Universität Duisburg-Essen

Universitätsstr . 9

D-45141 Essen

ulrich.frank@uni-due.de

The ICB Research Reports comprise
preliminary results which will usually
be revised for subsequent publica-
t ions. Critical comments would be
appreciated by the authors.

Alle Rechte vorbehalten. Insbesondere
die der Übersetzung, des Nachdr u-
ckes, des Vortrags, der Entnahme von
Abbildungen und Tabellen – auch bei
nur auszugsweiser Verwertung.

ISSN 1860-2770 (Print)

ISSN 1866-5101 (Online)

ICB Research Reports

Edited by:

Prof. Dr. Heimo Adelsberger

Prof. Dr. Peter Chamoni

Prof. Dr. Frank Dorloff

Prof. Dr. Klaus Echtle

Prof. Dr. Stefan Eicker

Prof. Dr. Ulrich Frank

Prof. Dr. Michael Goedicke

Prof. Dr. Volker Gruhn

Prof. Dr. Tobias Kollmann

Prof. Dr. Bruno Müller -Clostermann

Prof. Dr. Klaus Pohl

Prof. Dr. Erwin P. Rathgeb

Prof. Dr. Enrico Rukzio

Prof. Dr . Albrecht Schmidt

Prof. Dr. Rainer Unland

Prof. Dr. Stephan Zelewski

 i

Preface to Revised Edition

A substantial amount of research and critical evaluation had gone into the MEMO meta

modelling language when it was first published in 2007. This was for a good reason: A meta

modelling language should be invariant for a longer time, since it is the foundation of an

entire family of languages. Therefore, changing the meta modelling language jeopardizes the

integrity of the respective modelling languages and the corresponding model editors. Never-

theless, our work on specifying modelling languages produced some additional require-

ments we were not aware of at first. It also revealed a few misconceptions. These discoveries

led to a minor revision of the meta modelling language that was published in 2010. During

the last months one further requirement evolved that is related to the very conception of

modelling language. It also turned out that one concept in the meta meta model was speci-

fied on an inappropriate level of abstraction. Fortunately, this misconception did not result

in erroneous implementations of corresponding tools because it was filtered out by an ade-

quate interpretation of those who developed the software. The resulting revision of the meta

modelling language may seem minor, because it affects mainly concepts in the meta meta

model only. Nevertheless, it represents a major change, because it reflects an extended con-

ception of modelling language. In addition to that, the meta modelling language was sup-

plemented by an extensible set of ‚auxiliary‛ types. While these do not affect the semantics

of the meta meta model, they promote the productivity of developing modelling languages

and contribute to a higher level of consistency and coherence within a family of modelling

languages. I also used the opportunity of a new edition for applying a few marginal changes.

Among other things, they comprise the renaming of ‚deferredExternal‛ attributes to ‚ob-

tainable‛.

The changes are mainly motivated by the demand to provide an effective support for speci-

fying domain-specific modelling languages. Unfortunately, they are accompanied by the

unpleasant side-effect that the complexity of the meta meta model was increased – which

compromises the reasonable requirement to keep a meta language simple. Since the research

on modelling languages and their specification is far from having reached a mature state, it

would be presumptuous to assume that the meta meta model will not require further modi-

fications. I hope, however, that it serves us as a suitable foundation for developing languages

and tools for the next years.

Essen, February 2011

Ulrich Frank

ii

Abstract

The family of languages that builds the foundation of the MEMO method is intended to fea-

ture a high degree of inter-language integration. For this purpose, the languages need to

share common concepts. In order to define concepts that are semantically equivalent, it is

recommendable to use the same meta modelling language for specifying the MEMO model-

ling languages. The previous version of the meta modelling language used for this purpose

needed a revision. At the same time, there was need to account for alternative approaches to

specifying modelling languages, especially those offered by the OMG or the Eclipse founda-

tion. This report starts with an analysis of requirements that should be accounted for by a

meta modelling language. Subsequently, the UML infrastructure library and meta object fa-

cility (MOF) are evaluated against these requirements. In addition to that, the report presents

an evaluation of the Ecore model, which serves to represent meta models within the Eclipse

Graphical Modeling Framework (GMF). The evaluation of both approaches shows that none

of them is satisfactory as a meta modelling language for enterprise modelling. Then, the new

version of the MEMO meta modelling language (MML) is presented. The language specifica-

tion consists of a meta meta model that specifies that semantics and abstract syntax and a

corresponding graphical notation (concrete syntax). The new version features a concept

called intrinsic features that allows for differentiating between features that apply to types

and those that apply to instances. It also includes a modified graphical notation that supports

a clear distinction of meta models from models on other levels of abstraction. Finally, the

report presents the outline of a tool that supports the creation and editing of MEMO meta

models as well as their transformation into representations which can be used in the Eclipse

modelling framework.

 i i i

Table of Contents

PREFACE TO REVISED EDITION .. I

1 INTRODUCTION ... 1

2 META MODELLING LANGUAGES: REQUIREMENTS ... 2

2.1 GENERAL REQUIREMENTS FOR META MODELLING LANGUAGES .. 4

2.1.1 Formal Requirements .. 4

2.1.2 User-Oriented Requirements .. 5

2.1.3 Application-Oriented Requirements ... 5

3 META META MODELS: PREVALENT APPROACHES ... 8

3.1 UML: INFRASTRUCTURE LIBRARY AND THE META OBJECT FACILITY ... 8

3.2 ECLIPSE FOUNDATION: ECORE .. 14

4 LANGUAGE SPECIFICATION .. 18

4.1 BASIC DATA TYPES OR DOMAINS .. 18

4.2 INTRINSIC FEATURES .. 19

4.3 ‚LANGUAGE-LEVEL TYPES‛: CONCEPTS TO MODEL INSTANCES ... 23

4.4 THE META META MODEL .. 24

4.5 REFERENCE INSTANTIATIONS: AUXILIARY TYPES ... 28

4.6 THE GRAPHICAL NOTATION ... 31

4.7 EXAMPLES ... 34

4.8 PRELIMINARY EVALUATION .. 37

5 THE MEMO LANGUAGE ARCHITECTURE ... 39

6 OUTLINE OF A MODELLING TOOL .. 41

7 FUTURE RESEARCH ... 43

8 REFERENCES ... 44

iv

Figures

FIGURE 1: SEMANTIC NET OF KEY TERMS AND CORRESPONDING LEVELS OF ABSTRACTION 3

FIGURE 2: EMOF OR PART OF THE INFRASTRUCTURE LIBRARY RESPECTIVELY ([OMG06A], P. 33; [OMG06B], P.

93) .. 10

FIGURE 3: REVISED VERSION OF EMOF ... 10

FIGURE 4: CMOF: "KEY CONCRETE CLASSES" ([OMG06A], P. 47) ... 12

FIGURE 5: ECORE .. 16

FIGURE 6: BASIC DATA TYPES USED WITHIN THE META META MODEL .. 19

FIGURE 7: EXEMPLARY USE OF A POWER TYPE – ADAPTED FROM [ODEL98] ... 20

FIGURE 8: EXAMPLE MODELLED WITH CLABJECTS – ACCORDING TO [ATKÜ07] .. 21

FIGURE 9: EXAMPLE MODELLED WITH INTRINSIC ATTRIBUTES, ASSOCIATIONS AND TYPES 23

FIGURE 10: COMPARISON OF INTRINSIC FEATURES AND MODELLING OF INSTANCES .. 24

FIGURE 11: THE MEMO META META MODEL .. 27

FIGURE 12: PLACEMENT OF AUXILIARY TYPES ... 29

FIGURE 13: ELEMENTS OF THE GRAPHICAL NOTATION ... 33

FIGURE 14: OPTIONS TO MARK THE ELEMENTS OF A META MODEL AS BELONGING TO A PARTICULAR

LANGUAGE .. 34

FIGURE 15: A META MODEL OF THE ERM .. 34

FIGURE 16: DIFFERENTIATING TWO META MODELS THROUGH SPECIFIC SYMBOLS ... 35

FIGURE 17: THE USE OF INTRINSIC FEATURES .. 36

FIGURE 18: THE USE OF LANGUAGE-LEVEL TYPES ... 37

FIGURE 19: THE MEMO LANGUAGE LAYERS .. 39

FIGURE 20: THE MEMO LANGUAGE ARCHITECTURE AND CORRESPONDING CONCEPTUAL FOUNDATION FOR

MODELLING TOOLS .. 40

FIGURE 21: THE MEMO META META MODEL AS AN ECORE INSTANCE .. 42

FIGURE 22: SIMPLIFIED WORKFLOW FOR DEVELOPING ADDITIONAL MODEL EDITORS WITHIN MEMO CENTER

 ... 42

 v

Tables

TABLE 1: EVALUATION OF MOF AND THE UML INFRASTRUCTURE LIBRARY RESPECTIVELY 14

TABLE 2: EVALUATION VON ECORE ... 17

TABLE 3: PRELIMINARY SET OF GENERIC REFERENCE TYPES .. 29

TABLE 4: PRELIMINARY SET OF DOMAIN-SPECIFIC TYPES .. 30

TABLE 5: REPRESENTATION OF TEXTUAL ELEMENTS ... 31

TABLE 6: EVALUATION OF THE MEMO META MODELLING LANGUAGE .. 38

Typographical Conventions

If textual elements of meta (meta) models are referred to in the standard body text, they are

printed in Courier italic, e.g. MetaEntity.

The MEMO Meta Modelling Language – New Edition

 1

1 Introduction

Multi-Perspective Enterprise Modelling (MEMO), a method to guide the design and analysis

of enterprise models, is based on a set of modelling languages that allow for creating concep-

tual models that represent various perspectives on an enterprise. These languages are speci-

fied through meta models. In order to foster the integration of these languages and – as a

consequence – of the corresponding models, it is required that the language specifications,

i.e. the meta models, make use of common concepts. This in turn recommends using com-

mon concepts for specifying the meta models. In other words: The MEMO languages should

be specified using the concepts of a common meta meta model. Such a model was defined

some time ago [Fran98a]. It has been successfully used for the specification of MEMO model-

ling languages. However, various developments of the previous years recommend rethink-

ing the design of the meta meta model. The experiences we gathered with designing meta

models resulted in additional requirements. Also, we were not satisfied any more with some

decisions the first version of the meta meta model is based on. Furthermore, the remarkable

relevance the UML has gained recommends taking into account its language architecture.

Last but not least, it is useful to account for the development of modelling tools: Exploiting

the potential of a modelling language will often recommend using a corresponding model-

ling tool. Since the implementation of a modelling tool implies a major investment, it will

often be no option to develop a tool from scratch. A number of tools, especially so called me-

ta modelling tools, promise to increase the productivity of developing modelling tools tre-

mendously. Among these development environments, one has gained special relevance. The

Eclipse Modeling Framework (EMF) as well as the Eclipse Graphical Modeling Framework

(GMF) are subject of an open source project. They are supported by a large community of

developers and users. The GMF targets the development of graphical modelling tools. To

develop a specific modelling tool, the corresponding language specification has to be recon-

structed using the meta model provided with the framework. This meta model, called Ecore,

serves to generate Java classes which in turn represent language concepts. Hence, using GMF

recommends analysing how the concepts of the intended meta meta model can be trans-

formed to Ecore concepts. As an alternative, Ecore could be used directly as the meta meta

model for specifying the MEMO languages. This requires evaluating whether Ecore could

satisfy this purpose.

Against this background, we will first look at requirements a meta meta model for specifying

modelling languages should satisfy. MOF and Ecore are then evaluated against these re-

quirements – to come to the conclusions that none of them is a satisfactory candidate for

serving as the MEMO meta meta model. Subsequently, the revised version of the meta meta

model will be presented and evaluated. Finally, we will demonstrate how to map concepts of

the meta meta model to Ecore concepts.

Meta Modelling Languages: Requirements

2

2 Meta Modelling Languages: Requirements

Designing a modelling language implies the analysis of the requirements it should satisfy.

This is the case for meta modelling languages, too. As with any modelling language, the re-

quirements depend crucially on the purpose the language should serve. There seem to be no

publications that focus explicitly on requirements for meta meta models. However, there has

been work on evaluating modelling languages that can be referred to, since meta meta mod-

els define the semantics and abstract syntax of meta modelling languages. Studies on general

requirements for modelling languages do not account for the particularities of a specific lan-

guage. Instead, they are aimed at generic requirements that apply to any language. There

seem to be no empirical studies that target generic requirements. Instead, the few empirical

studies that have been conducted so far, target particular kinds of languages, mainly data

modelling languages. Also, they are not aimed directly at developing requirements, but ra-

ther at the empirical evaluation of certain modelling languages (see e.g. [GoSt90], [Hitc95]).

In software engineering, the main focus is on formal requirements a modelling language

should fulfil. A typical example of this perspective is given by [SüEb97] who demand for

properties such as completeness, simplicity, and correctness. Completeness means that all lan-

guage concepts should be precisely defined. This includes constraints that apply for their

application. Simplicity recommends reducing the meta model to essential concepts, hence,

avoiding redundant concepts. A meta model is correct, if it allows for generating all formally

valid models and for deciding whether a model is formally correct. Apparently, these formal

requirements suggest formalizing a meta model. They do not, however, indicate which con-

cepts are required and how they should be presented. In addition to that, the analysis of lan-

guages in computer science is sometimes related to their expressive power, for instance by

referring to a particular layer of the Chomsky hierarchy. However, since the Chomsky hier-

archy is focussing on grammars and on automata, it is not directly applicable to meta mod-

els. Approaches that focus on ontologies as a theoretical foundation for modelling languages,

such as *Webe97+ or *OpSe99+, suggest that a modelling language should be ‚ontologically‛

complete. This implies that it should include concepts for static, functional and dynamic ab-

stractions. Apparently, such an approach neglects the fact that a modelling language will

often emphasize a particular abstraction while leaving out others on purpose. Hence, it does

not need to be ‚ontologically complete‛. With respect to the design of a meta language, the

claim for ontological completeness seems to be more reasonable at first sight, since a meta

language should allow for specifying a wide range of modelling languages. While the speci-

fication of requirements for modelling languages faces remarkable problems [Fran98b], de-

fining requirements for meta modelling languages is even more challenging. Although we

are able to reflect upon language, it is commonly regarded as a competence that we cannot

entirely comprehend ([Lore96], p. 49). While this is demanding already for distinguishing

between the type and meta level languages, a further level of abstraction takes us closer to

ontological or semantic primitives, which determine our own thinking.

The MEMO Meta Modelling Language – New Edition

 3

To encounter the confusion that is imminent to the distinction of language layers, it is im-

portant to strive for a differentiated terminology. The semantic net in Figure 1 shows key

terms of this report and the corresponding levels of abstractions. The numbers used to iden-

tify the levels correspond to common conventions, starting with level 0 for representations of

instances. A model (level M1) is specified by a modelling language, which in turn is – partial-

ly – specified by a meta model (level M2). At the same time, a model is an instance of a meta

model, which in turn is an instance of a meta meta model. Note that the semantic net in-

cludes a simplification: Not only a modelling language on the M2 level, but also all meta

modelling languages are comprised of a specification of their semantics and syntax. The syn-

tax can be differentiated into abstract syntax and concrete syntax (graphical notation). A me-

ta model serves to specify the abstract syntax and semantics only.

SyntaxSemantics

Meta

Modelling

Language

Meta Meta

Meta Model

Domain

State

Technical

Language

specifies

specifies

specifie
s

purposeful abstraction of

in
s
ta

n
c
e

 o
f

Meta Meta

Model

in
s
ta

n
c
e

 o
f

specifie
s

specifie
s

in
s
ta

n
c
e

 o
f

Model

is
 a

is
 a

is
 a

part of

p
a
rt o

f

part of

Concrete

Syntax

p
a
rt
 o

f

Abstract

Syntax

specifies

specifies

Universe of

Discourse

c
re

a
te

d
 t
h

ru

reconstruction of

in
s
ta

n
c
e

 o
f

represents

h
a

s
 a

represents

Domain

Instance

Population

M1

M4

M3

M0

specifies

is
 a

Meta Meta

Modelling

Language

Modelling

LanguageMeta Model

M2

Figure 1: Semantic net of key terms and corresponding levels of abstraction

[FrLa03] present a framework for requirements of domain specific modelling languages. For

analytical purposes, these criteria are differentiated into formal, user-oriented and applica-

Meta Modelling Languages: Requirements

4

tion-oriented requirements. Note that these are not orthogonal dimensions. These generic

requirements need to be further refined for a specific language. Although the framework was

designed for modelling languages (level M2), its generic structure can be applied to meta

modelling languages, too.

2.1 General Requirements for Meta Modelling Languages

Formal requirements are of special relevance for meta modelling languages, because they are a

prerequisite for the (semi-) formal specification of modelling languages.

User-oriented requirements refer to the prospective users’ perception of meta language con-

cepts and their visualisation.

Application-oriented requirements are determined by the intended modelling domains and ge-

neric modelling purposes. They are related to the question whether a meta modelling lan-

guage should be ontologically complete.

2.1.1 Formal Requirements

A meta modelling language should allow for the unambiguous specification of modelling

languages. The resulting language specifications should also provide a foundation for the

development of corresponding modelling tools. For these reasons, the abstract syntax of a

meta modelling language itself needs to be specified precisely.

Requirement F1: The specification of a meta modelling language should include a

formal specification of its abstract syntax.

In order to foster appropriate interpretations of the modelling languages to be designed with

a meta modelling language, the semantics of a meta modelling language should be defined

precisely, too.

Requirement F2: In the ideal case, there should be a formal specification of a meta

modelling language’s semantics. Hence, the specification should be complete and cor-

rect. Since a complete formalisation of semantics will sometimes imply too much of an

effort, it may be sufficient to specify the semantics in a way that is regarded as unam-

biguous by expert users.

Requirement F3: To foster formalisation and comprehensibility, a meta modelling lan-

guage should satisfy the demand for simplicity (see also requirements A1, A2).

The specification of a meta modelling language requires a meta meta modelling language,

which in turn needs to satisfy certain demands.

Requirement F4: To contribute to a precise or even formal semantics, the meta meta mod-

elling language used to specify the meta modelling language should be a formal lan-

guage. In order to avoid a further language to describe the concepts of a meta modelling

language, it should feature a limited set of concepts only. This set of concepts is sufficient,

if it allows for specifying all concepts required on the meta modelling language level. In

The MEMO Meta Modelling Language – New Edition

 5

other words: The meta modelling language should be clearly simpler than the modelling

languages it is supposed to describe.1

2.1.2 User-Oriented Requirements

Only very few people will use a meta modelling language. Designers of modelling languages

are the main target group. Furthermore, designers of modelling tools might be interested as

well. We assume that prospective users of a meta modelling language are experts for concep-

tual modelling.

Requirement U1: The concepts of a meta modelling language should correspond to

concepts modelling experts are familiar with. Since concepts used for creating static

abstractions such as data models or class diagrams are well known within the group of

prospective users, they seem to be especially suited for this purpose.

The concrete syntax of a modelling language should contribute to the comprehensibility of

corresponding models. Since prospective users are expected to be familiar with the ERM or

an object-oriented modelling language such as the UML, using a graphical notation that cor-

responds to one of these languages seems to be an adequate approach. On the other hand,

there is need for distinguishing between different levels of abstraction.

Requirement U2: The languages used on different levels of abstraction, such as a meta

modelling language or a modelling language, should be clearly separated. Using one

language for different levels of abstraction should be avoided.

Users of a meta modelling language will often deal with static modelling languages and cor-

responding models, e. g. with object models. This would suggest deploying a graphical nota-

tion that is different from those of languages for creating static abstractions. The following

requirement reflects this conflict of goals:

Requirement U3: The graphical notation of a meta modelling language should corre-

spond to prevalent graphical notations, e.g. of data or object modelling languages. At

the same time, the notation should include elements that allow for distinguishing a me-

ta model from an object-level model at first sight (related to U1, U2).

2.1.3 Application-Oriented Requirements

A meta modelling language should be suited for specifying a wide range of modelling lan-

guages, if not any modelling language. Within our research, the focus is on languages for

enterprise modelling. These include static abstractions such as object models or resource

models, functional abstractions such as message flow diagrams or dynamic abstractions such

as business process models. That does not imply, however, that a meta modelling language

needs to offer specific concepts for creating functional or dynamic models: The purpose of a

meta meta model is to model of a set of meta models. A meta model is essentially a static

abstraction – even if it includes concepts that are intended for representing functional or dy-

1 Note that this does not exclude that the metamodelling language is also used for the specification of less complex languages.

Meta Modelling Languages: Requirements

6

namic aspects. Therefore, a meta modelling language does not need to be ontologically com-

plete. The claim for simplicity implies that a meta modelling language should not include

concepts that are abstractions of machines, such as ‘operation’ or of human action, such as

‘task’.

Requirement A1: A meta modelling language should offer all concepts required to

specify languages in the scope of enterprise modelling.

Requirement A2: A meta modelling language should be restricted to concepts required

for language design.

Requirement A3: A meta modelling language can be instantiated into meta models.

Since meta models will often leave semantic gaps, the meta modelling language should

also feature additional language elements that allow to express constraints on the in-

terpretation of a meta model.

A meta modelling language is aimed at the specification of modelling languages, which will

often be represented within corresponding modelling tools.

Requirement A4: In order to facilitate the development of tools, e.g. by generating ob-

ject models from a meta model, the concepts offered by a meta modelling language

should allow for a clear mapping to concepts used for software development. This

suggests using a meta modelling language that already features such a mapping.

While a modelling language is usually focused on the description of concepts, e.g. types or

classes, instead of particular instances, it is sometimes required to express characteristics that

apply to all instances of a type. To give an example: The concept ‚process‛ within a language

for modelling business processes serves to specify characteristics of a process type. While it is

a well known fact that any process instance starts and terminates at a certain point in time, it

is not possible to express this as an attribute of a process type. A process type may also have

a certain lifetime. This is, however, clearly different from the lifetime of its instances.

Requirement A5: A meta modelling language should allow for distinguishing between

different levels of abstractions. This includes especially the distinction between charac-

teristics of types and of corresponding instances.

The elements of a conceptual model are supposed to represent concepts – or types respec-

tively. This is for a good reason: The notion of a conceptual model implies abstraction or, to

put it literally, focusing on concepts. This should foster analysing a subject with regard to its

essential, invariant aspects without being distracted by features of specific instances. Hence,

a conceptual model should not represent instances. Previous versions of the meta meta mod-

el were based on this assumption. As a consequence, it was not possible to specify instances

as part of models. However, it turned out that this rule, although being perfectly plausible at

first, is not satisfactory in all cases. For instance: A language for modelling logistic systems

[Wied10] may serve to represent intermodal transportation networks. While such models

should certainly abstract from particular transportation instances, it may be regarded as too

much abstraction, if cities are abstracted to the concept ‚City‛. Instead, it may be preferable

The MEMO Meta Modelling Language – New Edition

 7

to analyse a certain type of transportation net that includes particular cities. While a city such

as Essen is certainly not a concept, it is not a typical instance either: Most of its relevant fea-

tures such as its geographical location, its size or its transportation network will be widely

invariant over a longer time period. At the same time, it serves as an abstraction over all par-

ticular locations within its geographical limits. Therefore, a meta modelling language should

allow for modelling instances – even though this is a feature that should be used only after a

thorough examination.

Requirement A6: A meta modelling language should provide concepts that allow for

representing instances.

For a more elaborate discussion of the preconditions for using instances within conceptual

models see [Fran10]. Requirement A6 can be regarded as a supplement to requirement A5.

The value of a language depends on its dissemination: The more languages are specified

through a meta modelling language, the better the chance to integrate these languages. Also,

dissemination fosters the creation and reuse of tools that make use of a meta modelling lan-

guage. In addition to dissemination, the standardization of a language contributes to protect-

ing investments into corresponding tools and meta models. However, dissemination and

standardization are orthogonal to the inherent quality of a language. It cannot be accom-

plished by designing a language. Instead, it requires economic and political processes.

Hence, demanding for dissemination and standardization as a necessary feature would

compromise the design of new meta modelling languages.

Requirement A7: A meta modelling language should account for dissemination and

standardization. If there are other languages for similar purposes that enjoy a higher

dissemination and/or standardization, there should be a clearly defined mapping to the

concepts of these languages.

Note that the requirements outlined above lack precision. In part, this is owed to the fact that

one usually does not know in advance all the modelling languages that need to be specified

with a meta modelling language. For this reason, it is required that any particular interpreta-

tion of the requirements should be elucidated.

Meta Meta Models: Prevalent Approaches

8

3 Meta Meta Models: Prevalent Approaches

Only few meta meta models have been published so far. Some meta modelling tools, such as

MetaEdit+ ([KeLy+96], http://www.metacase.com) or Cubetto (http://www.semture.de) fea-

ture meta meta concepts that allow for representing language specifications. However, these

concepts are either not specified as meta meta models or not published as such. Besides, the

main focus of these concepts would not be language specification, but support for tool de-

velopment, which requires accounting for additional aspects such as versioning or user

management. ADONIS, a further meta modelling tool, features a meta meta model. It is pub-

lished, however, only in part ([JuKü+00], p. 395, translated in [Fill05], p. 4). IDEF (Integrated

Definition Methods) features a remarkable range of modelling languages. However, IDEF

(for rationale and overview see [MaPa+92]) does not include a meta meta model. Further-

more, even the languages lack a specification through meta models. The language architec-

ture, the UML is based on, features a meta meta model, the so called Meta Object Facility

(MOF). With respect to dissemination and availability of corresponding tools, the UML is of

outstanding relevance. For this reason, we will analyse whether the MOF could serve as a

satisfactory meta meta model for the MEMO family of languages. In most cases, the efficient

use of a modelling language recommends the use of a corresponding modelling tool. There-

fore, it makes sense to account for approaches to reduce the effort required to build a tool.

While meta modelling tools should offer clear advantages with respect to realizing model

editors quickly, they lack a comprehensive framework that would support the implementa-

tion of additional functionality. In recent years, an open source software initiative – the

Eclipse foundation – has achieved a set of tools and extensible software frameworks that

have become the platform of choice for the development of modelling tools for many.

3.1 UML: Infrastructure Library and the Meta Object Facility

Obviously, the UML is the most important language for conceptual modelling. Its primary

focus is on a family of modelling languages to support software systems modelling. The ear-

ly versions of the UML suffered from a specification that lacked precision and consistency.

With UML 2.0 the OMG aimed at overcoming these problems by providing a more elaborate

specification. At the same time, the OMG launched its so called ‚Model-Driven Architec-

ture‛ initiative (MDA), which is supposed to facilitate the generation of implementation level

documents from conceptual models. This required accounting for mapping modelling con-

cepts to implementation level concepts or for the peculiarities of implementation level arte-

facts, e.g. interfaces to middleware systems. These two streams of development resulted in

the current structure of UML languages. Unfortunately, this structure or language architec-

ture is all but easy to understand. On the one hand, the so called infrastructure library pro-

vides the basic linguistic concepts that are used to define the UML languages: ‚All of the

http://www.metacase.com/
http://www.semture.de/

The MEMO Meta Modelling Language – New Edition

 9

UML meta model is instantiated from meta-metaclasses that are defined in the Infrastruc-

tureLibrary.‛ (*OMG06b+, p. 15) While the infrastructure library is explicitly referred to as

‚metalanguage‛ or ‚meta metamodel‛ (e.g. *OMG06b+, p. 11), it is called a ‚metamodel‛ at

the same time. It serves to specify a basic subset of the UML that is used to define compliance

level 0 (for tools that are certified by the OMG). Also, the infrastructure library is reused

within the comprehensive UML specification, called superstructure. Hence, within the UML

family of modelling languages, the infrastructure library acts both as a meta meta model and

as a meta model: "The InfrastructureLibrary is in one capacity used as a meta-metamodel and

in the other aspect as a metamodel, and is thus reused in two dimensions." ([OMG06b], p. 15)

At the same time, the language definition is reflexive, since the infrastructure library is speci-

fied through a subset of UML class diagrams. Note that this overloading of a language with

different levels of abstractions is a clear violation of requirement U2.

The confusion gets even worse with the introduction of the Meta Object Facility (MOF,

[OMG06a]). MOF is intended to serve as a cornerstone of the MDA initiative. Following the

idea of defining language packages, MOF is separated into the essential MOF (EMOF) and

the complete MOF (CMOF). For this purpose, it allows to specify all UML languages. It also

includes concepts that correspond to artefacts that are required for integration purposes,

such as Interface Definition Languages, the Common Warehouse Model (CWM), the Enter-

prise Java Beans (EJB) model and XMI. Furthermore, it features transformation rules to these

representations. These rules can be applied to any language that is specified through the

MOF. Hence, MOF seems to be a meta modelling language (or at least a meta meta model).

However, this is not clear. While the MOF is explicitly intended to act as a meta meta model

for instantiating meta models (‚… MOF is an example of a meta-metamodel.‛ (*OMG06b+, p.

16), there is a disclaimer in the documentation: „In the four-layer metamodel hierarchy, MOF

is commonly referred to as a meta-metamodel, even though strictly speaking it is a meta-

model." ([OMG06b], p. 16). The following excerpt from the MOF specification ([OMG06a], p.

11) illustrated the confusion caused be the UML language architecture (or rather: the lack of

an architecture): ‚In particular, EMOF and CMOF are both described using CMOF, which is

also used to describe UML2. EMOF is also completely described in EMOF by applying pack-

age import, and merge semantics from its CMOF description. As a result, EMOF and CMOF

are described using themselves, and each is derived from, or reuses part of, the UML 2.0 In-

frastructure Library.‛ Figure 2 shows a central part of the EMOF ([OMG06a], p. 33). Exactly

the same model is presented as the part of the infrastructure library that defines „the con-

structs for class-based modelling‚ (*OMG06b+, p. 93).

It seems that the difference between the infrastructure library and the MOF is mainly related

to their purposes. On the one hand, the infrastructure library serves to provide basic con-

cepts needed for specifying more elaborate concepts of UML languages. On the other hand,

the MOF – while serving to specify languages, too – is aimed at providing a framework that

facilitates the integration of modelling tools with other systems used for the development of

(distributed) systems. This includes the definition of transformation rules.

Meta Meta Models: Prevalent Approaches

10

Figure 2: EMOF or part of the infrastructure library respectively ([OMG06a], p. 33; [OMG06b], p. 93)

A closer look at EMOF reveals some surprising features. Firstly, its representation includes

multiple copies of classes. The semantics of an entity type (or a class) depends on its attrib-

utes and the associations it is involved in. For this reason, an entity type should be depicted

only once within a model. Hence, multiple copies of an entity type make it difficult to catch

its meaning. It is amazing that the OMG violates this well known principle of good model-

ling practice. Figure 3 shows a revised version of EMOF that avoids multiple copies of entity

types.

isAbstract : Boolean = false

Class
isReadOnly : Boolean = false

default : String [0..1]

isComposite : Boolean = false

isDerived : Boolean = false

isID : Boolean

Property

TypedElement

ParameterOperation

Type
isOrdered : Boolean = false

isUnique : Boolean = true

lower : Integer = 1

upper : UnlimitedNatural = 1

MultiplicityElement

0..*usuperclass

-class

0..1 0..*

o
w

n
e

d
 o

p
e

ra
ti
o

n

owned attribute

{ordered}

{ordered}

c
la

s
s

0..1

0..* 0..1 0..*{ordered}

0..*

0..*

0..1

1

3 opposite

owned parameter

raisedExceptiont

Figure 3: Revised version of EMOF

The MEMO Meta Modelling Language – New Edition

 11

In addition to that, the EMOF specification suffers from unclear semantics. Supertypes such

as Type or TypedElement remain unspecified. Concepts such as Operation or Parame-

ter are apparently underspecified. To give a few examples: It is not explicated what the at-

tributes mean that are assigned to Property. Nor does the reader get any support with un-

derstanding the meaning of the association named ‚opposite‛. Also, it is not clear what ‚de-

fault : String *0..1+‛ is supposed to mean. If EMOF is interpreted as a meta meta model, the

pre-initialisation of attributes, such as ‚isReadOnly : Boolean = false‛, is confusing. Does that

mean that an instantiation of the corresponding class would allow for this attribute having

the value ‚false‛? With respect to the purpose of a meta meta model, i.e. the definition of a

modelling language, it seems beside the point to include concepts such as Operation or

Parameter, since they imply the existence of software – a clear violation of requirement A2

and requirement F3. CMOF, which serves as the meta language to specify EMOF, is clearly

more complex. This is a violation of requirement F4. It may be that these semantic gaps are

filled somewhere in the jungle of cross-referencing UML specifications. However, the MOF

specification itself [OMG06a] is not complete. CMOF is not only used to specify EMOF. It

also serves for ‚more sophisticated metamodeling‛ (*OMG06a+, p. 31). Figure 4 shows ‚key

concrete‛ classes of CMOF. It seems that concepts used both in EMOF and CMOF do not

need to share the same meaning. In EMOF, Class is specialized from Type. According to

Figure 4, Class within CMOF is not specialized from Type, but from Classifier. The

concept Property is not specified consistently either. Association is specialized from

Relationship. However, the semantics of Relationship is not specified at all. This is the

case for StructuralFeature, too.

While the CMOF is supposedly a comprehensive (‚complete‛) model, it leaves semantic

gaps as well. Superclasses such as Relationship, Type or StructuralFeature remain

unspecified. While the might be specified somewhere else, this is not what one would expect

from a document that is to specify MOF.

Meta Meta Models: Prevalent Approaches

12

Figure 4: CMOF: "Key concrete classes" ([OMG06a], p. 47)

Evaluating the language architecture of the UML requires accounting for some interrelated

peculiarities:

No clear differentiation between language specification and tool design: While the UML is primarily

aimed at a standard for modelling languages, an essential purpose of this standard is to facil-

itate the certification of tools. Therefore the meta models include concepts such as operations

or events, which are intended to guide the implementation of modelling tools (see example

in Figure 4). As a consequence, the EMOF (as well as the infrastructure library) includes the

concept Operation.

Not intended for specifying languages for enterprise modelling: The UML is primarily a family of

modelling languages for software development. Therefore the focus is on concepts that allow

for abstractions of software systems. As a consequence, the meta meta model includes specif-

ic concepts required for software system modelling.

The MEMO Meta Modelling Language – New Edition

 13

Not directly intended for specifying modelling languages: While both EMOF and CMOF are ex-

plicitly intended to support the specification of meta models (see e.g. [OMG06a], p. 31), they

are not directly used for specifying the UML itself. The UML is specified using the infrastruc-

ture library which is also reused in the MOF. It seems that the main purpose of the MOF is to

define object models as a foundation for tool integration. Hence, the MOF is rather intended

for defining meta models that define the concepts to be shared by a set of tools that are to be

integrated. Nevertheless, the MOF can be regarded as a meta meta model, since it serves to

describe meta models.

Evolutionary, pragmatic approach: The UML resulted from multiple contributions from indus-

try and academia. This included accounting for specific interests and preferences, which

compromised a concise and coherent language design. While numerous misconceptions and

specification gaps were eliminated in the latest version (2.0), the UML still suffers from this

burden of its evolution.

Table 1 shows the evaluation of the UML infrastructure library (or the MOF respectively)

against the requirements for meta modelling language suggested above.

Despite the shortcomings that the evaluation reveals, the UML language specifications can-

not be neglected for the specification of the MEMO meta modelling language. This is already

implied by requirement A6. Also, the development of modelling tools requires modelling

languages for software design. It is very likely that the UML will be the language of choice

for this purpose. Therefore, the MEMO meta models need to be mapped to UML class dia-

grams. Furthermore, due to the dissemination of UML tools, it can be reasonable to replace

the MEMO-OML [Fran98c] with the UML object modelling language. This would require

integrating the corresponding UML concepts with MEMO modelling languages.

Meta Meta Models: Prevalent Approaches

14

Table 1: Evaluation of MOF and the UML infrastructure library respectively

(-: not satisfactory; o: accounted for; +: good; ++: very good)

Req. Eval. Comment

F1 o Apparently, the languages that serve as meta modelling languages make use of the infra-

structure library. At the same time, the infrastructure library is used to specify the abstract

syntax of UML class diagrams. While this is not convincing, the abstract syntax of UML class

diagrams is defined (rather) precisely. Therefore, from a pragmatic point of view, it can be

regarded as sufficiently specified.

F2 - In the core specification document [OMG06a], the specification both of EMOF and CMOF is

not complete and leaves the language designer with many questions concerning the seman-

tics.

F3 - Both EMOF and CMOF include concepts that are related to modelling tools. Therefore, both

models are more complex than they needed to be, if they were intended for modelling lan-

guage specification only.

F4 - CMOF, which is used to specify the EMOF, is clearly more complex than the EMOF. At the

same time, the MOF is defined using the infrastructure library which is not only more com-

plex, but is also used for the same purpose as MOF, i.e. to specify meta models.

U1 + The meta meta model is specified in the same notation as the UML itself. Hence, its repre-

sentation can be expected to be comprehensible for many language designers.

U2 - The same concepts are used on different levels of abstraction. The language architecture

adds to the confusion.

U3 - Different levels of the language architecture make use of the same notation.

A1 + The UML meta language concepts should be sufficient for specifying enterprise modelling

languages.

A2 - The UML does not only serve as a language specification, but also as a reference for certify-

ing tools. Therefore, the language concepts are not clearly separated from concepts that

relate to tool specification only.

A3 + The UML meta language includes the OCL, which can be used to add further constraints on

language specifcations.

A4 + Since the UML languages are specified with a subset of the UML object modelling language,

the transformation into class diagrams needed for the development of modelling tools is

very convenient (if it is required at all).

A5 o The UML features powertypes. However, there is no precise specification of the concept (see

Sect. 4.2).

A6 - The UML allows for representing instance-level data, e.g. within interaction diagrams.

However, the objects used in interaction diagrams are not representations of concrete in-

stances. Instead, they are abstractions in the sense that they show prototypical instances to

visualize behaviour. The MOF does not contain any specific concept for modelling instances.

A7 ++ The UML is the outstanding standard in conceptual modelling for software design.

3.2 Eclipse Foundation: Ecore

The Eclipse initiative supports the development of model editors by providing a software

framework that provides a generic architecture and generic functionality. Adapting the

framework to develop a specific model editor starts with specifying a meta model of the cor-

The MEMO Meta Modelling Language – New Edition

 15

responding modelling language. In order for the framework to interpret the meta model ap-

propriately, it needs to be specified using predefined concepts. For this purpose, Eclipse in-

cludes a conceptual model, named Ecore. While Ecore is called a ‚metamodel‛2, a close look

at it reveals two contrasting characteristics. On the one hand, it shows features of a meta me-

ta model, because it serves to describe meta models. On the other hand, it is neither a meta

nor a meta meta model, but an object model built as a conceptual foundation for modelling

tools. The classes that constitute the model include operations that support introspection and

transformation (see Figure 5). Furthermore, the classes include references to Java language

constructs. Abstract classes are depicted as grey boxes.

Analysing Ecore reveals a number of surprising if not odd features. For instance: The ab-

stract class ETypedElement includes the attributes lowerBound and upperBound, which

serve to indicate the minimum and maximum number of values that must or may represent

a feature such as an attribute. In addition to these, there are two other attributes, which are

redundant: many indicates whether there may be multiple values; required serves to specify

whether at least one value is mandatory. The attribute container of EReference is re-

dundant, too: ‚A reference is a container if it has an opposite that is a containment.‛3 Other

features focus on particular implementation level aspects, which one would normally not

include in a language specification, e.g. the attributes containment or resolveProxies

in EReference.

However, evaluating Ecore as a meta meta model (or even as a meta model) would not do

justice to its very purpose. Ecore is a model of an actual implementation. It guides users of

the framework in representing the modelling language they want to build an editor for. The

framework includes a plethora of generic functions to manipulate, navigate and transform

graphical models that consist of interconnected modelling elements. To adapt the framework

to the requirements of a specific modelling editor, the corresponding modelling language has

to be reconstructed as a net of associated objects instantiated from the classes specified in

Ecore. These objects are transformed into classes that represent the meta types within the

meta model of the modelling language to be supported by the tool. The object states serve to

define the semantics of these classes (see Figure 5). After that, the concrete syntax has to be

defined by assigning graphical representations to the language concepts. The functionality of

the resulting modelling tool can be further refined by selecting from options offered by the

framework or by modifying/adding code. Table 2 shows the evaluation of Ecore according to

the requirements suggested in 2.1.

Due to the remarkable productivity gains promised by Eclipse and its still growing dissemi-

nation, the specification of a meta meta modelling language recommends to account for

2 http://www.eclipse.org/modeling/emf/?project=emf (accessed on July 8th 2008)

3 http://download.eclipse.org/modeling/emf/emf/javadoc/2.5.0/org/eclipse/emf/ecore/EReference.html#isContainment() (ac-

cessed on July 8th 2008)

http://www.eclipse.org/modeling/emf/?project=emf
http://download.eclipse.org/modeling/emf/emf/javadoc/2.5.0/org/eclipse/emf/ecore/EReference.html#isContainment()

Meta Meta Models: Prevalent Approaches

16

Ecore – not as a meta meta model or even a meta modelling language, but as a representation

that is relevant with respect to building modelling tools. Hence, there should be a transfor-

mation of the concepts specified in a meta meta model – as well as of the concepts in corre-

sponding meta models – to Ecore. Independent from that, one major concern remains: The

documentation that is provided with Ecore is restricted to the description of the Java classes.

This shortcoming includes the unusual terminology. Terms such as ‚instance class‛ or ‚meta

object‛ are used without further explanation. This is definitely not satisfactory.

Figure 5: Ecore4

4 http://download.eclipse.org/modeling/emf/emf/javadoc/2.4.0/org/eclipse/emf/ecore/package-summary.html (accessed on July

8th 2008)

http://download.eclipse.org/modeling/emf/emf/javadoc/2.4.0/org/eclipse/emf/ecore/package-summary.html

The MEMO Meta Modelling Language – New Edition

 17

Table 2: Evaluation von Ecore

Req. Eval. Comment

F1 + Ecore is specified using a variant of UML class diagrams, the abstract syntax of which is

formalized to a great extent.

F2 o The language specification of the UML still includes some ambiguities. This is, e.g. the case

for the semantics of specialisation/generalisation. However, by mapping Ecore to a pro-

gramming language (Java) which is based on a formal specification (finally through the

machine model it runs on), the Ecore models feature a precise semantics. Unfortunately,

Ecore lacks concepts required to conveniently specify certain features of meta models.

F3 - The UML is certainly not a language that satisfies the demand for simplicity.

F4 - This criterion cannot be directly applied to Ecore since there is no explicit meta meta model-

ling language. Instead, Ecore is specified as a UML class diagram. Nevertheless, the UML is

clearly more complex than Ecore itself.

U1 o Ecore is presented through a variant of UML class diagrams. Hence, its syntax and (ostensi-

ble) semantics are easy to understand for those who are familiar with the UML.

U2 - An appropriate interpretation is jeopardized through the fact that on the one hand, Ecore is

represented as a class diagram, on the other hand an instance of Ecore is meant to be inter-

preted as a meta model. Hence, Ecore is an overloaded representation: It is located on the

type (or class) level and at the same time it shows features of a meta meta model.

U3 o Ecore uses the notation of UML class diagrams. This is for a good reason, because it is a

UML class diagram. However, since it should be interpreted as a meta meta model, too, this

notation is also confusing.

A1 o On the one hand, Ecore is not intended to specify a modelling language. Instead, it serves to

reconstruct a language specification for the purpose of developing a tool using an existing

software framework. On the other hand, the object model that serves as a language recon-

struction can be enhanced through additional specifications or code. Hene, Ecore provides a

sufficient foundation for specifying tools for enterprise modelling.

A2 o Since Ecore should not be regarded as a means to specify modelling languages, there should

not be any confusion. However, it could be mistaken as such – in interpretation that is fos-

tered by calling it a meta model.

A3 + Ecore can be supplemented by OCL statements.

A4 ++ This criterion marks a clear advantage of Ecore: As soon as a language is reconstructed using

Ecore, a major step to develop a corresponding editor is accomplished.

A5 - Ecore does include concepts that allow for such a differentiation. However, it could be modi-

fied using UML powertypes.

A6 o Ecore is an object model that does not specify the level of abstraction (see A5). Instead, its

semantics is overloaded by including meta-level and type-level data. Since the interpretation

of the level of abstraction is – to a large extent – left to the software developer, it is possible

to add an interpretation where an Ecore concepts such as ‚EClass‛ is instantiated into in-

stances.

A7 ++ The Eclipse initiative is a de facto standard for the development of modelling tools.

Language Specification

18

4 Language Specification

The evaluation of the UML language specification concepts and of Ecore has shown that nei-

ther one is satisfactory for the specification of modelling languages. Ecore is not a modelling

language at all but only a class diagram that can be interpreted as the representation of a

meta model. The UML infrastructure library or the MOF are not intended to serve especially

as meta modelling languages. They are not introduced and used as pure meta meta models.

Also, they do not feature a specific graphical notation. The main purpose of the MOF is to

provide a foundation for tool interoperability. For this reason, we decided to further use our

own meta modelling language. However, some revisions are required. On the one hand, they

relate to shortcomings of the previous version. These include specification gaps (req. A5) and

especially the lack of concepts that help with expressing different levels of abstraction (req.

F3). On the other hand, they are concerned with the graphical notation. The revised version

features a graphical notation that allows for clearly distinguishing meta models from models

on the object level (req. U3).

All languages within MEMO are specified through this common meta language. It is speci-

fied through a meta meta model. While an explicit meta meta model is not mandatory for

specifying meta models – as the bootstrapping approach used within the UML language ar-

chitecture demonstrates – we decided for a clear separation of different language levels. Such

a separation allows for defining a clearly more comprehensible language architecture. This is

not only helpful for developers. We use MEMO for teaching purposes. The clear separation

of language levels helps students to identify and understand the different levels of abstrac-

tion to account for. The use of a meta meta modelling language provides advantages over

other approaches to language specification. Firstly, it makes use of the same paradigm. That

should help prospective language users – modellers – with understanding the specification.

Secondly, a meta model provides a good foundation for the implementation of modelling

tools, because it can be reconstructed as an object model in a straightforward way. In order

to foster the integration of the modelling languages and to support the construction of inte-

grated modelling languages, MEMO features a language architecture.

4.1 Basic Data Types or Domains

The meta modelling language includes a set of basic data types. Their semantics is not speci-

fied any further. For this purpose, it is referred to the implementations of corresponding data

types in prevalent programming languages. Note that we do not need an operational seman-

tics for specifying meta models. Therefore, the data types can be regarded as domains that

define sets of values. It is not possible to define a subset of a basic data type by specifying a

range or an enumeration of values. It is assumed that there is no need for specifying subsets

on the meta meta level. On the meta level it is possible to specify subsets which apply to the

corresponding type level. This is prepared for by specializing MetaDataType into Me-

The MEMO Meta Modelling Language – New Edition

 19

taRegularType and further on into MetaIntervalType. Types that are instances of Me-

taIntervalType allow for specifying subsets through intervals. MetaInterval serves to

define the structure for initializing intervals. MetaEnumeration serves to instantiate a set of

values of the same type that serves to specify attributes. MetaInterval and MetaEnumer-

ation are specified in a formal pseudo-language (see Figure 6) In addition to data types

featured by most programming languages, the types Date and Time are included. Further-

more, two more special types – to be instantiated from MetaSpecialType – are introduced,

MinCardinality and MaxCardinality. They are defined as sets (see Figure 6). The basic

data types or domains respectively used within the MEMO meta modelling language are

depicted in Figure 6. Note that the instantiation relationships serve only the purpose to pro-

vide for using the abstraction MetaDataType (and its subtypes) within the meta meta mod-

el. It does not express a specific meaning apart from that.

MetaDataType

Integer

PositiveInteger

Real

String

Boolean

MaxCardinality

MinCardinality

Char

Date

Time

MetaInterval = lowerBound, upperBound

lowerBound: instanceOf (MetaIntervalType)

upperBound: instanceOf (MetaIntervalType)

specialized from

MetaIntervalType

instance of

MetaRegularType

MetaSpecialType

typeOf (upperBound) = typeOf (lowerBound)

lowerBound < upperBound

MetaEnumeration = eSet

sSet: setOf (instanceOf (MetaRegularType)

forAll e1, e2 sSet: typeOf (e1) = typeOf (e2)

 { }

 { }

Figure 6: Basic data types used within the meta meta model

4.2 Intrinsic Features

On the one hand, specifying a meta model requires reflecting upon the ontological essence of

a term. On the other hand, it recommends taking into account that instances of a meta con-

cept are types. Sometimes, this results in the problem that the essence of a term includes fea-

tures that do not apply directly to the type level. Instead, they apply to the instances repre-

sented by a type. For example: A language for modelling product types includes a meta type

‚PhysicalProduct‛, which has attributes like ‚name‛ or ‚type‛ and further optional features.

Within a particular model, it is instantiated to a certain product type, e.g. ‚TV Set‛, which

includes the instantiation of attributes from corresponding meta types. While we know that

every physical product has a weight, measurements or a serial number, these materialized

Language Specification

20

features do not apply to the corresponding product type, because product type is an abstrac-

tion. Since a meta type may only define features that can be instantiated to describe features

of a type, it is not possible to express features that apply to the instances of this type only.

Assigning these features to every instance would not only ignore an obvious abstraction, it

would also result in redundancy. This problem is well known in conceptual modelling. One

approach to deal with it is the conception of a so called ‚power type‛ (also referred to as

‚powertype‛). According to Odell (*Odel98+, p. 28) ‚a power type is an object type whose in-

stances are subtypes of another object type.‛ This is a confusing definition that needs further

explanation. Figure 7 illustrates, how a powertype could be used to overcome the abstraction

conflict between type and instance features.

-colour : Boolean

-receiver : String

-panel : String

TV-Set-Model

-colour = true

-receiver = 'DVB-T'

-panel = 'LCD'

LCD-TV

-colour = true

-receiver = 'DVB-T'

-panel = 'Plasma'

Plasma-TV

-weight : Float

-serial_number : String

TV-Set

Powertype

-serial number = 'pl-tvzk-780'

-weight = 32,5

p1: Plasma-TV
Instance (M0)

Model (M1)

Meta Model (M2)

instance of

powertype of

Figure 7: Exemplary use of a power type – adapted from [Odel98]

The UML includes the concept of a powertype as well ([OMG05], p. 223, p. 335). Drawing

upon an example given by Odell, a power type is regarded as an additional classification

schema: ‚For example, the metaclass TreeSpecies might be a power type for the subclasses of

Tree that represent different species, such as AppleTree, BananaTree, and CherryTree.‛

([OMG05], p. 34). The specification of the current version of the UML provides a further ex-

ample: ‚For example, a Bank Account Type classifier could have a powertype association

with a GeneralizationSet. This GeneralizationSet could then associate with two Generaliza-

tions where the class (i.e., general Classifier) Bank Account has two specific subclasses (i.e.,

Classifiers): Checking Account and Savings Account. Checking Account and Savings Ac-

count, then, are instances of the power type: Bank Account Type. In other words, Checking

Account and Savings Account are both: instances of Bank Account Type, as well as sub-

classes of Bank Account.‛ (*OMG07+, p. 57) While powertypes allow for coping with the

problem outlined above, they come with a major disadvantage: There is no concept in natu-

ral language that would correspond to a powertype. Instead, the concept of a powertype is

introduced only for providing a conceptual workaround. The concepts of a language for con-

The MEMO Meta Modelling Language – New Edition

 21

ceptual modelling should correspond to concepts prospective language users are familiar

with. This is certainly not the case with powertypes. In *Scha08+ the concept of ‚class tem-

plate‛ is presented. While it is similar to powertypes, it provides a more intuitive conception

of the additional abstraction it allows for.

Similarly, Atkinson and Kühne criticize that the concept of a powertype seems artificial and

thereby increases the complexity of a model, while compromising its comprehensibility.

Therefore, they suggest a conception they call ‚deep instantiation‛ *AtKü07+. ‚Deep‛ refers

to the possibility to define that a concept is supposed to be instantiated ‚deeper‛ in an in-

stantiation hierarchy. It is based on a construct they call ‚clabject‛: ‚… we refer to such con-

structs as clabjects (class and object) and represent them using a combination of notational

conventions from UML classes and objects.‛ (*AtKü07+, p. 10). A clabject can be specified

using ‚fields‛ that either represent a meta type attribute – which is supposed to be instanti-

ated and initialized on the type level – or a feature of instance of the type. These two mean-

ings of a field are differentiated through so called ‚potencies‛. A potency indicates the num-

ber of instantiations of the corresponding meta types – and its instances respectively – to be

taken before the field itself may be instantiated. A potency of 1 applies to the meta type at-

tributes that are supposed to be instantiated on the type level. A potency of 2 means that the

attribute applies only on one level further down the instantiation chain. A potency of 0 can

be assigned to a (meta) type in order to mark it as abstract. The concept of a clabject is illus-

trated in Figure 8. The potency values – printed in red – that are assigned to two fields of the

clabject ‚TV-Set‛ are supposed to be instantiated only on the instance level.

-weight : Float

-serial_number : String

-colour = true

-receiver = 'DVB-T'

-panel = 'LCD'

LCD-TV

-weight : Float

-serial_number : String

-panel : String

-colour : Boolean

-receiver : String

TV-Set

-serial number = 'pl-tvzk-780'

-weight = 32,5

p1: Plasma-TV

Instance (M0)

Model (M1)

Meta Model (M2)

instance of

2
2

-weight : Float

-serial_number : String

-colour = true

-receiver = 'DVB-T'

-panel = 'LCD'

Plasma-TV
Clabjects

Figure 8: Example modelled with clabjects – according to [AtKü07]

Compared to powertypes, clabjects have the clear advantage that they generate less complex-

ity. A clabject corresponds to the common (overloaded) concept of a class in natural lan-

guage. It forces the modeller to explicitly clarify the level of abstraction intended with each

feature of the class. However, the concept of a clabject has some shortcomings, too. While

differentiating ‚fields‛ through ‚potencies‛ is a powerful instrument for expressing different

levels of instantiation, it is still difficult to understand because it is an artificial conception.

Language Specification

22

Sometimes, not only attributes (or ‚fields‛) are subject of delayed instantiation, but also as-

sociations. The additional challenge generated by accounting for associations is illustrated in

Figure 9. While one could associate (meta) classes and define when their fields are supposed

to be instantiated, the question remains how to express multiplicities for the deeper layers.

Consider the following example: We assume that every class of ‚TV-Set‛ can be assigned one

particular receiver type (instance of ‚Receiver‛) only. This would be expressed through cor-

responding multiplicities on the M2 layer. Further on we assume that a particular TV (in-

stance of instance of ‚TV-Set‛) can be assigned one to many different particular receivers

(instance of instance of ‚Receiver‛). In this case, there would be need to specify these multi-

plicities somehow. The concept of a clabject, as it is presented in [AtKü07], does not include a

solution to this problem. While potencies allow for expressing multi-level instantiation

chains, it is disputable whether potencies > 2 are required in modelling practice. Doing with-

out potencies would then reduce the complexity of a language.

Against this background, the concept of a clabject is slightly modified for its representation

in the MEMO meta meta model. Firstly, we do not use potencies. This decision is based on

the assumption that – at least for the purpose of specifying modelling languages – potencies

> 2 are not needed. Also, we do not speak of ‚fields‛. Instead, a (meta) type may have (regu-

lar) attributes that apply to its instances or ‚intrinsic attributes‛ that can be instantiated only

with the instances of its instances. Intrinsic attributes correspond to fields with a potency

value of 2. Furthermore, our concept includes associations: An association that gets effective

only with the instances of the entity types it connects is called an ‚intrinsic association‛. An

entity type that must not be instantiated directly, but only on the level below the one it is

presented on, is called an ‚intrinsic type‛. Note that all attributes of an intrinsic type are in-

trinsic by default for the entire lifecycle of that type. Also, all associations an intrinsic type is

involved in must be intrinsic, too.

Figure 9 shows the representation of a modified example, where Receiver is modelled as

an associated type with regular attributes and an intrinsic attribute. Defining attributes of

associated types as intrinsic has the following implications: The association is implicitly de-

fined for each level of abstraction that is covered by the attributes or intrinsic attributes re-

spectively. In the example, this means that the meta type Receiver is associated to the meta

type TV-Set. Its instance is associated to instances of TV-Set etc. In the example shown in

Figure 9, intrinsic features (attributes, associations or entity types) are marked by grey boxes.

The MEMO Meta Modelling Language – New Edition

 23

LCD-TV

weight : Real

serial_number : String

colour = true

receiver = 'DVB-T'

panel = 'LCD'

TV-Set

panel : String

colour : Boolean

weight : Real

serial_number : String

p1: Plasma-TV

weight = 32,5

serial number = 'pl-tvzk-780'

Instance (M0)

Model (M1)

Meta Model (M2)

instance of

Plasma-TV

colour = true

receiver = 'DVB-T'

panel = 'LCD'

weight : Real

serial_number : String

Receiver

name : String

highDefinition : Boolean

serial_number : String

Location

building no. : String

room no. : Boolean

DVBT-Receiver

highDefinition : true

serial_number : String

d1 : DVBT-Receiver

serial_number : DV-294-72

l1: Location

building no. : D12

room no. : 4-32

1,* 0,1

intrinsic feature

compatible tot

uconnectable

1,* 1,*located att

Location

building no. : String

room no. : Boolean

uconnectablelocated att

1,1 0,*

1,1 0,*

1,* 1,1

Figure 9: Example modelled with intrinsic attributes, associations and types

4.3 “Language-Level Types”: Concepts to Model Instances

While the specific purposes of conceptual models vary to a large extent, they have in com-

mon that they are aimed at abstractions. Hence, they should not represent particular instanc-

es, the state and even the existence of which may change over time. However, sometimes it

can make sense to include representations of instances into a model. This is the case, if in-

stances in a targeted domain satisfy the following conditions (for a more elaborate discussion

of this subject see [Fran10]):

 The purpose of a model recommends accounting for instances.

 Abstracting instances to the type level would not fit the intended applications of a

model anymore.

 The existence and the relevant state of an instance are stable throughout the intended

lifetime of a model.

Possible examples of instances that could be included into models are cities, countries, or-

ganisational units (e.g. ‚Marketing Department‛) or organisations (e.g. a particular compa-

ny). With respect to specifying modelling languages, this consideration leaves two choices.

On the one hand, the possibility to model instances could be ignored since it is required in

exceptional cases only. This would help to keep the meta modelling language simpler and

yet easier to apply. On the other hand, one could provide a meta modelling concept, which

in fact serves to model types and not meta types. This would result in overloading the meta

modelling language, which comes with the challenge to specify additional constraints that

prevent ambiguity – and make the language more difficult to understand and use at the

same time. I have hesitated for long to decide for the second option – mainly for the reason

Language Specification

24

that the experience with designing modelling languages that we gained during the last years

suggests that requirement 6 can hardly be ignored.

At first sight, it may appear that a concept that allows for specifying types which are instan-

tiated into instances on the model level is not required because intrinsic features or intrinsic

types could serve the same purpose. However, this is not the case. An intrinsic feature or

type serves to defer instantiation of meta types. Hence, on the model level, intrinsic features

are not instantiated. For this reason they are not suited to represent instances within a model.

Figure 10 illustrates the difference between intrinsic features and ‚language-level types‛.

name: Integer

maxNoContainer: Integer

maxPayload: Float

aveCostPerKT: Money

 payload: Float

 costPerKT: Money

 licenseNo: String

TransportationMode

i

name: String

population: Integer

locLatitude: Float

locLongitude: Float

City

maxNoContainer: 2

maxPayload: 34

aveCostPerKT: 0,23

payload: Float

costPerKT: Money

licenseNo: String

Truck

i

population: 650.000

locLatitude: 51,45

locLongitude: 7,01

Essen

max: 34 t

Modelling

Language

Model

Graphical

Notation

payload: 14,5

costPerKT: 0,31

licenseNo: B-RT-345

t1: Truck

i

Instantiation

of Model

Elements

isType = false

isType = true

Figure 10: Comparison of intrinsic features and modelling of instances

4.4 The Meta Meta Model

The concepts used to specify the meta meta model as well as the graphical notation corre-

spond to the Entity Relationship Model (ERM). Unfortunately, the requirements for specify-

ing modelling languages result in further concepts that considerably increase the complexity

of the meta meta model. Among other things, they include concepts to specify intrinsic and

obtainable features, specialisation relationships, and multiplicities that can be assigned to

attributes. In addition to that, the meta meta model is overloaded in the sense that it includes

The MEMO Meta Modelling Language – New Edition

 25

two levels of abstraction: At the core of the meta meta model is the abstraction MetaEntity.

Usually, its instances are meta types. However, in rare cases, it may be instantiated into

types. The level of abstraction represented by a particular instance of MetaEntity is indi-

cated by the state of the attribute isType. Note that this kind of overloading is certainly not

an elegant choice. Instead, it reflects the ambiguity of the subject. MetaEntity is associated

with concepts that are used to define the semantics of an instantiated meta type (or, in excep-

tional cases, types) – such as MetaAttribute or MetaAssociationLink. Note that they

are instantiated into types. Most concepts defined through the meta meta model are well

known from meta modelling languages. To support a clear distinction of the meta meta

model from models on other levels of abstraction (in correspondence to requirement U3), the

concepts of the meta meta model are represented as rectangles with a grey background. In

order to further specify the semantics of a meta model and to comment on its concepts, the

meta meta model includes the concepts Comment and Constraint. To allow for an unam-

biguous identification of comments and constraints, they can be assigned identifiers. While a

comment is written in natural language, a constraint should be specified in a formal lan-

guage in order to foster precision and to allow for machine interpretation. The OCL

[OMG06c] is a good choice for this purpose, because it is supported by various tools. While

both Comment and Constraint apply to the meta type level, they are not instantiated into

meta types (or types) but into instances, which are assigned to a meta model. Hence, they are

on a different level of abstraction as compared to other concepts of the meta meta model.

This is expressed through a white background, which corresponds to the representation of

object or data models.

MetaAssociationLink serves the specification of associations between instances of

MetaEntity. Each instance of MetaAssociationLink can be specified through a name, a

role, a minimum cardinality and a maximum cardinality. Each instance is associated to exact-

ly one further instance of MetaAssociationLink. Both instances are associated to exactly

one instance of MetaEntity. Hence, only binary assocations are supported. The name that

can be assigned to an instance of MetaAssociationLink serves as a designator of the cor-

responding association. Each one of the two names is supposed to be read in the direction

towards the associated instance of MetaAssociationLink. Usually, one designator will be

sufficient. The attribute role allows for assigning a role to an association end (see below). The

attribute predecessor within MetaAssociationLink serves the specification of model-

ling languages that support dynamic abstractions. If predecessor is set to true, the corre-

sponding concept is supposed to occur before the one it is linked to through the opposite

instance of MetaAssociationLink. Note that there is no specific semantics specified for it.

It might seem appropriate to exclude cyclic associations. However, a cycle on the type level

may make sense in case of multiple instances. Hence, this type of association merely serves

to make corresponding meta models more comprehensible.

The semantics of specialisation – which is restricted to single generalisation (single inher-

itance) – corresponds to that of object-oriented programming languages: A MetaEntity

Language Specification

26

instance ME1 that is specialized from the MetaEntity instance ME2 inherits all features

from ME2. However, different from logical subsumption – and the prevalent notion of spe-

cialisation in natural language – instances of ME2 would not be instances of ME1. Instead,

every instance of an instance of MetaEntity is specified through exactly one (meta) type.

This restriction is a tribute to the semantics of specialisation in programming languages. Alt-

hough this concept of specialisation is the source of misinterpretations and problems (see e.g.

[Fran03]), it was chosen to foster the transformation of meta models to object models used

for developing corresponding modelling tools. The attribute isSingleton of MetaEntity

serves to express whether a MetaEntity may be instantiated into one type only. Note that

this constraint should be used only after thorough considerations. Optionally, multiplicities

can be assigned to attributes – represented through the attributes minCard and maxCard of

MetaAttribute. Within the meta meta model this is expressed through the multiplicity

[0..1]. Particular instances of MetaEntity or attributes or associations can be specified as

intrinsic. If an instance of MetaEntity is specified as intrinsic (attribute isIntrinsic =

true), all its attributes during its entire lifecycle as well as all associations it is part of are in-

trinsic, too. In the case of attributes, the boolean attribute isIntrinsic within MetaAt-

tribute serves to define whether an attribute is intrinsic. The Boolean attribute isIntrin-

sic within MetaAssociationLink can be used to mark an association as intrinsic. The

boolean attribute derivable within MetaAttribute serves to specify whether the value

of an attribute may be deferred from other parts of a meta model. It reflects the fact that the

level of detail used for specifying a meta model may vary. For instance: A meta type such as

‚Organisational Unit‛ may include the attribute ‚numberOfPositions‛. The corresponding

value may be assigned directly to the type that was instantiated from ‚Organisational Unit‛.

It could, however, be calculated from the position types and the corresponding numbers of

instances – provided, these details were represented in the model. The attribute simula-

tion within MetaAttribute allows for indicating that an attribute is introduced for simu-

lation purposes. This could be, for instance, the case with attributes such as ‚averageAvaila-

bilityPerDay‛ of a certain resource type. Sometimes, it may be possible that the value of an

attribute can be obtained from external sources, e.g. a database. For example: A business

process type could include the attribute ‚averageRevenues‛, which would serve to represent

the average revenues generated by an instance of this type. If this value can be obtained from

an external information system, this can be expressed by setting the attribute obtainable

within MetaAttribute to true.

The constraints that apply to the meta meta model are defined through OCL expressions in

order to foster the creation of a tool for editing meta models (see chapter 6). Figure 11 shows

the MEMO meta meta model. An instance of MetaModel is composed of any elements that

are instantiated from concrete subtypes of MetaConcept. It defines the namespace for all

named entities. Note that it is not exactly a language concept. It can be instantiated into a

particolar meta model, which could be instantiated into its models. However, specific featu-

res of models, such as the times they were created or modified, are not accounted for – e.g.

The MEMO Meta Modelling Language – New Edition

 27

through associating MetaModel with MetaAttribute. Instead, this is regarded as a feature

that is relevant for the development of corresponding tools (see chapter 7). The concept of

role is rather overloaded within conceptual modelling (for a comprehensive analysis of the

role concept in conceptual modelling see [Stei00], especially p. 61 ff.). In the meta meta model

it is accounted for only for one pragmatic reason: Sometimes, it is not possible to unambi-

guously identify a particular end of an association, which may be required to specify a con-

straint. In this case, it is possible to assign a role to an entity type that forms the end of an

association. A role can support the identification of an association end only, if its name is

unique within the associations that end at the corresponding instance of MetaEntity (Con-

straint 10). The meta meta model itself includes two roles that are assigned to MetaEntity.

MetaObject

languageName : String

MetaModel

isIntrinsic : Boolean (default = false)

MetaConcept

expression : String

Constraint

id : String

Annotation

designator [0..1] : String

roleName [0..1] : String

minCard : MinCardinality

maxCard : MaxCardinality

predecessor : Boolean (default = false)

MetaAssociationLink

MetaCompAttribute

type : MetaRegularType

MetaSimpleAttribute

text : String

Comment

applies tot

ucomposed of

uassociated to

u
s
p

e
c
if
ie

d
 t
h

ro
u

g
h

uspecialized from

u
fe

a
tu

re
 o

f

0,*

1,1

0,*1,1

0..1

0,*

applies tot

<super>

1,1

0,*

1,1

1,1

<entity>

context Comment inv:

Comment.allInstances()->forAll(p1, p2 |

p1 <> p2 implies p1.id <> p2.id)

C1

context MetaEntity inv:

MetaEntity.allInstances()->forAll(p1, p2 |

p1 <> p2 implies p1.name <> p2.name)

C2

context Constraint inv:

Constraint.allInstances()->forAll(p1, p2 |

p1 <> p2 implies p1.id <> p2.id)

C3

context MetaAssociationLink inv:

self.minCard <= self.maxCard

C4

context MetaCompAttribute inv:

(self.entity.allSupertypes->includes: self.type) = false

and self.entity <> self type

C9

0,*

0,*

context MetaEntity

def: allAttributes: self.metaCompAttribute->union(self.metaSimpleAttributes)

inv: self.allAttributes->forAll (a1, a2 |

a1 <> a2 implies a1.name <> a2.name)

C7

context MetaAssociationLink inv:

self.isIntrinsic = true implies (self.metaAssocationLink.isIntrinsic = true)

and (self.metaEntity.metaAttribute->exists (a | a.isIntrinsic = true)) and

(self.metaAssociationLink.metaEntity.metaAttribute->exists (a |

a.isIntrinsic = true))

C5

context MetaEntity

def: let allSuperTypes: collect (me | me = me.super)

inv: (self.allSuperTypes-> includes self) = false

C8

context MetaEntity inv:

self.isIntrinsic = true implies self.metaAttribute-> forAll (a | a.isIntrinsic = true)

self.isIntrinsic = true implies self.metaAssociationLinks-> forAll (a | a.isIntrinsic = true)

C6

context MetaEntity inv:

self.metaAssociationLinks->forAll (a1, a2 | a1 <> a2

implies a1.roleName <> a2.roleName)

C11

1,* 1,*

context MetaAttribute inv:

self.minCard <= self.maxCard or (self.minCard = nil

and self.maxCard = nil)

C10

context MetaAssociationLink inv:

self.predecessor = true implies

(self.metaAssocationLink.predecessor = false)

C12

set: MetaEnumeration

MetaEnumAttribute

name : String

minCard [0..1]: MinCardinality

maxCard [0..1]: MaxCardinality

derivable: Boolean

obtainable: Boolean

simulation: Boolean

MetaAttribute

interval: MetaInterval

MetaIntervallAttribute

name : String

isAbstract : Boolean

isSingleton : Boolean

isType: Boolean

MetaEntity

0,1

context MetaEntity inv:

self.isType = true implies (self.isIntrinsic = false)

C15

<typed>

context MetaEntity

inv: self.typed->notEmpty implies self.isType = true

C14

context MetaEntity

def: let allSuperTypes: collect (me | me = me.super)

inv: (self.allSuperTypes->forAll (t | t.isType = true) or

(self.allSuperTypes->forAll (t | t.isType = false)

C13

0,* 0,*

Figure 11: The MEMO meta meta model

Language Specification

28

Constraints C1 and C3 express that identifiers of constraints and comments have to be uni-

que. Constraint C2 defines that names of instances of MetaEntity have to be unique, too.

Constraint C7 specifies that names of attributes (either instances of MetaCompAttribute,

MetaIntervalAttribute or MetaSimpleAttribute) have to be unique within the sco-

pe of the entity type they are assigned to. Constraint C3 expresses that the minimum cardi-

nality has to be less or equal to the corresponding maximum cardinality. If an instance of

MetaEntity is marked as intrinsic (through the attribute isIntrinsic), then all its attri-

butes and all associations it is involved in must be marked as intrinsic, too (constraint C6).

Specialisations of instances of MetaEntity must not be cyclic (constraint C8). Constraint C9

serves to avoid cyclic specifications, which could result in non-terminating initialisation pro-

cedures: A MetaCompAttribute must not be specified through the MetaEntity it is a

feature of, nor through one of the MetaEntities, the associated MetaEntity is special-

ized from.5 In addition to that, the MetaEntity, a MetaCompAttribute is specified

through, must represent a type, i.e. its attribute isType must be set to true. An association is

either intrinsic or not. Therefore, if the attribute isIntrinsic within an instance of

MetaAssociationLink is initialised as intrinsic, the corresponding instance of MetaAs-

sociationLink has to be intrinsic, too. Furthermore, the associated entity types must be

intrinsic or at least one of their respective attributes must be intrinsic. This is expressed

through constraint C5. Multiplicities are optional for attributes. If they are use, the minimum

cardinality must be smaller or equal the max cardinality (constraint C10). Constraint C11

specifies that the name of a role must be unique within the set of associations the corre-

sponding entity type is part of. Constraint 12 prevents two associated MetaAssocia-

tionLinks from both having set their attributes predecessor to true at the same time.

Constraint 13 expresses that within a specialisation hierarchy of instances of MetaEntity all

elements have to be either on the type level or on the meta type level. Constraint 14 serves to

assure that an instance of MetaCompAttribute is specified by an instance of MetaEntity

that represents a type. Constraint 15 prevents that an instance of MetaEntity that is speci-

fied as type can be specified as intrinsic at the same time.

4.5 Reference Instantiations: Auxiliary Types

In order to promote the integrity of conceptual models, the design of domain-specific model-

ling languages recommends the use of types that include more semantics than basic types to

specify attributes of meta types. These types can be instantiated from MetaEntity – with

‚isType‛ set to true. Hence, they are not part of the meta modelling language in a strict

sense. Instead, they are specified by the meta modelling language. Nevertheless they are

concepts that are used for specifying meta models. The semantic net in Figure 12 illustrates

the relationship between meta modelling language, auxiliary types and meta models.

5 For a thorough analysis of OCL concepts to specify transitive closures see [Baar03].

The MEMO Meta Modelling Language – New Edition

 29

Basic Data Types

Metamodel

uspecifies

Auxiliary Types

usupports specification of supports specification oft

providest

u
s
p

e
c
ifie

s

Meta Metamodelling

Language

Figure 12: Placement of auxiliary types

While it is possible to define a set of more specific types for each modelling languages, the

quest for reuse and integration suggests the specification of types as a common reference for

a set of modelling languages. This is especially the case for types that are generic in the sense

that they do not reflect requirements of particular domains. But with respect to the specifica-

tion of languages for enterprise modelling is it useful, too, to define domain-level types as

common references: The set of languages for enterprise modelling target similar domains

with a substantial amount of overlapping and a distinctive need for integrating models de-

signed in different languages.

The excerpt of a set of reference types shown in Table 4 evolved from the specification of the

MEMO OrgML. Note that the present set should not be regarded as complete. Instead, it

rather serves as a common, further growing repository. With every new modelling language

and with every modification of existing languages new domain-specific further types may be

added. Reference types may also serve as abstractions that allow for refinements at a later

time. The type Mission in Table 3, for instance, serves to specify the mission of organisa-

tional units or projects. At present, its specification remains on a high level of abstraction.

Later on, more semantics may be added – without compromising the semantics of attributes

that were specified with a previous version.

Table 3: Preliminary set of generic reference types

TimeUnit

unit: {#second, #minute, #hour}

This generic type serves to specify the unit that is implicit-

ly referenced by a corresponding value that specifies the

number of units.

Duration

unit: TimeUnit
dur: Float

Duration allows for specifying attributes that represent a

time interval.

Language Specification

30

Currency

name: String
multipleOfRef: Float

This type allows for representing currencies. An instance c

of Currency is defined by its name and a factor a unit of a

reference currency has to be multiplied by to produce a

unit of c.

Money

currency: Currency
amount: Float

Money allows for representing an amount of money on a

higher level of abstraction (and semantics) by including the

corresponding currency as an instance of Currency.

Table 4: Preliminary set of domain-specific types

Affirmation

level: {#no need, #could do without,
#needed, #essential}

Whenever an attribute represents an evaluation, Af-

firmation can be used to express the corresponding

judgement. For instance: An organisational unit could

include the attribute ‚subjectOfOutsourcing‛ to indica-

te whether outsourcing this type of organisational unit

is a useful option. Specifying it with Affirmation

would contribute to reuse and model coherence. In

addition to that, it would allow for convenient and safe

revisions at a later time.

Availability

description: String
level: {#critical, #satisfactory, #high}

This type serves to specify attributes that represent an

availability – of a resource or a product.

Fluctuation

description: String
numberOfMonths: Integer
percentage: Float

Fluctuation is primarily intended to represent the

fluctuation of employees within a certain organisatio-

nal position or role. It could be applied to resources in

general, too.

Mission

description: String

An organisational unit, a project etc. may be characte-

rized by a mission. The type Mission serves to speci-

fy respective attributes. In its current state, this auxilia-

ry type does not provide an elaborate specification.

Performance

strengths: String
weaknesses: String
potential: String
perfLevel: {#critical, #satisfactory, #outstanding}

Various types of analysis require accounting for the

performance of subjects such as organisational units,

products etc. Performance defines a concept that

does not only allow for defining a performance level on

an ordinal scale, but to also describe strengths, weak-

nesses and potential.

The MEMO Meta Modelling Language – New Edition

 31

4.6 The Graphical Notation

The concrete syntax or graphical notation of the meta modelling language is much like the

one already used for drawing the meta meta model itself. For the specification of textual des-

ignators/annotations we use a Bachus-Naur form (see Table 5). The non-terminal symbols are

used within the graphical illustration of the notation (see Figure 13 and Figure 14). Notice

that we do not bother with specifying a few basic non-terminal symbols – like LowercaseLet-

ter, UppercaseLetter, LineFeed etc. or String.

Table 5: Representation of textual elements

B
as

ic
 S

y
m

b
o

ls
 &

C
o

m
p

o
si

te
s

<digit> ::= 0, 1, 2, 3, 4, 5, 6, 7, 8, 9

<positiveInteger> ::= {< digit >}

<infiniteNumber> ::= ’*’

<separator> ::= ’..’

<lowerString> ::= <LowercaseLetter> <String>

<upperString> ::= <UppercaseLetter> <String>

M
u

lt
ip

li
ci

ty
 <maxCardinality> ::= <PositiveInteger> | <infiniteNumber>

<minCardinality> ::= <PositiveInteger>

<multiplicity> ::= ’(’ <minCardinality> separator <maxCardinality> ’)’

N
am

es
 &

 D
es

ig
n

at
o

rs

<EntityName> ::= <upperString>

<AttributeName> ::= <lowerString>

<backwardArrow> ::= ’t’

<forwardArrow> ::= ’u’

<designator> ::= <lowerString>

<backwardDesignator> ::= <backwardArrow> <designator>

<forwardDesignator> ::= <designator> <forwardArrow>

<roleName> ::= <lowerString>

<constraintkey> ::= ’C’ <number>

<commentkey> ::= ’C’ <number>

To satisfy the demand for a clear visual distinction between meta models and models on the

object level (req. U3), instances of MetaEntity are represented in a different layout: Instead

of a black font on a white (or grey respectively) background, a white font on a black back-

ground is used to depict the name of the instance. If a MetaEntity is instantiated into a

type (indicated by a respective value of its attribute isType), the name of the resulting type

is printed in black on a grey background. Specialisation relationships are depicted using a

common notation: an arrow that is directed towards the generalized concept. In order to fos-

ter the distinction from UML class diagrams, the arrowhead is filled in black. This is the

Language Specification

32

same notation as the one used in the meta meta model already. Usually, one will not use

more than one designator for an association. However, it is possible to assign one designator

for each direction. Comments and constraints are represented through specific boxes with

attached identifiers. As an option, they can be linked to a selected model element through a

dotted line. They are expressed through strings. In the case of constraints it is recommended

to use OCL expressions. Roles within associations are depicted as grey, rounded boxes with

their names printed in white. Intrinsic features are a concept that is specific to the MEMO

meta modelling language. Their semantics is substantially different from ordinary modelling

concepts. Therefore they need to be marked clearly. This is accomplished through a white

‚i‛, which is printed in a black box. The box is attached to the names of attributes and entity

types or to the designators of associations. If an association carries two designators, both

should be marked accordingly. In the case of intrinsic entities, the box has a white frame to

make its shape visible. If an association is not assigned a designator, the box is placed next to

the edge that represents the association. Abstract entity types are marked by printing their

names in italic.

The MEMO Meta Modelling Language – New Edition

 33

<AttributeName> ':' <EntityName> | <Type Name>

<AttributeName> <Multiplicity> ':' <EntityName> | <Type Name>

<EntityName>

<Multiplicity>

<EntityName>

<Multiplicity>

<forwardDesignator>

<backwardDesignator>

<EntityName>

<roleName>

<String>

<commentKey>

 <AttributeName> ':' <EntityName> | <Type Name>

<AttributeName> <Multiplicity> ':' <EntityName> | <Type Name>

<EntityName>

<Multiplicity>
<AttributeName> ':' <EntityName> | <Type Name>

<EntityName>

<Multiplicity>

<forwardDesignator><roleName>

i

ii

abstract type

Focus on intrinsic features:

<EntityName> <EntityName> <EntityName>

belongs to

language A

belongs to

language B

belongs to

languages A & B

<constraintKey>

<String>

<EntityName> <EntityName>

Focus on temporal relationships:

<Multiplicity> <Multiplicity>

<AttributeName> ':' <EntityName> | <Type Name>

<AttributeName> <Multiplicity> ':' <EntityName> | <Type Name>

<EntityName>

Focus on language-level types:

generalisation/specialisation

 <AttributeName> ':' <EntityName> | <Type Name>

<AttributeName> <Multiplicity> ':' <EntityName> | <Type Name>

<EntityName>

Focus on derivable features and simulation:

d o
d

o

derivable

obtainable from external source
s

for simulation purposess

s

s singleton

i intrinsic feature/intrinsic type

Figure 13: Elements of the graphical notation

Enterprise models require the use of various languages that need to be integrated. For this

purpose, the corresponding meta models have to be merged. In the case of complex meta

models, this constitutes a substantial challenge even for experienced language designers. In

order to contribute to a more transparent representation, the elements of a meta model can

be marked by a symbol that indicates the modelling language they belong to. Since the set of

languages that can be specified using the MEMO meta modelling language is not deter-

mined, it is not possible to define symbols in advance. Instead, the language designers have

Language Specification

34

to cater for that. Figure 14 shows possible options for marking entity (meta) types that are

part of the MEMO OrgML meta model.

<EntityName> <EntityName> <EntityName>

belongs to

language A

belongs to

language B

belongs to

languages A & B

Figure 14: Options to mark the elements of a meta model as belonging to a particular language

4.7 Examples

The application of the MEMO meta modelling language allows for constructing a wide range

of meta models. The following examples serve to illustrate the use of both basic concepts that

will be required for most meta models as well as the use of more sophisticated or rarely re-

quired concepts. The first example, depicted in Figure 15 shows a meta model of the ERM.

This is certainly not a typical application, since the MEMO meta modelling language is sup-

posed to be used for the specification of more complex meta models.

name : String

AbstractEntity

EntityType RelationshipType

minCard : MinCardinality

maxCard : MaxCardinality

Link

uspecified thru

2,3

Attribute

E_Attribute R_Attribute

Domain

1,1

1,10,*

1,1

0,*

1,1

0,*
0,*

1,1

u
p

a
rt

 o
f

u
p

a
rt

 o
f

0,1

0,*

Figure 15: A meta model of the ERM

If modelling languages need to be integrated, the corresponding meta models will usually be

placed side by side in order to look for common concepts. The example in Figure 16 shows

the integration of the ERM with the DFD. The symbols used to distinguish both languages

make use of different colours only. The example illustrates the use of roles and constraints,

too.

The MEMO Meta Modelling Language – New Edition

 35

name : String

AbstractEntity

EntityType RelationshipType

minCard : MinCardinality

maxCard : MaxCardinality

Link

uspecified thru

2,3

Attribute

E_Attribute R_Attribute

Domain

FunctionDataFlowDataStore

name : String

AbstractFlowEntity

Interface

1,1

1,10,*

1,1

0,*

1,1

0,*
0,*

1,1

u
p

a
rt

 o
f

u
p

a
rt

 o
f

0,1

u
re

p
re

s
e

n
ts

u
re

p
re

s
e

n
ts

0,*

DFD

ERM

0,* 0,*

0,* 0,* 1,*1,*

0,* 0,*

0,* 0,*

1,1 0,*

0,*

uproduces

uconsumes producest

consumest

uproducesconsumest

Figure 16: Differentiating two meta models through specific symbols

The use of intrinsic features is a more sophisticated option offered by the MEMO meta mod-

elling language. The example in Figure 17 shows all concepts that can be used to express

intrinsic features: intrinsic entity types, intrinsic attributes and intrinsic associations. The

example shows a simplified application of the MEMO OrgML. In order to illustrate the meta

model’s semantic, the type and instance level are represented, too. The meta type Process

is associated to the meta type OrgUnit. To specify a particular organisation model, Pro-

cess is instantiated into OrderManagement and OrgUnit into MarketingDepartment.

Both meta types contain intrinsic attributes that are not instantiated on the type level, but

only on the instance level. The time a process is started or terminated is not a feature of a

type, but of a particular instance. This differentiation is not that obvious for the instantiation

of OrgUnit. This is because MarketingDepartment is defined as singleton (indicated

through the little box with an ‘S’ on top of the box that represents the type). The type does

not have a particular number of employees, nor was it founded at a certain date. Instead,

these features belong to the single instance of MarketingDepartment. Note that Market-

Language Specification

36

ingDepartment does not have to be defined as singleton. If, for example, a multinational

corporation specifies a reference organisation structure for all its national subsidiaries, then

there would be multiple instances. To express that every organisational unit, no matter of

what type it is, is headed by one employee, the type Employee could be associated with

OrgUnit. However, Employee does not apply to the meta level. Therefore, it is specified as

intrinsic. Note that one should be very careful with using this option, because normally a

meta model should not include types.

name : String

averageDuration : Time

 started : Time

 terminated : Time

Process

i

i

M0

M1

M2

instance of

averageDuration = 144

started : Time

terminated : Time

OrderManagement

started = 12:45:00

terminated = 14:55:20

p1: OrderManagement

averageNumberOfEmployes = 56

numberOfEmployees: PositiveInteger

founded: Date

MarketingDepartment

numberOfEmployees = 51

founded = 2002-05-22

o1: MarketingDepartment

0,*

name : String

averageNumberOfEmployees : Float

isSingleton: Boolean

 numberOfEmployees: Integer

 founded: Date

OrgUnit

i

S

i

0,*

in charge oft

i

lastName: String

firstName: String

dateOfBirth: Date

formalQual: String

Employeei

in charge oft iresponsible fort

0,*

lastName: String

firstName: String

dateOfBirth: Date

formalQual: String

Employee

in charge oft

0,*

lastName = Smith

firstName = John

dateOfBirth: 1952-10-15

formalQual: 'MBA'

e1: Employee

1,1

1,1 1,1

1,1

Figure 17: The use of intrinsic features

Figure 18 illustrates the use of language-level types, which are instantiated to instances on

the model level. The concepts shown on the M2 level could be part of a language for model-

ling logistic networks. RegularService serves to specify types of regular services provid-

ed by a shipper. In a corresponding model, a type of a regular service would be described by

the cities it serves. The cities as well as the respective countries are – for plausible reasons –

modelled as instances. The meta type RegularService includes intrinsic feature to allow

for describing particular instances.

The MEMO Meta Modelling Language – New Edition

 37

name : String

motorwayChargePerKM : Money

prefix: String

Country

M0

M1

M2

motorwayChargePerKM: 0.224

prefix: 'D'

Germany: Country
averageNumberOfEmployes = 56

numberOfEmployees: PositiveInteger

founded: Date

Berlin: City

0,*

name : String

trafficDensity: Level

population: Integer

City

located int

id: String

frequence: Frequence

averageLoad: Float

 started: Time

 finished: Time

RegularService

servest

i

located int

1,*

servest

started: 2010-11-7; 4:34

finished: 2010-11-7; 18:12

nw1: NorthWestS2

0,*

i

frequence: '1 per day'

averageLoad: 14.5

started: Time

finished: Time

NorthWestS2

1,1

Figure 18: The use of language-level types

4.8 Preliminary Evaluation

The MEMO meta modelling language was designed to meet the requirements presented in

2.1. Table 6 gives an overview of how well the requirements are satisfied. With respect to

some criteria (e.g. U1 or U3), such an assessment suggests to involve a larger number of lan-

guage designers. This has not happened yet.

Language Specification

38

Table 6: Evaluation of the MEMO meta modelling language

Req. Eval. Comment

F1 + The abstract syntax of the MML is formalized.

F2 + The semantics of the MML is formalized to a large extent.

F3 o Although the MML includes a few specific concepts, such as intrinsic features, it is restricted

to a small set of concepts. Unfortunately, the complexity of the meta meta model has grown

over time with the emergence of additional requirements for the specification of modelling

languages. As a consequence, it is not as simple as originally intended. Nevertheless, the

additional concepts are regarded as necessary to account for requirements A2 and A3.

F4 o The MML does not make use of an explicit meta meta modelling language. The language

concepts used to specify it correspond to the ERM, which is enhanced by a few concepts

only – such as specialisation and abstract entity types. While more than a dozen OCL con-

straints counter inappropriate interpretations, they are not sufficient for a comprehensive

formalisation.

U1 + Modelling experts should be familiar with most concepts offered by the MML, because they

correspond to the ERM. However, many prospective users will probably not know intrinsic

features.

U2 + The MEMO language architecture provides a clear differentiation of levels of abstraction.

U3 + The specific graphical notation of the MML promotes a clear differentiation of meta models

from models on other levels of abstraction.

A1 o The MML was specifically designed for specifying languages for enterprise modelling. Its

core concepts have been successfully used for this purpose for several years. Nevertheless, it

cannot be excluded that in future times requirements will occur, the MML does not account

for.

A2 + The MML’s sole purpose it the specification of meta models.

A3 + The MML makes use of the OCL, which can be applied to add further constraints on lan-

guage specifications.

A4 + The MML supports a clear mapping to object-oriented implementation languages. It also

supports a transformation of meta models into Ecore representations (see 6).

A5 + The MML features intrinsic features, the semantics of which is precisely defined. Intrinsic

features are also accounted for by specific notation elements.

A6 + The MML allows for specifying a concept of a meta model as type. Hence, it is possible to

specify modelling languages that offer concepts to model instances.

A7 o The MML is clearly not a standard. However, its instances (meta models) can be trans-

formed into Ecore representations or other standard representations such as XMI – which,

however, may cause the loss of semantics.

The MEMO Meta Modelling Language – New Edition

 39

5 The MEMO Language Architecture

MEMO consists of an extensible set of modelling languages. They are integrated through

shared concepts, which in turn are specified through the common meta modelling language.

This construction allows for a coherent integration of new languages that supplement the

existing set of languages. It provides a foundation for designing a corresponding set of inte-

grated modelling tools, too. Figure 19 shows the two levels of the language architecture and

the corresponding models on the type level: The common meta meta model specifies the

abstract syntax and semantics of the MEMO meta modelling language. It is instantiated into

the meta models specify the abstract syntax and semantics of the MEMO modelling lan-

guages, such as the Object Modelling Language (OML, [Fran98c], [Fran98d]), the Organisa-

tion Modelling Language (OrgML), the Strategy Modelling Language (SML) or the IT Model-

ling Language [Kirc08]. Further MEMO languages target modelling of resources [Jung08] or

various aspects of corporate knowledge management [Scha08]. Note that it may be required

to reconstruct the architecture occasionally. If, for instance, two languages share a growing

number of concepts, merging them into one language will improve the architecture’s trans-

parency. The bottom layer represents the models that are created by the modelling lan-

guages.

Meta Meta Model

Meta Models

Models

instance of

instance of

MML

OML OrgML SML ITML

Figure 19: The MEMO language layers

In addition to providing for an integrated set of modelling languages, the architecture should

also account for the construction of a tool environment: While the meta models can be re-

garded as a conceptual foundation for the design of a corresponding modelling tool, they

cannot be used directly for this purpose. Instead, they need to be reconstructed as object

The MEMO Language Architecture

40

models. These object models do not only represent the meta models, they need to be en-

hanced with tool specific features, e.g. features that relate to versioning, to user management

or to analysing and transforming models. In case a tool is supposed to support collaborative

modelling in a distributed setting, there is need to include concepts that allow for model

locking on various levels of detail. In order to provide a conceptual foundation for a tool

suite that allows for integrating various modelling editors, the object models that correspond

to particular meta models are merged into an integrated object model (see Figure 20). The

various editor of an integrated tool provide particular views on instances of this object mod-

el.

Meta Meta Model

Meta Models

Object Models

Integrated

Object Model

MEMO Center

instance of

reconstruction of

integrates

conceptual

foundation of

MML

OML OrgML SML ITML

Figure 20: The MEMO language architecture and corresponding conceptual foundation for modelling tools

The MEMO Meta Modelling Language – New Edition

 41

6 Outline of a Modelling Tool

The meta models specified through the MEMO MML can be used as a conceptual foundation

for the development of modelling tools. This requires reconstructing them as object models

(see chapter 5). With respect to the remarkable gain in productivity provided by the GMF,

we decided to use it as a foundation for the development of MEMO Center. MEMO Center a

is modelling environment that allows for creating various models, which are all integrated.

For this reason, it provides cross-model integrity checks. If, for instance, a business process

model includes a reference to an IT resource with an ITML model, the tool would prevent

deleting this resource or would – on explicit user demand – perform a consistent delete op-

eration in all related models. Furthermore, the tool allows for transforming models of vari-

ous kinds into other representations. For example, a business process model that is integrat-

ed with an ITML model could be transformed into the schema of a workflow management

system – for the description of a prototype, see [Jung04]. The set of MEMO modelling lan-

guages is supposed to be extensible, which implies the development of further model edi-

tors. For this reason, the creation and integration of new model editors as well as the mainte-

nance of editors should be supported by an efficient tool. The tool – which is currently under

construction – is built using the GMF. For this purpose, the meta meta model was recon-

structed as an instance of Ecore.

Figure 21 shows a simplified version of the Ecore instance that was created with the GMF.

Note that this model is represented as an instance of Ecore, while its presentation within the

model editor gives the impression that it is a class diagram. However, its semantics is differ-

ent from a class diagram. The connectors between two instances of EClass – such as

MetaEntity, MetaAttribute etc. – do not represent associations as they are known from

class diagrams. Instead, they represent references as they are used on the implementation

level. Therefore, each association in the MEMO meta meta model is represented by two links

in the Ecore instance. In addition to that, further peculiarities of Ecore have to be accounted

for. For this reason, creating a meta (meta) model in the GMF is certainly more demanding

(and confusing) than using a specialized editor – like the MML editor that is illustrated in

Figure 22.

Outline of a Modelling Tool

42

Figure 21: The MEMO meta meta model as an Ecore instance

The MEMO meta modelling editor allows for specifying MEMO meta models. As soon as a

meta model is finalized, the editor transforms it into a corresponding Ecore instance. This

includes the transformation of OCL statements. Subsequently, further specifications, such as

the concrete syntax, have to be added. This still requires remarkable expertise and effort.

Nevertheless, the MEMO meta modelling editor and the GMF, it is part of, facilitate the con-

struction of additional model editors to a great extent. Figure 22 illustrates through a simpli-

fied workflow how to develop an editor for a new MEMO modelling language.

MML Editor

Eclipse

Modelling

Environment
MEMO Center

create meta model specify concrete syntax modify/add code test model editor

generate compile

Ecore

instance

implemented thru

Figure 22: Simplified workflow for developing additional model editors within MEMO Center

The MEMO Meta Modelling Language – New Edition

 43

7 Future Research

The new version of the MEMO MML reflects more than ten years of experience with design-

ing languages for enterprise modelling. Hence, it is promising a relatively mature foundation

for specifying meta models. Nevertheless, new requirements may evolve that suggest modi-

fying the MML. Hence, we regard the MML as an instrument, but also as an ongoing subject

of our research. This is the case with the language architecture, too. Focussing on new do-

mains motivates the design of new modelling languages. The corresponding meta models

are then added to the language architecture. In order to keep the architecture consistent,

commonalities of the languages need to be analyzed from time to time. This may result in

redesigning the language architecture by merging languages.

MEMO is a method for enterprise modelling. A modelling method does not only consist of

one or more modelling languages, but also of one or more corresponding process models

that guide the application of the languages. A process model is comprised of the control flow

of phases that need to be completed. It also specifies the roles that are required for staffing a

corresponding project. In order to support the individual configuration of process models, a

specific language for designing process models can be applied. This can either be an adapted

version of a business process modelling language or a dedicated language for modelling pro-

ject phases, such as the one specified by Schauer as an extension of the MEMO language fam-

ily ([Scha08], p. 245 f.). A meta modelling language like the MML and a language for model-

ling process models provide the foundation for designing methods that satisfy particular

requirements. However, for many prospective users of a customized method designing it

from scratch would be too much effort. Therefore, our future research on method engineer-

ing will target approaches to reuse and adapt existing modelling languages and process

models.

A method that is specified through meta models for the language(s) and process model(s) it

includes, provides an excellent conceptual foundation for elaborate project management

tools. A process model – as an instance of a corresponding meta model – would represent a

certain type of managing projects. Its phases would be related to role types, types of models

and – as a prescriptive reference – to states of models that are supposed to be accomplished.

A particular project would then be represented through representations of models and a cor-

responding instance of the selected process model. Such a representation could be used to

generate the static structure of an information system that would manage all aspects of a

project that were specified in the method, e.g. states (or versions) of models accomplished (or

not) in any phase.

References

44

8 References

[AtKü07] Atkinson, C.; Kühne, T.: Reducing accidental complexity in domain models. In:

Software and Systems Modeling. Online First, June 2007

[Baar03] Baar, T.: The Definition of Transitive Closure with OCL – Limitations and Ap-

plications. In: Broy, M.; Zamulin, A.V. (Eds.): Perspectives of System Informatics.

Springer: Berlin, Heidelberg etc. 2003, p. 358-365

[Fill05] Fill, H.-G.: UML Statechart Diagrams on the ADONIS Metamodeling Platform,

Proceedings of the International Workshop on Graph-Based Tools (GraBaTs

2004), Electronic Notes in Theoretical Computer Science, Vol.127, No. 1, 2005, pp.

27-36

[Fran98a] Frank, U.: The MEMO Meta-Metamodel. Research Report No. 9, Institut für

Wirtschaftsinformatik, Universität Koblenz-Landau 1998

[Fran98b] Frank, U.: Evaluating Modelling Languages: Relevant Issues, Epistemological

Challenges and a Preliminary Research Framework. Research Report No. 15,

Institut für Wirtschaftsinformatik, Universität Koblenz-Landau 1998

[Fran98c] Frank, U.: The Memo Object Modelling Language (MEMO-OML), Arbeitsbe-

richte des Instituts für Wirtschaftsinformatik, Nr. 10, Koblenz 1998

[Fran98d] Frank, U.: Applying the MEMO-OML: Guidelines and Examples. Arbeitsbe-

richte des Instituts für Wirtschaftsinformatik, Nr. 11, Koblenz 1998

[Fran01] Frank, U.: Organising the Corporation: Research Perspectives, Concepts and

Diagrams. Research Report No. 25, Institut für Wirtschaftsinformatik, Universität

Koblenz-Landau 2001

[Fran03] Frank, U.: Ebenen der Abstraktion und ihre Abbildung auf konzeptionelle

Modelle - oder: Anmerkungen zur Semantik von Spezialisierungs- und In-

stanzierungsbeziehungen. In: EMISA Forum, Band 23, Nr. 2, 2003, pp. 14-18

[Fran10] Frank, U.: Outline of a Method for Designing Domain-Specific Modelling

Languages. ICB-Research Report, Institut für Informatik und Wirtschaftsinfor-

matik, Universität Duisburg-Essen, No. 42, 2010

[FrLa03] Frank, U.; Laak, B. van: Anforderungen an Sprachen zur Modellierung von Ge-

schäftsprozessen. Research Report No. 34, Institut für Wirtschaftsinformatik,

Universität Koblenz-Landau 2003

[GoSt90] Goldstein, R.C.; Storey, V.: Some findings on the intuitiveness of entity-

relationship constructs. In: Lochovsky, F.H. (Ed.), Entity-Relationship Approach

to Database Design and Querying. Elsevier Science: Amsterdam 1990, pp. 9-23

[Hitc95] Hitchman, S.: Practitioner perceptions on the use of some semantic concepts in

the entity-relationship model. In European Journal of Information Systems, vol.

4, 1995, pp. 31-40

[Jung07] Jung, J.: Entwurf einer Sprache für die Modellierung von Ressourcen im Kon-

text der Geschäftsprozessmodellierung. Logos: Berlin

The MEMO Meta Modelling Language – New Edition

 45

[Jung04] Jung, J.: Mapping of Business Process Models to Workflow Schemata. An

Example Using MEMO-OrgML and XPDL. Arbeitsberichte des Instituts für

Wirtschafts- und Verwaltungsinformatik, Universität Koblenz-Landau, Nr. 47,

2004

[JuKü+00] Junginger, S.; Kühn, H.; Strobl, R.; Karagiannis, D.: Ein Geschäftsprozessma-

nagement-Werkzeug der nächsten Generation - ADONIS: Konzeption und

Anwendungen. In: Wirtschaftsinformatik, vol. 42, no. 5, 2000, pp. 392-401

[KeLy+96] Kelly, S., Lyytinen, K., Rossi, M.: MetaEdit+: A Fully Configurable Multi-User

and Multi-Tool CASE and CAME Environment, in Proceedings of the 8th Inter-

national Conference on Advanced Information Systems Engineering, CAiSE'96,

Heraklion, Crete, Greece, May 1996, ed. by Constantopoulos et al., Lecture Notes

in Computer Science No. 1080, Springer: Heidelberg 1996, pp. 1-21

[Kirc08] Kirchner, L.: Eine Methode zur Unterstützung des IT-Managements im Rah-

men der Unternehmensmodellierung. Logos Verlag: Berlin 2008

[Lore96] Lorenz, K: Sprache. In: Enzyklopädie Philosophie und Wissenschaftstheorie.

Ed. by J. Mittelstraß. Vol. 4, Metzler: Stuttgart, Weimar 1996, pp. 49-53

[MaPa+92] Mayer, R.J.; Painter, M.K.; deWitte, P.S.: IDEF Family of Methods for Concur-

rent Engineering and Business Re-Engineering Applications. Knowledge Based

Systems: College Station 1992

[Odel98] Odell, J.: Power Types. In: Odell, J. (Ed.): Advanced Object-Oriented Analysis

and Design Using UML. , Cambridge University Press: Cambridge 1998, pp. 23-

33 (revised version of: Odell, J.: Power Types. In: Journal of Object-Oriented Pro-

gramming, Vol. 7, No. 2, 1994, pp. 8-12

[OpHe99] Opdahl, A .L.; Henderson-Sellers, B.: Evaluating and Improving OO Modelling

Languages Using the BWW-Model. In Proceedings of the Information Systems

Foundations Workshop (Ontology, Semiotics and Practice), (digital publication),

Sydney 1999

[OMG05] OMG: Unified Modeling Language Specification. Version 1.4.2, 2005

[OMG06a] OMG: Meta Object Facility (MOF) Core Specification. Version 2.0, 2006

[OMG06b] OMG: Unified Modeling Language: Infrastructure. Version 2.1.1, 2006

[OMG06c] OMG: Object Constraint Language. OMG Available Specification. Version 2.0,

2006

[OMG07] OMG: OMG Unified Modeling Language (OMG UML), Superstructure. Versi-

on 2.1.2, 2007

[Scha08] Schauer, H.: Unternehmensmodellierung für das Wissensmanagement. Eine

multi-perspektivische Methode zur ganzheitlichen Analyse und Planung. Dis-

sertation, University Duisburg-Essen 2008

[SüEb97] Süttenbach, R.; Ebert, J.: A Booch Metamodel. Fachberichte Informatik, 5/97,

Universität Koblenz-Landau 1997

http://www.jyu.fi/~kelly/
http://www.cs.jyu.fi/~kalle/
http://www.jyu.fi/~mor/

References

46

[Stei00] Steimann, F.: Formale Modellierung mit Rollen. Habilitationsschrift. Universität

Hannover, Hannover 2000

[Webe97] Weber, R.: Ontological Foundations of Information Systems. Coop-

ers&Lybrand: Melbourne 1997

[Wied10] Wiedenbruch, A.: A Method for Modeling Container-based Intermodal Trans-

portation Networks. Master Thesis, University Duisburg-Essen 2010

Previously published ICB - Research Reports

Previously published ICB - Research Reports

2010

No 42 (December)

 Frank, Ulrich: “Outline of a Method for Designing Domain-Specific Modelling Languages”

No 41 (December)

 Adelsberger,Heimo; Drechsler, Andreas (Eds): “Ausgewählte Aspekte des Cloud-Computing aus einer

IT-Management-Perspektive – Cloud Governance, Cloud Security und Einsatz von Cloud Computing

in jungen Unternehmen”

No 40 (October 2010)

Bürsner, Simone; Dörr, Jörg; Gehlert, Andreas; Herrmann, Andrea; Herzwurm, Georg; Janzen, Dirk;

Merten, Thorsten; Pietsch, Wolfram; Schmid, Klaus; Schneider, Kurt; Thurimella, Anil Kumar (Eds):

“16th International Working Conference on Requirements Engineering: Foundation for Software Quali-

ty. Proceedings oft he Workshops CreaRE, PLREQ, RePriCo and RESC“

No 39 (May 2010)

Strecker, Stefan; Heise, David; Frank, Ulrich: “Entwurf einer Mentoring-Konzeption für den Studien-

gang M.Sc. Wirtschaftsinformatik an der Fakultät für Wirtschaftswissenschaften der Universität Duis-

burg-Essen“

No 38 (February 2010)

Schauer, Carola: “Wie praxisorientiert ist die Wirtschaftsinformatik? Einschätzungen von CIOs und

WI-Professoren“

No 37 (January 2010)

Benavides, David; Batory, Don; Grunbacher, Paul (Eds.): “Fourth International Workshop on Variabil-

ity Modelling of Software-intensive Systems”

2009

No 36 (December 2009)

Strecker, Stefan: “Ein Kommentar zur Diskussion um Begriff und Verständnis der IT-Governance - An-

regungen zu einer kritischen Reflexion”

No 35 (August 2009)

Rüngeler, Irene; Tüxen, Michael; Rathgeb, Erwin P.:“Considerations on Handling Link Errors in

STCP“

No 34 (June 2009)

Karastoyanova, Dimka; Kazhamiakan, Raman; Metzger, Andreas; Pistore, Marco (Eds.): “Workshop on

Service Monitoring, Adaption and Beyond”

No 33 (May 2009)

Adelsberger,Heimo; Drechsler , Andreas; Bruckmann, Tobias; Kalvelage, Peter; Kinne, Sophia; Pellin-

ger, Jan; Rosenberger, Marcel; Trepper, Tobias: „Einsatz von Social Software in Unternehmen – Studie

über Umfang und Zweck der Nutzung“

No 32 (April 2009)

Barth, Manfred; Gadatsch, Andreas; Kütz, Martin; Rüding, Otto; Schauer, Hanno; Strecker, Stefan:

„Leitbild IT-Controller/-in – Beitrag der Fachgruppe IT-Controlling der Gesellschaft für Informatik

e. V.“

No 31 (April 2009)

Frank, Ulrich; Strecker, Stefan: “Beyond ERP Systems: An Outline of Self-Referential Enterprise Sys-

tems – Requirements, Conceptual Foundation and Design Options”

No 30 (February 2009)

Schauer, Hanno; Wolff, Frank: „Kriterien guter Wissensarbeit – Ein Vorschlag aus dem Blickwinkel der

Wissenschaftstheorie (Langfassung)“

No 29 (January 2009)

Benavides, David; Metzger, Andreas; Eisenecker, Ulrich (Eds.): “Third International Workshop on Var-

iability Modelling of Software-intensive Systems”

2008

No 28 (December 2008)

Goedicke, Michael; Striewe, Michael; Balz, Moritz: „Computer Aided Assessments and Programming

Exercises with JACK“

No 27 (December 2008)

Schauer, Carola: “Größe und Ausrichtung der Disziplin Wirtschaftsinformatik an Universitäten im

deutschsprachigen Raum - Aktueller Status und Entwicklung seit 1992”

No 26 (September 2008)

Milen, Tilev; Bruno Müller‐Clostermann: “ CapSys: A Tool for Macroscopic Capacity Planning”

No 25 (August 2008)

Eicker, Stefan; Spies, Thorsten; Tschersich, Markus: “Einsatz von Multi-Touch beim Softwaredesign am

Beispiel der CRC Card-Methode”

No 24 (August 2008)

Frank, Ulrich: “The MEMO Meta Modelling Language (MML) and Language Architecture – Revised

Version”

No 23 (January 2008)

Sprenger, Jonas; Jung, Jürgen: “Enterprise Modelling in the Context of Manufacturing – Outline of an

Approach Supporting Production Planning”

No 22 (January 2008)

Heymans, Patrick; Kang, Kyo-Chul; Metzger, Andreas, Pohl, Klaus (Eds.): “Second International

Workshop on Variability Modelling of Software-intensive Systems"

2007

No 21 (September 2007)

Eicker, Stefan; Annett Nagel; Peter M. Schuler: “Flexibilität im Geschäftsprozess-management-

Kreislauf"

No 20 (August 2007)

Blau, Holger; Eicker, Stefan; Spies, Thorsten: “Reifegradüberwachung von Software"

Previously published ICB - Research Reports

No 19 (June 2007)

Schauer, Carola: “Relevance and Success of IS Teaching and Research: An Analysis of the „Relevance

Debate’

No 18 (May 2007)

Schauer, Carola: “Rekonstruktion der historischen Entwicklung der Wirtschaftsinformatik: Schritte der

Institutionalisierung, Diskussion zum Status, Rahmenempfehlungen für die Lehre”

No 17 (May 2007)

Schauer, Carola; Schmeing, Tobias: “Development of IS Teaching in North-America: An Analysis of

Model Curricula”

No 16 (May 2007)

Müller-Clostermann, Bruno; Tilev, Milen: “Using G/G/m-Models for Multi-Server and Mainframe Ca-

pacity Planning”

No 15 (April 2007)

Heise, David; Schauer, Carola; Strecker, Stefan: “Informationsquellen für IT-Professionals – Analyse

und Bewertung der Fachpresse aus Sicht der Wirtschaftsinformatik”

No 14 (March 2007)

Eicker, Stefan; Hegmanns, Christian; Malich, Stefan: “Auswahl von Bewertungsmethoden für Soft-

warearchitekturen”

No 13 (February 2007)

Eicker, Stefan; Spies, Thorsten; Kahl, Christian: “Softwarevisualisierung im Kontext serviceorientierter

Architekturen”

No 12 (February 2007)

Brenner, Freimut: “Cumulative Measures of Absorbing Joint Markov Chains and an Application to

Markovian Process Algebras”

No 11 (February 2007)

Kirchner, Lutz: “Entwurf einer Modellierungssprache zur Unterstützung der Aufgaben des

IT-Managements – Grundlagen, Anforderungen und Metamodell”

No 10 (February 2007)

Schauer, Carola; Strecker, Stefan: “Vergleichende Literaturstudie aktueller einführender Lehrbücher der

Wirtschaftsinformatik: Bezugsrahmen und Auswertung”

No 9 (February 2007)

Strecker, Stefan; Kuckertz, Andreas; Pawlowski, Jan M.: “Überlegungen zur Qualifizierung des wissen-

schaftlichen Nachwuchses: Ein Diskussionsbeitrag zur (kumulativen) Habilitation”

No 8 (February 2007)

Frank, Ulrich; Strecker, Stefan; Koch, Stefan: “Open Model - Ein Vorschlag für ein Forschungspro-

gramm der Wirtschaftsinformatik (Langfassung)”

2006

No 7 (December 2006)

Frank, Ulrich: “Towards a Pluralistic Conception of Research Methods in Information Systems Re-

search”

No 6 (April 2006)

Frank, Ulrich: “Evaluation von Forschung und Lehre an Universitäten – Ein Diskussionsbeitrag”

No 5 (April 2006)

Jung, Jürgen: “Supply Chains in the Context of Resource Modelling”

No 4 (February 2006)

Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:

An interpretive evaluation of interviews with renowned researchers, Part III – Results

Wirtschaftsinformatik Discipline”

2005

No 3 (December 2005)

Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:

An interpretive evaluation of interviews with renowned researchers, Part II – Results Information Sys-

tems Discipline”

No 2 (December 2005)

Lange, Carola: “Development and status of the Information Systems / Wirtschaftsinformatik discipline:

An interpretive evaluation of interviews with renowned researchers, Part I – Research Objectives and

Method”

No 1 (August 2005)

Lange, Carola: „Ein Bezugsrahmen zur Beschreibung von Forschungsgegenständen und -methoden in

Wirtschaftsinformatik und Information Systems“

	

�������������������

���
���������������������������
���������������������

42
Ulrich Frank

Outline of a Method for Designing
Domain-Specific Modelling Languages

ICB-Research Report No.42

December 2010

Research Group Core Research Topics

Prof. Dr. H. H. Adelsberger
Information Systems for Production and Operations
Management

E-Learning, Knowledge Management, Skill-Management,
Simulation, Artificial Intelligence

Prof. Dr. P. Chamoni
MIS and Management Science / Operations Research

Information Systems and Operations Research,
Business Intelligence, Data Warehousing

Prof. Dr. F.-D. Dorloff
Procurement, Logistics and Information Management

E-Business, E-Procurement, E-Government

Prof. Dr. K. Echtle
Dependability of Computing Systems

Dependability of Computing Systems

Prof. Dr. S. Eicker
Information Systems and Software Engineering

Process Models, Software-Architectures

Prof. Dr. U. Frank
Information Systems and Enterprise Modelling

Enterprise Modelling, Enterprise Application Integration,
IT Management, Knowledge Management

Prof. Dr. M. Goedicke
Specification of Software Systems

Distributed Systems, Software Components, CSCW

Prof. Dr. V. Gruhn
Software Engineering

Design of Software Processes, Software Architecture, Usabi-
lity, Mobile Applications, Component-based and Generative
Software Development

Prof. Dr. T. Kollmann
E-Business and E-Entrepreneurship

E-Business and Information Management,
E-Entrepreneurship/E-Venture, Virtual Marketplaces and
Mobile Commerce, Online-Marketing

Prof. Dr. B. Müller-Clostermann
Systems Modelling

Performance Evaluation of Computer and Communication
Systems, Modelling and Simulation

Prof. Dr. K. Pohl
Software Systems Engineering

Requirements Engineering, Software Quality Assurance,
Software-Architectures, Evaluation of COTS/Open Source-
Components

Prof. Dr.-Ing. E. Rathgeb
Computer Networking Technology

Computer Networking Technology

Prof. Dr. E. Rukzio
Mobile Human Computer Interaction

Novel Interaction Technologies, Personal Projectors,
Pervasive User Interfaces, Ubiquitous Computing

Prof. Dr. A. Schmidt
Pervasive Computing

Pervasive Computing, Uniquitous Computing, Automotive User
Interfaces, Novel Interaction Technologies, Context-Aware
Computing

Prof. Dr. R. Unland
Data Management Systems and Knowledge Representation

Data Management, Artificial Intelligence, Software
Engineering, Internet Based Teaching

Prof. Dr. S. Zelewski
Institute of Production and Industrial Information Management

Industrial Business Processes, Innovation Management,
Information Management, Economic Analyses

ISSN 1860-2770 (Print)
ISSN 1866-5101 (Online)

	Cover_No43_Vorderseite
	ICB-Report_MEMO_2ndEdition_NewLayout.pdf
	ICB_RR_Rückseite

