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Abstract 

We investigate the impact of agent communication networks on prices in an 

artificial stock market. Networks with different centralization measures are tested 

for their effect on the volatility of prices. Trading strategies diffuse through the 

different network topologies, mimetic contagion arises through the adaptive 

behavior of the heterogeneous agents. Short trends may trigger cascades of buy 

and sell orders due to increased diffusion speed within highly centralized 

communication networks. Simulation results suggest a correlation between the 

network centralization measures and the volatility of the resulting stock prices. 
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1 Introduction  

   Mimetic behavior or herding by investors is a widely discussed phenomenon 

[22] that has already found its way into the micro-simulation of stock markets 

models. Inspired by the superior profits of competing market participants, agents 

decide to disregard their own signals when trading stocks and mimic the behavior 

of potentially more successful direct neighbors instead. The stock market 

simulation models of Cont and Bouchaud [11] and Lux and Marchesi [32] 

incorporated that property in form of clustered agents that act in concert. We want 

to extend that line of research by introducing direct agent communication within 

several types of communication network topologies.  

   Within the last 10 years the research on networks has discovered new 

network models that matched the properties of empirically found networks closer 

than random networks [14]. It can no longer be assumed that complex networks 

like social networks resemble the often used random networks introduced by 

Erdös and Renyi [15]. Small-world networks [40] and scale-free networks [7] 

have not only proved to resemble real life networks [38], but exhibit different 

properties with regard to information diffusion [35].  

  When combining the simulation of artificial stock markets and information 

diffusion with different communication network topologies, the question arises: 

What influence do different network topologies have on the time series of 

resulting stock prices? Earlier stock market models did not address this subject 

because of the lack of direct agent communication and the lack of different 
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communication network topologies. We will show that topology influences the 

outcome of a stock market simulation and has interesting implications.  

  The use of simulation models has a long tradition in decision support 

systems [2]. With increasing computing power, agent-based simulations have 

been established more and more in the simulation domain [28]. Such agent-based 

models have several advantages compared to classical simulation models, 

especially in replicating complex systems with heterogeneous actors [23]. Agent-

based models are particularly suited for simulation models when an auction 

mechanism is used to find market prices [37], [5]. The simulation of an artificial 

stock market can therefore be useful in terms of decision support in two ways:  

  The system can be used by public decision makers to investigate critical 

market situations and their consequences on the economic development.  

The simulation offers the opportunity for private decision makers to check 

the consequences of various market constellations on the return on investment 

and risk associated with their investment strategy.  

  Creating artificial stock markets already has a more than 10 year history. 

They may be one of the few ways to study complex interdependent non-linear 

price dynamics that can be observed by empirical research. With the help of 

artificial markets like the ones found in Lux and Marchesi [32], Cont and 

Bouchaud [11], Bak, Paczuski and Shubik [3] and the Santa Fe Artificial Stock 

Market [29], to name just a few, new insights have been found into how the 

stylized facts of the capital markets [10] may arise. Modeling agent behavior on 

the micro level and exploring the consequences on the macro level of the resulting 

time series of prices is one of the main tasks when creating artificial stock 

markets. Andrew Lo recently introduced the Adaptive Market Hypothesis 

(AMH), that may have the potential not only to provide a theoretical framework 

for artificial stock markets, but may even have the potential to reconcile the idea 

of efficient markets with behavioral biases [30].  

  The Santa Fe Artificial Stock Market (SFASM) [29] was one of the earliest 
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publicly available artificial stock markets.  The agents generate their orders by 

using a pool of R=60 available rules. Based on a classifier system and a genetic 

algorithm, learning and adaption is possible. Direct communication between the 

agents is not possible.  

  The Bak-Paczuski-Shubik model [3] has N agents and N/2 shares, therefore 

half of the agent population are potential buyers and half of the population are 

potential sellers. Of the N agents, (N-K) agents are trend traders and K agents are 

fundamental agents. Of these (N-K)/2 trend traders and K/2 fundamental traders 

own shares. Agents not owning shares receive a fixed rate of interest i on their 

deposit.  

 Cont and Bouchaud [11] suggest a model of an agent based financial market 

with agents exhibiting herding behavior. Large fluctuations of the agents 

aggregated demand seem to lead to heavy tails in the distribution of returns. Cont 

and Bouchaud assume that the reason for the fluctuations can be found in the 

interaction and imitation of the market participants that coexist in a random 

communication network. N agents decide on individual random variable 

{ 1, 1,0}i    , 1i    to either buy (+1), sell (-1) or to be inactive (0). The 

aggregate excess demand is then defined as:  

                                
1

( ) ( )
N

i
i

D t t


  (1)

Agents are grouped together in clusters, all members of a cluster sharing the same 

belief and therefore having the same demand i . If  aW  is the size of cluster a  and 

( )a t  is the common decision to buy sell or to be inactive at time t, the joint 

demand for cluster a  follows as ( )a at W .  

The Lux Marchesi model [32] divides N  speculative traders at time t into two 

groups: fundamentalists f
tn  and chartists c

tn  with f c
t tn n N  . Chartists are 

further differentiated into two subgroups: optimistic tn  and pessimistic tn  with 

c
t t tn n n   . The sentiment among the chartists is represented by an opinion 
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index. The opinion index is accessible to all chartists and influences their trading 

decision next to the price trend.  

Hein et al. [21] showed with an earlier version of the Frankfurt Artificial Stock 

Market (FASM) that a small-world inter-agent communication network influences 

the resulting time series of prices. With an increasing rewiring probability for the 

small-world network, increasing volatility and distortion of resulting prices is 

observed. The results have encouraged us to further search for a system-inherent 

network effect that may have a substantial effect on the outcome of an artificial 

stock market.  

 Kirman [26] suggested direct agent interaction for artificial stock markets. 

Baker [4] showed that social structural patterns influence price volatility. We 

would like to follow up on these ideas by exploring the consequences of different 

communication network topologies. The influence of network topologies on 

economic decisions has been studied before by Wilhite [44]. It was found that the 

network topology, like scale-free, small-world, star and other topologies, affects 

the outcome of economic games and exchange. The new version of the FASM 

now specifically targets the question of how networks used for inter-agent 

communication in general affect the market behavior. Several model changes have 

been necessary to accomplish this task. A new agent type, namely the retail agent, 

has been introduced and activation thresholds similar to Granovetter [19] added. 

To categorize networks the concept of network centralization [16] has been 

chosen.  

 Several stock market crises may have something in common, as rumors 

travel like an infectious disease through a communication network of market 

participants and influence the behavior of traders [13]. Within that scenario the 

newly introduced retail agent plays an important role. The idea of introducing 

retail agents was partly stimulated by the empirical evidence of Kumar and Lee 

[27]. Retail agents are not endowed with a trading strategy and are initially 

inactive. They only monitor market performance and become activated as soon as 
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a minimum profit within a time window is reached. Once activated they look out 

for profitable trading strategies in their direct neighborhood. If a neighbor owns a 

strategy and it is profitable, retail agents imitate that strategy and start trading. If a 

threshold of negative performance is reached, they sell their shares and fall into 

hibernation for a number of trading days. The whole cycle starts again when the 

hibernation is over and the performance threshold at the stock exchange is reached 

again. With the help of such mechanisms the number of participating agents 

during the course of a simulation varies and the ups and downs of the exogenous 

inner value may be exaggerated. As a result of the expanding and contracting 

numbers of market participants the topology of the agent communication network 

influences how information is spread. The existence of mimetic contagion caused 

by the retail agents in combination with the network topology leaves a 

characteristic signature within the time series of resulting prices. Centralization in 

this context may be an important factor since the distribution of information 

within a network is improved by centralization [35]. Profitable agent behavior like 

buying and selling within short price trends are communicated faster in centralized 

networks, a cascade of buy and sell orders may be the consequence that will lead 

to large price swings. Less centralized communication networks showed that they 

were much less able to distribute profitable agent behavior quick enough to trigger 

cascades of buying and selling orders.  

 A tendency towards centralization may be observed within our financial 

system. The banking industry is creating large organizations by mergers and 

acquisitions, hedge funds are able to influence stock prices with increasing 

amounts of capital, the media distribute the opinions of analysts that tend to herd 

[43] to almost every market participant. This inherent property of increasing 

centralization may have unwanted side effects that may lead to excess volatility.  

The following section briefly describes the network topologies and network 

centralization measures used. Section 3 introduces the new version of the FASM 

with focus on the recently included retail agents and the diffusion algorithm and 
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auction method used. The simulation setup with all parameters is presented in 

detail in section 4 before section 5 discusses the results of the simulation runs in 

relation to the different network topologies used.  

 

 

2 Communication Networks 

 The next subsections introduce briefly the concepts of network topologies 

and network centralization as they will be needed as input parameter and 

classification measures for the simulations. Please refer to Dorogovtsev and 

Mendes [14] and Wassermann and Faust [39] for further studies.  

 

 

2.1 Random Networks 

 Since the seminal paper of Erdös and Renyi [15], the random network theory 

has dominated scientific thinking [6]. Real world networks had been thought to be 

too complex to understand and therefore held to be random. In the absence of 

other well-understood network models, random networks, also called ER-

networks, were widely used when modeling networks.  

 The process of creating an ER-network depends on probability p . For a 

network with n  nodes each possible pair of distinct nodes are connected with an 

edge with probability p . An ER-network has the property that the majority of 

nodes have a degree that is close to the average degree of the overall network and 

that there is not much deviation from the average below and above it. It has been 

shown that the distribution of links follows a Poisson-Distribution.  
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2.2 Small-World Networks 

 Small-world networks have their roots in social networks, where most people 

are friends with their immediate neighbors, but also with a few friends who are far 

away [40].  

 The network topology of small-world networks interpolates between regular 

and random graphs. Starting from a completely regular graph, where each node 

has four links to its direct neighbors, a rewiring procedure with probability p  

takes place. With higher p ’s more and more links are redirected until a random 

graph emerges. Watts and Strogatz define a network to be a small-world network 

if the average path length d  is comparable to a random graph and the clustering 

coefficient C  is much greater than for a random graph.  

 

 

2.3 Scale-Free Networks 

 When Albert et al. [1] started to map the Internet, they did not know that 

they were about to influence network research in a lasting way. Because of the 

diverse interests of every Internet user and the gigantic number of web pages, the 

linkages between web pages were thought to be randomly linked as a random 

network. The results of their study have disagreed with this expectation in a 

surprising way. Only a few pages have the majority of links, whereas most pages 

are only very sparsely connected. More than 80% of all pages visited have 4 links 

or fewer, only 0.01% of the pages are linked to more than 1,000 other pages (some 

up to two million). The probability distribution function ( )P j  of the degree j  of 

scale-free networks is described by:  

                               ( ) VP j j  (2)

with 0j   and 0  ,   called the scale-free exponent or degree exponent.  

 



Hein, Schwind and Spiwoks 207 

2.4 Network Centralization 

 Within social networks centrally positioned individuals are seen as having 

influence on others [39]. For the classification of networks in terms of 

centralization, Freeman [16] defined three centralization measures: degree 

centralization, closeness centralization and betweenness centralization. With the 

help of these network centralization measures, networks may be classified and 

differentiated. With the availability of the centralization measurements, networks 

may be taken as input parameters for our simulation model and analyzed in terms 

of how their topology affects market behavior.  

 

2.4.1 Degree Centralization 

 Degree centralization measures the variation of the degree of a network 

member in relation to all other network members. It shows how relatively well 

connected a node is. For g  nodes with *n  being the node with the highest degree 

and i
DC  equaling the degree (amount of links) of node i , the degree centralization 

is defined as [16]:  

 
                            

*

1

[ ]

[( 1)( 2)]

g
n i
D D

i
D

C C
C

g g





 


 

(3)

Degree centralization varies between 0 and 1. The star network has a degree-

centralization of 1. 

 

2.4.2 Betweenness Centralization 

 Interactions between two nonadjacent nodes A  and B  depend on other nodes 

that exist on the path from node A to node B. The betweenness centralization 

measures the frequency of a node appearing on the path between the two 

nonadjacent nodes in relation to the other nodes of the network. For g  nodes with 
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*n  being the node with the highest betweenness and jks  equaling the amount of 

shortest paths between nodes j  and k , ( )jkp i  equals the probability that node i  

is on the path between node j  and k . The betweenness centralization for a 

network is defined as [16]:  

 
                         

*

1
2

2 [ ]

[( 1) ( 2)]

g
n i
B B

i
B

C C
C

g g





 


 

(4)

Betweenness centralization varies between 0 and 1, and reaches a maximum if a 

node is on all the shortest paths between all other nodes (star network).  

 

2.4.3 Closeness Centralization 

 Closeness centralization measures how close a node is to the other nodes of a 

network in relation to the other nodes of the network. It shows how quickly 

(shortest paths to other nodes) one node can be reached from other nodes. With 

( , )d i j  being the distance (length of the shortest path) between node i  and j . The 

closeness centralization for a network with g  nodes and *n  being the node with 

the highest closeness is defined as [16]:  

                                       

*

1

[ ]

[( 1)( 2)]
2 3

g
n i
C C

i
C

C C
C

g g
g






 



                                              (5) 

Closeness centralization varies between 0 and 1. The star network has a closeness 

centralization of 1.  

 

 

3 The Frankfurt Artificial Stock Market 

 The Frankfurt Artificial Stock Market (FASM) has been designed to study 

how different communication network topologies affect the properties of the 



Hein, Schwind and Spiwoks 209 

resulting time series of prices [20]. Two types of trading strategies, namely the 

fundamental strategy and the trend oriented strategy, as used in other models [23], 

propagate according to their actual performance through a communication 

network. The number of agents applying one of the strategies varies according to 

the profitability of the strategies. The course of the price building process depends 

on the inner value of the stock and on the number of agents using the trend or 

fundamental strategy.  

 This section introduces the new version of the FASM. The major 

components namely agent behavior, the auction method and the communication 

mechanism will be discussed. For a more in depth comparison of the preceding 

stock market models please refer to Hommes [23] and LeBaron [28].  

 

 

3.1 Agent Behavior 

  In addition to the two traditional agent types fundamental and trend, we are 

using a new kind of agent, calling it retail agent. The intention is to model the vast 

numbers of uninformed and mostly inactive investors that may play a role, 

especially in extreme valuation situations. To the knowledge of the authors, there 

is no empirical data yet that describes the behavior of such investors. Kumar and 

Lee [27] showed that individual investors tend to act in concert and that a relation 

between sentiment and return formation exists. Nevertheless, introducing a retail 

agent to the FASM was more the consequence of personal observations of the 

authors. Alternative ways to describe agent behavior may be found for example in 

Chen and Yeh [8].  

 

3.1.1 Retail Agents 

 The retail agent is endowed with the ability to adopt both strategy types and 

acts on activation threshold, while initial trend and fundamental agents never 
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switch their strategy. As for most retail investors stock market transactions are 

mostly only a secondary income stream, it should be possible to refrain from 

transactions if experience suggests this. Therefore, retail agents are initially 

inactive and without a trading strategy. Rising prices beyond a certain threshold 

will activate them and prompt them to participate in trading. Retail agents will 

then start to look out for promising trading strategies within their direct 

neighborhood.  

Three cases are possible: 

1. All direct neighbors are retail agents, none of whom has yet acquired a 

trading strategy.  

2. One of the direct neighbors has a trading strategy, that was successful 

within a specific time frame.  

3. Several direct neighbors are using different trading strategies.  

In the first case the retail agent remains active, but refrains from trading, because 

of the lack of any trading strategy. In the second case, there is one agent in the 

direct neighborhood with a trading strategy. If the strategy has been successful 

within a time window, the agent adopts the new strategy and starts trading. In the 

third case there are multiple strategies within the direct neighborhood. In that case 

the most successful strategy will be adopted and the agent starts trading.  

 Retail agents are initially not endowed with a trading strategy. They copy the 

behavior from adjacent fundamental and trend agents (please refer to section 

3.1.2) that populate the network which is dominated numerically by inactive retail 

agents. Fundamental and trend agents never change their strategy and are always 

active, as would be expected from institutional investors. Kumar and Lee [27] 

found in their study that the average trade size of over 60,000 retail investor 

households is about 9,000 US$. We assumed that the trading volume caused by 

institutional investors by far exceeds the trading volume caused by individual 

retail investors.  
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 In the course of the simulation the two clusters of fundamental and trend 

strategies expand and contract their size depending on the deployment of the price 

building process. They may touch and may conquer the whole network. Once 

activated, retail agents may change their type depending on the success of their 

direct neighbors. If the direct neighbor reported a superior performance several 

times, the agent adapts its behavior to the strategy of the neighbor. Successful 

strategies diffuse through the communication network and influence the 

development of prices.  

 The contraction in the size of the clusters may be initiated by fundamental 

agents buying or selling in case of a larger mispricing (over- or undervaluation) in 

relation to the inner value fp  ( fp will be defined in section 3.1.2). This counter 

movement of the price might establish a down trend that is enforced by trend 

agents. The retail agents have been modeled in such a way that if the actual price 

falls below of the deactivation threshold, retail agents start selling their shares and 

stop trading for a number of days. They switch to an inactive status for an 

individual number of days, before they start monitoring the share prices again. 

They fall back into their initial state, and only the amount of cash differs. The 

activation and deactivation thresholds have been chosen to be asymmetrical (Table 

2) since investors tend to realize profits too early and let losses run for too long 

(similar to the value function of the prospect theory [25]). Depending on the 

development of the stock price and the trading strategies used during the activity 

period, it seems to be probable, that retail agents will end their activity cycle with 

a cash loss. Empirical evidence from Odin and Barber [34] shows that retail 

investors in Taiwan lost on average 2.8% of personal income when trading on the 

Taiwan stock exchange. Table 7 will show that retail agents lose cash over the 

course of a simulation. The activity cycle of a retail agent starts again, if the 

personal activation threshold is reached.  
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3.1.2 Fundamental and Trend Agents 

 Trend agents (also may called noise traders) and fundamental agents are 

defined in a way analogous to other stock market models (see Hommes [23] for an 

overview). Both agent types are unable to change their type: only retail agents 

may change their type several times during their activity cycle.  

 Fundamental agents observe an inner value fp  that is flawed by a small 

random number for each fundamental agent to avoid an unrealistic perfect 

knowledge of fp . The inner value is a random walk with a daily standard 

deviation of, for example 1%. Fundamental agents are heterogeneous in the sense 

that they possess different wealth consisting of stocks and cash and have different 

risk premiums.  

 Furthermore, fundamental agents are aware of the existence of trend agents 

participating in the market and the associated over- and under-valuations. During 

periods of large misvaluations they are able to extend their risk premiums in 

several steps. During periods of low volatility they are able to reduce their risk 

premiums to their initial level. Fundamental agents assume that the price will 

sooner or later return closer to the inner value, but are aware of possible 

misvaluations where it might be profitable to modify the individual risk premium 

in the direction of the ongoing trend.  

 The number of shares traded per agent is threshold dependent; the greater the 

mispricing the greater the numbers of shares ordered. The agents are able to 

generate limit orders and market orders, as is necessary due to the batch limit 

order book that is used for an auctioneer (refer to section 3.2). Every day each 

fundamental agent  k  creates one buy order with limit f
kp   and one sell order 

with limit f
kp  . If the current price leaves that corridor an order may be filled 

depending on other orders within the order book during the daily settlement. For 

example, with an individual risk premium    of 3% (Table 1), a difference of 

more than 3% between the stock price and the inner value fp  is needed to fill buy 
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or sell orders. Increasing over- or under-valuations activate more and more agents 

to participate in the trading. The fundamental agents are endowed with substantial 

amounts of wealth to hold the price close to the inner value fp . Short selling and 

lending is not allowed, and if an agent runs out of cash or stocks an order can not 

be created until sufficient funds are available.  

 Trend agents base their trading decisions solely on historical price patterns 

(moving averages of prices). They are heterogeneous in the sense that they hold 

different wealth and own an individual duration of the moving average (e.g. x 

days moving average). Once the price breaks through the agent’s individual 

moving average from below (above) buys (sells) are initiated. The presence of 

individual moving averages may lead to a situation where cascading buying or 

selling decisions of the part of trend agents may arise. The buying decision of one 

agent may trigger the buying decision of another agent with a slightly longer 

moving average (like in Granovetter [19]). Trend agents create order limits based 

on the price of the previous trading day modified by a small random number. The 

sign of the random number depends on the additional information issued by the 

auctioneer described in 3.2. The probability of a negative sign is higher if there 

has been more sell orders than buy orders at the last fixed price and vice-versa.  

Example for the order creation of fundamental and trend agents: 1,053p  , 

1,000fp  , individual risk premium of fundamental agent k: 1,5%k   (Table 1), 

individual time window of trend agent: 20 days (Table1), 20-day-moving-average 

price = 1,010:  

Order generation of the fundamental agent: Each fundamental agent creates one  

1,5% 985fp    

sell and one buy order every day: Buy order: Buy limit , Buy volume  shares since 

the price is above the limit (not attractive)(see Table 3 for quantities). 

Fundamental agent buy order: Buy 2 shares at limit 985. Sell order: Sell limit  

1,5% 1,015fp   , sell volume = 5 shares, since the price is 3,74% above the 
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sell limit. It is attractive to sell more (see Table 3 for quantities). Fundamental 

agent sell order: Sell 5 shares at limit 1,015.  

Order generation of the trend agent: Each trend agent creates one order every 

day: The price is above the moving average, a buy order is created. The buy limit 

is at 1,053p   plus or minus a small random number, for example 1,045. Buy 

volume = 3 shares, since the price is 3,46% above the moving-average price. 

Because of the strong trend it seems attractive to buy more (see Table 3 for 

quantities). Trend agent order: Buy 3 shares at limit 1,045.  

 

 

3.2 The Auction Mechanism 

 The FASM uses a batch limit order book which is settled once a day like in 

Hussan, Porter and Smith [24]. All agents supply their limit orders to the central 

auctioneer or refrain from trading. The auctioneer settles the price at the maximum 

possible trading volume by matching compatible buy and sell orders. Since the 

agents are not allowed to look into the order book the auctioneer creates additional 

information revealing how balanced the order book is. If there have been more 

buy than sell orders for the fixed price a “G” for Geld (Money) will be issued, vice 

versa a “B” for Brief (shares) will be issued. This additional information plays a 

role in the way trend agents find their order limit, as described in 3.1.2. The batch 

limit order book is still used for odd lots at the Frankfurt Stock Exchange. It has 

been shown that the auction mechanism influences the price building process. The 

market microstructure aspects of artificial stock markets are still an 

underdeveloped field that will gain more attention as the artificial market models 

mature. Refer to Garman [17] for an introduction to the field of market 

microstructure theory. Interesting more recent articles are Mendelson [33], Weber 

[42], Clemons and Weber [9] and Weber [41]. Different auction mechanisms for 

artificial stock markets have been reviewed by Pellizzari and Dal Forno [36]. It is 
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planned to implement other auction mechanisms within future versions of the 

FASM.  

 

 

4 Simulation Setup 

 The simulations were accomplished using 500 agents that were initially 

divided into 29 fundamental and 18 trend agents, 453 retail agents and one random 

trader. In the case of no activated retail agents fundamental agents are in the 

majority to stabilize the price against the trend agents. The random trader 

randomly buys and sells small amounts of shares to assure market liquidity. An 

exogenous inner value fp  for 3,000 trading days was generated. fp  starts with a 

value of 1,000 and has a daily standard deviation of 0.9% (Table 3). Each agent is 

endowed with a random number of cash and stocks as initial wealth (Table 1). The 

random numbers for this wealth are limited within upper and lower bounds. The 

communication probability for each agent has been set to 4%, which means that 

each agent communicates on average about every 25 days with its neighbors. 

Fundamental agents may buy between 2 to 80 shares per order and trend agents 1 

to 20 shares per order depending on the deviation from their activation thresholds 

(Table 3). The greater order volume of fundamental agents for buy and sell orders 

generates pressure on the stock price to return to a state closer to its inner value in 

the case of a larger difference between price and inner value.  

 Retail agents are activated when the price increase exceeds an activation 

threshold that is individually set for each agent. The activation threshold is 

randomly generated in the range of 5% to 10%, the deactivation threshold is 

randomly generated in the range of 10% to 18%. Price changes are computed 

within a time window which varies between 20 to 40 days per agent (Table 2). 

The activation and deactivation bounds depend on the inner value. An inner value 

with a smaller standard deviation needs smaller bounds for activation, otherwise 
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no activation of retail agents would be possible. Retail agents are inactive for at 

least 60 to 90 days after deactivation and need at least 10 days for the liquidation 

of their portfolio. 

 

Table 1: Parameter values of fundamental and trend agents 

agents’ parameters   

agent type  #     time window init. cash  init. stocks  

      
fundamental  29  0.5%-3.5%       --  5-8   mil. 5,000-8,000 

trend  18  --  10-70   days 1-2   mil. 2,000-3,000 

retail  453  --      --  1-1.5  mil. 0   

 

 

Table 2: Retail agents’ specific parameters 

retail agents’ specific parameters   

activation  deactivation deactivation profit  sell   

thresholds  thresholds periods  windows  period   

     
5%-10% 10%-18% 60-90 days 20-40 days 10 days 

 

 The last and most important parameter is the communication network type 

that connects the agents and allows communication with their nearest neighbors. 

Four network topologies have been chosen: a random network, a small-world 

network, and two scale-free networks with different centralization measures. Since 

the introduction of scale-free networks many variations of scale-free generating 

algorithms have been introduced. They mostly differ in preferential attachment 
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probability. The networks were generated with Pajek 1.21.4 and NetMiner 3 5. 

 

 

 Table 3: Volume of shares ordered by fundamental and trend agents depending on 

the strength of the buy/sell signal 

fundamental agents  trend agents  

deviation from 

signal  

vol. in 

shares  

deviation from 

signal  

vol. in 

shares   

    

0% - 2%  2  0%-2%  1   

2% - 5%  5  2% - 4%   3   

5% - 10%   15  4% - 7%   5   

10% -    80  7% -     20   

 

 

    Table 4: Parameters for the generation of fundamental value time series    
                  parameters 

0
fP     # of trading days 

    

1,000  0,9%  0   3,000 

 

 

For the two scale-free networks, two different generating algorithms were used 

(Pajek and NetMiner) leading to two scale-free networks with different 

centralization measures. The agent types were placed arbitrarily within the 

networks. Figure 4 presents a small-world network with 100 nodes as an example 

                                                 

4 free for download at http://vlado.fmf.uni-lj.si/pub/networks/pajek/ 
5 www.netminer.com 
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of how the agent types were distributed. The original networks with 500 nodes are 

inconvenient for demonstration due to the large number of edges. Each network 

consists of 500 nodes and 1,000 edges. The networks only differ in the way the 

edges are distributed among the nodes.  

 

      Figure 1: Example of a small-world network with 100 nodes  
                     (black: trend agents,  gray: fundamental agents, white: retail agents) 
 

 

Table 5: The centralization measures of the four used networks. 

Network Types  Betweenness Closeness  Degree   

 Centralization Centralization Centralization  

    

Random  0.0306  0.0994  0.0121   

Small-World  0.0461  0.0672  0.0040   

Scale-Free 1  0.4048  0.3520  0.1067   

Scale-Free 2  0.4574  0.5930  0.6841   

 

 

The network centralization measures for the four network types are shown in 
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Table 5, where the scale-free 1 network shows a higher degree of centralization 

than the random and the small-world network in all three measures of 

centralization. The scale-free 2 network exhibits the highest degree of 

centralization of all networks. There is no correlation between them since they 

measure different aspects of centralization. Therefore the random network is the 

least centralized and the scale-free 2 is the most centralized network. Closeness 

and degree centralization Figures increase from the small-world to the scale-free 

network. The centralization measures in Table 5 are sorted in increasing order 

from the small-world to the scale-free network. Since these centralization 

measures are not correlated, all three measures are used in parallel.  

For each network 10 simulations with identical parameters were conducted to 

indicate the impact of the random variables on the simulation results. The variance 

of the results did not change much with more simulation runs per network.  

 

 

5 Results 

 Figure 2 presents a simulation run for the small-world communication 

network. The charts for the other networks are available online. The price chart in 

Figure 2 (first chart) exhibits frequent periods of upward and downward trends 

that coincide with the activation of the retail agents as shown in Figure 2. An 

increasing number of agents using the trend strategy (fig. 2, lower chart, dotted 

line) move the price away from its inner value. In this situation, given the design 

of the simulation model, fundamental agents react to the investment opportunity 

with higher order volumes. They sell more shares in the case of increasing over-

valuations, they buy more shares in the case of increasing under-valuations. The 

sharp drops of the price in Figure 2 (first chart e.g. around trading days 400 or 

800) are initiated by the deactivation of retail agents, when they sell their portfolio 

of shares.  
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Figure 2: Simulation results using the small-world communication network.  

 

 

In Figure 2, the top chart displays the price and exogeneous inner value used. 

The chart below shows the precentaged difference between the price and the inner 

value. There are periods of low deviation between price and inner value and 

sudden periods of large deviations. The third chart depicts the volume of shares 

traded. The correlation of high deviations in the second chart and high volume in 

the third chart is obvious. The bottom chart shows daily returns, relatively quiet 
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periods are suddenly interrupted by short periods of high volatility. 

We conducted 10 simulation runs per network. Table 6 summarizes the 

average values of the 10 results. The standard deviation in Table 6 increases with 

the order of the networks used (random, small-world, scale-free 1, scale-free 2). 

The skewness and the minimum return decrease with the order of the networks. 

The kurtosis of the times series of prices indicates a leptokurtic shape of the return 

distributions. The Hill-Estimators [31] are within the area of empirical 

observations for real markets [18]. The augmented Dickey-Fuller tests [12] in 

Table 6 confirm the hypothesis that the time series of stock prices for all networks 

are non-stationary. The time series of stock prices of real markets proved to be 

non-stationary [32].  

In Figure 3, the most obvious differences to the small-world network 

simulation results are the greater deviations between price and inner value and 

higher volume correlated to periods of extensive volatility. The periods of high 

volatility and volume occur more often than within the small-world network 

simulation. Apart from the communication networks all other parameters of the 

simulations stayed the same. 

 Our model is in accordance with the weak form market efficiency since 

trend investors realize on average negative trading results over longer simulation 

runs (Table 7). Fundamental investors usually end within the positive territory. 

The 4th statistical moment of returns increase from less to more centralized 

networks. The higher diffusion speed within centralized networks leads to larger 

quantities of trend investors during short trends. The price deviates from the inner 

value, which presents arbitrage possibilities for fundamental investors. Since the 

fundamental investors are able to order larger quantities of stocks, the price will 

sooner or later return closer to the inner value. In consequence trend investors will 

on average loose and fundamental investors will on average gain from that 

behavior. The negative 3rd statistical moment stands in relation with the behavior 

of the retail investors. As soon as large losses are encountered, retail investors 
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panic and flee the market. They sell all their shares within a short period of time 

and cause large moves to the downside.  

Volatility and distortion numbers will be discussed later in relation to 

network centralization measures. The volume of shares traded increases with the 

order of the networks. Networks with higher centralization measures lead to 

higher volumes over the course of the simulation. A potential explanation for this 

behavior is, that centralized networks exhibit a faster diffusion speed [35]. This 

leads to greater differences between inner value and stock price, which causes 

higher turnover.  

 

Figure 3:  Simulation results using the scale-free 2 network  
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Figure 4:    Results for the group sizes of retail, trend and fundamental agents  
                   using the small-world network 

 

 

 Table 7 presents the profit numbers for the agent types used in our model. 

The profit numbers are computed over the whole simulation run. The profit 

numbers are averaged over 10 simulation runs and are averaged within the type 

groups. Increased network centralization causes higher profits for fundamental 

agents, because of higher differences between price and inner value, and higher 

losses for trend and retail agents, even though retail agents are not always active.  

The resulting time series of stock prices are analyzed with respect to volatility and 

to distortion of fp . Figure 5 depicts the volatility (box-plots) and the 

centralization measures of the four networks used (line plots) for ten simulation 

runs per network. The box-plots show the range of volatility for ten time series of 

prices. Table 6 (section D) presents the exact values for the average volatility. 
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Table 6: Average statistic numbers for 10 simulation runs with identical parameters 

A. Descriptive Statistics  

 Random Small-World Scale-Free 1 Scale-Free 2  

     

No. of Observations  3,000  3,000  3,000  3,000   

Mean  0%  0%  0%  0%   

Standard Deviation  0.74%  0.78%  0.83%  0.91%   

Skewness  -0.54  -0.21  -0.56  -0.96   

Min.  -5.32% -7.45%  -8.48%  -13.22%   

Max.  5.63% 5.26% 5.60% 7.35%   

 

B. Fat Tail Property  

 Random Small-World Scale-Free 1 Scale-Free 2  

     

Kurtosis  10.95  8.18  11.36  14.70   

Hill-Estimator (5% tail)  5.4  5.2  4.9  4.8   

 

C. Unit Root  

 Random Small-World Scale-Free 1 Scale-Free 2  

  

ADF-Test:    

Test critical values:   

1% level:  -3.43  -3.43  -3.43  -3.43   

5% level:  -2.86  -2.86  -2.86  -2.86   

10% level:  -2.56  -2.56  -2.56  -2.56   

ADF  -16.45  -16.60  -14.46  -14.57   

 

D. Volatility, Distortion and Volume  

 Random Small-World Scale-Free 1 Scale-Free 2  

     

Volatility (average)  55.46  60.43  68.31  82.32   

Distortion (average)  2.72  3.47  3.66  4.37   

Volume in shares  443,375 568,299  691,699  1,133,726   
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 Table 7: Agent type performance 

E. Agent Type Performance  

 Random Small-World Scale-Free 1 Scale-Free 2  

     

Fundamental  10.53% 13.57%  17.14%  34.91%   

Trend  -11.39% -15.03%  -18.93%  -19.12%   

Retail  -6.60% -8.07%  -11.36%  -22.65%   

 

 

 Our results indicate that there is a relation between increased network 

centralization and volatility. Centralized nodes (agents) have the ability to spread 

profitable trading strategies much faster than nodes in the periphery of a network. 

The adaption of the trader community to a newly established trend takes place in a 

shorter time frame. In centralized networks short trends in the inner value may 

already be able to trigger cascading buy or sell orders, whereas this is not the case 

in less centralized networks. An over- or undervaluation with respect to the inner 

value can be observed in higher frequencies than is the case for less centralized 

networks.  

 Our results indicate that the topology of an agent communication network 

with bounded rational and heterogeneous traders impacts on the resulting time 

series of stock prices. Higher centralization of the agent communication networks 

leads to a rise in volatility of the stock prices. The sharp increase in volatility and 

distortion for the small-world network in Figure 5 without a simultaneous increase 

in centralization may be a result of the small-world effect [14]. The rate of 

diffusion for the trading strategies in a small-world network is higher than the rate 

of diffusion in a random network that has similar centralization measures.  
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Figure 5: Results for the volatility in relation to network centralization 

In Figure 5, higher network centralization goes along with higher volatility. 

Our results indicate that agent communication networks with less or no large hubs 

are favorable when market volatility needs to be reduced. The consequences of 

these results could be that institutional investors should not reach a size that would 

lead to a controlling position within the market. The influence of trend investors 

should be reduced (e.g. transaction tax small enough that liquidity will not be 

reduced). 

 

 

6 Conclusion 

 When tracing the causes of excess volatility and fat-tailed return 

distributions, herding seems to play an important role. Preceding models of stock 

markets (Cont & Bouchaud, Lux & Marchesi) have shown that herding and 

mimetic contagion are able to reproduce the stylized facts of the capital markets. 
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The models mentioned create the herding behavior of the agents by dividing the 

agents into groups. The agents may switch between the groups, but act in concert 

with the other group members when buying and selling shares. We modeled 

mimetic contagion by introducing individual communication between 

heterogeneous agents that act in various types of network topologies. These 

networks can be distinguished by different centralization measures (closeness, 

betweeness, degree).  

 Four networks with the same number of nodes and edges, but with a 

different distribution of the edges were used to demonstrate how the topology 

itself influences the price building process. The random network and the small-

world network with low centralization and two scale-free networks with higher 

centralization measures were used as communication networks for the agents 

trading in our artificial stock market. The results of our simulations indicate that 

rising centralization measures generate higher stock price volatility and higher 

distortion from the inner value.  

 Trend-orientated trading by uninformed agent investors jointly with 

information contagion in centralized networks could be one explanation for the 

existence of the stylized facts (like excess volatility, fat tailed return distributions 

and volume-volatility correlations) in real stock markets. With these simulation 

results we would like to complement the findings of market microstructure theory 

and offer an alternative to findings like in Clemons and Weber [9]. Market 

microstructure theory relies in general on illiquidity and transaction costs to 

explain the stylized facts of the capital markets whereas we try to explain 

properties of financial prices with the help of agent behavior within networks.  

 These results may have implications for the understanding of real markets. 

The influence of major stock market players like banks, pension funds and hedge 

funds on the behavior of unsophisticated private investors can be seen as a 

potential source of misvaluations. The consequences could be to prevent 

institutional investors from growing over a critical size that would give them a 
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leadership within the market. The expression of opinions of mayor players and 

media could be further controlled to prevent personal interests and information 

avalanches that could lead to market overreactions. Retail traders should be 

detained from falling for short lived market trends through education.  

 Empirical evidence about communication networks between market 

participants and additional data about the behavior of unsophisticated private 

investors would be helpful to further harden our results. The communication 

network used could be tailored to measurements found in observed networks and 

the trading behavior of retail investors could be better represented. Such a study, 

even when complex und costly, would bear the benefit of a better understanding of 

the behavior of retail investors when trading within turbulent markets.  
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