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Preleminary Remark
The work presented in this note is planned to evolve into the theoretical core of the author’s
doctoral thesis and should be regarded as work in progress. Objections and suggestions are
welcome.

Abstract
Markov Models are of outstanding importance in the performance and reliability evaluation of
computer systems and communication networks. In this paper we aim at contributing to the
field of Markovian Process Algebras (MPAs). An MPA model is (or may be) the composition
of several concurrent sub-components (each of which describes an underlying Markov chain)
which may interact with each other through synchronisation. On the one hand the existence
of sub-components implies the possibility of the state space explosion problem, i.e. the size of
the state space of the Markov chain underlying the composite component grows exponentially
in the number of sub-components. On the other hand the interaction of sub-components in
general negates the property of independence of their underlying Markov chains, and hence
forbids a product-form solution for steady state probabilities.

Our target quantities are single steady state probabilities of the Markov chain underlying
the composite component. We consider composite components which possess only global
synchronisations, i.e. every sub-component is involved in every synchronisation. For this class
of MPA models the behaviour of the composite component between two successive synchroni-
sations can be described by the joint process of several absorbing Markov chains.

First, a new result on cumulative measures of absorbing joint Markov chains is presented.
We compute the mean time to absorption and the mean time the joint Markov chain spends in
a certain set before absorption. Our computations do not operate on the state space of the joint
Markov chain, and hence the problem of state space explosion is avoided. The computational
effort of our method rather depends on convergence properties of the joint Markov chain.

Afterwards, this result is applied to compute steady state probabilities for a class of com-
posite components specified as PEPA models which are popular ambassadors of MPAs. It is
easily understood that these results carry over from PEPA to other MPA variants.
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1 Introduction

The analysis of stochastic systems is a branch of applied research which spreads across many
disciplines of science. Areas of application include performance and reliability of computing
systems and telecommunication networks, and also fields like reaction kinetics in physical
chemistry and financial risk theory, to name but a few.

Often a model of such a stochastic system is forced to fit into a Markovian framework, i.e. a
Markov chain can be extracted from that model. As a consequence the model can be analysed
by means provided by the rich and often times elegant theory of Markov chains. In addition,
formalisms to build (or describe) Markovian models exist. These formalisms constitute the ad-
vantage that they (may or may not) equip the model, or certain activities or states of that model,
with an intuitive meaning. Queueing stations (and networks), stochastic Petri nets and Marko-
vian process algebras are outstanding examples for formalisms which have shown their use-
fulness in the areas of performance and reliability evaluation of computer and communication
networks. For an extended overview and application examples see e.g. [BGMT98], [CaTu02],
[HLR00] and [BHK00], or the latest proceedings of the conferences MMB ([GeHe06]), QEST
([AMR06]) and Performance ([MKS06]).

When dealing with Markov chain formalisms, the first two questions should be: a) Is that
formalism useful from the modellers point of view? and b) Can the special structure which
the formalism induces on the underlying Markov chain be exploited to derive efficient (or el-
egant) solutions of that Markov chain? For instance, the solution of a birth-death process
is given by a simple symbolic expression; BCMP networks possess a product-form solution
([BCMP75]); nearly completely decomposable Markov chains can be partitioned into suited
subchains, where transitions inside of subchains and transitions between subchains can be
treated separately ([Cour77]).

In this paper we aim at contributing to the field of Markovian Process Algebras (MPAs).
An MPA model consists of several concurrent components which may interact with each other
through synchronisation. On the one hand the existence of concurrent components imply the
possibility of the state space explosion problem, and on the other hand the interaction of com-
ponents in general negates the property of independence of components, and hence forbids
a product-form solution. We will make use of the fact that for a certain class of MPA models
the concurrent components behave independently of each other between successive points of
synchronisation.

The paper is organised as follows: In chapter 2 of this paper we present a new result
on absorbing continuous time Markov chains which are built of several marginal absorbing
Markov chains. This result is applied to compute steady state probabilities for a class of PEPA
components in chapter 3 (PEPA is a popular variant of an MPA).

ad chapter 2: For a Markov chain U = (U1, . . . , Um), with the marginal absorbing Markov
chains Ui, i = 1 . . . m, we propose a new method to compute:

1
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(a) The mean time to absorption.

(b) The mean time which the Markov chain U spends in some set A before absorption. The
set A is restricted to possess the form A = ×m

i=1Ai, where the Ai are subsets of the
marginal state spaces.

Unlike classical approaches to compute these two quantities our method does not carry out
operations on the global state space, i.e. on the state space of U . Note, that the global state
space grows exponentially in the number m of involved marginal processes.

Without diving into detail at this point, we explain the basic idea of our method. Let A =
×m

i=1Ai be a subset of the state space of U , where the Ai are subsets of the marginal state
spaces. The key will be to reformulate the probabilities ν(n)[A], n ≥ 0, that the discrete time
Markov chain (DTMC) embedded in U – more precisely this DTMC is obtained from U by uni-
formisation – is in some set A in the n−th step. At first the marginal CTMCs are uniformised,
which yields embedded discrete time Markov chains. These DTMCs are then solved in iso-
lation. In this context the solution is considered the discrete function νi(·)[Ai], where for fixed
i and Ai the quantity νi(n)[Ai] is the probability that the DTMC embedded in Ui is in set Ai in
the n−th step. By a convolution-like operator � these solutions are combined to the solution of
the DTMC embedded in U . That means we obtain a function ν(·)[A], where on the one hand
ν(n)[A] = (ν1[Ai] � · · · � νm[Am])(n) and on the other hand ν(n)[A] is the probability that the
DTMC embedded in the joint Markov chain U is in set A in the n−th step. Provided that the
expected values in (a) and (b) exist, they can be expressed by infinite and converging series
involving the functions ν[S] (i.e. take A := S, set of absorbing states of U ) and ν[A] (i.e. take
A := A).

The method we propose is an exact method, where, of course, the computation of the series
just mentioned requires truncation at a certain index. The time complexity is O(Nmd2 + mN2),
where m is the number of marginal CTMCs, d is the maximal size of the marginal state spaces
and N is the truncation index of the infinite series which depends on convergence properties
(eigenvalues) of the joint CTMC and the desired accuracy.

ad chapter 3: Stochastic process algebras have become popular since the formalism was
proposed by Herzog in [Herz90]. In particular, Markovian Process Algebras (MPAs) have drawn
much attention due to the the fact that the quantitative solution of an MPA happens to be the
solution of the underlying Markov chain. Examples for MPAs involve PEPA ([Hill96]), EMPA
([BDG94], [BeGo96]), MTIPP ([HeRe02]) and IMC ([Herm02]).

On the one hand MPAs allow to define components in isolation whose behaviour is deter-
mined by underlying Markov chains. On the other hand these components can be combined to
a composite component by some cooperation operator. This operation forces components to
interact or cooperate with each other via synchronisation. Basically, all components act inde-
pendently of each other until they reach some point, where they are forced to synchronise with
other components. Components that are ready to synchronise must wait for the other involved
components to become ready on their part. When all processes have reached a point where
they are ready to synchronise the synchronisation is executed and afterwards the components
again evolve independently of each other. Depending on the specific MPA the synchronisation
itself can possess an exponentially distributed duration or it can be timeless. In either case all
synchronising components begin to synchronise at a common time instant and they end the
synchronisation at a common time instant (here, we interpreted a timeless synchronisation to
possess the duration 0).

Obviously, waiting times (until synchronisation can take place) of components depend on
the behaviour of other components, and hence synchronising components are not independent

2
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of each other. In general, this permits product-form solutions for the Markov chain underlying
the composite component. Since the state space of this Markov chain grows exponentially
with the number of sub-components, the computation of quantitative measures is subject to the
state space explosion problem. An overview of different methods which tackle this challenge
can be found in [Hill99].

In his dissertation [Bohn02] Bohnenkamp took on a view on MPAs which had not been in-
vestigated up to that point. He considered a special class of MPA components where there
exist only global synchronisations, i.e. every sub-component must participate in every syn-
chronisation. Then, points of synchronisation define an embedded DTMC of the composite
component. Together with the first passage times from embedded states to their embedded
successor states the embedded DTMC defines an embedded semi-Markov chain. Solving the
embedded DTMC and computing the expected values of these first passage times yields the
steady state distribution of the semi-Markov chain. If in addition some more computations are
carried out on local components, local steady state probabilities can be determined.

In [Bohn02] Bohnenkamp exploited the fact that such a first passage time is the maximum
of, say m, phase-type distributions. In other words, it is the mean value of the maximum of the
times to absorption of m absorbing Markov chains. An algorithm to compute this mean time is
given in the cited work.

In chapter 3 we take on the view of Bohnenkamp and apply it to PEPA. We realise that the
maximum of the times to absorption of m absorbing Markov chains is just the time to absorption
of the joint CTMC of these absorbing Markov chains. We compute the mean time to absorption
of the joint CTMC, and in addition we will also compute the mean time the joint CTMC spends
in some set A before absorption. For these computations we employ the method developed
in chapter 2, and hence we never operate on the global state space of the composite PEPA
component. Due to computing these additional quantities, we will be able to derive the global
steady state probability that the composite PEPA component is in set A.

In chapter 4 we conclude.

3



2 Cumulative Measures of Absorbing
Joint Markov Chains

This chapter deals with cumulative measures of an absorbing Markov chain U which is the
joint process of m marginal absorbing CTMCs Ui, i = 1 . . . m. In this context the mean time
to absorption and the mean time spent in some set A before absorption will be of particular
interest to us.

We set out with some basic properties of absorbing joint Markov chains in section 2.1. Meth-
ods that compute the two quantities mentioned above are briefly discussed. Furthermore, basic
convergence properties of the joint process U and the strongly related topic of eigenvalues are
addressed.

Sections 2.2 and 2.3 contain the actual accomplishment of this chapter. At first we show
how transient probabilities of a discrete time Markov chain embedded in U can be obtained in
a compositional way by transient probabilities of DTMCs embedded1 in the marginal CTMCs
Ui, i = 1 . . . m, and hence the global state space (i.e. the state space of U ) needs not to
be constructed nor being operated on. This results in formulas for the computation of the
desired two mean values (the mean time to absorption and the mean time spent in A before
absorption) whose computation time does not depend on the size of the global state space.
The computation times of these formulas depend on the number of marginal CTMCs, the sizes
of the marginal state spaces and the convergence speed of the joint CTMC U . The algorithm
which computes the two mean values is the topic of section 2.3.

Finally, a list containing most of the notation used throughout this chapter can be found in
section 2.4.

1The embedded DTMCs refer to uniformised variants of U and the U i, i = 1 . . . m.

4
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2.1 Basic Properties of Absorbing Joint Markov Chains

Let Ui = (Ui(t))t∈R≥0
, i = 1, . . . ,m, be m independent homogeneous absorbing continuous

time Markov chains, where Ui, 1 ≤ i ≤ m, is defined by the finite state space Ei, the starting
state s′i ∈ Ei, the set of absorbing states Si ⊂ Ei,and the generator matrix Qi = (Qi(j, �))j,�∈Ei

.
Now define the Markov chain U as the joint process of U1, . . . , Um, i.e. U = (U(t))t∈R≥0

:=
(U1, . . . , Um). Then the state space of U is given by E = ×m

i=1Ei, the starting state of U is
s′ = (s′1, . . . , s′m) and the set of absorbing states is given by S = ×m

i=1Si. It is well-known that
the generator matrix Q of the joint CTMC U can be represented by the Kronecker sum of the
generator matrices of the marginal CTMCs, i.e.

Q = ⊕m
i=1Qi. (2.1)

The transient probability distribution p(t) of U at time t is then given by the matrix exponential

p(t) = p(0)eQt, (2.2)

where p(0) denotes the initial distribution of U . Alternatively, the distribution p(t) can be ex-
pressed as

p(t) =
∞∑

n=0

(qt)n

n!
e−qtp(0)Pn, (2.3)

where P = I + 1
qQ for some q ≥ maxk∈E{|Q(k, k)|}. Defining ν(0) := p(0) and ν(n) = ν(n −

1)P = p(0)Pn, for n > 0, we also have

p(t) =
∞∑

n=0

(qt)n

n!
e−qtν(n). (2.4)

Algorithms building on equation (2.3) or (2.4) to compute transient distributions are widely
known as uniformisation method or Jensen’s method. Note, that it is recommended to choose
q > maxk∈E{|Q(k, k)|}, in order to avoid periodicities.

Assumptions Throughout This Paper. Throughout this paper we impose the following re-
strictions on the CTMC U .

• The marginal state spaces Ei, i = 1 . . . m, are finite. This implies that the state space E
of U is finite.

• P = I + 1
qQ is aperiodic. Note, that q > maxk∈E{|Q(k, k)|} implies aperiodicity.

• All states not contained in S are transient. That means U possesses exactly |S| recurrent
classes, where each absorbing state forms a recurrent class.

2.1.1 Convergence Speed and Eigenvalues

Eigenvalues of P . The following properties about the eigenvalues of the matrix P are well-
known (see e.g. [Stew94]).

• P possesses dim(P ) eigenvalues, if counting multiplicities.

• P is a stochastic matrix, and hence the multiplicity of the eigenvalue 1 equals the number
of recurrent classes of U , i.e. the number of absorbing states |S|.

• Since P is aperiodic, there are no other eigenvalues than 1 with modulus 1.

5
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In the following assume that P possesses d distinct eigenvalues, i.e. we are not counting
multiplicities, and assume the following indexing

1 = |λ1| > |λ2| ≥ · · · ≥ |λd|. (2.5)

Convergence Speed of U . It is a well-known fact that the convergence speed of a discrete
time Markov chain is strongly connected with the eigenvalues of the transition matrix P . To
understand this we consider the following iterative procedure that computes the stationary dis-
tribution π of this Markov chain.

ν(k) = ν(k − 1)P, k ≥ 1, (2.6)

lim
k→∞

ν(k) → π, (2.7)

where ν(0) is the initial probability distribution. We see that one iteration step of (2.6) is exactly
one step of the power method to compute the eigenpair (λ1, π) of P , where λ1 is the largest
eigenvalue in modulus of P and π is the corresponding left eigenvector. Of course λ1 = 1, since
P is stochastic and π is a stationary distribution of the discrete time Markov chain.

The speed of convergence of (2.6) is connected to the eigenvalue λ2 by

‖ ν(k) − π ‖= O

(∣∣∣∣λ2

λ1

∣∣∣∣k
)

. (2.8)

Hence, there exists a positive constant c′, with

lim
k→∞

‖ ν(k) − π ‖= c′ · |λ2|k. (2.9)

From this follows that there exists also a positive constant c′′, such that with the set of absorbing
states S

lim
k→∞

|ν(k)(S) − π(S)| = c′′ · |λ2|k. (2.10)

With π(S) = 1, ν(k)(S) ≤ 1, this can be written as

lim
k→∞

1 − ν(k)(S)
|λ2|k = c′′. (2.11)

This implies the important relation

lim
k→∞

1 − ν(k + 1)(S)
1 − ν(k)(S)

= |λ2|. (2.12)

Provided that the values ν(k)(S) are known up to some suited index K, |λ2| and the constant
c′′ can be estimated by exploiting equations (2.12) and (2.11). Of course, for a suited constant
c > c′′ the following bound can be given

1 − ν(k)(S) ≤ c · |λ2|k, for k > K. (2.13)

Eigenvalues and the Marginal CTMCs. In the preceding paragraph we have seen that the
second largest eigenvalue modulus |λ2| of P can be estimated if the quantities ν(n)(S) are
known up to a certain index K. Here, we briefly point out how this eigenvalue modulus can be
bounded in terms of eigenvalues of the marginal generator matrices Q i, i = 1 . . . m.

6
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Corollary 1. For the generator matrices Qi, i = 1 . . . m, and Q = ⊕m
i=1Qi let P = I + 1/qQ and

Pi = I + 1/qiQi, where qi ≥ maxj{|Qi(j, j)|}, i = 1 . . . m, and q ≥ maxj{|Q(j, j)|}. Assume
that P and the Pi, i = 1 . . . m, are aperiodic. Then the following is true.

(U.1) λ is an eigenvalue of Q ⇐⇒ ∃ λ(i), i = 1 . . . m, with λ(i) eigenvalue of Qi and λ =
∑

i λ
(i).

(U.2) λ is an eigenvalue of Q ⇐⇒ λ′ := λ/q + 1 is an eigenvalue of P . This result also holds if
replacing Q, P and q by Qi, Pi and qi.

(U.3) ∃ λ(i), i = 1 . . . m, with λ(i) eigenvalue of Qi and λ′ = 1 + 1/q
∑

i λ(i) ⇐⇒ λ′ is an eigen-
value of P .

(U.4) Q and Qi, i = 1 . . . m, possess the eigenvalue 0.

(U.5) Every eigenvalue λ(i) �= 0 of Qi lies in the complex plane within a circle with center −qi

and radius qi.

(U.6) Every eigenvalue λ(i) of Qi satisfies |qi + λ(i)| ≤ qi. If λ(i) �= 0 then we have the strict
inequality |qi + λ(i)| < qi

Proof. (U.1) is a basic property of the Kronecker sum by which Q can be represented (cf.
equation (2.1)). (U.2) is a direct consequence of P = I + 1

qQ. (U.3) follows by combining (U.1)
and (U.2). (U.4) results from Q and the Qi, i = 1 . . . m, being singular matrices. (U.5) follows
from the fact that every eigenvalue 1 + 1/qiλ

(i) �= 1 of the stochastic and aperiodic matrix
Pi := I + 1/qiQi lies within the unit circle in the complex plane, and hence transforming Pi into
Qi implicates that the eigenvalues of Pi are shifted to the left by 1 and afterwards scaled by the
factor qi. (U.6) follows from (U.5) by noting that for every eigenvalue λ(i) �= 0 of Qi the number
qi + λ(i) lies in the complex plane within a circle with center 0 and radius qi.

The following corollary bounds the second eigenvalue modulus |λ2| of P in terms of eigen-
values of the Qi, i = 1 . . . m.

Corollary 2. For the generator matrices Qi, i = 1 . . . m, and Q = ⊕m
i=1Qi let P = I + 1/qQ,

where qi ≥ maxj{|Qi(j, j)|}, i = 1 . . . m, and q = q1 + · · ·+ qm. Assume that P is aperiodic. Let
Λi be the set of distinct eigenvalues of Qi, i = 1 . . . m, and define the values max and i(max)
as

max = max
1≤i≤m

λ(i)∈Λi\{0}
{|qi + λ(i)|} and i(max) = i ⇐⇒ max = |qi + λ(i)|. (2.14)

Then the second largest eigenvalue modulus of P satisfies

|λ2| ≤ 1
q

⎛
⎜⎜⎝max +

∑
1≤i≤m

i�=i(max)

qi

⎞
⎟⎟⎠ . (2.15)

Proof. First note that by the representation of Q as the Kronecker sum of the Qi, from qi ≥
maxj{|Qi(j, j)|}, i = 1 . . . m, follows q = q1 + · · · + qm ≥ maxj{|Q(j, j)|}. Thus, P is indeed
a stochastic matrix. According to (U.1) for every eigenvalue λ′ of P there exist λ(i) ∈ Λi,
i = 1 . . . m, with

λ′ = 1 +
1
q

m∑
i=1

λ(i) =
1
q

m∑
i=1

qi + λ(i), (2.16)

7
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where the last term is obtained by obeying q = q1 + · · · + qm. λ′ is a complex number, and
hence application of the triangle equality yields

|λ′| = |1 +
1
q

m∑
i=1

λ(i)| ≤ 1
q

m∑
i=1

|qi + λ(i)|. (2.17)

(U.4) and (U.6) state that the sum on the right-hand side becomes maximal if and only if all of
the λ(i) equal 0. In this case both |λ′| and the sum on the right-hand side become 1.

Hence in the representation (2.16) of the eigenvalue λ2 of P in terms of eigenvalues λ(i), i =
1 . . . m, at least one of the λ(i) must not equal 0. Clearly the maximum value of 1

q

∑m
i=1 |qi+λ(i)|,

where at least one of the λ(i) not equal 0, is given by (2.15).

2.1.2 The Mean Time to Absorption and Related Quantities

Two quantities of U will be of interest to us throughout the rest of this chapter: the mean time
to absorption and the mean time spent in some set A before absorption. Obviously, the latter
quantity is a fraction of the mean time to absorption.

At first we wish to give some insight into classical approaches to compute these two quan-
tities.

The Mean Time to Absorption: A Classical Approach. Let H be a random variable for the
time until absorption of the CTMC U . Classic approaches to compute the mean time E[H] rely
on the fact that H is a phase-type distributed random variable whose generator matrix can be
written in the form

Q◦ =

(
T T0

0 0

)
, (2.18)

where Q◦ results from Q be rearranging the states such that the block T contains the transition
rates between the transient states and T0 contains the rates from transient to absorbing states.

Let α = (α1, . . . , αdim(T )) be the sub-vector of the starting distribution of U , which contains
the initial probabilities of the transient states. Then the phase-type distribution can be char-
acterised by its representation (α, T ). It is well known that the n−th moment of a phase-type
distributed random variable is given by (see e.g. [Neut81])

E[Hn] = (−1)nn!αT−n1, (2.19)

where 1 is a column vector of size dim(T ) consisting of ones. In particular, the mean hitting
time is given by

E[H] = −1αT−11, (2.20)

which could be solved by an explicit matrix inversion. Alternatively, with the solution of xT = α,
one obtains E[H] = −x1. Since the state space of U , and hence also the dimension of the
matrix T , grows exponentially in the number m of marginal CTMCs, the computation of E[H]
according to (2.20) would in general only be feasible for small values of m.

Fractions of the Mean Time to Absorption: A Classical Approach. From the mean time
to absorption, which can also be seen as the mean time the CTMC U spends in any state
before absorption, we turn to the mean time which U spends in some set A before absorption.
With respect to requirements needed later on in this work, we restrict the set A to possess the

8
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structure
A = A1 × A2 × · · · × Am, (2.21)

where Ai ⊆ Ei, i = 1 . . . m. We impose the restriction that A does not contain absorbing states,
i.e. A ∩ S = ∅, or equivalently ∃i ∈ {1, . . . ,m} : Ai ∩ Si = ∅.

Let HA be a random variable for the time that U spends in set A before absorption and let
πA be the relative amount of time that U spends in A before absorption. It is clear that the mean
time E[HA] is given by

E[HA] = πAE[H]. (2.22)

Now, we concentrate on the computation of πA. First, we assume that U possesses exactly
one starting state. W.l.o.g. assume that the first row and first column of Q◦ correspond to that
starting state. Now, we construct a regenerative process U, where one regeneration cycle of
that new process is described by the absorbing Markov chain U , i.e. if U becomes absorbed,
the process U steps into a new regeneration cycle. In other words, we manipulate U such that
each transition which would lead to an absorbing state is directed to to the starting state instead
– this new process we call U.

Of course, the steady state probability P(U ∈ A) equals the fraction of time spent in A during
one regeneration cycle, and hence we have P(U ∈ A) = πA. More formally, if T is the generator
matrix2 of U, then

πA = y(A), where yT = 0, ‖ y ‖1= 1. (2.23)

The Mean Time to Absorption: Uniformisation. An alternative approach to compute the
mean time to absorption is based on the uniformisation method. The starting point is the
following representation of the mean time to absorption

E[H] =
∫ ∞

0
p(t)(E \ S)dt. (2.24)

Employing equation (2.4) we obtain

E[H] =
∫ ∞

0

∞∑
n=0

(qt)n

n!
e−qtν(n)(E \ S)dt (2.25)

=
1
q

∞∑
n=0

ν(n)(E \ S) (2.26)

=
1
q

∞∑
n=0

1 − ν(n)(S), (2.27)

where ν(0) = p(0) and ν(n) = p(0)P n = ν(n − 1)P , for n ≥ 1.

For practical computations it is necessary to truncate this sum after some index N , which
introduces the absolute error

err =
1
q

∞∑
n=N+1

1 − ν(n)(S). (2.28)

In section 2.1.1 we saw that 1 − ν(k)(S) can be bounded by c|λ2|k, for all k > K, where λ2

is the second largest eigenvalue in modulus of P and c is a suited positive constant. Hence, if

2Note that T can easily be derived from the matrices T and T 0.

9
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c and λ2 are known the error can be bounded by

err <
1
q

∞∑
n=N+1

c|λ2|n =
c

q

|λ2|N+1

1 − |λ2| . (2.29)

Fractions of the Mean Time to Absorption: Uniformisation. The fraction of time spent in
the set A before absorption is given by

E[HA] =
∫ ∞

0
p(t)(A)dt, for A ∩ S = ∅ (2.30)

In analogy to the transformations concerning the mean time to absorption in the preceding
paragraph, we at first adopt the notation ν(n) = p(0)P n, for n ≥ 0, and finally obtain, for
A ∩ S = ∅,

E[HA] =
∫ ∞

0

∞∑
n=0

(qt)n

n!
e−qtν(n)(A)dt =

1
q

∞∑
n=0

ν(n)(A). (2.31)

Since A contains no absorbing states, we have ν(n)(A) ≤ ν(n)(E \ S) = 1 − ν(n)(S), and
hence

1
q

∞∑
n=N+1

ν(n)(A) ≤ c

q

|λ2|N+1

1 − |λ2| . (2.32)

2.1.3 Outline

A straight forward way to evaluate the formulas

E[H] =
1
q

∞∑
n=0

1 − ν(n)(S), (2.33)

E[HA] =
1
q

∞∑
n=0

ν(n)(A) (2.34)

would be to compute the distributions ν(n) up to some truncation index N , where ν(n) could
be obtained by exploiting the relation ν(n) = ν(0)P n = ν(n − 1)P , and afterwards compute the
above sums. But since the state space of U = (U1, . . . , Um) grows exponentially in the number
m of marginal CTMCs, the dimension of P , as well as the size of the distribution vector ν(n), is
exponential in m. Thus, computing E[H] and E[HA] by the procedure sketched above is only
feasible for small values of m.

The next section 2.2 deals with finding a different method to compute the quantities ν(n)(A)
and ν(n)(S) which circumvents the state space explosion problem. The idea is to express
ν(n)(A) and ν(n)(S) by means of akin marginal quantities νi(k)(Ai) and νi(k)(Si), k = 0 . . . n,
i = 1 . . . m, which are gained from computations on the marginal chains only.

In section 2.3 we introduce a new method to compute E[H] and E[HA]. This method follows
formulas (2.33) and (2.34), but employs a special technique for the computation of the ν(n)(A)
and ν(n)(S), n = 0 . . . N .

10
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2.2 A Non-Product Form Representation for Transient State Prob-
abilities

Let A ⊆ E be any subset of the state space of the joint CTMC U , with

A = ×m
i=1Ai, (2.35)

where Ai ⊆ Ei, i = 1 . . . m.

2.2.1 Transient State Probabilities in Product Form

Transient Probabilities of the Marginal CTMCs. Let p i(t) = (pi(t)(u))u∈Ei be the transient
probability distribution of the chain Ui at time t. For a given initial distribution pi(0), some
qi ≥ maxj∈Ei{|Qi(j, j)|} and with

Pi := I + 1/qiQi, (2.36)

the probability pi(t)(Ai) can be expressed as the series

pi(t)(Ai) =
∞∑

k=0

(qit)k

k!
e−qitνi(k)[Ai], (2.37)

where νi(0) = pi(0) and νi(k + 1) = νi(k)Pi, for k ≥ 0. In (2.37) we use the convention

νi[A] = (νi(k)[Ai])k∈N0 := (νi(k)(Ai))k∈N0 , for i = 1 . . . m, (2.38)

i.e. we interpret νi[Ai] as a function of n.

Transient Probabilities of the Joint CTMC U . For some q ≥ maxj∈E{|Q(j, j)|}, define P =
I + 1

qQ. Let ν(0) = p(0) be the initial distribution of U and ν(n) = ν(0)P n = ν(n−1)P , for n ≥ 1.
Analogously to the preceding paragraph, for ν(n)(A) we subsequently write ν(n)[A] to stress

the fact that A is fixed and ν[A] can be seen as a function of n.
On the one hand, the transient probability p(t)(A), that U is in A at time t, can be obtained

by the uniformisation equation

p(t)(A) =
∞∑

n=0

(qt)n

n!
e−qtν(n)[A]. (2.39)

On the other hand, by independence of the marginal CTMCs U i, i = 1 . . . m, p(t)(A) pos-
sesses the product form

p(t)(A) = p1(t)(A1) · p2(t)(A2) · · · pm(t)(Am), (2.40)

where pi(t)(Ai) = P(Ui(t) ∈ Ai), i = 1 . . . m.
Although, this product-form relation exists for transient probabilities, a similar product-form

result for the cumulative measure
∫∞
0 p(t)(A)dt is not available.

The remainder of this section deals with a reformulation of (2.40). Based on this reformu-
lation, we will be able to compute cumulative measures of the above kind by operating on the
marginal CTMCs Ui, i = 1 . . . m, only.

11
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2.2.2 Transient State Probabilities in Non-Product Form

First recall that qi ≥ maxj∈Ei{|Qi(j, j)|} and q ≥ maxj∈E{|Q(j, j)|}. Since Q = ⊕m
i=1Qi, we

have

max
j∈E

{|Q(j, j)|} =
m∑

i=1

max
j∈Ei

{|Qi(j, j)|}. (2.41)

Hence for valid uniformisation rates qi of Ui, i = 1 . . . m,
∑

i qi is a valid uniformisation rate of
U . Vice versa, for every valid uniformisation rate q of U , there exist valid uniformisation rates qi

of Ui, i = 1 . . . m, with q =
∑

i qi.

With the substitution
q := q1 + q2 + · · · + qm (2.42)

and equations (2.40) and (2.37) the following equalities are obtained

p(t)(A) =

( ∞∑
n1=0

(q1t)n1

n1!
e−q1tν1(n1)[A1]

)
· · ·
( ∞∑

nm=0

(qmt)nm

nm!
e−q1tνm(nm)[Am]

)
(2.43)

=
∞∑

n1=0

· · ·
∞∑

nm=0

(
t(n1+···+nm)e−qt

m∏
i=1

qni
i

ni!
νi(ni)[Ai]

)
(2.44)

=
∞∑

n=0

tne−qt
∑

n1+···+nm=n

m∏
i=1

qni
i

ni!
νi(ni)[Ai] (2.45)

=
∞∑

n=0

(qt)n

n!
e−qt

∑
n1+···+nm=n

[
n!

m∏
i=1

qni
i

ni!qni

]
m∏

i=1

νi(ni)[Ai]. (2.46)

Since n1 + · · ·+ nm = n, the above term in brackets is a multinomial probability. We denote
this term by

M(n, n1, . . . , nm) :=
n!∏m

i=1 ni!

m∏
i=1

(
qi

q

)ni

(2.47)

and write

p(t)(A) =
∞∑

n=0

(qt)n

n!
e−qt

∑
n1+···+nm=n

M(n, n1, . . . , nm)
m∏

i=1

νi(ni)[Ai]. (2.48)

Comparing (2.48) to (2.39), it might be supposed that the inner sum equals ν(n)[A] which
is the probability that U is in A = (A1, . . . , Am) at the n−th step. That this is indeed the case is
proved in the following corollary.

Corollary 3. The following assertion holds.

ν(n)[A] =
∑

n1+···+nm=n

M(n, n1, . . . , nm)
m∏

i=1

νi(ni)[Ai]. (2.49)

Proof. We provide a probabilistic proof. At first, let us recall that the marginal processes Ui,
i = 1 . . . m, are uniformised with rate qi, i.e. the sequence of steps of Ui forms a poisson
stream with rate qi. Then, the sequence of steps of the joint process U is the superposition of
m poisson streams, and hence its rate is given by q = q1 + · · · + qm.

Let #(U) be the number of steps of U , and accordingly let #(Ui) be the number of steps

12
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of Ui. Then, the probability ν(n)[A] that U is in A in the n−th step is given by

ν(n)[A] = P(U ∈ A|#(U) = n) (2.50)

= P(U ∈ A|#(U1) + · · · + #(Um) = n) (2.51)

=
∑

n1,...,nm≥0

P(#(U1) = n1, . . . ,#(Um) = nm|
∑

i

ni = n) · (2.52)

P(U ∈ A|#(U1) = n1, . . . ,#(Um) = nm,
∑

i

ni = n) (2.53)

Expressing {U ∈ A} in the second term by means of marginal quantities and with the insight
that the condition {∑i ni = n} in the second term is unnecessary, we obtain

ν(n)[A] =
∑

n1,...,nm≥0

P(#(U1) = n1, . . . ,#(Um) = nm|
∑

i

ni = n) · (2.54)

P(U1 ∈ A1, . . . , Um ∈ Am|#(U1) = n1, . . . ,#(Um) = nm) (2.55)

=
∑

n1,...,nm≥0

P(#(U1) = n1, . . . ,#(Um) = nm|
∑

i

ni = n)
∏

i

νi(ni)[Ai] (2.56)

The last line results from the independence of the marginal processes U i, i = 1 . . . m, and
the fact that νi(ni)[Ai] = P(Ui ∈ Ai|#(Ui) = ni). Now, we realise that due to the condition
{∑i ni = n} we only need to sum over values of the ni, i = 1 . . . m, which sum up to n.

ν(n)[A] =
∑

n1+···+nm=n

P(#(U1) = n1, . . . ,#(Um) = nm|#(U) = n)
∏

i

νi(ni)[Ai] (2.57)

=
∑

n1+···+nm=n

∏
i

q
ni
i

ni!
e−qi

qn

n! e
−q

∏
i

νi(ni)[Ai] (2.58)

=
∑

n1+···+nm=n

n!∏
i ni!

∏
i

(
qi

q

)ni ∏
i

νi(ni)[Ai] (2.59)

The last two lines make use of the fact that #(Ui) is poisson distributed with rate qi, i = 1 . . . m,
and #(U) is poisson distributed with rate q = q1 + · · · + qm.

The interpretation of the statement of corollary 3 is that, in order to determine ν(n)[A], we
consider all possible combinations of the number of marginal steps, which sum up to n. This
is due to the fact that the sum of the marginal steps is the number of steps of the joint process
U . Given some combination of marginal steps (n1, . . . , nm) we can immediately state that the
conditional probability of being in A is given by

∏
i νi(ni)[Ai]. As it turns out, the probability that

a certain combination of marginal steps occurs is a multinomial probability. Thus, ν(n)[A] is
obtained by deconditioning

∏
i νi(ni)[Ai] from (n1, . . . , nm).

The next section reformulates (2.49) as a convolution-like expression, which can be used to
compute ν(n)[A] in an iterative way.
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2.2.3 Transient Probabilities and the �-Convolution

Definition 4. For two discrete functions f, g : N0 → R0 and constant values cf , cg ∈ R>0

assigned to these functions, define

(f � g)(n) =
n∑

k=0

(
n

k

)
ck
f cn−k

g

(cf + cg)n
f(k)g(n − k) (2.60)

and cf�g = cf + cg. (2.61)

The proof of the following corollary is found in the appendix A.1.

Corollary 5. The �−operator is commutative and associative.

Theorem 6. With the functions νi[Ai], 1 ≤ i ≤ m, and the values cνi[Ai] := qi assigned to them,
the following assertion holds

(ν1[A1] � ν2[A2] � · · · � νm[Am])(n) =
∑

n1+···+nm=n

M(n, n1, . . . , nm)
m∏

i=1

νi(ni)[Ai]. (2.62)

Proof.

∑
n1+···+nm=n

M(n, n1, . . . , nm)
m∏

i=1

νi(ni)[Ai] = n!
∑

n1+···+nm=n

m∏
i=1

qni
i

ni!qni
νi(ni)[Ai]︸ ︷︷ ︸

ai(ni)

(2.63)

= n!(a1 ∗ · · · ∗ am)(n), (2.64)

where ai(ni) = q
ni
i

ni!qni νi(ni)[Ai] and ∗ is the discrete convolution operator.

Now, it is sufficient to show that

(ν1[A1] � ν2[A2] � · · · � νm[Am])(n) = n!(a1 ∗ a2 ∗ · · · ∗ am)(n). (2.65)

Bearing in mind that q = q1 + · · · + qm it suffices to show that for every � ≤ m the relation

(q1 + · · · + q�)n

qn
(ν1[A1] � · · · � ν�[A�])(n) = n!(a1 ∗ · · · a�)(n) (2.66)

holds. We proof this by induction over �. For � = 1 the assertion is trivially true and for � = 2 we
have

(ν1[A1] � ν2[A2])(n) =
n∑

k=0

(
n

k

)
qk
1qn−k

2

(q1 + q2)n
ν1(k)[A1]ν2(n − k)[A2] (2.67)

= n!
qn

(q1 + q2)n
(a1 ∗ a2)(n), (2.68)

where we multiplied the sum with qn

qn , in order to obtain the last line. This provides us with a
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valid induction hypothesis. For the induction step we obtain

(ν1[A1]� · · · �ν�+1[A�+1])(n) = (2.69)

=
n∑

k=0

(
n

k

)
(q1 + · · · + q�)kqn−k

�+1

(q1 + · · · + q�+1)n
(ν1[A1] � · · · � ν�[A�])(k)︸ ︷︷ ︸
=k!

qk

(q1+···+q�)
k

(a1∗···∗a�)(k)

per induction hypothesis

ν�+1(n − k)[A�+1] (2.70)

=
n∑

k=0

k!
(

n

k

)
qn−k
�+1

(q1 + · · · + q�+1)n
qk(a1 ∗ · · · ∗ a�)(k)ν�+1(n − k)[A�+1] (2.71)

=
n∑

k=0

n!
(n − k)!

qn−k
�+1

(q1 + · · · + q�+1)n
qn

qn−k
(a1 ∗ · · · ∗ a�)(k)ν�+1(n − k)[A�+1] (2.72)

= n!
qn

(q1 + · · · + q�+1)n

n∑
k=0

qn−k
�+1

(n − k)!qn−k
(a1 ∗ · · · ∗ a�)(k)ν�+1(n − k)[A�+1] (2.73)

= n!
qn

(q1 + · · · + q�+1)n
(a1 ∗ · · · ∗ a�+1)(n) (2.74)

The following theorem summarises corollary 3 and theorem 6.

Theorem 7. The following is true:

ν(n)[A] = (ν1[A1]�ν2[A2]� · · ·�νm[Am])(n) =
∑

n1+···+nm=n

M(n, n1, . . . , nm)
m∏

i=1

νi(ni)[Ai]. (2.75)

Proof. Corollary 3 and theorem 6.

To conclude this subsection, we take up equation (2.48) and in consideration of theorem 7
obtain

p(t)[A] =
∞∑

n=0

(qt)n

n!
e−qt(ν1[A1] � ν2[A2] � · · · � νm[Am])(n). (2.76)

2.2.4 Cumulative Measures by Means of the �-Convolution

We have seen that the transient probability ν(n)[A] can be related to the (marginal) functions
νi[Ai], i = 1 . . . m, via the �-convolution.

As a direct consequence, the cumulative measures

E[H] =
∫ ∞

0
1 − p(t)(S)dt and E[HA] =

∫ ∞

0
p(t)(A)dt, for A ∩ S = ∅ (2.77)

can also be expressed by means of the �-convolution.

Theorem 8. For Ai ⊆ Ei, i = 1 . . . m, A = ×m
i=1Ai and A ∩ S = ∅, the expected time E[HA]

which U spends in A before absorption is given by

E[HA] =
1
q

∞∑
n=0

(ν1[A1] � ν2[A2] � · · · � νm[Am])(n). (2.78)
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Proof. The assertion follows from equation (2.31) in combination with theorem 7.

Theorem 9. The expected time until absorption E[H] of U is given by

E[H] =
1
q

∞∑
n=0

1 − (ν1[S1] � ν2[S2] � · · · � νm[Sm])(n). (2.79)

Proof. The assertion follows from equation (2.27) in combination with theorem 7.

2.3 Algorithms for E[H] and E[HA]

This section aims at giving all means needed for an implementation of a programme which
computes E[H] and E[HA].

Therefore, we provide a short compilation of the key results (section 2.3.1) which have been
the subject of previous sections, followed by the actual algorithm and a detailed complexity
analysis (section 2.3.2).

2.3.1 A Short Summarization

In order to compute the two quantities

E[H] =
1
q

∞∑
n=0

1 − ν(n)[S], (2.80)

E[HA] =
1
q

∞∑
n=0

ν(n)[A] (2.81)

it is necessary to truncate the sum after a certain index N , i.e. we actually compute

E[H] ≈ 1
q

N∑
n=0

1 − ν(n)[S], (2.82)

E[HA] ≈ 1
q

N∑
n=0

ν(n)[A]. (2.83)

With the second largest eigenvalue in modulus λ2 of P and a suited constant c the absolute
errors can be bounded by

1
q

∞∑
n=N+1

1 − ν(n)[S] <
c

q

|λ2|N+1

1 − |λ2| =: error (2.84)

1
q

∞∑
n=N+1

ν(n)[A] <
c

q

|λ2|N+1

1 − |λ2| =: error. (2.85)

The absolute value of the eigenvalue λ2 can be computed by exploiting the fact that

lim
n→∞

1 − ν(n + 1)[S]
1 − ν(n)[S]

= |λ2|.
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After |λ2| has been determined (or estimated) the constant c can be estimated by considering

lim
n→∞

1 − ν(n)[S]
|λ2|n = constant. (2.86)

That means we chose some c > constant.

2.3.2 Algorithm

We now present a detailed algorithm in pseudo-code (Procedure CM()) which computes ap-
proximations of E[HA] and E[H].

The input of this procedure comprises of the generator matrices Qi, i = 1 . . . m, of the
marginal CTMCs, the marginal starting states s′i, i = 1 . . . m, and an upper error bound ε.

The predicate precision() becomes true if the current values of |λ2| and c fulfil a given
precision. Although, not explicitly implemented in the algorithm below, it is clear how an im-
plementation of such a predicate could look like. For example, the values in lines 20 and 21
could be stored (for a while), and the relative changes of these values determine the predicate
precision.
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Procedure CM(Q1, . . . , Qm; s′1, . . . , s′m;A1, . . . , Am; ε)
/* ---------------- Uniformise all marginal processes ---------------- */
for i = 1 . . . m do1

choose qi ≥ maxj∈Ei{|Qi(j, j)|}; /* Uniformisation factor */2

Pi = I + 1
qi

Qi; /* One-step transition matrix */3

νi(0)(s′i) = 1; /* Initial state */4

/* --------------------- Some initial assignments --------------------- */

ν(0)[S] = (ν1[S1] � ν2[S2] � · · · � νm[Sm])(0);5

ν(0)[A] = (ν1[A1] � ν2[A2] � · · · � νm[Am])(0);6

q = q1 + q2 + · · · + qm;7

n = 0;8

choose W ≥ 1;9

error = 2ε; /* initially chosen such that error > ε */10

/* ---------- Compute marginal distributions and convolution ---------- */

while not precision() and error ≥ ε do11

for i = 1 . . . m do12

for k = n + 1 . . . n + W do13

νi(k) = νi(k − 1)Pi; /* distribution at the k-th step */14

compute νi(k)[Ai]; /* the aggregated state probabilities */15

compute νi(k)[Si]; /* νi(·)[Ai] and νi(·)[Si] are stored permanently */16

for k = n + 1 . . . n + W do17

ν(k)[S] = (ν1[S1] � ν2[S2] � · · · � νm[Sm])(k);18

ν(k)[A] = (ν1[A1] � ν2[A2] � · · · � νm[Am])(k);19

|λ2| = 1−ν(k)[S]
1−ν(k−1)[S] ; /* Approximation of |λ2| */20

c = 1−ν(k)[S]
|λ2|k ;21

n = n + W ;22

error = c
q
|λ2|n+1

1−|λ2| ;23

/* ------------------- Compute cumulative measures ------------------- */

N = n;24

a =
∑N

k=0
1
qν(k)[A]; /* Approximation to E[HA] */25

b =
∑N

k=0
1
q (1 − ν(k)[S]); /* Approximation to E[H ] */26

In lines 1 to 4 the m marginal CTMCs are uniformised. Pi is the one-step transition matrix
resulting from the generator Qi. Initially, all probability mass of the i−th CTMC is gathered in
the state s′i.

In lines 5 to 10 some initial computations are carried out.
The interesting work of the algorithm is carried out in the while loop beginning in line 11.

This while-loop is iterated through until the error of the desired quantities and the estimated
parameters |λ2| and c that are used to compute the error fulfil a given precision. During each
pass of the while-loop W more elements of the functions ν[A] and ν[S] are computed, i.e. in the
first pass ν(1)[A], . . . , ν(W )[A] are computed, in the second pass ν(W + 1)[A], . . . , ν(2W )[A],
and so on (ν(·)[S] accordingly). Note, that the values of ν(�)[A] and ν(�)[S] can indeed be
computed, since all the values νi(n)[Ai] and νi(n)[Si], n = 0 . . . �, i = 1 . . . m, have been

18
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determined before (in the current pass and previous passes of the while-loop).
One might wonder why we don’t just take W = 1 and compute only one convolution element

in each pass of the while loop. Indeed, if all the marginal transition matrices Pi, i = 1 . . . m,
and the values νi(n)[Ai], n = 0 . . . N , i = 1 . . . m, can be kept in the main memory at the same
time, W = 1 would be the first choice. If, on the other hand, the capacity of the main memory
is limited, such that we are forced to keep the Pi that are currently not needed, in a secondary
memory, then every time we are required to operate on a matrix P�, it must be loaded from the
secondary to the main memory. Of course, loading (or copying) a huge matrix into the main
memory, is a time intensive procedure, especially if it has to be done frequently. It is clear that
the number of times a matrix must be copied decreases as W increases.

We note that at the beginning of the algorithm an upper bound for the second largest eigen-
value modulus |λ2| of P could be computed according to corollary 2, in order to get an idea of
the number of times the while loop has to be cycled through.

Storage Requirements. Essentially the storage requirements are assembled by the space
needed to store the transition matrices Pi, i = 1 . . . m, and the space to store the functions
νi[Ai] and νi[Si], i = 1 . . . m. With dim(Pi) =’dimension of Pi’, let d = maxi{dim(Pi)}. Then the
overall storage requirement of the procedure CM lies in O(m(d2 + N)).

Time Complexity. To determine the time complexity of the algorithm, we can set W = 1.
Then, the while-loop is iterated through N times. In the k−th pass of the while-loop we have to
do the following:

• Compute the m marginal distributions at the k−th step, which is in O(md2).

• Compute νi(k)[Ai] and νi(k)[Si], i = 1 . . . m, which is in O(2md).

• Compute the values ν(k)(A) and ν(k)(S), which according to the representation as the
star convolution can be done with O(2mk) operations.

After N iteration steps, we arrive at N ·O(md2)+N ·O(2md)+O(m(N2−N)) = O(Nmd2+mN2).

For Later Reference... For later reference in chapter 3, we supply two more procedures.
Procedure CM_MTTA() only computes the mean time to absorption Es′[H] and procedure
CM_MTABA() only computes the mean time spent in set A before absorption: Es′ [HA].

Procedure CM_MTTA(Q1, . . . , Qm; s′1, . . . , s
′
m;A1, . . . , Am; ε)

Procedure CM_MTABA(Q1, . . . , Qm; s′1, . . . , s
′
m;A1, . . . , Am; ε)
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2.4 Notation and Important Formulas

Marginal Absorbing Markov Chains i ∈ {1, . . . ,m}:

Ui absorbing Markov chain

Ei state space of Ui

Si ⊂ Ei set of absorbing states of Ui

s′i ∈ Ei \ Si starting state of Ui

Qi generator matrix of Ui

qi ≥ maxj∈Ei{|Qi(j, j)|} uniformisation rate of Ui

Pi := I + 1/qiQi (uniformised) one-step transition matrix

νi(n) = νi(0)Pn
i = νi(n−1)Pi, distribution of the uniformised CTMC Ui at the

for n ≥ 1 n−th step, with the initial distribution νi(0)
Ai ⊆ Ei some subset of Ei

Ai ⊆ Ei some subset of Ei

νi(n)[Ai] :=
∑

x∈Ai
νi(n)(x) aggregated state probability at the n−th step

Absorbing Joint Markov Chain
U = (U1, . . . , Um) joint absorbing Markov chain

E := ×m
i=1Ei state space of U

S := ×m
i=1Si set of absorbing states of U

Q = ⊕m
i=1Qi generator matrix of U

q := q1 + · · · + qm uniformisation rate of U

P = I + 1
qQ (uniformised) one-step transition matrix of U

ν(n) = ν(0)Pn = ν(n − 1)P , distribution of the uniformised CTMC U at the

for n ≥ 1 n−th step, with the initial distribution ν(0)
A := ×m

i=1Ai ⊆ E a certain subset of E

A := ×m
i=1Ai ⊆ E a certain subset of E

ν(n)[A] =
∑

x∈A ν(n)(x) aggregated state probability of the (uniformised)
CTMC U at the n−th step

Important Formulas for the Absorbing Joint Markov Chain U

ν(n)[A] = (ν1[A1] � · · · � νm[Am])(n)
E[HA] =

∑∞
n=0

1
qν(n)[A], for A∩S = ∅ expected time that U spends in A

before absorption

E[H] =
∑∞

n=0
1
q (1 − ν(n)[S]) expected time until absorption of U

Random Variables
H r.v. for the time until absorption of U

HA r.v. for the time that U spends in the set A before
absorption.
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3 Application to Markovian Process Al-
gebra Models

In the preceding chapter we introduced a new method to compute the mean time to absorption
and the mean time spent in a certain set A of a CTMC which is the joint process of a number
of marginal absorbing CTMCs. In this chapter we apply this method to compute steady state
probabilities of models specified in the Markov process algebra language PEPA.

In PEPA components can be defined whose behaviour is characterised by activities with
exponentially distributed durations, and hence the stochastic process underlying such a com-
ponent is a continuous time Markov chain. Among other things PEPA allows to combine sev-
eral components via a cooperation combinator such that the resulting composite component is
again a continuous time Markov chain.

The basic idea underlying this chapter goes back to Bohnenkamp who in [Bohn02] con-
sidered a special class of processes specified in the language YAWN, where there exist only
global synchronisations, i.e. every component is involved in every synchronisation. Bohnen-
kamp was able to derive local steady state probabilities for this class of processes. Instead
of YAWN−processes we consider processes specified in PEPA. In similarity to the work of
Bohnenkamp we restrict ourselves to processes which possess only global synchronising ac-
tivities. We succeed in deriving not only local but also global steady state probabilities of the
composite PEPA process.

The chapter is organised as follows:

In section 3.1 we give a short overview of the Markov process algebra PEPA which was
introduced by Hillston in [Hill96].

Section 3.2 gives a short compilation of some key results from the theory of semi-regenerative
processes.

In section 3.3 we compute certain steady state probabilities for a class of PEPA processes
by at first decomposing the PEPA component into a number of absorbing Markov chains which
themselves consist of several marginal absorbing Markov chains. Cumulative measure of the
joint absorbing CTMCs are then computed with the method introduced in chapter 2. After-
wards the results are combined by means of a relation from the theory of semi-regenerative
processes.

Section 3.4 gathers the notations used frequently throughout this chapter.
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3.1 PEPA

The language defined by the following grammar is the set of all possible PEPA expressions.

C := (α, r).C | C + D | C/L | C ��
L

D | M. (3.1)

Each expression from this language describes a process whose behaviour is determined
by the following rules:

Prefix: The process (α, r).C executes the activity (α, r) – which possesses the action type α
and an exponentially distributed duration with rate r, r ∈ R>0 – and afterwards behaves
like C. It is also possible to leave the rate r unspecified, in which case we use the symbol
�.

Choice: In a process C + D all currently enabled activities in C and D are involved in a race
condition. The activity to win this race is executed. Due to the memoryless property of
the exponential distribution all other activities are reset. If for example in the process
(α, r).C + (β, v).D the activity (α, r) wins, then afterwards the process behaves like C +
(β, v).D.

Cooperation: C ��
L

D denotes the situation where the components C and D must synchronise
over activities which are of an action type contained in the synchronisation set L. Activities
of this kind are called shared activities. C and D evolve independently of each other (i.e.
in parallel) until the first of the two components, say C, reaches a shared activity. From
this time instant on this shared activity becomes blocked in C until also D reaches a
shared activity of the same action type. If this happens the shared activity is executed
simultaneously by C and D. The rate of the shared activity is determined by the smallest
rate of all activities involved in the synchronisation. If one or more activities involved in
the synchronisation possess an unspecified rate, then these activities can be regarded as
passive – they are not taken into account when determining the rate of the shared activity.

Hiding: C/L has the meaning that the action type of all activities in C which are of an action
type contained in L are hidden to the outside of C. Hidden activities are not executed in
cooperation with other components. Nevertheless, inside of component C these actions
are still visible.

Constant: Constants are components whose meaning is given by a defining equation. For two
constants M and E, M

def= E assigns M the behaviour of component E.

Definition 10. The apparent rate rα(C) of an activity of action type α in component C is defined
by

rα((β, r).C) =

{
r, if α = β

0, if α �= β

rα(C/L) =

{
rα(C), if α /∈ L

0, if α ∈ L

rα(C + D) = rα(C) + rα(D)

rα(C ��
L

D) =

{
rα(C) + rα(D), if α /∈ L

min{rα(C), rα(D)}, if α ∈ L
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The apparent rate rα(C) returns the sum of the rates of all activities of type α which are
currently enabled in C. In other words, rα(C) is the overall rate at which activities of type α are
currently observed in C.

The semantics for the PEPA language is given by the structured operational semantics
rules (SOS-rules) in figure 3.1. A rule of the form B

C A is read as: Given A, B implies C. If A is
missing, then there is no precondition. If B is missing, then C holds, provided A.

Prefix :

(α, r).C
(α,r)−−−→ C

Choice :

C
(α,r)−−−→ C ′

C + D
(α,r)−−−→ C ′

D
(α,r)−−−→ D′

C + D
(α,r)−−−→ D′

Cooperation :

C
(α,r)−−−→ C ′

C ��
L

D
(α,r)−−−→ C ′ ��

L
D

(α /∈ L)
D

(α,r)−−−→ D′

C ��
L

D
(α,r)−−−→ C ��

L
D′

(α /∈ L)

C
(α,r1)−−−→ C ′ D

(α,r2)−−−→ D′

C ��
L

D
(α,R)−−−→ C ′ ��

L
D′

(α ∈ L) where R =
r1

rα(C)
r2

rα(D)
min(rα(C), rα(D))

Hiding :

C
(α,r)−−−→ C ′

C/L
(α,r)−−−→ C ′/L

(α /∈ L)
C

(α,r)−−−→ P ′

C/L
(τ,r)−−−→ C ′/L

(α ∈ L)

Constant :

C
(α,r)−−−→ C ′

D
(α,r)−−−→ C ′

(D def= C)

Figure 3.1: SOS-rules of PEPA

Definition 11. Let C be a PEPA process.

• The one-step derivative set ds(1)(C) of C contains all the processes C ′ which can be reached
by applying the SOS-rules to C.

• The k-step derivative set ds(k)(C) of C, k ≥ 2, is given by ds(k)(C) =
⋃

C′∈ds(k−1)(C) ds(1)(C ′).

• The derivative set ds(C) of C is given by ds(C) =
⋃∞

k=1 ds(k)(C).
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Starting with a process C the derivation graph can be constructed by successive application
of the SOS-rules. The elements of the derivative set ds(C) form the nodes of this graph. There
exists an edge from node C1 to C2, C1, C2 ∈ ds(C), iff C2 ∈ ds(1)(C1), i.e. iff there exists
an activity (α, r) which causes C1 to evolve into C2. Edges are labelled by the corresponding
activities. Note that the derivation graph might be a multigraph since C1 may evolve into C2

through different activities.
A CTMC is obtained from the derivation graph by

1. considering nodes as states

2. abstraction from action types within activities

3. amalgamation of multiedges into a single edge, where the activity rates are summed up.

Definition 12. A PEPA component C is said to be cyclic, or irreducible, if C ∈ ds(C ′) for all
C ′ ∈ ds(C).

The importance of cyclic PEPA components arises from the fact that the CTMC associated
with this component is irreducible if and only if the PEPA component is cyclic. Since PEPA
components define only finite state CTMCs, irreducibility implies positive recurrence of that
CTMC.

In [Hill96] it is shown that a necessary condition for a PEPA component to be cyclic is that all
choices must occur within cooperating PEPA components. Thus, every cyclic PEPA component
can be constructed out of the following grammar.

sequential components R := (α, r).R | R + R | M (3.2)

model components C := R | C/L | C ��
L

C. (3.3)

3.2 Elements of the Theory of Semi-Regenerative Processes

This section gives a compilation of some key results of the theory of semi-regenerative pro-
cesses. The contents of this section is taken from [Cinl75]. A process Z = (Zt)t≥0 is called
regenerative if there exist certain random times T0, T1, . . . at which the future of Z becomes a
probabilistic replica of the process itself. If in addition the future development of Z after time
instants of regeneration depends also on the state of a Markovian renewal process embedded
in Z at time instants of regeneration, then Z is called a semi-regenerative process.

Definition 13. Let Z = (Zt)t≥0 be a stochastic process with topological state space E and the
càdlàg1 property. Z is called semi-regenerative if there exists an embedded Markov renewal
process (X,T ) with infinite lifetime, with

• Tn is a stopping time of Z for each n ∈ N0

• Xn is determined by the history {Zu : u ≤ t} for all n ∈ N0

• For every n ∈ N0, k ≥ 1 and every positive function f : F k → R>0

E(f(ZTn+t1 , . . . , ZTn+tk)|Zu : u ≤ Tn) = E(f(Zt1 , . . . , Ztk )|Xn),

for 0 ≤ t1 < t2 < · · · < tk.

1càdlàg: continue à droite, limite à gauche. A function with the càdlàg property is right-continuous and has left
limits everywhere.
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The kernel of a semi-regenerative process Z with embedded Markov renewal process
(X,T ) is defined as the set of conditional probabilities

Kt(s,A) = Ps(Zt ∈ A,T1 > t) (3.4)

for s ∈ S, t ≥ 0 and A ⊆ E, where S is the state space of X.
The family Q = {Qij(t) : i, j ∈ S, t ≥ 0}, with

Qij(t) = P (Xn+1 = j, Tn+1 − Tn ≤ t|Xn = i), (3.5)

defines the semi-Markov kernel of (X,T ).
With the recursive definition for n ≥ 0

Qn+1(s, k, t) =
∑
j∈S

∫ t

0
Q(s, j, ξ)dQn(j, k, t − ξ) (3.6)

the following sum defines the renewal function of (X,T ):

Rt(i, j) =
∞∑

n=0

Qn
ij(t). (3.7)

The family R = {Rt(i, j) : i, j ∈ S, t ≥ 0} is called the Markov renewal kernel of (X,T ).
We cite the following two key results from the theory of semi-regenerative processes. The

proofs for both theorems can be found in [Cinl75].

Theorem 14. For a semi-regenerative process Z = (Zt)t≥0 with state space F and embedded
Markov renewal process (X,T ) let Q be the semi-Markov kernel and R be the Markov renewal
kernel of (X,T ). Then, for any subset A ⊆ E

Ps(Zt ∈ A) =
∑
j∈S

∫ t

0
Rξ(s, j)dKt−ξ(j,A). (3.8)

Theorem 15. Let Z = (Zt)t≥0 be a semi-regenerative process with state space F and embed-
ded Markov renewal process (X,T ). Suppose that (X,T ) is irreducible and aperiodic recurrent.
Furthermore, let π = (π(0), π(1), . . .) be an invariant measure for X and define the column vec-
tor m = (m0,m1, . . .) by ms = Es[T1]. Provided that the function t → Kt(s,A) is Riemann
integrable for each s ∈ S the following assertion holds:

lim
t→∞Ps(Zt ∈ A) =

1
πm

∑
h∈S

π(h)
∫ ∞

0
Kt(h,A)dt. (3.9)

3.3 Steady State Probabilities for a Class of PEPA Models

The aim of this section is to provide a technique to compute steady state probabilities for a
restricted class of PEPA components, or more precisely steady state probabilities of the un-
derlying Markov chains. In order to do so, we at first formulate the underlying Markov chain
as a semi-regenerative process which is defined by a family of stopping times, an embedded
discrete time Markov chain and its kernel.

In section 3.3.1 we list the restrictions which we impose on PEPA models to be solved by
our method.
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Let C be a such PEPA component and assume C is the composition of several sequential
components. In section 3.3.2 we reformulate the CTMC Y underlying this composite compo-
nent as a semi-regenerative process.

The first step to determine steady state probabilities of a semi-regenerative process Y , is to
compute the steady state distribution of the embedded DTMC. This requires knowledge of the
transition matrix P of this embedded DTMC. Section 3.3.3 shows how this transition matrix can
be gained from the sequential components.

The second step to determine the steady state probabilities is to compute certain elements
of the Kernel of Y . These quantities can be expressed by related quantities of the sequential
components. This is done in sections 3.3.4 and 3.3.5, where in the latter section the results
about cumulative measures of absorbing joint Markov chains come into play.

Section 3.3.6 summarises the results in algorithmic form.

3.3.1 Requirements and the Target Quantity

We now consider PEPA processes which possess the following three properties:

(a) the process is cyclic

(b) all concurrent components synchronise over the same synchronisation set L

(c) there is no choice between synchronising and non-synchronising activities, i.e. language
terms of the form (α, r1).C1 + (β, r2).C2, with α ∈ L and β /∈ L are prohibited

Condition (a) assures that the CTMC underlying the PEPA component, say C, is ergodic,
and hence possesses a unique stationary distribution. Furthermore, this condition implies that
the PEPA component C can be expressed as the cooperation of a number, say m, of sequential
PEPA components C1, . . . , Cm. Together with condition (b) C is of the form

C = C1 ��
L

C2 ��
L

· · · ��
L

Cm. (3.10)

For simplicity we assume that C starts immediately after some shared activity. The m compo-
nents start to evolve independently of each other. Every component which reaches an activity
that requires synchronisation has to wait until all of the remaining components have reached an
activity of that same type. The fact that components must wait is a consequence of condition
(c). Once all m components are ready to synchronise, the shared activity is executed. After
that the m components again start to evolve independently of each other.

Our target quantity is the steady state probability that the CTMC, say Y , underlying the
composite component C is in some set A, i.e.

P(Y ∈ A). (3.11)

We require that

• either A contains synchronising states only, i.e. states which possess outgoing synchro-
nising transitions

• or A is the cross product of sets A1, . . . , Am which are subsets of the state spaces of
the Markov chains underlying the m sequential PEPA components, and A contains no
synchronising states.
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3.3.2 The Underlying CTMC as a Semi-Regenerative Process

Let the PEPA process C be the composition of m sequential PEPA components C1, . . . , Cm,
where C fulfils the requirements stated in the preceding section. Let Y be the CTMC which
underlies the composite component C.

In this section we aim at formulating the CTMC Y as a semi-regenerative process. Since
the component C is the result of the cooperation of the m components C i, i = 1 . . . m, every
state of Y is an m−tupel. The projection of Y onto its i−th component yields the marginal
process Yi.

In the following we consider three types of stochastic processes:

(a) The CTMCs underlying the PEPA components (i.e. in isolation).
(b) The CTMC Y = (Y1, . . . , Ym) underlying the composite PEPA component C.
(c) The marginal processes Yi, i = 1 . . . m, which are projections of the CTMC Y underlying

the composite PEPA component.

(a) The Component CTMCs in Isolation

Every PEPA component Ci can be viewed as the specification of a CTMC in isolation. That
means we pretend that the component under consideration is not part of a composite process.
Ignoring synchronisation of Ci with other components implies that in Ci a waiting condition
can not occur. The CTMC underlying a single sequential PEPA component C i is given by its
starting state and the generator matrix Gi. Both can be gained from the specification of the
PEPA component. Note that the Gi, i = 1 . . . m, might contain unspecified transition rates.
Denote the state space of this CTMC by Ei.

(b) The CTMC Y Underlying the Composite PEPA Component

Let Y be the CTMC underlying the composite PEPA component C with state space E. Let S de-
note the set of synchronising states and S ′ the set of states which can be occupied immediately
after a synchronisation.

Define the family of random variables T = {T0, T1, T2, . . .}, where Tk, k ≥ 1, denotes the
time instant of the k−th visit of Y to a state contained in S or S ′. T0 can be viewed as the
initial time instant of Y . For simplicity we assume T0 = 0. This comes w.l.o.g. since for the
semi-regenerative process Y , P(Y (t) ∈ A|Y (T0) = x) = P(Y (t − T0) ∈ A|Y (0) = x), for any
A ⊆ E and x ∈ S ∪ S ′.

Define the DTMC X = (X(n))n∈N as the discrete time Markov chain embedded in Y at time
instants of entering states contained in S ∪ S ′, i.e.

X(n) = Y (Tn). (3.12)

The pair (X,T ) is a Markov renewal process embedded in Y . The kernel elements of the
semi-regenerative process Y , with respect to the set A, are given by

Kt(s,A) := Ps(Y (t) ∈ A,T1 > t), for s ∈ S ∪ S′. (3.13)

By theorem 15 the following values must be known in order to determine the steady state
probability P(Y ∈ A).

• the steady state distribution ν of the embedded DTMC X

• the mean times Es[T1], for all s ∈ S ∪ S′

• the values
∫∞
0 Kt(s,A)dt, with s ∈ S ∪ S′.
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(c) The Marginal Processes Yi

Y is the Markov chain underlying the composite PEPA component C. Since C is the com-
position of m concurrent sequential components, Y can be expressed as an m-dimensional
process Y = (Y1, · · · , Ym), where Yi is the projection of Y onto its i−th component, i = 1 . . . m.
Assume that during the evolution of the composite PEPA component C, we only observe the
behaviour of the component Ci. Then, this behaviour is described by the the process Yi. We
call the processes Yi, i = 1 . . . m, the marginal processes of Y .

The state space of Yi is Ei (same as for the corresponding CTMC in isolation). With Si ⊆ Ei

we denote the set of synchronising states, i.e. states which possess outgoing synchronising
transitions. With S′

i ⊆ Ei we denote the set of states which may be occupied immediately after
a synchronising state has been left. Note that S ∩ S ′ �= ∅ is possible.

Yi differs from the corresponding CTMC in isolation in two points. On the one hand, in
synchronising states of Yi waiting times are inserted. These waiting times result from Yi waiting
for the other marginal processes to become ready to synchronise. On the other hand, the
duration of the synchronising transition which follows a waiting time is the same for all marginal
processes. Thus, the marginal processes are not independent of each other.

For each CTMC Yi define the stopping time T Yi
1 ≥ T0 as follows

• if Y (T0) ∈ S′ \ S : T Yi
1 is the time instant ≥ T0 where Yi enters a state contained in Si for

the first time.

• if Y (T0) ∈ S : T Yi
1 is the time instant ≥ T0 where Yi enters a state contained in S ′

i for the
first time.

Relating Y to the Marginal Processes Yi, i = 1 . . . m

Obviously, we have

E ⊆ ×m
i=1Ei, state space (3.14)

S ⊆ ×m
i=1Si, set of synchronising states (3.15)

S′ ⊆ ×m
i=1S

′
i. set of states occupied after a synchronisation (3.16)

For a starting state s′ ∈ S′ \ S, T1 is the time instant, where Y reaches the next embedded
state (i.e. a state ∈ S ∪ S′). This next embedded state must be a synchronising state (i.e.
∈ S). This synchronising state is reached iff all of the marginal processes Yi, i = 1 . . . m, have
reached their next synchronising state. Thus, T1 is the maximum of the T Yi

1 , i = 1 . . . m.

T1 = max
i∈{1,...,m}

{T Yi
1 }. (3.17)

For a starting state s ∈ S, i.e. Y starts in a synchronising state, T1 is the end of that first
synchronising transition. In this case, obviously T1 = T Yi

1 , i = 1 . . . m. This relationship between
stopping times of Y and its marginal processes Yi, i = 1 . . . m, is illustrated in the Figures 3.2 –
3.4 (for m = 3).

For the DTMC X = (X(n))n∈N0 embedded in Y at time instants of entering states contained
in S ∪ S′ we have

X(n) = Y (Tn) = (Y1(Tn), . . . , Ym(Tn)). (3.18)
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Figure 3.2: Relationship between stopping times of Y and the stopping times of the marginal
processes. Here, the case Y (T0) ∈ S′ \ S is illustrated. Then T Yi

1 is the time instant of entering
the next state ∈ Si, i = 1 . . . m. It is seen that T1 = maxi∈{1,...,m}{T Yi
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It is seen that states which are contained in both S and
S′ are always treated as synchronising states.

Figure 3.4: Stopping times for the case Y (T0) ∈ S.

3.3.3 Solving the Embedded DTMC X

X is an m-dimensional DTMC, and hence it can be written as X = (X1, . . . ,Xm), where Xi,
i = 1 . . . m, is the projection of X onto its i−th component. The solution of X = (X1, . . . ,Xm)
is given by the probability vector π, which (uniquely) satisfies πP = π. Were the projections Xi,
i = 1 . . . m, independent of each other and discrete time Markov chains, π could be obtained
from the marginal steady state probabilities in a compositional way. But unfortunately, in general
neither of the two properties is given.

The Projections Xi are not Independent. Consider the two components D = ((α, r1) +
(β, r2)).D′ and F = ((α, r3) + (β, r4)).F ′ and the composite component

C = D ��
{α,β}

F. (3.19)

Independence would imply that every pair from {(α, r1), (β, r2)} × {(α, r3), (β, r4)} could be
used to derive a valid shared transition. But e.g. the two activities (α, r1) and (β, r4) can never
form a shared activity, since their types do not match.

In this example we have m = 2, i.e. we consider the CTMC Y = (Y1, Y2) and the embedded
DTMC X = (X1,X2). The transition from D to D′ corresponds to the transition from some state
∈ S1 to some state ∈ S ′

1 in the projection X1 (corresponding to the component D). Analogously,
the transition from F to F ′ corresponds to the transition from some state ∈ S2 to some state
∈ S′

2 in the projection X2 (corresponding to the component F ). Thus, the projections X1 and
X2 are not independent of each other.
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The Projections Xi are not DTMCs. Consider the components D = (α, r1).(α, r2).D and
F = (α, r3).(β, r4).(α, r5).F and the composite component

C = D ��
{α}

F. (3.20)

Now, interpret derivations of components as states. In isolation the components D and F
asynchronously travel through the following sequence of transitions

D →
a︷ ︸︸ ︷

(α, r2).D → D (3.21)

F → (β, r4).(α, r5).F︸ ︷︷ ︸
y

→ (α, r5).F︸ ︷︷ ︸
z

→ F. (3.22)

The cooperation combinator forces the two components to synchronise in the shared states
(D,F ) and (a, z).

D →
a︷ ︸︸ ︷

(α, r2).D → D (3.23)

F → (β, r4).(α, r5).F︸ ︷︷ ︸
y

→ (α, r5).F︸ ︷︷ ︸
z

→ F. (3.24)

Since m = 2, i.e. we consider the CTMC Y = (Y1, Y2) and the embedded DTMC X = (X1,X2).
(D,F ) and (a, z) are synchronising states, i.e. S = {(D,F ), (a, z)}, and (a, y) is a state to be
occupied immediately after a synchronising state, i.e. S ′ = {(a, z)}. The CTMC Y is in this
example given by the transition system

(D,F )
min{r1,r3}−→ (a, y) r4−→ (a, z)

min{r2,r5}−→ to (D,F ). (3.25)

Since all states belong to the set of embedded states S ∪ S ′ the embedded Markov chain X is
given by

(D,F ) 1−→ (a, y) 1−→ (a, z) 1−→ to (D,F ), (3.26)

where of course the labels of arrows are one-step transition probabilities. For the projection X1

we obtain the sequence of transitions (equipped with transition probabilities)

D
1−→ a

1−→ a
1−→ to D. (3.27)

Without additional information this sequence can not be described by a discrete time Markov
chain.

Solving X. In order to solve the DTMC X, its transition matrix P = (P(X(n + 1) = y|X(n) =
x))x,y∈S∪S′ has to be constructed. We don’t elaborate too much on how this is done but provide
the rough idea. First, for a PEPA component D and a state x of the underlying Markov chain,
let D(x) be the derivation of D which corresponds to the state x. Now, consider the two rules:

• Suppose s = (s1, . . . , sm) is a synchronising state (i.e s ∈ S). Then the transition prob-
abilities to the next states (which in any case are embedded states) are determined by
evaluating C1(s1) ��

L
· · · ��

L
Cm(sm). Note that by evaluation of this expression we also

obtain the embedded successor states. These are the states to be occupied immedi-
ately after the synchronising state s. It is possible that some (or all) of these embedded
successor states are synchronising states at the same time.
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• Suppose s′ = (s′1, . . . , s′m) is a state to be occupied immediately after a synchronisation
and s′ is not a synchronising state itself (i.e. s′ ∈ S′\S). Since the behaviour of component
Ci from state Ci(s′i) to any next synchronising state is independent of the other compo-
nents, the transition probability from s′ to a synchronising state, say s = (s1, . . . , sm), is
simply the product

∏m
i=1 P(Yi(T

Yi
1 ) = si|Yi(T0) = s′i). For every s′i the transition probabili-

ties can be computed from the specification of the component Ci in isolation.

Starting with some (valid) state s′ it is clear that with the above two rules the set of embedded
states S ∪S′, as well as the transition probabilities P(X(n + 1) = y|X(n) = x), x, y ∈ S ∪S ′ can
be computed.

One might wonder whether the explicit construction of P is contrary to our initial wish to cir-
cumvent the state space explosion problem when solving MPA models. To answer this question,
notice that the dimension of P equals the number of embedded states S ∪S ′. This number can
be small, even if the state space E of the CTMC Y (underlying the composite PEPA component
C) is huge.

3.3.4 Determining
∫∞
0

Kt(s, A)dt and Es[T1], for s ∈ S

Under the condition that Y starts at time T0 = 0 in the synchronising state s ∈ S, the time
instant T1 of entering the next embedded state is just the time instant of leaving the state s, and
hence T1 is the state holding time in s. This yields

Kt(s,A) = Ps(Y (t) ∈ A,T1 > t) =

{
Ps(T1 > t), if s ∈ A

0, if s /∈ A
(3.28)

Ps(T1 > t) is the complementary cumulative probability distribution of the state holding time
in the synchronising state s. This state holding time is exponentially distributed. Its rate λ(s)
can by gained by applying the apparent rate function r to C(s) – the derivative of the composite
PEPA component C corresponding to the state s – and all action types α ∈ L which determine
synchronising activities, i.e.

λ(s) =
∑
α∈S

rα(C(s)). (3.29)

Since T1 is the state holding time of state s, it follows that

Es[T1] =
1

λ(s)
. (3.30)

With
Ps(T1 > t) = e−λ(s)t, (3.31)

we obtain ∫ ∞

0
Kt(s,A)dt =

{
1

λ(s) , if s ∈ A

0, if s /∈ A
. (3.32)

3.3.5 Determining
∫∞
0

Kt(s
′, A)dt and Es′ [T1], for s′ ∈ S′ \ S

The computation of
∫∞
0 Kt(s,A)dt and Es[T1], for states s ∈ S has been treated in the previous

section. Thus, here we only need to consider the computation of these two quantities for the
remaining embedded states, i.e. for all s′ ∈ S′ \ S.
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Definition 16. For a real valued random variable D and the time instant t define

t [D] =

{
t, if t ≤ D

D, if t > D
. (3.33)

Then Y (t [T1]) is a process which behaves like Y (t) until t = T1. For t ≥ T1 the process
Y (t [T1]) stays in the state that it occupied at the time instant T1, i.e. once Y (t [T1]) has reached
its next embedded state, it stays there forever. Analogous considerations apply to the processes

Yi

(
t
[
T Yi

1

])
, i = 1 . . . m. Note, that for a global starting state s′ ∈ S′ \ S, i.e. Y (T0) = s,

the marginal process Y� is completely independent of the other marginal processes until it
reaches the next marginal embedded state (which must be a synchronising state). Hence, the

Yi

(
t
[
T Yi

1

])
, i = 1 . . . m, are independent of each other.

The following corollary states that the kernel element Kt(s′, A) is the probability that the
process Y (t [T1]) is in A at time t.

Corollary 17. For A ∩ S = ∅ and s′ ∈ S′ \ S the following relation holds:

Kt(s′, A) = Ps′(Y (t [T1]) ∈ A). (3.34)

Proof. Appendix A.2.

Corollary 18. For i = 1 . . . m and Y (T0) = s′ ∈ S′ \ S the following equivalence holds

{Yi (t [T1]) ∈ Ai} ⇐⇒ {Yi

(
t
[
T Yi

1

])
∈ Ai}. (3.35)

Proof. Appendix A.3.

The following theorem relates the kernel elements Kt(s′, A), s′ ∈ S′, of the composite CTMC

Y to quantities of the processes Yi

(
t
[
T Yi

1

])
, i = 1 . . . m.

Theorem 19. Let Y and Yi, 1 ≤ i ≤ m, be the CTMCs from above. Then for any A = ×m
i=1Ai,

with A ∩ S = ∅, and s′ ∈ S′ \ S

Kt(s′, A) =
m∏

i=1

Ps′i

(
Yi

(
t
[
T Yi

1

])
∈ Ai

)
. (3.36)

Proof. With corollary 17, we have

Kt(s′, A) = Ps′(Y (t [T1]) ∈ A) (3.37)

= Ps′ (Y1 (t [T1]) ∈ A1, . . . , Ym (t [T1]) ∈ Am) (3.38)

Reformulation of the last line according to corollary 18 yields

Kt(s′, A) = Ps′
(
Y1

(
t
[
T Y1

1

])
∈ A1, . . . , Ym

(
t
[
T Ym

1

])
∈ Am

)
. (3.39)

The assertion results from the independence of the processes Yi

(
t
[
T Yi

1

])
, i = 1 . . . m.
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The Yi

(
t
[
T Yi

1

])
, i = 1 . . . m, are Absorbing Markov Chains

Note, that the Markov chain Yi

(
t
[
T Yi

1

])
remains in the state which it enters at time T Yi

1 . If at

time T0 we have Yi(T0) = s′i ∈ S′
i, we know that T Yi

1 is the first time ≥ T0 at which Yi enters
the set Si (cf. section 3.3.2, paragraph (c)). That means Yi is an absorbing Markov chain with
starting state s′i ∈ S′

i and the set of absorbing states Si.
It may be that for Yi the stopping time T Yi

1 = T0. This is the case if the marginal starting
state s′i is at the same time the next synchronising state, i.e. s′i ∈ Si ∩ S′

i. Thus, the process
Yi(t[T

Yi
1 ]) is immediately absorbed. This is not an exception to the above said but a remark.

Now, consider any trajectory of Y�, � ∈ {1, . . . ,m}, which starts in the initial state s′� ∈ S′
�.

Then, this trajectory evolves completely independent of the other processes Yi, i ∈ {1, . . . ,m}\
{�}, until it reaches the next state contained in S�. Thus, the generator matrix Q� of the ab-

sorbing Markov chain Y�

(
t
[
T Y�

1

])
can by gained from the generator matrix G� of the CTMC

underlying the corresponding PEPA component C� in isolation by declaring all states of S� as
absorbing states.

Y (t [T1]) is an Absorbing Joint Markov Chain

From theorem 19 and the fact that the Markov chains Yi

(
t
[
T Yi

1

])
, i = 1 . . . m, are independent

it is clear that Kt(s′, A) is the joint probability of the absorbing Markov chains Yi

(
t
[
T Yi

1

])
,

i = 1 . . . m.

Computing
∫∞
0 Kt(s, A)dt and Es[T1], for s′ ∈ S′ \ S. If Y starts in a state s′ ∈ S′ \ S, T1

is the time instant where Y enters a state contained in S for the first time. Thus, T1 is the time
to absorption of the absorbing Markov chain Y (t[T1]). Hence, the mean time to absorption is
given by

Es′ [T1] =
∫ ∞

0
1 − Ps′(Y (t[T1]) ∈ S)dt. (3.40)

Since Y (t[T1]) is the joint CTMC of the absorbing CTMCs Yi(t[T Yi
1 ], i = 1 . . . m, this mean time

can be computed with the method introduced in chapter 2.
In order to compute

∫∞
0 Kt(s′, A)dt, we make a case distinction:

• A ∩ S = ∅: In this case we have Kt(s′, A) = Ps′(Y (t[T1]) ∈ A), and hence∫ ∞

0
Kt(s′, A)dt =

∫ ∞

0
Ps′(Y (t[T1]) ∈ A)dt. (3.41)

Y (t[T1]) is an absorbing Markov chain, and hence the above expression is the mean time
this CTMC spends in A before absorption. Y (t[T1]) is the joint CTMC of the absorbing
CTMCs Yi(t[T

Yi
1 ]), i = 1 . . . m, and A ∩ S = ∅. Thus, the mean time spent in A before

absorption can be computed with the method introduced in chapter 2

• A ⊆ S: In this case
∫∞
0 Kt(s′, A)dt = 0. This is due to the fact that Ps′(Y (t) ∈ S, T1 > t) =

0.

3.3.6 Algorithm

Let A ⊆ E be a subset of the state space of Y , with A = ×m
i=1Ai, where Ai ⊂ Ei. For A∩S = ∅

or A ⊆ S, the following algorithm (Procedure SteadyStateProb) shows a way to compute the
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steady state probability P(Y ∈ A) of the CTMC Y which is the CTMC underlying the composite
PEPA component C.

The procedures CM_MTTA(·) and CM_MTABA(·) which were introduced in section
2.3.2 are made use of in lines 9 and 11. These procedures compute the values of

∫∞
0 Kt(s′, A)dt

and Es′ [T1], s′ ∈ S′ \ S, with the maximal absolute error of ε.

Procedure SteadyStateProb

/* --------------- Solve embedded DTMC (section 3.3.3) --------------- */

construct the transition matrix P of X;1

compute the steady state distribution π of X;2

/* ----- Compute
∫∞
0 Kt(s,A)dt and Es[T1], for s ∈ S (section 3.3.4) ----- */

for s ∈ S do3

Compute
∫∞
0 Kt(s,A)dt;4

Compute Es[T1];5

end6

/* -- Compute
∫∞
0 Kt(s′, A)dt and Es′ [T1], for s′ ∈ S′ \ S (section 3.3.5) -- */

for i = 1 . . . m: construct Qi by replacing all rows in Gi associated with states ∈ Si with7

zero-vector;

for s′ ∈ S′ \ S do8

CM_MTTA(Q1, . . . , Qm, s′1, . . . , s′m;A1, . . . , Am; ε); /* compute Es′ [T1] */9

if A ∩ S = ∅ then10

CM_MTABA(Q1, . . . , Qm, s′1, . . . , s
′
m;A1, . . . , Am; ε); /*

∫∞
0 Kt(s′, A)dt */11

else if A ⊆ S then12 ∫∞
0 Kt(s′, A)dt = 0;13

else14

output: set A is invalid;15

end16

end17

/* --------------------- Application of theorem 15--------------------- */

Compute limt→∞ Ps(Y (t) ∈ A) =
P

h∈S∪S′ π(h)
R ∞
0 Kt(h,A)dtP

h∈S∪S′ π(h)Eh[T1]
;18

Time Complexity. The time complexity of this algorithm mainly depends on the complexity of
the procedures CM_MTTA(·), CM_MTABA(·) respectively, and the number of embedded
states, i.e. |S ∪ S′|.

The complexity of CM_MTTA(·) and CM_MTABA(·) mainly depends on the second
largest eigenvalue in modulus of the matrix ⊕m

i=1Qi (cf. section 2.3.2) and the number m of
sequential PEPA components.

Thus, it can be concluded that the above algorithm is suited to compute steady state prob-
abilities, if the matrices Qi are good-natured2 and if the number of embedded states S ∪ S ′ is
sufficiently small. In this context note that although the size of the state space of the CTMC Y
is exponential in the number m of concurrent PEPA components, the number |S ∪ S ′| can be
small. This depends on the concrete model under consideration.

2In this context we will speak of the matrices Q i, i = 1 . . . m, as good-natured if their eigenvalues result in a
small second largest eigenvalue in modulus of ⊕m

i=1Qi.

35



FREIMUT BRENNER

3.4 Notation and Important Formulas

PEPA Components
Ci, i = 1 . . . m sequential PEPA components

C = C1 ��
L

· · · ��
L

Cm composite PEPA component

Markov Chain Underlying the Composite PEPA Component C

Y = (Y (t))t∈R≥0
CTMC underlying the PEPA component C

E state space of Y

S set of absorbing synchronising states of Y

S′ set of possible successors of synchronising states

Tn, n = 0, 1, . . . Tn is the time instant of entering a state contained in
S ∪ S′ for the n−th time

X = (X(n)) = (Y (Tn)) embedded DTMC in Y

A = ×m
i=1Ai ⊆ E subset of the state space (for the Ai see below)

Kt(x,A), x ∈ S ∪ S′ = Px(Y (t) ∈ A,T1 > t), element of the kernel of Y

Marginal Processes of Y i ∈ {1, . . . ,m}:

Yi = (Yi(t))t∈R≥0
projection of Y onto its i−th component

Ei state space of Yi

Si set of absorbing synchronising states of Yi

S′
i set of possible successors of synchronising states

T Yi
1 T Yi

1 is the time instant where Yi enters a state (a)
contained in Si for the first time provided that Y (T0) ∈
S′\S (b) contained in S ′

i for the first time provided that
Y (T0) ∈ S.

Ai ⊆ Ei a certain subset of the marginal state space

CTMCs of components in isolation For the PEPA component C i in isolation let Gi be the
generator matrix of the underlying CTMC.

Relationships Between Y and the Yi, i = 1 . . . m, (Sets and Stopping Times)
Y = (Y1, . . . , Ym), E ⊆ ×m

i=1Ei, S ⊆ ×m
i=1Si, S′ ⊆ ×m

i=1S
′
i

T1 = maxi∈{1,...,m}{T Yi
1 }, for Y (T0) ∈ S′ \ S

T1 = T Yi
1 , i = 1 . . . m, for Y (T0) ∈ S

Relationships Between Y and the Yi, i = 1 . . . m, (Kernel Elements)

Definition: t [D] =

{
t, if t ≤ D

D, if t > D
, where t is a continuous time parameter

and D is a continuous random variable.

Kt(s′, A) =
∏m

i=1 Ps′i

(
Yi

(
t
[
T Yi

1

])
∈ Ai

)
, for s′ = (s′1, . . . , s′m) ∈ S′ \ S and

(A ∩ S = ∅ ∨ A ⊆ S).∫∞
0 Kt(s,A)dt =

{
1

λ(s) , if s ∈ A

0, if s /∈ A
, for s ∈ S, where λ(s) is the rate out of

state s.
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4 Conclusion And Future Work

4.1 Conclusion

We have presented a new method to compute the following two cumulative measures of an
absorbing joint Markov chain U = (U1, . . . , Um), with state space E and set of absorbing states
S:

• ∫∞
0 P(U(t) ∈ A)dt, for A ∩ S = ∅ (mean time in A before absorption),

• ∫∞
0 1 − P(U(t) ∈ S)dt (mean time to absorption),

where we require that A is the cross-product of subsets Ai of the marginal state spaces. Clearly,
the first quantity is the mean time that U spends in A before absorption, and the second quantity
is the mean time to absorption of U .

Our method consists of at first uniformising the marginal chains Ui. The resulting uni-
formised versions are then treated in isolation. For the uniformised version of Ui we obtain
the function νi(·)[Ai], where νi(n)[Ai] is the probability that the uniformised chain is in set Ai

in the n−th step. We defined the convolution operator �, in order to combine the solutions of
the marginal (uniformised) CTMCs. We found that ν(n)[A] := (ν1[A1] � · · · � νm[Am])(n) is just
the probability that the uniformised version of the joint CTMC U is in A = ×m

i=1Ai in the n−th
step. Thus, together with the uniformisation rate q of U the transient probability P(U(t) ∈ A) can
be expressed as P(U(t) ∈ A) =

∑∞
n=0

(qt)n

n! e−qtν(n)[A], which is known as the uniformisation
equation. For the set of absorbing states S = ×m

i=1Si, where the Si are the marginal absorbing
sets, of course, analogous results hold, i.e. ν(n)[S] := (ν1[S1] � · · · � νm[Sm])(n). After replac-
ing the probabilities under the above integrals by the series of the uniformisation equation the
following is obtained

• ∑∞
n=0

1
qν(n)[A], for A ∩ S = ∅ (mean time in A before absorption),

• ∑∞
n=0

1
q (1 − ν(n)[S]) (mean time to absorption).

This is straight forward and nothing new. But the fact that the functions ν[A] and ν[S] can be
computed from akin marginal functions via the �−operator is a new insight.

The method we propose is an exact method, where, of course, the computation of the
above series requires truncation at a certain index. The time complexity is O(Nmd2 + mN2),
where m is the number of marginal CTMCs, d is the maximal size of the marginal state spaces
and N is the truncation index of the infinite series which depends on convergence properties
(eigenvalues) of the joint CTMC and the desired accuracy.

The above method for the computation of cumulative measures was applied to a class of
composite PEPA models, in order to compute single steady state probabilities of the Markov
chain underlying that model. A PEPA model of the considered class possesses only global
synchronisations, i.e. all sequential components (of which the composite model is built) must
participate in every synchronisation. Then, time instants of synchronisation (i.e. time instants of
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the beginning and the end of every synchronisation) of the composite model define a probabilis-
tic sequence of embedded states, which forms an embedded discrete time Markov chain. In
order to determine steady state probabilities we treat the dynamics between embedded states
(i.e. the embedded Markov chain) and the behaviour of the composite model between two
successive embedded states in separation. Hence, the Markov chain underlying the composite
PEPA model is treated as a semi-regenerative process. The behaviour of the composite model
between two successive embedded states is either a) governed by the cooperation operator
of the PEPA language or b) can be expressed by an absorbing joint Markov chain. Now, for
each embedded state we compute the mean time until reaching the next embedded state and
the mean time spent in some set A before reaching the next embedded state. For case b)
these two quantities are just the mean time to absorption and the mean time spent in A before
absorption of the said absorbing joint Markov chain. By application of a key result from the
theory of semi-regenerative processes, these quantities can be combined with the steady state
solution of the embedded discrete time Markov chain to the steady state probability that the
composite PEPA model is in set A.

The size of the state space of the Markov chain underlying the composite PEPA model is
exponential in the number of concurrent sequential PEPA components. The time complexity of
our proposed method to compute steady state probabilities of PEPA models does not depend
on the size of the state space of the composite model, but on the number of embedded states
and the complexity of the method to compute the mean time to absorption and the mean time
in A before absorption. Note that even for an exploding state space the number of embedded
states may be small.

4.2 Future Work

Let Y be the Markov chain underlying some PEPA model. Our proposed method for the com-
putation of the steady state probability P(Y ∈ A) is restricted by the following requirements:

• The set A needs to be the cross-product of sets Ai, i = 1 . . . m, where the Ai are subsets
of the state spaces of the Markov chains underlying the m concurrent PEPA components.
In addition we require either A ∩ S = ∅ or A ⊆ S.

• All concurrent components synchronise over the same synchronisation set L.

• In none of the concurrent PEPA components there exists a choice between synchronising
and non-synchronising activities.

Future work might aim at dropping one or more of these conditions. Surely, the first requirement
cannot be dropped, since it is a consequence of how we computed cumulative measures of an
absorbing joint Markov chain. As for the third requirement we have no idea yet. Maybe a
workaround for PEPA models not satisfying this third condition can be found.

The second condition which requires that all concurrent sequential components must be
involved in every synchronisation is a severe one. We have an idea of how to cope with such a
model but do not intimate it at this point.

Up to now we have only considered steady state probabilities. Of course, the consequent
question would be if our method could be enhanced such that it is also possible to compute
transient state probabilities. A straight forward approach would be to evaluate (3.8) in theorem
14. This requires knowledge of the Markov renewal kernel R of (X,T ), where X is the discrete
time Markov chain embedded in the composite PEPA model and T is the family of random
time instants which define this embedded Markov chain. However, the efficiency of such a
procedure is questionable.
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A

A.1 Corollary 5

The �−operator is commutative and associative.

Proof. The commutativity is self-evident. To proof associativity consider the functions f, g, h :
N0 → R≥0 with the values cf , cg, ch > 0 assigned:

((f � g) � h) (n) =
n∑

k=0

(
n

k

)
(cf + cg)kcn−k

h

((cf + cg) + ch)n
(f � g)(k)h(n − k) (A.1)

=
n∑

k=0

(
n

k

)
�����
(cf + cg)kcn−k

h

(cf + cg + ch)n

[
k∑

�=0

(
k

�

)
(cf )�ck−�

g

�����
(cf + cg)k

f(�)g(k − �)

]
h(n − k) (A.2)

=
n!

(cf + cg + ch)n

n∑
k=0

k∑
�=0

c�
fck−�

g cn−k
h

(n − k)!�!(k − �)!
f(�)g(k − �)h(n − k). (A.3)

With the substitution � �→ n1, k − � �→ n2, n − k �→ n3 we obtain

((f � g) � h) (n) =
n!

(cf + cg + ch)n
∑

n1+n2+n3=n

cn1
f cn2

g cn3
h

n1!n2!n3!
f(n1)g(n2)h(n3) (A.4)

= (f � (g � h)) (n). (A.5)

A.2 Corollary 17

For A ∩ S = ∅ and s′ ∈ S′ \ S the following relation holds:

Kt(s′, A) = Ps′(Y (t [T1]) ∈ A). (A.6)

Proof. With Kt(s′, A) = Ps′(Y (t) ∈ A,T1 > t), the equality

Ps′(Y (t) ∈ A,T1 > t) = Ps′(Y (t [T1]) ∈ A,T1 > t). (A.7)

is straight forward, because for T1 > t we have Y (t) = Y (t [T1]). Since A∩S = ∅ the implication
{Y (t [T1]) ∈ A} =⇒ {T1 > t} is valid, and hence

Ps′(Y (t [T1]) ∈ A,T1 > t) = Ps′(Y (t [T1]) ∈ A). (A.8)
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A.3 Corollary 18

For i = 1 . . . m and Y (T0) = s′ ∈ S′ \ S the following equivalence holds

{Yi (t [T1]) ∈ Ai} ⇐⇒ {Yi

(
t
[
T Yi

1

])
∈ Ai}. (A.9)

Proof. For Y (T0) = s′ ∈ S′ \ S, we have T1 = maxi∈{1,...,m}{T Yi
1 }, and hence

T1 ≥ T Yi
1 , for i = 1 . . . m. (A.10)

Now, consider three cases.

t < T Yi
1 : For t < T Yi

1 we have t[T1] = t
[
T Yi

1

]
= t, and consequently Yi (t [T1]) = Yi

(
t
[
T Yi

1

])
.

T Yi
1 ≤ t ≤ T1: For T Yi

1 ≤ t ≤ T1, the process Yi is in a waiting condition, i.e. during the
time interval [T Yi

1 , T1], Yi remains in the state that it occupied at time instant T Yi
1 . Consequently,

Yi (t [T1]) = Yi

(
t
[
T Yi

1

])
, for T Yi

1 ≤ t ≤ T1.

t > T1: From the preceding case follows Yi(T1) = Yi(T Yi
1 ). For t > T1 we have t[T1] = T1 and

t
[
T Yi

1

]
= T Yi

1 , which implies Yi (t [T1]) = Yi

(
t
[
T Yi

1

])
.
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