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Abstract 
 
This article investigates the impact of the distribution of preferences on equilibrium behavior 
in conflicts that are modeled as all-pay auctions with identity-dependent externalities. In this 
context, we define centrists and radicals using a willingness-to-pay criterion that admits 
preferences more general than a simple ordering on the line. Through a series of examples, we 
show that substituting the auction contest success function for the lottery contest success 
function in a conflict may alter the relative expenditures of centrists and radicals in 
equilibrium. Extremism, characterized by a higher per capita expenditure by radicals than 
centrists, may persist and lead to a higher aggregate expenditure by radicals, even when they 
are relatively small in number. Moreover, we show that centrists may in the aggregate expend 
zero, even if they vastly outnumber radicals. Our results demonstrate the importance of the 
choice of the institutions of conflict, as modeled by the contest success function, in 
determining the role of extremism and moderation in economic, political, and social 
environments. 
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1 Introduction

It is axiomatic that the nature of conflict depends on the institutions of conflict. In this

paper we examine conflicts in which economic agents expend scarce resources in order to

achieve their preferred outcome among a set of alternatives. If an agent secures his preferred

alternative we say that the agent "wins." Otherwise, the agent "loses." In this respect the

conflicts that we examine are contests as defined, say, in Konrad (2009). Our approach differs

from much of the literature on contests in that agents are not indifferent to the identity of

the winning agent in the event that they themselves lose. That is, we examine contests with

identity-dependent externalities.

In much of the theoretical work on conflict to date the institutions of conflict have been

black-boxed by the application of a contest success function - a function that maps the

vector of agents’ resource expenditures in the conflict into their respective probabilities of

winning their preferred outcome. Two prominent types of contest success functions (hence-

forth, CSFs) employed in the literature are the "lottery" CSF (Tullock, 1980), in which the

probability that an agent wins his preferred outcome equals the ratio of the agent’s expen-

diture to the sum of all agents’ expenditures, and the "auction" CSF, in which the agent

with the greatest expenditure wins his preferred outcome with certainty. The lottery CSF is

a popular method of modeling conflicts in which the outcome is determined not just by the

respective expenditures of resources, but also a substantial random component. An auction

CSF may be viewed as approximating environments in which random exogenous factors play

little role in influencing the outcome of the conflict. Because of the discontinuity in the

auction CSF when agents are tied for the highest expenditure, small differences in (posi-

tive) expenditure may lead to large differences in the probability of winning. That is, in

contests, the auction CSF represents cutthroat competition in sunk expenditure, much the

way that classical Bertrand competition is cutthroat competition in price. With the lottery
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CSF competition is softened by randomness in the outcome, conditional on the profile of

expenditures.

Contests with identity-dependent externalities utilizing a lottery CSF have been examined

by Linster (1993) and Esteban and Ray (1999). Linster (1993) demonstrates that with a

constant unit cost of expenditure, pure strategy Nash equilibrium profiles of expenditures

may be obtained as the solution to a nonlinear system of equations.1 He analyzes two three-

player environments in more detail, including a comparative statics analysis that links total

conflict and social surplus to the extent of the externalities. Esteban and Ray (1999) extend

Linster’s (1993) model by considering groups of agents, with heterogeneous preferences across

groups but homogeneous preferences within each group. Each agent has an identical strictly

convex cost of expenditure function, and free-rider problems are assumed away by requiring

that each group of agents acts as a single agent with the group’s aggregate cost of expenditure

function (and dividing the resulting expenditure equally). Hence, larger groups have lower

costs. The current contribution reexamines several of the issues addressed in these papers

applying the auction CSF. That is, we examine all-pay auctions with identity-dependent

externalities.

To the best of our knowledge, we are the first to study equilibria of the all-pay auction

with identity-dependent externalities.2 In this sense we provide a bridge between models

of conflict such as Linster (1993) and Esteban and Ray (1999) that utilize a lottery CSF

and the growing literature on winner-pay auctions with identity-dependent externalities in

which agents place bids, an auction CSF is employed, but generally all bids except for

the winner’s are refunded. Jehiel and Moldovanu(2006) review this literature and note
1Linster (1993) argues that such a solution exists unless the contest is degenerate in the sense that players

are indifferent to the outcome.
2Konrad(2006) examines the effect of silent shareholdings in an all-pay auction framework with complete

information and finds that the social value may increase or decrease depending on the identity of the firm
that holds a share in its competitor. However, Konrad does not further analyze settings in which three firms
are active in equilibrium and allows only one player’s valuation to be endogenous.
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that the endogeneity of valuations in winner-pay auctions is the main driving force behind

many new, and interesting phenomena that arise even in complete information settings.3

A comprehensive treatment of the (first-price) winner-pay auction with identity-dependent

externalities and complete information appears in Funk (1996).

As noted by Esteban and Ray, identity-dependent externalities can, under certain con-

ditions, impart a natural "metric" measuring the distance between players.4 If, for every

i ∈ I = {1,2, . . . , n}, vi = (vi1, vi2, . . . , vin) is the vector of payoffs received by player i when

players 1,2, . . . , n, respectively, win their preferred option, it is natural to extend the defi-

nition of "reach" due to Siegel (2009) to account for identity-dependent externalities. More

precisely, let rij = vii − vij be player i’s reach with respect to player j. That is, rij is the

maximum amount that player i would be willing to expend in order to win with certainty

rather than have player j win with certainty. Under the assumption of symmetry, rij = rji,

players’ reaches may be viewed as a distance between the preferred outcomes of players based

upon the players’ willingness to outbid each other to achieve their most favored outcome.

Players have similar preferences over their preferred outcomes if they value the success of

the other in terms similar to their own; that is, if rij = rji is small. This notion of the

distance between players’ preferred outcomes allows the quantification of the terms radical

and centrist in terms of the set of reaches over all player pairs. Player i is a radical if he is

an outlier in the sense that he is a player that attains the highest reach, max{rij ∣i, j ∈ I},

among all player pairs, with the additional qualification that any player pair k, l attaining

the same reach must include player i. A player who is not a radical is a centrist.
3For instance, in first-price winner-pay auctions, Funk (1996) and Jehiel and Moldovanu (1996) show

that multiple payoff nonequivalent equilibria may arise. Jehiel and Moldovanu (1996) show that if players
can commit in a pre-auction stage not to participate, both potential winners and losers may choose non-
participation, despite the inability to avoid the negative externality. Janssen and Moldovanu (2004) show
that revenue and efficiency may be unrelated to each other.

4Esteban and Ray (1999) do not show formally that the distance measure induced by preferences over
outcomes is a metric. See section 2 for our assumptions under which there exists a semi-metric induced by
players’ willingness to outbid each other.
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In the sections that follow we incorporate the distributions of players’ preferences, as

summarized by their reaches, in all-pay auctions with identity-dependent externalities to

examine the behavior of centrists and radicals in Nash equilibrium. As in Esteban and Ray

(1999) extremism refers to environments in which equilibrium expected per capita expendi-

tures are higher for radical players than for centrists. Moderation refers to environments in

which this ranking is reversed. We analyze simple scenarios similar to those in Esteban and

Ray (1999) and find that expected per capita expenditures are higher for radicals than for

centrists. This advantage may lead to a higher aggregate expected expenditure by radicals,

even when they are relatively small in number. In fact, centrists may in the aggregate expend

zero with certainty, even when they vastly outnumber radicals. Thus, extremism drives out

moderation if an auction rather than a lottery CSF is employed.

Our findings are in the spirit of Osborne et al. (2000), who show that players representing

central positions will not participate in meetings when there is an identical fixed cost of

participation and the outcome is a compromise between the participants. We similarly find

the non-participation of centrists in environments that are different from those in Osborne et

al. (2000) in two fundamental ways. First, in our model, players’ expenditures are variable

and influence the outcome of the conflict. Second, the outcome of the conflict is the position

of the player with the highest expenditure.

In the next section we provide a model of the all-pay auction with identity-dependent

externalities and define players’ proximity based on their preferences. We then analyze

equilibrium behavior in different three-player environments. In Section 3 we conclude with

a brief discussion of welfare, contests between groups, and more general assumptions on the

cost of bidding.
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2 The Model

We examine all-pay auctions with identity-dependent externalities under complete informa-

tion. In an all-pay auction all players place their bids simultaneously, the player with the

highest bid wins the prize, and all players pay their bid. In order to capture the idea that a

player is not indifferent to who wins the prize if he does not, we represent a player’s valua-

tion of the outcome as an n-dimensional vector rather than a scalar. Each player’s valuation

of the outcome is a vector vi = (vi1, vi2, . . . , vin), i ∈ I = {1, . . . , n}, where vij is the value

to player i if player j wins the prize. Externalities are not restricted to being positive or

negative only, but we assume that players strictly prefer to win the prize.

Assumption 1. ∀i ∈ I ∶ vii > vij∀j ∈ I, j ≠ i.

Given a profile of bids, b = (b1, . . . , bn), player i’s payoff is

ui(b) =∑
j∈I

pj(b)vij −C(bi),

where pj ∶ Rn
+ → [0,1] is player j’s probability of winning given the profile of bids, and

C ∶ R+ → R+ is the player’s cost, which only depends on his own bid. With an auction CSF

pj(b) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 if ∃k ∈ I ∶ bk > bj

1 if bj > bk∀k ≠ j

1
m if j ties with m − 1 other players for the high bid

.

For simplicity we assume in the following analysis that C(b) = b, i.e. players have constant

unit marginal cost. However, our results hold generally if players have identical, continuous,

strictly increasing, and unbounded cost functions with C(0) = 0.5 We expand a player’s

expected utility, ui(⋅), and probabilty of winning, pi(⋅), to the domain of mixed strategies.
5In this case we can employ our analysis to a transformed bid , β = C(b). We elaborate on other potential

assumptions on cost in section 3.
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A mixed strategy Fi ∶ R+ → [0,1] of player i ∈ I is a cumulative probability distribution

function over his bids. If a player bids zero with probability one, we refer to this strategy

as staying out of the conflict. When a player submits a positive bid with strictly positive

probability we say that he actively participates in the conflict.

We aim to analyze the effects that the distribution of preferences has on strategic behavior

in all-pay auctions and for this purpose focus on three-player environments (I = {1,2,3}).

For these environments we define radicalism and centrism based on the profile of players’

valuations. More precisely, let rij ∶= vii−vij, i, j ∈ I, be player i’s reach6 with respect to player

j, meaning that rij is the maximum player i would be willing to bid in order to outbid player

j, if players i and j were the only actively competing players. To ensure an unambiguous

measure of preference proximity we assume the following.

Assumption 2. Inter-agent antagonism is symmetric, i.e. rij = rji ∀i, j ∈ I.

Under assumptions 1 and 2, d(i, j) ∶= rij can be interpreted as a distance between players

that reflects preferences over outcomes in the sense that player i (weakly) prefers the outcome

where j wins over the outcome where k wins if and only if d(i, j) ≤ d(i, k), i, j, k ∈ I. In fact,

d(i, j) ∶= rij has the properties of a semi-metric:

1. Non-Negativity: d(i, j) ∶= rij = vii − vij ≥ 0 by assumption 1,

2. Identity of Indiscernibles: d(i, j) ∶= rij = 0 if and only if i = j also by assumption 1,

3. Symmetry: d(i, j) ∶= rij = rji = d(j, i) by assumption 2.

Note, however, that we do not restrict our analysis to environments in which the triangle in-

equality holds, as there is no intuitive motivation for this property in the context. Therefore,

d(i, j) ∶= rij need not be a metric.
6This definition is based on Siegel(2009) but accounts for the identity-dependent externalities.
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For example, d(i, j) = rij could be generated by a spatial preference model in which

players engage in an all-pay auction to implement their distinct ideal points in a finite di-

mensional real issue space. Suppose players possess identical, additively separable utility

functions in which the player’s bid is subtracted from a subutility function decreasing in

the Euclidean distance between the player’s ideal point and the implemented ideal point.

Whether or not the triangle inequality may be violated rests on the curvature of the iden-

tical subutility functions. If these functions are strictly concave in the Euclidean distance

(reflecting increasing marginal disutility in Euclidean distance), then the triangle inequality

may be violated. If the subutility functions are linear or convex in the Euclidean distance

between ideal points, then the triangle inequality holds.

Given this framework, we define the players’ distribution of preferences based on their

willingness to outbid others as well as other players’ reciprocal antagonism towards them.

Intuitively, a player who favors a radical outcome will generally face stronger opposition from

his rivals, and in turn be willing to expend high effort to support it.

Definition 1. A player i ∈ I is called radical,7 if

i ∈ ⋂
rst=max{rij ∣i,j∈I}

{s, t}

Definition 2. A player i ∈ I is called centrist, if i is not radical.

According to Definition 1 we call a player i radical if he is willing to bid up to the

maximum of all reaches when competing with some other player, and additionally other

players would not be willing to bid that high unless possibly if they were competing with i.

Following Esteban and Ray(1999), we refer to extremism as a situation where all radical

players expend in expectation more effort per capita than do centrists in order to reach their
7To our knowledge no formal definition of a radical in an n-player environment exists in the literature.

However, in the symmetric three-player environments considered in this article many possible definitions
would lead to exactly the same classification of players as definition 1 above.
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preferred outcome. Alternatively, a situation in which centrists expend more effort would be

referred to as moderation. In the following paragraphs we separately consider the cases of

(A) two radical players and one centrist, (B) one radical player and two centrists, and (C)

the all-pay auction without radical players.

2.1 Two Radicals

Let players 1 and 3 be radical and player 2 be the centrist. Without loss of generality we

consider the case where d(2,1) = d(2,3). Figure 1 illustrates the ranking of the rij’s in this

case. We refer to this all-pay auction as Γ21, where 2 refers to the number of radicals and 1

to the lone centrist.

● ● ● ●
r21 = r12
r23 = r32

r13 = r31

Figure 1: The case of two radical players and one centrist.

We find that in any Nash equilibrium of Γ21 both radicals will actively participate. More-

over, the Nash equilibrium of Γ21 is unique and symmetric. It has the property that the

centrist player stays out of the conflict. This stands in contrast to a first-price winner-pay

auction in this environment. Funk(1996) shows that there exists a pure-strategy equilib-

rium in the environment described above, in which player 2 wins the prize with a bid of

r2j, j ∈ {1,3}.

Proposition 1 (Moderation does not drive out extremism). In any equilibrium of Γ21, both

radicals actively participate in the conflict.

Proof. By way of contradiction, assume that one of the radical players stays out of the

conflict; without loss of generality let that player be player 1, i.e. F1(0) = 1. Given player

1’s strategy players 2 and 3 would randomize up to r23 = r32 < r31 = r13. Player 1’s payoff
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if he bids zero will be in the interval (v13, v12) and he could strictly improve upon this by

bidding r23 which would guarantee him a payoff of v11 − r23 = v11 − r12 = v12.

Proposition 2 (Extremism drives out moderation). There exists an unique equilibrium

of Γ21. In the equilibrium of Γ21 the centrist stays out and the radical players randomize

continuously up to their common reach, r13 = r31. The two radical players apply identical

strategies in equilibrium.

Proof of Proposition 2 is provided in Appendix A.1.

One implication of Propsition 2 is that an equilibrium in which only two radicals actively

participate and all centrists stay out of the conflict exists even if the population share of the

radical players is much smaller than that of the centrist players. This observation is formally

stated in Proposition 3.

Proposition 3 (Extremism drives out moderation with many centrists). Suppose Γ21 is

altered by adding more players who are centrists, while maintaining the identical radical

positions of players 1 and 3. Then the equilibrium described in Proposition 2 part (i) persists:

all centrists stay out and the radical players 1 and 3 actively participate by randomizing

continuously up to the common reach r13 = r31.

Proof. Let player m be an additional player, who is centrist in comparison with players 1

and 3. Then rmj ≤ rjk for all j, k ∈ {1,3}, j ≠ k, and there exists a j ∈ {1,3} such that

the inequality is strict. Note that in order for players 1 and 3 to remain radical, rml < r13

∀m, l ∈ I/{1,3}. If player m bids zero and all other players follow the equilibrium strategies

described in Proposition 3, then m’s expected payoff is 1
2(vm1 + vm3). If player m places

a strictly positive bid, b ≤ rjk, while all other players follow the strategies described in

9



Proposition 3, m’s expected payoff would be

um(b) = F (b)2vmm + (1 − F (b)2) [
vm1 + vm3

2
] − b

=
vm1 + vm3

2
+ F (b)2 [

rm1 + rm3

2
] − b

=
vm1 + vm3

2
+ (

b

rjk
)

2

[
rm1 + rm3

2
] − b

=
vm1 + vm3

2
+ b

⎡
⎢
⎢
⎢
⎢
⎣

b

rjk
°
≤1

(

1
2(rm1 + rm3)

rjk
)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<1

−1

⎤
⎥
⎥
⎥
⎥
⎦

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<0

<
vm1 + vm3

2
.

If player m bids more than rjk, then his payoff is

um(b) = vmm − b < vmm − rjk < vmm −
1

2
(rm1 + rm3) =

vm1 + vm3

2
.

Consequently, player m optimally bids zero and all centrists stay out.

Before proceeding to the next case, we provide an example which illustrates the results

above and allows us to compare the all-pay auction with a different form of all-pay contest,

namely a Tullock-type model with a lottery contest success function. For the purpose of

comparison we consider an example given by Linster(1993) which applies to this setting.

Example 1. Consider three players and normalize the value of the prize to one. Players’

valuations are v1 = (1, γ, γ2), v2 = (γ,1, γ), v3 = (γ2, γ,1) where γ ∈ [0,1). The order of

players’ reaches is illustrated in the following diagram (Figure 2), which shows that player 2

is a centrist player and players 1 and 3 are radical. By Proposition 2 in the unique equilibrium

player 2 stays out of the conflict, i.e. F2(x) = 1 for all x ≥ 0, and players 1 and 3 randomize

10



● ● ● ●
r21 = r12
r23 = r32

r13 = r31

1 − γ20 1 − γ 1

Figure 2: Illustration of players’ preferences in Example 1.

symmetrically over [0, r13] using the cdf

F1(x) = F3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < 0

x
1−γ2 0 ≤ x ≤ 1 − γ2

1 x > 1 − γ2

.

In this environment the outcome that the centrist, player 2, wins is socially optimal in

the sense that it maximizes the sum of all players’ valuations8. In the unique equilibrium

of the all-pay auction described above, this socially optimal outcome will be achieved with

probability zero as compared to a probability equal to (1−γ)/(3−γ) in the Tullock game with

lottery contest success function as considered by Linster(1993). Moreover, the expected sum

of bids is strictly greater in the all-pay auction (1 − γ2 > 2
3−γ ⋅ (1 − γ)), although the centrist

submits a strictly positive bid (2 (1−γ)
2

(3−γ)2 > 0) in the lottery contest.

2.2 One Radical

Now consider a three player setup with only one radical player. Without loss of generality

assume player 2 is the radical player and that the two centrist players, 1 and 3, are symmet-

ric.9 We refer to this game as Γ12. Figure 3 illustrates players’ preferences over outcomes.
8Generally the concept of social welfare additionally takes expenditure into account. We follow Jehiel and

Moldovanu (2006) and Linster (1993) by using the sum of valuations to measure social welfare in a context of
contests with identity-dependent exernalities. This interpretation implies that the players’ expenditures are
considered transfers. In some conflicts which are covered by our model, e.g. political lobbying, expenditures
are often more accurately viewed as a social waste of resources. Therefore, we additionally discuss the effects
of the auction CSF on expected total expenditure. We further elaborate on this issue in the conclusion.

9If players 1 and 3 were not symmetric, the identity of the player who stays out in the equilibrium
described in Proposition 5 would be uniquely determined.
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We find that there exists an equilibrium in Γ12 in which one of the centrist players stays out

● ● ● ●
r21 = r12
r23 = r32

r13 = r31

Figure 3: The case of one radical player and two centrists.

of the contest, while the radical player always actively participates in equilibrium. Moreover,

even in a symmetric equilibrium (in which all players participate) extremism persists.

Proposition 4 (Moderation does not drive out extremism). In Γ12, the radical always ac-

tively participates in the conflict.

Proof. Assume that player 2 stays out of the contest. Then his expected payoff would be

v2j, j ∈ {1,3}, and players 1 and 3 would randomize uniformly over [0, rjk], j, k ∈ {1,3}, j ≠ k.

Thus, if player 2 would bid x = rjk, he would win with certainty and receive expected payoff

v22 − rjk > v22 − r2j = v2j.

Proposition 5 (Extremism drives out moderation). In Γ12, there exists an equilibrium in

which one of the centrist players stays out of the conflict, i.e. ∃i ∈ {1,3} ∶ Fi(x) = 1 for all

x ≥ 0.

Proof. Without loss of generality assume that F1(x) = 1 for all x ≥ 0. From the standard

arguments for all-pay auctions (Baye et al., 1996) players 2 and 3 randomize uniformly over

[0, r23]. Both players must earn their equilibrium payoff at the upper bound of the support

of their equilibrium strategies. Thus, player 3’s expected payoff from a bid x ∈ [0, r23] must

be v32 and player 2’s expected payoff from a bid x ∈ [0, r23] must be v23. Consequently,
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players 2’s and 3’s equilibrium strategies are

F2(x) = F3(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < 0

x
r23

0 ≤ x ≤ r23

1 x > r23

.

Given these strategies it is optimal for player 1 to bid zero and receive expected payoff

1
2(v12 + v13), because any bid x ∈ (0, r13) would yield an expected payoff of

u1(x,F−1) = − x + v11F2(x)F3(x) + v13F2(x)(1 − F3(x)) + v12F3(x)(1 − F2(x))

+ v13∫

r13

x
(1 − F3(s))f2(s)ds + v12∫

r13

x
(1 − F2(s))f3(s)ds

=
v12 + v13

2
− x [1 −

x

r2
31

(v11 −
v12 + v13

2
)] <

v12 + v13

2
.

In the environment with one radical player, it is not necessary that a centrist player

completely stays out of the contest. However, even in the symmetric equilibrium in which

both centrists actively participate, extremism is present.

Proposition 6 (Extremism). In Γ12, there exists a symmetric equilibrium (in the sense

that identical players use identical strategies). This equilibrium exhibits extremism, and the

radical player expends more effort than any centrist player in the sense of first order stochastic

dominance.

Proof of Proposition 6 is provided in Appendix A.2.

Linster’s (1993) second example takes on exactly this configuration of preferences assum-

ing the lottery CSF. In Example 2 we compare his results to those obtained when applying

the auction CSF.
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Example 2. Consider three players and normalize the value of the prize to one. Players’

valuations are v1 = (1,0, γ), v2 = (0,1,0), and v3 = (γ,0,1), where γ ∈ [0,1). The order of

players’ reaches is illustrated in Figure 4, showing that player 2 is a radical player and players

1 and 3 are centrists. For the lottery CSF, Linster(1993) computes for this example that

● ● ●
r13 = r31

r32 = r23

r12 = r21

0 1 − γ 1

Figure 4: Illustration of players’ preferences in Example 2.

the centrists bid 2
(3+γ)2 each and the radical bids (1 + γ) 2

(3+γ)2 . The expected sum of bids is

2/(3 + γ) ∈ (1
2 ,

2
3
], and player 2 wins with probability 1+γ

3+γ ∈ [1
3 ,

1
2
), which is increasing in γ.

On the other hand, in the asymmetric equilibrium of the all-pay auction (described in

Proposition 5) players expend on average higher effort (the expected sum of bids is 1) and

the least socially desirable outcome, i.e. player 2 wins, is more likely to occur (2 wins

with probability 1
2). The symmetric equilibrium yields higher payoffs to the players who

participate in the asymmetric equilibrium in which one centrist stays out. In this example

all players have equal expected payoff, (
γ
2
)

2
2−γ , in the symmetric equilibrium, while both

active players in the asymmetric equilibrium have an expected payoff of zero. The centrist

who stays out receives in expectation γ
2 > (

γ
2
)

2
2−γ in the asymmetric equilibrium. However,

the sum of expected payoffs is strictly greater in the symmetric equilibrium. In fact, the sum

of expected payoffs in the symmetric equilibrium of the all-pay auction exceeds the sum of

expected payoffs in the lottery contest when externalities are large enough (γ ≥ 0.3).

2.3 No Radicals

Under the assumption of symmetric antagonism, there is only one three-player environment

without any radical players. All reaches must coincide, rij = rkl, ∀i, j, k, l ∈ I, i ≠ j, k ≠ l.

14



This case is illustrated in Figure 5.

● ● ●

r21 = r12
r23 = r32

r13 = r31

Figure 5: The case of symmetric antagonism and no radical players.

This case is equivalent to a three player all-pay auction without identity-dependent ex-

ternalities in which players are symmetric and value the prize at rij, i, j ∈ I, i ≠ j. Baye,

Kovenock and DeVries (1996) show that there exists a unique symmetric equilibrium as well

as a continuum of asymmetric equilibria. All equilibria however yield the same expected

payoffs (vij, i ≠ j after rescaling) for each player and the same expected total expenditures.

3 Conclusion

In this paper, we demonstrated that the distribution of player preferences substantially influ-

ences players’ behavior in all-pay auctions with identity-dependent externalities. Specifically,

we showed that in these contests extremism, characterized by a higher per capita expenditure

by radicals than centrists, may prevail to such an extent that radicals may expend more in

the aggregate than centrists, even if they are relatively small in number. In fact, centrists

may in the aggregate expend zero, even if they vastly outnumber radicals.

One consequence of this behavior is that, radical outcomes may occur with greater fre-

quency than centrist outcomes, even in environments with a small ratio of radicals to cen-

trists. In fact, as demonstrated in Proposition 3, centrists may vastly outnumber radicals

and expend zero in the aggregate, yielding a radical outcome with certainty.

In these conflicts there is no uniform benchmark for the analysis of welfare. The discussion

of welfare in the literature to date has focused on the likelihood that the final outcome

maximizes the sum of the players’ valuations (see for instance Linster, 1993, and Jehiel
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and Moldovanu, 2001). This measure appears to extend in a natural way the definition of

efficiency from the auction literature (e.g. Maskin, 2000) to contests with identity-dependent

externalities. Since a moderate outcome in our examples maximizes the sum of the valuations

among all potential outcomes (i.e., individual player positions), social optimality is unlikely

to result. Konrad (2006) points out that the sum of the players’ valuations is an appropriate

measure of social welfare in cases in which effort is simply a transfer. Of course, the literature

on rent seeking following Tullock (1967) has viewed at least part of the expenditure in a

conflict to be social waste (see for instance Tullock, 1980, and Fudenberg and Tirole, 1987).

In this case the existence of radicals, by tending to increase expenditure, also increases

whatever waste might arise from those expenditures.

We presented two examples that illustrated similarities (e.g., existence of extremism) as

well as differences (e.g., participation vs. non-participation of centrists) that resulted from

employing an auction contest success function rather than the lottery contest success func-

tion, which is prominent in the literature. Our results illustrate the importance of the choice

of the institutions of conflict, as modeled by the contest success function, in determining the

role of extremism and moderation in economic, political and social environments.

There are several extensions of our model that follow immediately from our analysis and

address specific assumptions. One assumption made throughout the paper is that individuals

do not form coalitions to promote a group’s position but rather expend resources to promote

an individually preferred outcome. However this is, in fact, also consistent with standard

models of non-cooperative behavior in coalitions. Indeed, under the common assumption that

individuals within a coalition choose their strategies non-cooperatively, our analysis does in

fact apply to all-pay auctions between exogenously determined groups10 for a group-specific

public-good prize11. Baik et al. (2001) show that if two groups compete in an all-pay auction
10The assumption that groups are exogenously determined is common in the literature on contests between

groups. The strategic formation of groups in contests is addressed in e.g. Baik and Lee (2001), Skaperdas
(1998).

11In this type of contest a group’s probability of winning depends on their total effort and all members of
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for a public-good prize, then there exists a Nash equilibrium in which only the player who

has the highest valuation of the prize within his group actively participates in the conflict,

and all remaining group members free ride. This result can be generalized to three and

more groups and to all-pay auctions with identity-dependent externalities. In particular,

in a non-cooperative conflict between three groups of individuals who have heterogeneous

valuations of the outcome promoted by their group and the other two alternatives, there

exists a Nash equilibrium in which (at most) the individual with the highest willingness to

bid within each group will actively participate in equilibrium. Therefore, our results for

the three player model also apply to conflict between three groups when players make their

decisions non-cooperatively and, thus, may free ride on other group members’ efforts. By

assumption, Esteban and Ray (1999) disallow free riding. In their model group members’

preferences are homogenous and all players within the same group choose identical effort

levels. This together with their assumption of identical convex cost technologies result in

cost advantages of larger groups, which may be significant enough to result in moderation.

Another assumption that we maintain throughout our analysis is that players face iden-

tical cost functions. With heterogeneous costs the notion of player i’s reach with respect

to player j needs to be adjusted in order to accurately reflect the player’s willingness to

bid. Let player i’s cost of bidding be given by a continuous, strictly increasing, unbounded

function ci ∶ R+ → R+, with ci(0) = 0. Then player i’s reach with respect to player j is

rij = c−1
i (vii − vij).

With heterogeneous costs the reaches rij generally do not satisfy Assumption 2, so we

omit a formal analysis.12 Moreover, it is clear that such an analysis is somewhat more

the winning group receive their valuation of winning (e.g. Baik (1993), Baik et al. (2001), Esteban and Ray
(1999)). Alternatively groups may compete for a private-good prize, whereupon the prize allocated within
the winning group through a second stage contest (e.g. Katz and Tokatlidu (1996), Konrad and Kovenock
(2009)) or a previously determined sharing rule (Baik and Lee, 2001)

12See, however, Klose and Kovenock (2012) for an analysis of all-pay auctions with identity-dependent
externalities and more general preference structures.
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complicated in the presence of identity-dependent externalities than in the original analysis

of Siegel (2009, 2010). First, we do not have the generic uniqueness of equilibrium payoffs

(Siegel(2009)) to aid in tying down distributions. Second, because the payoff of a player

at any bid b depends not only on the probability that he is outbid at that bid, but on

the conditional probability that each of the other players is the highest bidder, there is no

obvious extension of the Siegel (2010) algorithm to pin down equilibrium distributions or

the set of active bidders.

Nonetheless, we can say something about certain classes of asymmetric cost functions.

Suppose, for instance, that players have cost functions of the form employed by Moldovanu

and Sela (2001) and in Siegel’s (2010) analysis of simple contests, ci(b) = γiC(b), where

γi > 0 for all i ∈ I and C(b) is continuous, strictly increasing, and unbounded with C(0) = 0.

Moreover, suppose that in the game Γ21 described in section 2.1, the two radicals (based

on preferences over outcomes in the original game Γ21 with cost C(b) = b) have a common

coefficient of cost, γi = γR, i = 1,3, which is strictly less than the corresponding coefficient of

the single centrist, γ2 = γN . Then the results of Propositions 1 and 2 continue to hold, with

proofs modified to account for the fact that, with the cost asymmetry, r21 = r23 < r32 = r12.

Similarly, the result of Proposition 3 of the game with two radicals and multiple centrists

would continue to hold if any centrist player i (based on the preferences in the original game)

has a coefficient γi ≥ γR. On the other hand, if an original centrist exhibits low enough costs

of effort this may cause him to actively participate in the conflict, and may improve welfare.

In a similar fashion, Propositions 4-6 in section 2.2 continue to hold under the assumption

that the two centrists in the game Γ12 have an identical coefficient of cost γi = γN , i = 1,3,

which is greater than the coefficient of the sole radical, γ2 = γR. Of course, there are other

formulations of cost for which similar results arise. One example is an appropriate choice of

budget constraints. In fact, a general extension to budget constrained costs along the lines

of Che and Gale’s (1998) analysis of standard all-pay auctions raises new and interesting
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phenomena. For instance, if a sufficiently small budget constraint is imposed upon a radical

player, the likelihood that a centrist wins the conflict may increase, thereby increasing the

expected sum of valuations from the resulting outcome. These and other explorations of

all-pay auctions with identity-dependent externalities are left for future research.
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A Appendix

A.1 Proof of Proposition 2

Proof. In a first step we show existence by constructing an equilibrium, we then show

uniqueness of the equilibrium described before in a second step involving multiple lemmas.

The strategy profile in which 2 stays out completely (puts mass 1 on zero) and players 1

and 3 randomize uniformly over [0, rjk] (j, k ∈ {1,3}, j ≠ k) is a Nash equilibrium. Assume

that 2 uses the strategy F2(x) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 for x < 0

1 for x ≥ 0
. Then (by Baye et al., 1996) it is optimal

for players 1 and 3 to randomize over [0, rjk] according to

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 for x < 0

x
rjk

for 0 ≤ x ≤ rjk

1 for x > rjk

.

Given that 1 and 3 apply this strategy player 2’s payoff if he submits a strictly positive bid

x ∈ (0, r2j] is:

u∗2(x) = [F (x)]2v22 + (1 − [F (x)]2)v2j − x

= v2j + F (x)2r2j − x

= v2j − x(1 −
x

rjk

r2j

rjk
)

< v2j.

It is therefore a best response for player 2 to stay out of the conflict.

Next we prove the uniqueness of the equilibrium described in Proposition 2, by first

showing that any equilibrium of Γ21 is symmetric in the sense that both radicals (players 1

and 3) choose identical strategies. In a second step we then show that the set of symmetric
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equilibria of Γ21 is a singleton, given by the cut-throat competition equilibrium described

above.

Let si and s̄i be the lower and upper bound, respectively, of the support of an equilibrium

strategy for player i, i ∈ I, and define s̄ = maxi∈I{s̄i}. In the following, the indices j and k

refer to two different radical players, i.e. j ∈ {1,3}, k ∈ {1,3}/{j}.

Lemma A.1. si = 0 for all i ∈ I, and for at least one player l ∈ I, Fl(0) = 0.

Proof. Assume si > sl ≥ sm ≥ 0 for some i, l,m ∈ I. Any bid x ∈ [0, si) results in a loss with

certainty. Therefore, players l and m do not put mass anywhere over (0, si). Moreover, no

player l or m can place a mass point at si, because if two or more players had a mass point

at si, then one could improve by moving mass up, and if only one player had a mass point at

si, then he would improve by moving the mass down. Altogether players l and m do not put

mass anywhere over (0, si], but then player i would improve by moving mass down. This

contradiction implies that there exist mutually different i, l,m ∈ I such that si = sl ≥ sm ≥ 0.

Assume that si = sl > sm ≥ 0 for some i, l,m ∈ I. It cannot be the case that both players, i

and l, have a mass point at si = sl (otherwise one could improve by moving mass up slightly),

but then at least one of them would win with probability arbitrarily close to zero in some

neighborhood above si and would be better off by moving mass down to zero. It follows that

in equilibrium s1 = s2 = s3 = s. It cannot be the case that all three players have a mass point

at s otherwise a player could improve by moving this mass up slightly. Therefore, at least

one player loses with certainty at s. Altogether this shows that s1 = s2 = s3 = 0.

Lemma A.2. There are no mass points at x in any player’s equilibrium distribution ∀x ∈

(0, s̄].

Proof. Suppose player i ∈ I has a mass point at x ∈ (0, s̄]. Since, from Lemma A.1, Fl(x) > 0

for every l ∈ I, for sufficiently small ε > 0 no player j ≠ i would place mass in (x − ε, x] since
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that player could improve his payoff by moving mass from that interval to infinitesimally

above x. But then it is not optimal for i to put mass at x.

Lemma A.3. s̄1 = s̄3 > s̄2.

Proof. Obviously, it cannot be the case that s̄i > s̄l ≥ s̄m for some i, l,m ∈ I, because player

i would strictly improve his payoff by moving mass from (1
2(s̄l + s̄i), s̄i] down to 1

2(s̄l + s̄i).

Suppose, s̄1 = s̄2 = s̄3 = s̄ > 0. Since any bid b2 > r2j of player 2 is strictly dominated by b2 = 0 it

follows that s̄ ≤ r2j. By Lemma A.1 si = 0 for all i ∈ I and at most two players may have a mass

point at zero. Therefore, there exists a radical player j, who is outbid with certainty when

bidding zero and whose payoff from bidding zero is u∗j (0) = αvj2+(1−α)vjk for some α ∈ (0,1).

By assumption rjk > rj2 which implies by definition that vjk < vj2. Then, (by Lemma A.1)

player j’s expected equilibrium payoff would be u∗j < vj2. On the other hand, by submitting

a bid s̄ + ε greater than s̄ player j would receive u∗j (s̄ + ε) = vjj − s̄ − ε ≥ vjj − rj2 − ε = vj2 − ε.

Therefore, by choosing ε > 0 small enough, he would improve his payoff. Thus, s̄1 = s̄2 = s̄3

cannot hold true. By the same argument it cannot be the case that s̄j < s̄2 = s̄k = s̄. Hence,

s̄j = s̄k > s̄2.

Lemma A.4. s̄2 < r2j, j ∈ {1,3}.

Proof. By Lemma A.3 player 2 loses with strictly positive probability at s̄2. Suppose s̄2 ≥ r2j,

then player 2’s equilibrium payoff at s̄2 is

u∗2(s̄2, Fj, Fk) = [Fj(s̄2) ⋅ Fk(s̄2)]v22 + (1 − [Fj(s̄2) ⋅ Fk(s̄2)]) v2j − s̄2

≤ v2j − (1 − [Fj(s̄2) ⋅ Fk(s̄2)])
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0 by Lemma A.3

r2j < v2j.

This is a contradiction, because player 2 could guarantee himself a payoff of at least v2j by

bidding zero.
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Lemma A.5. Players j ∈ {1,3} earn expected equilibrium payoffs vjj − s̄.

Proof. From Lemmas A.2 and A.3 players 1 and 3 must earn their expected equilibrium

payoff at the upper bound of the support of their mixed strategies, s̄, and neither has a mass

point at s̄. Therefore, their expected equilibrium payoff is u∗j = vjj − s̄.

Lemma A.6. F1(x) = F3(x) for all x ∈ [s̄2, s̄].

Proof. Notice that F2(x) = 1 for all x ∈ [s̄2, s̄], and F1(s̄) = F3(s̄) = 1. From Lemma A.3, for

x ∈ (s̄2, s̄]

uj(x,F2, Fk) = Fk(x)vjj + (1 − Fk(x))vjk − x = vjk + Fk(x)rjk − x.

By Lemma A.5 it follows that

vjk + Fk(x)rjk − x = vjj − s̄

⇔ Fk(x) = 1 −
s̄ − x

rjk

and by Assumption 2 (symmetric inter-agent antagonism) follows that players j and k use

identical strategies Fj(x) = Fk(x) = 1− s̄−x
rjk

over the interval (s̄2, s̄]. If s̄2 > 0, then by Lemma

A.2 this holds over [s̄2, s̄]. If s̄2 = 0 right-continuity of Fi, i ∈ I, implies F1(0) = F3(0).

Lemma A.7. For any nondegenerate interval [t, t̄] ∈ [0, s̄] (t < t̄) there are at least two

players, i, j ∈ I, such that Fl(t̄) − Fl(t) > 0 for l = i, j.

Proof. Suppose there is a t > t such that Fi(t) − Fi(t) = 0 for all i ∈ I, and let t̄ be the

supremum over all t with this property, i.e. define t̄ = sup{t > t ∶ Fi(t)−Fi(t) = 0 for all i ∈ l}.

Notice that by Lemma A.1 t > 0. Since t̄ > t ≥ 0 no player has a mass point at t̄ by Lemma

A.2. Let player i ∈ I and m, l ∈ I/{i}, then player i’s payoff from a bid t̄ + ε is

ui(t̄ + ε,Fl, Fm) = vii ⋅ Fl(t̄ + ε)Fm(t̄ + ε) + vil ∫
s̄

t̄+ε
Fm(y)fl(y)dy + vim∫

s̄

t̄+ε
Fl(y)fm(y)dy − t̄ − ε.
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On the other hand player i’s payoff from bidding t is

ui(t, Fl, Fm) = vii ⋅ Fl(t)Fm(t) + vil ∫
s̄

t
Fm(y)fl(y)dy + vim∫

s̄

t
Fl(y)fm(y)dy − t

= vii ⋅ Fl(t̄)Fm(t̄) + vil ∫
s̄

t̄
Fm(y)fl(y)dy + vim∫

s̄

t̄
Fl(y)fm(y)dy − t,

which is strictly greater than ui(t̄ + ε,Fl, Fm) for ε > 0 sufficiently small. Thus, for small

enough ε > 0 a player would improve his payoff by moving mass from [t̄, t̄+ε] to t. Therefore,

no t > t such that Fi(t) − Fi(t) = 0 for all i ∈ I exists.

Suppose that there is only one player i ∈ I with Fi(t̄) − Fi(t) > 0, and denote the other

two players by l,m ∈ I/{i}. Note that for players p ∈ {l,m}, fp(t) = 0 for all t ∈ (t, t̄) and

Fp(t) = Fp(t) = Fp(t̄) for all t ∈ (t, t̄). Player i’s expected payoff from a bid t ∈ (t, t̄) is

ui(t, Fl, Fm) = vii ⋅ Fl(t)Fm(t) + vil ∫
s̄

t
Fm(y)fl(y)dy + vim∫

s̄

t
Fl(y)fm(y)dy − t

= vii ⋅ Fl(t)Fm(t) + vil ∫
s̄

t
Fm(y)fl(y)dy + vim∫

s̄

t
Fl(y)fm(y)dy − t

< vii ⋅ Fl(t)Fm(t) + vil ∫
s̄

t
Fm(y)fl(y)dy + vim∫

s̄

t
Fl(y)fm(y)dy − t

= ui(t, Fl, Fm).

Therefore, player i could improve his payoff by moving mass from the interval (t, t̄] to its

lower bound t.

Lemma A.8. F1(x) = F3(x) for all x ∈ [0, s̄].

Proof. If s̄2 = 0 then F1(x) = F3(x) for all x ∈ [0, s̄] by A.6, thus we assume in the following

that s̄2 > 0. For any bid bj > 0 in the support of player j’s equilibrium strategy his expected
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payoff must be equal to vjj − s̄ (by Lemma A.5). That is:13

vjj − s̄ = vjj ⋅ (1 − p{2 wins ∣ bj} − p{k wins ∣ bj}) + vj2 ⋅ p{2 wins ∣ bj} + vjk ⋅ p{k wins ∣ bj} − bj

= vjj − rj2 ⋅ p{2 wins ∣ bj} − rjk ⋅ p{k wins ∣ bj} − bj

= vjj − rj2 ⋅ ∫
s̄

bj
Fk(y)f2(y)dy − rjk ⋅ ∫

s̄

bj
F2(y)fk(y)dy − bj

= vjj − rj2 ⋅ ∫
s̄

bj
Fk(y)f2(y)dy − rjk ⋅ ([F2(y)Fk(y)]

s̄
bj
− ∫

s̄

bj
Fk(y)f2(y)dy) − bj

= vjj − (rj2 − rjk) ⋅ ∫
s̄

bj
Fk(y)f2(y)dy − rjk ⋅ (1 − F2(bj)Fk(bj)) − bj

⇔ s̄ − bj = (rj2 − rjk) ⋅ ∫
s̄

bj
Fk(y)f2(y)dy + rjk ⋅ (1 − F2(bj)Fk(bj))

Define α,β, γ such that α ≡ r12 = r21 = r32 = r23, β ≡ r13 = r31, and γ = α − β. Note that

α,β > 0 and γ < 0. Then for any bj, bk ∈ (0, s̄]:

s̄ − bj ≤ γ ⋅ ∫
s̄

bj
Fk(s)f2(s)ds + β ⋅ (1 − F2(bj)Fk(bj)) , (A.1.1)

and

s̄ − bk ≤ γ ⋅ ∫
s̄

bk
Fj(s)f2(s)ds + β ⋅ (1 − F2(bk)Fj(bk)) ., (A.1.2)

where equality must hold in A.1.1 for bids bj in the support of player j’s equilibrium strategy

and in A.1.2 for bk in the support of player k’s equilibrium strategy.

By way of contradiction, assume that there exists some b0 > 0 such that F1(b0) ≠ F3(b0).

By Lemma A.2 F1 and F3 are continuous everywhere on (0, s̄] and by Lemma A.6 F1(s̄2) =

F3(s̄2). This implies that either there exists an interval [x, y] ⊂ (0, s̄2] such that F1(x) =

F3(x), F1(y) = F3(y), and F1(b) ≠ F3(b)∀b ∈ (x, y), or there exists x̄ > b0 such that F1(b) =

F3(b) ∀b ≥ x̄ and F1(b) ≠ F3(b)∀b ∈ [0, x̄).
13We let p{i wins ∣ bj} denote the probability that player i wins conditional on the event that player j bids

bj .
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Suppose that [x, y] is an interval such that F1(x) = F3(x), F1(y) = F3(y), and F1(b) ≠

F3(b)∀b ∈ (x, y). We treat the following four cases separately:

1. x , y ∈ suppj ∩ suppk , where suppi denotes the support of player i’s equilibrium strategy.

Without loss of generality let Fj(b) > Fk(b) for all b ∈ (x, y). In this case by (A.1.1)

and (A.1.2) at b = y

γ ⋅ ∫
s̄

y
Fk(s)f2(s)ds + β ⋅ (1 − F2(y)Fk(y)) = γ ⋅ ∫

s̄

y
Fj(s)f2(s)ds + β ⋅ (1 − F2(y)Fj(y))

⇔ γ ⋅ ∫
s̄

y
(Fj(s) − Fk(s))f2(s)ds = βF2(y) ⋅ (Fj(y) − Fk(y))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

= 0

By definition γ < 0, hence

∫

s̄

y
(Fj(s) − Fk(s))f2(s)ds = 0.

Similarly, at b = x

∫

s̄

x
(Fj(s) − Fk(s))f2(s)ds = 0.

Then, by ∫
s̄

x (Fj(s)−Fk(s))f2(s)ds = ∫
y

x (Fj(s)−Fk(s))f2(s)ds+∫
s̄

y (Fj(s)−Fk(s))f2(s)ds

follows that

∫

y

x
(Fj(s) − Fk(s))f2(s)ds = 0.

If f2(s) > 0 for any s ∈ (x, y) this contradicts Fj(s) > Fk(s)∀s ∈ (x, y).

If f2(s) = 0 for all s ∈ (x, y), then by Lemma A.7 [x, y] ∈ suppj ∩ suppk and F2(x) =

F2(y). In this case (A.1.1) and (A.1.2) simplify to

s̄ − bj = γ ⋅ ∫
s̄

y
Fk(s)f2(s)ds + β ⋅ (1 − F2(y)Fk(bj)) , and

s̄ − bk = γ ⋅ ∫
s̄

y
Fj(s)f2(s)ds + β ⋅ (1 − F2(y)Fj(bk))
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respectively for all bj, bk ∈ (x, y). Notice that in both expressions the integral is constant

in the player’s own bid. Since Fj and Fk coincide at x and y, ∫
s̄

y Fk(s)f2(s)ds =

∫
s̄

y Fj(s)f2(s)ds. This shows that Fj(b) = Fk(b) ∀b ∈ (x, y), which contradicts our

assumption.

2. y ∈ suppj ∩ suppk , x ∈ suppj /suppk .

Then by (A.1.1) and (A.1.2) at b = x

γ ⋅ ∫
s̄

x
Fk(s)f2(s)ds + β ⋅ (1 − F2(x)Fk(x)) ≤ γ ⋅ ∫

s̄

x
Fj(s)f2(s)ds + β ⋅ (1 − F2(x)Fj(x))

⇔ γ ⋅ ∫
s̄

x
(Fk(s) − Fj(s))f2(s)ds ≤ βF2(x) ⋅ (Fk(x) − Fj(x))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

= 0

By definition γ < 0, hence

∫

s̄

x
(Fk(s) − Fj(s))f2(s)ds ≥ 0.

If f2(s) > 0 for any s ∈ (x, y) this implies Fj(s) < Fk(s), because by assumption

Fj(b) ≠ Fk(b)∀b ∈ (x, y) and by Lemma A.2 (no mass points) Fj and Fk are continuous.

By assumption x /∈ suppk. So there exists an ε > 0 such that Fk(x+ δ) = Fk(x) for all δ

such that 0 < δ < ε. But then

Fj(x + δ) < Fk(x + δ) = Fk(x) = Fj(x),

which is a contradiction, because Fj is a cumulative distribution function and as such

is non-decreasing.

If f2(s) = 0∀s ∈ (x, y), then from Lemma A.7 [x, y] ⊆ suppj ∩ suppk, a contradiction to

the assumption x /∈ suppk.

3. x ∈ suppj ∩ suppk , y ∈ suppj /suppk .
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By (A.1.1) and (A.1.2) at b = y

γ ⋅ ∫
s̄

y
Fk(s)f2(s)ds + β ⋅ (1 − F2(y)Fk(y)) ≤ γ ⋅ ∫

s̄

y
Fj(s)f2(s)ds + β ⋅ (1 − F2(y)Fj(y))

⇔ γ ⋅ ∫
s̄

y
(Fk(s) − Fj(s))f2(s)ds ≤ βF2(y) ⋅ (Fk(y) − Fj(y))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

= 0

By definition γ < 0, hence

∫

s̄

y
(Fk(s) − Fj(s))f2(s)ds ≥ 0.

By (A.1.1) and (A.1.2) at b = x

γ ⋅ ∫
s̄

x
Fk(s)f2(s)ds + β ⋅ (1 − F2(x)Fk(x)) = γ ⋅ ∫

s̄

x
Fj(s)f2(s)ds + β ⋅ (1 − F2(x)Fj(x))

⇔ γ ⋅ ∫
s̄

x
(Fj(s) − Fk(s))f2(s)ds = βF2(x) ⋅ (Fj(x) − Fk(x))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

= 0.

γ < 0, hence

∫

y

x
(Fj(s) − Fk(s))f2(s)ds + ∫

s̄

y
(Fj(s) − Fk(s))f2(s)ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤0

= 0

⇒ ∫

y

x
(Fj(s) − Fk(s))f2(s)ds ≥ 0

If f2(s) > 0 for any s ∈ (x, y), then this implies Fj(s) ≥ Fk(s). By assumption,

Fj(b) ≠ Fk(b)∀b ∈ (x, y), thus Fj(b) > Fk(b)∀b ∈ (x, y). By assumption y /∈ suppk.

Hence, there exists an ε > 0 such that Fk(y − δ) = Fk(y)∀0 < δ < ε. But then

Fj(y − δ) > Fk(y − δ) = Fk(y) = Fj(y),
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a contradiction to the fact that Fj is a cumulative distribution function and as such is

non-decreasing.

If f2(s) = 0∀s ∈ (x, y), then from Lemma A.7 [x, y] ⊆ suppj ∩ suppk, a contradiction to

the assumption y /∈ suppk.

4. x ∈ suppj /suppk , y ∈ suppk/suppj .

By (A.1.1) and (A.1.2) at b = x

γ ⋅ ∫
s̄

x
Fk(s)f2(s)ds + β ⋅ (1 − F2(x)Fk(x)) ≤ γ ⋅ ∫

s̄

x
Fj(s)f2(s)ds + β ⋅ (1 − F2(x)Fj(x))

⇔ γ ⋅ ∫
s̄

x
(Fk(s) − Fj(s))f2(s)ds ≤ βF2(x) ⋅ (Fk(x) − Fj(x))

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=0

= 0

By definition γ < 0, hence

∫

s̄

x
(Fk(s) − Fj(s))f2(s)ds ≥ 0.

A similar argument shows that at b = y

∫

s̄

y
(Fk(s) − Fj(s))f2(s)ds ≤ 0.

Consequently,

0 ≤ ∫
s̄

x
(Fk(s) − Fj(s))f2(s)ds = ∫

y

x
(Fk(s) − Fj(s))f2(s)ds + ∫

s̄

y
(Fk(s) − Fj(s))f2(s)ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
≤0

⇒ ∫

y

x
(Fk(s) − Fj(s))f2(s)ds ≥ 0.

If f2(s) > 0 for any s ∈ (x, y), then this implies Fk(s) ≥ Fj(s). By assumption Fj(b) ≠

Fk(b)∀b ∈ (x, y), thus Fk(b) > Fj(b)∀b ∈ (x, y). By assumption x /∈ suppk. Hence,

31



there exists an ε > 0 such that Fk(x + δ) = Fk(x)∀0 < δ < ε. But then

Fj(x + δ) < Fk(x + δ) = Fk(x) = Fj(x),

a contradiction to the fact that Fj is a cumulative distribution function and as such is

non-decreasing.

If f2(s) = 0∀s ∈ (x, y), then from Lemma A.7 [x, y] ⊆ suppj ∩ suppk, a contradiction to

the assumption x /∈ suppk, y /∈ suppj.

Taking these four possible cases together, there cannot exist any interval [x, y] with F1(x) =

F3(x), F1(y) = F3(y), and F1(b) ≠ F3(b)∀b ∈ (x, y).

Assume now that there exists an x̄ > b0 such that Fj(b) = Fk(b)∀b ≥ x̄ and Fj(b) >

Fk(b),∀b ∈ [0, x̄). Players 1 and 3 must earn their equilibrium payoff at (or arbitrarily close

to) zero, so by (A.1.1) and (A.1.2)

γ ⋅ ∫
s̄

0
Fk(s)f2(s)ds + β ⋅ (1 − F2(0)Fk(0)) = γ ⋅ ∫

s̄

0
Fj(s)f2(s)ds + β ⋅ (1 − F2(0)Fj(0))

⇔γ ⋅ ∫
s̄

0
(Fj(s) − Fk(s))f2(s)ds − βF2(0) [Fj(0) − Fk(0)] = 0

⇔γ ⋅ ∫
x̄

0
(Fj(s) − Fk(s))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

f2(s)ds + γ ⋅ ∫
s̄

x̄
(Fj(s) − Fk(s))
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

=0

f2(s)ds − βF2(0) [Fj(0) − Fk(0)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

= 0

(A.1.3)

If f2(s) = 0 for all s ∈ (0, x̄), then (A.1.3) simplifies to

−βF2(0) [Fj(0) − Fk(0)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

>0

= 0.

This implies F2(0) = 0, which is a contradiction, because Lemma A.1 and f2(s) = 0 for all

s ∈ (0, x̄) imply F2(0) > 0.
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If f2(s) > 0 for some s ∈ (0, x̄), then β > 0 and γ < 0 imply that

γ ⋅ ∫
x̄

0
(Fj(s) − Fk(s))f2(s)ds

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<0

−βF2(0) [Fj(0) − Fk(0)]
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

≥0

< 0,

a contradiction to (A.1.3). Consequently, there can exists no b0 > 0 such that F1(b0) ≠

F3(b0).

Lemma A.9. F ≡ F1 = F3 first order stochastically dominates F2.

Proof. If s̄2 = 0, then F2(x) = 1∀x ≥ 0. Hence, F first order stochastically dominates F2.

Therefore, assume in the following that s̄2 > 0. By way of contradiction assume that

there exists some b0 ∈ [0, s̄2) such that F2(b0) < F (b0). Note that by Lemmas A.7 and A.8

suppj = [0, s̄], j ∈ {1,3}. Furthermore, by Lemma A.3 F2(s̄2) > F (s̄2) and by Lemma A.2 no

player’s equilibrium strategy has a mass point at any strictly positive bid. Then, there must

exist an interval [t, t̄ ] ⊆ (0, s̄2] such that [t, t̄ ] ⊆ ⋂i∈I suppi, F2(t) < F (t), and F2(t̄) > F (t̄).

[t, t̄ ] ⊆ supp2. Therefore, player 2 must earn his expected equilibrium payoff at any bid

x ∈ [t, t̄ ]; that is, for every x ∈ [t, t̄ ]

u∗2(x,F,F ) = v22[F (x)]2 + v2j (1 − [F (x)]2) − x

= v2j + α[F (x)]2 − x

= v2j + α[F (0)]2,

where the last equality follows from Lemma A.1. Hence,

F (x) = ([F (0)]2 +
x

α
)

1
2

for all x ∈ [t, t̄ ]. (A.1.4)

Similarly, [t, t̄ ] ⊆ suppj, j ∈ {1,3}, implies that player j, j ∈ {1,3}, must earn his expected
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equilibrium payoff at any bid x ∈ [t, t̄ ]. Player j’s expected payoff from a bid, x ∈ [t, t̄ ], is

u∗j (x,F2, F ) = vjk − γ ∫
s̄2

x
f2(s)F (s)ds + βF (x)F2(x) − x.

Player j’s payoff must be constant on [t, t̄], that is,

du∗j (x)

dx
= γF ′

2(x)F (x) + β (F ′
2(x)F (x) + F2(x)F

′(x)) − 1 = 0 for all x ∈ [t, t̄ ].

This yields the following linear first order differential equation, which must hold for all

x ∈ [t, t̄ ]

F ′
2(x)F (x)α + F2(x)F

′(x)β = 1. (A.1.5)

Since F takes the form described in (A.1.4), the solution to (A.1.5) is

F2(x) =
2α

α + β
F (x) + c ⋅ [F (x)]−

β
α ,

where c ∈ R is a constant of integration.

By assumption β > α, thus there exists a δ > 0 such that β = (1 + δ)α and we can write

F2(x) =
2

2 + δ
²

<1

F (x) + c ⋅ [F (x)]−(1+δ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

(A.1.6)

By differentiating (A.1.6) we obtain

F ′
2(x) =

2

2 + δ
F ′(x) − c ⋅ (1 + δ)

´¹¹¹¹¹¹¸¹¹¹¹¹¹¹¶
>0

F ′(x)
²

>0

[F (x)]−(2+δ)

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
>0

. (A.1.7)

Suppose F (t̄) < F2(t̄), then by continuity of the equilibrium strategies (Lemma A.2) F (t̄−ε) <

F2(t̄ − ε) for sufficiently small ε > 0. Considering x = t̄ − ε in (A.1.6) yields the necessary
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condition c > 0. Using this in (A.1.7) shows that F ′
2(x) < F ′(x) for x ∈ [t, t̄]. Hence,

F (t) < F2(t), a contradiction to the assumption that F (t) > F2(t). Therefore, there exists no

point b0 ∈ [0, s̄2] such that F2(b0) < F (b0), and F first order stochastically dominates F2.

Lemma A.10. F2(x) = 1 for all x ≥ 0

Proof. Lemmas A.1, A.8, and A.9 together imply F (0) = 0, hence by Lemma A.1 player

2’s expected payoff in equilibrium is v2j. By way of contradiction assume that s̄2 > 0.

Then, by the same argument as in the proof of Lemma A.9 equation (A.1.6) must hold

at every x ∈ supp2 with F (x) = ( x
α
)

1
2 . Player 2 may not randomize over strictly positive

bids arbitrarily close to zero. Indeed, if such randomization did occur, because all players’

equilibrium strategies are continuous over (0, s̄] by Lemma A.2, F (0) = 0 and therefore

lim
ε→0

F (ε)−(1+δ) =∞,

and F2(0) < 1 (under the assumption that s̄2 > 0), then (A.1.6) would imply that c = 0,

which is a contradiction to Lemma A.9. Given that player 2 does not randomize over strictly

positive bids arbitrarily close to zero, there exists a t > 0 such that t = inf{t > 0 ∣t ∈ supp2}.

Then, F2(t) = F2(0). By (A.1.1) player j’s expected payoff from a bid x ∈ (0, t] is

u∗j (x,F2, F ) = vjj − γ ∫
s̄

x
F (y)f2(y)dy − β(1 − F2(0)F (x)) − x.

x ∈ (0, t] is a best response for player j therefore u∗j (x,F2, F ) must be constant over (0, t].

It follows that F ′(x) = 1
F2(0)β

for x ∈ (0, t]. From F (0) = 0 follows that players 1 and 3

randomize uniformly over [0, t] according to

F (x) =
x

F2(0)β
, x ∈ [0, t].
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Continuity of F at t yields

t

F2(0)β
= (

t

α
)

1
2

⇔ t =
β2

α
⋅ [F2(0)]

2.

Consequently,

F (t) = (1 + δ)F2(0).

Using this and F2(t) = F2(0) in (A.1.6) yields

F2(0) = F2(t)

=
2

2 + δ
F (t) + c ⋅ [F (t)]−(1+δ)

=
2

2 + δ
(1 + δ)F2(0) + c ⋅ [(1 + δ)F2(0)]

−(1+δ),

which implies

c = (−
δ

2 + δ
F2(0)) [(1 + δ)F2(0)]

1+δ
≤ 0.

This contradicts Lemma A.9; therefore s̄2 = 0.

Altogether, this shows that player 2 stays out of the conflict in equilibrium. Hence, the

equilibrium described in Proposition 2 is the unique equilibrium of Γ21.

A.2 Proof of Proposition 6

Proof. Under the assumption that all three players make positive bids with strictly positive

probability and players 1 and 3 use identical strategies, i.e. F1 = F3 =∶ F , we know that

s1 = s2 = s3 = 0 and s̄2 = s̄1 = s̄3 =∶ s̄. Moreover, s̄ ∈ (rjk, r2j), j, k ∈ {1,3}, j ≠ k, and player 2

cannot have a masspoint at zero. Assume that all players randomize continuously over [0, s̄].

All players must earn their equilibrium payoff at s̄, therefore player 2’s expected payoff from
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a bid b ∈ (0, s̄], u2(b,F ) = v22[F (b)]2 + v2i(1 − [F (b)]2), must be v22 − s̄. This yields

F (x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0 x < 0

[(1 − s̄
r2j

) + x
r2j

]

1
2

0 ≤ x ≤ s̄

1 x > s̄

.

Player j’s payoff must be vjj−s̄. Moreover, player j chooses his equilibrium strategy such that

his expected payoff, uj(b,F2, F ) = −b+ vj2 + [vjj − vj2]F (b)F2(b)+ [vjk − vj2] ∫
s̄

b F2(s)F ′(s)ds,

is maximized. The first order condition yields the first order differential equation

0 = F (x)F ′
2(x)rj2 + F

′(x)F2(x)rjk − 1.

Using the boundary conditions F2(0) = 0 and F2(s̄) = 1 this yields

F2(x) = κF (x) − (κ − 1)F (x)
−
rjk
rj2

with κ =
2rj2

rj2+rjk
> 1 and s̄ = rj2 [1 − (1 − 1

κ
)
κ
]. Note that s̄ ∈ (rjk, rj2) and F2 is strictly

increasing.

In order to show that this equilibrium exhibits extremism, we need to show that F2(x) ≤

F (x)∀x. All players’ cdfs coincide for x < 0 and x ≥ x̄. The centrist players put strictly

positive mass on zero, thus F2(0) < F (0). For x ∈ (0, x̄),

F2(x) = κF (x) − (κ − 1)F (x)
−
r13
r12 = F (x) [κ − (κ − 1)

>1
³¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹·¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹µ

F (x)
−(1+

r13
r12
)
]

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
<κ−(κ−1)=1

< F (x).

Therefore, F2 first order stochastically dominates F .

37


	CESifo Working Paper No. 3804
	Category 2: Public Choice
	April 2012
	Abstract

