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1 Introduction

Harrod (1948) stated that discounting utility represents “a polite expression for rapacity
and the conquest of reason by passion” (40). The present paper shows how Harrod’s

statement is literally true in an axiomatic choice framework: reason constrains choice un-

der conditions of uncertainty, and this constraint eliminates the free parameter associated
with pure time preference, also known as the utility discount rate. This paper does not

impose ethical axioms. The choice-restricting axioms in this paper are all satisfied under
the standard economic model. The power of these restrictions is instead derived from a

more comprehensive description of risk attitude.

1.1 Motivation, Model Ingredients, and Results

The discounted expected utility model is arguably the workhorse of economic modeling.

An integral part of this standard economic model is the rate of pure time preference. A

positive rate of pure time preference implies that a decision maker cares intrinsically less
about the future than about the present. This devaluation of the future is not a conse-

quence of real economic effects such as consumption growth, an individual’s probability
of death or society’s extinction. Koopmans (1960) has shown that the rate of pure time

preference arises as a free parameter in an axiomatic model of stationary decision making.

Koopmans’ setting is a certain world with an infinite planning horizon. In this setting,
the rate of pure time preference is strictly positive. The underlying argument is famil-

iar: pure time preference helps the welfare function to converge and makes it possible to
order infinite consumption streams just as we would order consumption bundles today.

However, a certain future is certainly the exception rather than the rule, and no decision

maker will truly claim that he can predict an infinite consumption stream with certainty.
This paper drops the assumptions of a certain future and an infinite planning horizon.

Moreover, it relaxes the assumption that risk aversion is only driven by our propensity
to smooth consumption over time. In an intertemporal setting, the classic von Neumann

& Morgenstern (1944) axioms give rise to a more comprehensive risk attitude. The asset

pricing literature has exploited these more general preferences to solve a multitude of
puzzles (Vissing-Jørgensen & Attanasio 2003, Bansal & Yaron 2004, Bansal, Kiku &

Yaron 2010, Nakamura, Steinsson, Barro & Ursua 2010). There is no convincing normative
argument for denying a decision maker a general risk attitude. I extend the discounted

expected utility model to incorporate a general risk attitude and show that, unless we

are willing to abandon rationality constraints, this step eliminates the rate of pure time
preference. I summarize the three main components of my analysis in the following three

paragraphs.



Once Upon a Time Preference

Uncertainty can influence choice and evaluation through two different channels. First,

a decision maker who prefers smooth consumption paths is averse to stochasticity because
it generates wiggles. Second, a decision maker can be intrinsically averse to risk. The

discounted expected utility model neglects intrinsic risk aversion. It does so by assum-
ing that a single function captures both, attitude to risk and attitude to consumption

smoothing. The usual axioms of rational choice do not imply such a restriction. Em-
pirical evidence suggests that people are indeed intrinsically averse to risk and that the

Arrow Pratt measure of relative risk aversion is greater than the aversion to intertempo-

ral substitution (measured by the inverse of the intertemporal elasticity of substitution).
The concept of intertemporal risk aversion distills this assumption into an axiom whose

plausibility the reader can easily evaluate.
The rate of pure time preference is defined only in models with stationary preferences.

Stationarity of preferences over certain consumption paths implies that an agent has

the same ranking of different alternatives today and in the future. The axiom implies
that the utility function coincides in different periods, but the weight on utility can

differ across periods. For a positive rate of pure time preference, future utility receives
less weight than current utility. Risk stationarity of preferences also requires that the

ranking of lotteries today and in the future remains constant. In the standard economic

model, the assumption of risk stationarity has no more bite than the assumption of
certainty stationarity: risk aversion in the standard model is solely generated by the

preference for intertemporal consumption smoothing, which is already fully determined by
choice under certainty. This situation crucially changes in a model with a comprehensive

characterization of risk attitude. Here, risk stationarity restricts the way in which intrinsic

risk aversion changes over time.
In a setting of general risk attitude, a decision maker can exhibit an intrinsic preference

for early or late resolution of uncertainty (Kreps & Porteus 1978). A decision maker with a
strict preference for early resolution of uncertainty is willing to pay to receive information

earlier that is of no consequential use. A decision maker with a strict preference for late

resolution of uncertainty is willing to pay for delaying this information. Such an intrinsic
preference for early or late resolution cannot arise in the standard economic model. I

argue that, indeed, a rational decision maker should not be willing to pay for information
that is of no consequential use. Hence, I eliminate the subset of preferences giving rise to

such behavior.

The paper shows how these ingredients eliminate the rate of pure time preference from
economic evaluation. The intuition for this finding builds on a formalization of intrinsic

risk aversion. For that purpose, I use Traeger’s (2010) concept of intertemporal risk
aversion, for which I present a simplified axiomatic characterization that makes use of

stationarity. Stationarity, a common assumption in finite-horizon models, receives an
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Introduction

axiomatic foundation only in an infinite horizon setting. I offer an axiomatic foundation

for the case of a finite planning horizon. Here, an assumption of weak future independence
buried in the stationarity assumption plays a prominent role. This assumption facilitates

a general comparison of scenarios that are independent of the planning horizon. I show
that a discounting of expected utility occurs even without pure time preference. This

discounting, however, is a function of risk aversion and uncertainty about the future
rather than the consequence of an exogenous impatience parameter.

1.2 Relation to the Literature

A series of prominent advocates have argued for a zero rate of pure time preference
(Ramsey 1928, Pigou 1932, Harrod 1948, Koopmans 1963, Solow 1974, Broome 1992). All

of their arguments depend on ethical reasoning and not on rationality constraints imposed
on intertemporal decision making. Koopmans’s (1960) wide-spread axiomatization of

stationary decision making expresses the idea that the mere passage of time does not

change preferences. His formulation crucially depends on the assumption of an infinite
planning horizon and he shows how a strictly positive rate of pure time preference emerges.

I offer an axiomatization of stationarity for decision makers with a finite, and possibly
rolling, planning horizon. The axiom emphasizes an element of weak future independence.

The infinite horizon setting with a strictly positive rate of pure time preference always

satisfies this type of weak future independence. In a finite time horizon, however, weak
future independence plays a more prominent role. It permits reasonable comparisons of

long-term projects without discounting away the future. This future independence aspect
of the axiom is not crucial for the finding that the pure time preference must equal zero.

My setup closely relates to that of Kreps & Porteus (1978). First, I employ Kreps &

Porteus’ (1978) temporal lotteries, which are generalized descriptions of uncertainty trees.
Kreps & Porteus (1978) show that preferences over temporal lotteries can give rise to a

(intrinsic) preference for early or late resolution of uncertainty. This finding gives rise to
one of my axioms. Second, I derive a modified version of their preference representation.

Kreps & Porteus’ (1978) representation uses expected values to aggregate uncertainty but

employs a nonlinear time aggregation. I introduce a non-linear uncertainty aggregation
to keep time aggregation linear and to relate directly to the discounted utility model. The

linear time step implies that the utility function represents the decision maker’s propensity
to smooth consumption over time. The nonlinearity of the risk aggregator represents

intertemporal risk aversion, a concept introduced by Traeger (2010). The present paper

provides a simpler axiomatic characterization of intertemporal risk aversion making use
of stationarity. Epstein & Zin (1989) and Weil (1990) similarly disentangle risk attitude

from the propensity to smooth consumption over time restriction attention to isoelastic
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functional forms.

I briefly characterize the differences among the present model, the Epstein-Zin-Weil
model, and the common intertemporally additive expected utility model. The point of

departure is the observation that risk aversion can derive from two different sources.
First, agents with a propensity to smooth consumption over time dislike wiggles in the

consumption path resulting from stochasticity. This is the only type of risk aversion
captured in the discounted expected utility model. Second, agents can be intrinsically

averse to risk. These agents dislike uncertainty merely for its being uncertain. Arrow

Pratt risk aversion in the Epstein-Zin-Weil model measures the overall effect of risk on
evaluation, i.e., the combined aversion produced by consumption fluctuation over time

and intrinsic risk aversion. In contrast, intertemporal risk aversion measures intrinsic
risk aversion directly. For the current analysis, this second measure has four advantages.

First, intertemporal risk aversion is a (unidimensional) measure of risk aversion in a

multidimensional setting. A one-commodity setting, such as that in the Epstein-Zin-
Weil model, would seriously strengthen the assumption of additive separability on certain

consumption paths by excluding habit formation. Second, the axiomatic characterization
of intertemporal risk attitude directly captures the type of risk attitude that rules out

pure time preference. Third, the set of axioms in this paper confines the risk aggregators

to a class of constant absolute intertemporal risk aversion functions; it does not confine
Arrow Pratt risk aversion to a simple functional class. Fourth, the change of intertemporal

risk aversion over time is the key to understanding why risk stationarity, together with
an indifference to the timing of risk resolution, rules out the rate of pure time preference.

The isoelastic functional forms assumed by Epstein & Zin (1991) and Weil (1990) do not

generally satisfy the axioms of this paper.
I found two insights in the literature related to my main result. Epstein (1992) explores

the recursive approach to disentangling Arrow Pratt risk aversion from intertemporal
substitutability. A note motivates this approach by pointing out that a disentanglement

in a non-recursive approach would imply a contradiction to positive discounting in his

infinite horizon setting. Moreover, Bommier (2007) points out that in a non-recursive
model agents with a finite life time and a zero discount rate can exhibit more general

risk aversion. Both authors work in a stationary setting and observe a tension among
disentanglement, discounting, and a welfare function that I show to correspond to constant

absolute intertemporal risk aversion. None of the authors derives an absence of pure time

preference from imposing rationality axioms, including indifference to the timing of risk
resolution and intertemporal risk aversion, as I do here. Moreover, none of them derives

an intuition why the tension arises. My comparing of measures of intertemporal risk
aversion between the risk stationary and the timing-indifferent representations explains

the tension.
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The risk-sensitive and robust control literature contains prominent examples for all

three preference representations derived in this paper. Jacobsen (1973) and Whittle
(1981) initiated this strand of the literature with the linear exponential quadratic Gaus-

sian (LEQG) control problem. Their undiscounted objective function is precisely the
preference representation satisfying all the axioms of the current paper (assuming, in

addition, quadratic utility). Later, Whittle (1990, 2002), Bouakiz & Sobel (1992), and
Hansen & Sargent (1995) introduced different versions of a discounted LEQG problem.

Bouakiz & Sobel’s (1992) and Whittle’s (2002) suggestion corresponds to a quadratic util-

ity special case of the representation in Theorem 4. These authors find that the control
rules exhibit a strange time dependence. This time dependence is simply the result of a

representation that abandons risk stationarity (or time consistency). Hansen & Sargent
(1995) follow a recursive approach instead and suggest a representation that corresponds

to Theorem 3 with quadratic utility. These authors conserve risk stationarity, but an

agent with such preferences pays positive money for non-consequential information. The
present paper shows that the parameter discussed as risk-sensitivity in this literature has

an axiomatically well-founded interpretation: risk-sensitivity is the coefficient of absolute
intertemporal risk aversion. The representations in this strand of literature all exhibit a

constant coefficient of absolute intertemporal risk aversion, as opposed to the Epstein-Zin-

Weil model, which exhibits a constant coefficient of relative intertemporal risk aversion.
These LEQG settings can also be interpreted as the objective function of an agent playing

a zero sum game against nature (Jacobsen 1973, Hansen & Sargent 2007), which gives
rise to the term “robust control”. Moreover, Hansen & Sargent (2001) show that the

robust control models, corresponding to the constant absolute intertemporal risk aversion

representations of the present paper, can be interpreted in light of the early ambiguity
model of Gilboa & Schmeidler (1989). This so-called maximin expected utility model

relaxes the independence axiom and represents preferences over sets of probabilities. A
decision maker selects the act that maximizes the worst expected value with respect to

any distribution in the set of priors. For a particular construction of this set of priors,

the model is equivalent to the robust control approach. The current paper points out
that this robustness, or risk-sensitivity, or ambiguity aversion, arises even within a stan-

dard preference representation building on the usual von Neumann & Morgenstern (1944)
axioms and objective risk.

I briefly relate the concept of intertemporal risk aversion to three other extensions of

risk aversion to a multi-commodity or intertemporal setting. First, Kihlstrom & Mirman
(1974) introduce a directional coefficient of risk aversion, implying an Arrow Pratt mea-

sure of risk aversion that depends on the commodity consumed. In contrast, intertemporal
risk aversion measures stay unidimensional also in a multi-commodity world. As opposed

to the usual Arrow-Pratt measure (and its Kihlstrom-Mirman extension) the intertempo-
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ral risk aversion measure is also independent of the scale employed to measure a particular

commodity. Second, Kihlstrom & Mirman (1981) introduce a univariate concept of risk
aversion for homothetic utility functions. These authors employ the uniqueness of a least

concave representation of homothetic preferences to characterize increasing and decreas-
ing relative risk aversion. Quantitative risk aversion measures are somewhat difficult to

define in this setting. Related to this second approach, intertemporal risk aversion obtains
the necessary uniqueness of a utility function (covering more general preferences) from

a deterministic intertemporal choice as opposed to the least concave property of (only)

homothetic preferences.1 Finally, Richard (1975) introduces a concept of “multivariate
risk aversion”. In his intertemporal interpretation, the measure is multivariate only in

the time dimension. The axiomatic definition assumes a naturally ordered set of unidi-
mensional payoffs. Richard’s risk comparison is between two different risky consumption

paths and has been reinterpreted as correlation aversion. It is easy to show that corre-

lation aversion is a straight-forward consequence of intertemporal risk aversion and that
intertemporal risk aversion can be used to extend correlation aversion to settings with

multidimensional payoffs. The axiom of intertemporal risk aversion compares risky to
certain scenarios and offers a new and simpler measure of the underlying risk aversion.

In contrast to the papers discussed in this paragraph, I start from the general recursive

setting of Kreps & Porteus (1978), as is done in the Epstein-Zin-Weil model. The current
paper shows that the (time consistent subset of) non-recursive approaches discussed in

this paragraph emerge once again as the special cases corresponding to constant absolute
intertemporal risk aversion.

The motivation of von Neumann & Morgenstern’s (1944) framework and of the present

axiomatic system slightly differs from the current main-stream decision theoretic liter-
ature, which has a strong focus on axioms that give rise to observed behavior. These

papers do not usually assume a separation between the description of uncertainty and
the evaluation of outcomes. In contrast, the current paper develops a decision-support

framework for an agent or an agency. It therefore builds deliberately on the separation

of uncertainty description from of outcome evaluation, developing a rational and consis-
tent approach that helps the agent to rank different scenarios. It suffices to assume that

decision makers use such a model when facing objectively given probabilities to eliminate
pure time preference also from a more comprehensive framework.

Section 2 introduces the setup, axiomatic background, and concept of uncertainty ag-

gregation rules. Section 3 discusses certainty stationarity and the resulting preference

1Both approaches only result in a uniqueness up to affine transformations. As opposed to the dis-
counted expected utility model, affine transformations can matter for choice under risk. While Kihlstrom
& Mirman (1981) normalize affine transformation away by assumption, Traeger (2010) discusses explicitly
the meaning of different affine transformations of utility and normalizations.
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representation. Section 4 introduces the concept of intertemporal risk aversion. Section

5 elaborates the consequences of a stationary evaluation of uncertain scenarios. Section
6 analyzes the consequences of indifference to the timing of risk resolution for certainty

stationary preferences. Section 7 brings together risk stationarity and indifference to the
timing of risk resolution and derives the main result of the paper and its consequences

for evaluation. Section 8 gives a critical discussion of the model assumptions. Section 9
concludes. Proofs are provided in an appendix.

2 Preliminaries

Section 2 lays out the setup and the common axiomatic background for the representations

in this paper. It also introduces nonlinear uncertainty aggregation rules that capture

intertemporal risk aversion without abandoning a time-additive evaluation.

2.1 Setup

Let X be a connected compact metric space that characterizes factors determining wel-

fare within a period. These factors can be consumption levels as well as more abstract
descriptions of quality or the state of an ecosystem. I refer to the elements x of X as

outcomes. Time is discrete with planning horizon T ∈ IN. The space X
t = XT−t+1

denotes the Cartesian product equipped with the product metric and characterizes the

set of all certain consumption paths from period t to period T .2 A consumption path

x ∈ X
t is written x = (xt, xt+1, ..., xT ) = (xt, xt+1, ..., xT ). Given x ∈ X

t, I define
(x−i, x) = (xt, ..., xi−1, x, xi+1, ..., xT ) ∈ X

t as the consumption path that coincides with x

in all but the ith period, in which it yields outcome x.
Uncertain outcomes are modeled as temporal lotteries (Kreps & Porteus 1978). For

any compact metric space Y , let ∆(Y ) denote the set of Borel probability measures
equipped with the Prohorov metric (giving rise to the topology of weak convergence).3 I

define X̃T = X and recursively X̃t−1 = X ×∆(X̃t) for all t ∈ {2, ..., T}, where each X̃t is

equipped with the product metric. I denote by Pt = ∆(X̃t) the space of uncertain scenarios

2I do not distinguish different sets of outcomes for different periods. X stands for the union of all
possible outcomes perceivable in any period.

3I suggest an epistemic foundation of probabilities as found for example in Cox (1946,1961) or Jaynes
(2003). Here probabilistic beliefs replace the notion of a binary logic. Lotteries do not (only) describe
draws from an urn, but correspond to general characterizations of uncertainty with respect to possible
outcomes. However, thinking of the probabilities more narrowly as representing objective lotteries is
enough to imply the result of vanishing time preference.
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considered in period t and refer to the elements pt ∈ Pt as (period t) lotteries. Observe that

in every period, the decision maker has a probability distribution over the outcome in the
respective period and the probability distribution over the future faced in the next period.

For discrete probabilities, Pt is a general characterization of an uncertainty tree. The set
of degenerate lotteries in Pt is identified with the set X̃t of (generalized or multiperiod)

outcomes in the usual way. A lottery yielding outcome x̃t with probability λ and outcome
x̃′
t with probability 1 − λ is written as λx̃t + (1 − λ)x̃′

t ∈ Pt. A ‘plus’ sign between

outcomes always characterizes a lottery.4 Preferences in period t are defined on the set Pt

and denoted by �t.
5 For convenience in presentation, I assume the existence of at least

two non-indifferent consumption paths in the decision maker’s choice set:

A0 (non-degeneracy) There exist x, x′ ∈ X
1 such that x 6∼1 x

′ .

Preferences � will abbreviate a sequence of binary relations�≡ (�t)t∈{1,...,T} on (Pt)t∈{1,...,T}

that satisfy axiom A0.

The representation will employ continuous functions u : X → IR and ũt : X̃t → IR

for evaluating outcomes x, respectively x̃t, and I denote U = [U, U ] = range(u) and
Ũt = range(ũt). For any metric space Y , I denote by C0(Y ) the set of continuous functions

from Y into the reals. Finally, the group of strictly positive affine transformations is
denoted A = {a : IR → IR : a(z) = a z + b , a, b ∈ IR, a > 0} with elements a ∈ A.

2.2 Axiomatic Background

The paper assumes throughout that the von Neumann Morgenstern axioms, additive
separability on certain consumption paths, and time consistency are satisfied. I briefly

review these axioms below.

The first three axioms are close relatives to the axioms suggested by von Neumann &
Morgenstern (1944) in an atemporal framework for choice under uncertainty.

A1 (weak order) For all t ∈ {1, ..., T} preferences �t are transitive and complete, i.e.,

− transitive: ∀ p, p′, p′′ ∈ Pt : p �t p
′ and p′ �t p

′′ ⇒ p �t p
′′ .

− complete: ∀ p, p′ ∈ Pt : p �t p
′ or p′ �t p .

4As X and X̃t are only assumed to be compact metric there is no immediate addition defined for their
elements. In case the spaces are additionally equipped with a vector space or field structure, the vector
composition will not coincide with the “+” used here. The “+” sign used here alludes to the additivity
of probabilities.

5The relations �t are required to be reflexive (axiom A1). The asymmetric part is denoted by ≻t and
interpreted as strict preference. The symmetric part of the relation �t is denoted by ∼t and interpreted
as indifference. Non-indifference is denoted by 6∼t and defined as 6∼ t ≡ Pt × Pt \ ∼t.

8
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Axiom A1 requires a full ranking of all lotteries (completeness). Moreover, if one lottery

is preferred to a second and the second is preferred to a third, then the first lottery should
also be preferred to the third (transitivity). In a behavioral context, complexity usually

precludes agents from having complete preferences. However, in a normative context, we
require rational choice constraints to hold on the full set of choices.

A2 (independence) For all t ∈ {1, ..., T} and for all p, p′, p′′ ∈ Pt :

p ∼t p
′ ⇒ λ p+ (1− λ) p′′ ∼t λ p

′ + (1− λ) p′′ ∀ λ ∈ [0, 1] .

The independence axiom states the following. Let a decision maker be indifferent between
a lottery p and another lottery p′. Offer him two compound lotteries, both starting out

with the toss of a biased coin (tails comes up with probability λ). If heads comes up, the

decision maker enters the same lottery p′′ in both lotteries. If tails comes up, the decision
maker faces lottery p in the first compound lottery and lottery p′ in the second. Recalling

that the decision maker is indifferent between lotteries p and p′, the independence axiom
requires the decision maker to be indifferent between the two compound lotteries as well.6

A3 (continuity) For all t ∈ {1, ..., T} and for all p∈Pt :

The sets {p′∈Pt : p
′ �t p} and {p′∈Pt : p �t p

′} are closed in Pt.

Continuity A3 assures that infinitesimally small changes in the probabilities do not result
in finitely large changes in the evaluation. In particular, continuity implies the slightly

weaker Archimedian axiom used by von Neumann & Morgenstern (1944).
To match the widespread model of additively separable utility over time on certain

consumption paths, I introduce the following axiom taken from Wakker (1988):

A4 (certainty separability)

i) For all x, x′ ∈ X
1, x, x′ ∈ X and for all t ∈ {1, ..., T}:

(x−t, x) �1 (x
′
−t, x) ⇔ (x−t, x

′) �1 (x
′
−t, x

′) .

ii) If T = 2 additionally: For all xt, x
′
t, x

′′
t ∈ X , t ∈ {1, 2}

(x1, x2) ∼1 (x
′
1, x

′′
2) ∧ (x′

1, x
′
2) ∼1 (x

′′
1, x2) ⇒ (x1, x

′
2) ∼1 (x

′′
1, x

′′
2) .

Wakker (1988) calls part i of the axiom coordinate independence. It requires that the
choice between two consumption paths does not depend on period t consumption whenever

6For a discussion of descriptive limitations of the independence axiom see e.g. Starmer (2000). Note
that the independence axiom can be replaced by a collection of much weaker axioms elaborated by Chew
& Epstein (1989, 110) in the case of indifference to the timing of risk resolution, a setting treated in
sections 6 and 7.
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period t consumption coincides for both paths. Part ii is known as the Thomsen condition.

It is required only if the model is limited to T = 2 periods.7 Axiom 4 allows for a
certainty additive representation of the form

∑T

t=1 ut(xt). At this stage, the axioms allow

the representing utility functions ut to change arbitrarily over time. I will later impose
stationarity assumptions that relate utility functions over time.

Preferences in different periods are connected by the following consistency axiom adapted
from Kreps & Porteus (1978):

A5 (time consistency) For all t ∈ {1, ..., T − 1}:

(xt, pt+1) �t (xt, p
′
t+1) ⇔ pt+1 �t+1 p

′
t+1 ∀ xt ∈ X, pt+1, p

′
t+1 ∈ Pt+1 .

This axiom requires that a decision maker who in period t prefers a certain outcome

followed by lottery pt+1 rather than p′t+1 also prefers pt+1 in period t+1. In constraining a
decision support framework, time and time consistency most importantly capture how the

decision maker thinks that he should connect preferences over time to obtain a rationally

desirable choice model.8

2.3 Uncertainty Aggregation Rules

The preference representations in this paper rely on non-linear aggregation of utility over

uncertainty. For any t ∈ {1, ..., T} and strictly monotonic function ft ∈ C0(IR), I define
an uncertainty aggregation rule as the functional Mft : ∆(X̃t)× C0(X̃t) → IR with9

Mft(pt, ũt) = f−1
t

∫

X̃t

ft ◦ ũt dpt .

The uncertainty aggregation rule takes as input the decision maker’s perception of un-
certainty, expressed by a probability measure pt on X̃t, and a valuation of the degenerate

outcomes expressed by a real valued function ũt on X̃t. The uncertainty aggregation rule
weighs these utility values with the function ft, aggregates them, and applies the inverse

7In the case of two periods parts i) and ii) can also be replaced by the single requirement of triple
cancellation (see Wakker 1988, 427). Moreover, part ii) can be replaced by a slightly weaker but slightly
more involved assumption known as the hexagon condition (Wakker 1989, 47 et sqq., 67).

8Note that explicit decision nodes can be introduced at any point in the uncertainty trees the same
way as done in Kreps & Porteus (1978). Optimal choices in the framework always correspond to the
best (sub-) tree and there is no explicit preference for flexibility as e.g. in Kreps (1979). Therefore, no
additional insight derives from explicitly introducing decision nodes and the more complicated notation
would be obstructive. The application of the preference representations in a dynamic programming
framework with decision making in every period is immediate.

9By continuity of ft ◦ ũt and compactness of X̃t, Lesbeque’s dominated convergence theorem ensures
integrability (Billingsley 1995, 209).
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Certainty Stationarity

of ft to renormalize the resulting expression. For degenerate outcomes, an uncertainty

aggregation rule returns the value of ũt itself, i.e., M
ft(x̃t, ũt) = ũt(x̃t).

The simplest example of an uncertainty aggregation rule is the expected value operator,

which is obtained for ft = id. An uncertainty aggregation rule that will be generated by
different axioms in this paper corresponds to the parameterization ft(z) = exp(−ξz) =
(

exp(z)
)−ξ

and yields

Mexp−ξ

(pt, ũt) =
1

−ξ
ln
[ ∫

X̃t
exp(−ξũt) dpt

]

.

It is defined for ξ ∈ IR with Mexp0 (pt, ũt) ≡ limξ→0M
exp−ξ

(pt, ũt) = Eptũt (see proof of
Theorem 3). In the limit of ξ going to plus or minus infinity, the uncertainty aggregation

rule Mexp−ξ

only considers the extreme outcomes (abandoning continuity in the probabil-

ities): limξ→∞Mexp−ξ

(pt, ũt) = minx̃t
ũt(x̃t) and limξ→−∞Mexp−ξ

(pt, ũt) = maxx̃t
ũt(x̃t).

In general, a larger ξ results in a lower value (or certainty equivalent utility) of the re-
spective uncertainty aggregation rule.10

3 Certainty Stationarity

The section introduces stationarity for settings with a finite planning horizon. First, I
introduce the axiomatic characterization. Then, I give a certainty stationary preference

representation that admits a more general risk attitude than the standard model.

3.1 Axiomatic Description for a Finite Planning Horizon

An almost ubiquitous assumption in economic modeling is that the utility evaluation of

consumption coincides in different periods (discounted utility model). Although this as-

sumption is usually adopted independently of an agent’s planning horizon, the assumption
has only received an axiomatic foundation in the case of an infinite planning horizon. In

the latter setting, Koopmans (1960) has shown that the rate of pure time preference must
be constant and strictly positive.

Koopmans’ characterization of stationarity requires that a decision maker prefer a
consumption path x over another consumption path x

′ in the present if, and only if,

he prefers a consumption path (x0, x) over a consumption path (x0, x′) in the present

(Koopmans 1960, see page 13 below for details). Such an axiomatization rests on the
fact that for an infinite time horizon, adding an additional outcome does not change the

10The uncertainty aggregation rule Mft is induced by the so called quasi-arithmetic or generalized
mean in a way made precise in Traeger (2010).
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length of a consumption path. Both paths, x and (x0, x), are elements of X∞ and can be

compared by the same preference relation. In contrast, with a finite planning horizon, the
paths x and (x0, x) differ in length and, thus, cannot be compared by means of the same

preference relation �. The following axiom is applicable in the setting with a finite plan-
ning horizon and, there, yields the standard discounted utility model for the evaluation

of certain consumption paths.

A6 (certainty stationarity) For all x, x′ ∈ X
2 and all x ∈ X :

(x, x) �1 (x
′, x) ⇔ x �2 x

′ . (1)

On the right-hand side of the equivalence, the decision maker faces a comparison between
consumption paths x and x

′ starting in period 2. On the left-hand side of the equivalence,

the decision maker faces a comparison between consumption paths x and x
′ starting in

period 1. The additional outcome x is jointly added so that the resulting paths, (x, x)

and (x′, x), have the appropriate length for comparing them in period 1 by means of the

preference relation �1 of a decision maker with time horizon T . The essence of the axiom
is that a decision maker anticipates ranking (certain) consumption paths tomorrow in the

same way as he does today.11

The best interpretation of axiom A6 adopts a rolling time horizon and splits the equiva-

lence (1) into two separate statements. Assume that a decision maker in period 1, planning

with time horizon T , prefers consumption plan (x, x) over plan (x′, x). Confront him in
period 2 with the exact same consumption paths, (x, x) and (x′, x). For this purpose,

let the decision maker plan ahead in period 2 the same number of periods as he does in
period 1, implying the new time horizon T +1. I denote these preferences of the decision

maker in period 2 with time horizon T + 1 by �2|T+1. I assume that the decision maker

ranks (or plans to rank) the consumption paths in both choice situations the same way.
Requiring the latter for all consumption paths yields the condition

(x, x) �1|T (x′, x) ⇔ (x, x) �2|T+1 (x
′, x) (2)

for all x, x′ ∈ X
2 and x ∈ X . Condition (2) most clearly captures the intuition of

stationarity in the sense that the mere passage of time does not change the evaluation.

However, so far, assumption (2) does not imply any restriction on the set of preferences.
The second step in the reasoning relates the preference relation �2|T+1 to the relation �2

= �2|T . Both preference relations specify how the decision maker evaluates (or anticipates
evaluating) consumption plans over the future in period 2. The relation �2|T specifies his

ranking when he plans ahead until period T , and the relation �2|T+1 states his ranking

11Note the difference to time consistency. The latter is a condition on two consumption paths starting
in the same period, which yield a common outcome in the first period. Then, the continuation of the
paths in the next period should be ranked the same way as the complete paths in the earlier period.
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when he plans ahead until period T +1. Accepting stationarity in the rolling time horizon

sense of equation (2), axiom A6 requires the following relation between �·|T and �·|T+1:

x �2|T x
′ ⇔ (x, x) �2|T+1 (x

′, x) (3)

for all x, x′ ∈ X
2 and x ∈ X . If two scenarios are evaluated with a time horizon of T + 1

and yield the same outcome in period T + 1, then an evaluation based only on a time

horizon T yields the same ranking of the scenarios. The assumption is a weak form of

future independence.

3.2 Relation to the Infinite Planning Horizon Setting

This subsection relates the axiomatic reasoning above to the situation in which agents have

an infinite planning horizon. Instead of the finite consumption paths (x, x) and (x′, x), the
decision maker now faces the infinite paths x∞, x′∞ ∈ X∞. By time consistency, the right-

hand side of equation (2) is equivalent to (x, x∞) �1|∞+1 (x, x′∞) for all x∞, x′∞ ∈ X∞

and x ∈ X . However, in the infinite horizon setting �1|T+1 = �1|∞+1 = �1|∞ = �1|T

and, thus, equation (3) becomes dispensable. Combining the two equations implies the

standard axiom of stationarity for the infinite planning horizon:

x
∞ �1|∞ x

′∞ ⇔ (x, x∞) �1|∞ (x, x′
∞
) (4)

for all x ∈ X and all x∞, x′
∞ ∈ X∞, dating back to Koopmans (1960, 294)12. Hence,

at first sight, the assumption corresponding to equation (3) does not seem necessary
with an infinite planning horizon. However, this conjecture is not correct. To satisfy

equation (4) in a standard representation, i.e., equation (2) with an infinite time horizon, a
strictly positive rate of pure time preference is necessary. Then, the weight given to future

consumption converges to zero, and the coinciding outcomes in the “last” period of the

planning horizon are insignificant to the ranking. Thus, under an infinite planning horizon
and a positive discount rate, equation (2) already implies equation (3). In summary, the

weak future independence characterized in equation (3) is implicit not only in axiom A6
but also in the infinite time horizon stationarity axiom. The time horizon here is arbitrary

and it can be pushed arbitrarily far into the future.

3.3 The Certainty Stationary Representation

The following representation holds for preferences satisfying axioms A1-A5 and a station-
ary evaluation of certain consumption paths in the sense of axiom A6.

12Koopmans (1960) formulates his postulates in terms of utility functionals, but the translation of his
postulate 4 into the preference setup is immediate. Koopmans (1972) carries out this translation of his
general axiomatic framework into a preference setting, stationarity still corresponding to postulate 4.
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Theorem 1: The preferences � satisfy axioms A1-A5 and certainty stationarity A6,

if, and only if, there exist a continuous function u : X → IR, a strictly positive dis-
count factor β ∈ IR++, and strictly increasing and continuous functions ft : IR → IR

for all periods t ∈ {1, ..., T} that represent preferences as follows:
Define the functions ũt : X̃t → IR for t ∈ {1, ..., T} by ũT (xT ) = u(xT ) and recur-

sively

ũt−1(xt−1, pt) = u(xt−1) + βMft(pt, ũt) , (5)

then for all periods t ∈ {1, ..., T}

pt �t p
′
t ⇔ Mft(pt, ũt) ≥ Mft(p′t, ũt) ∀ pt, p

′
t ∈ Pt . (6)

Moreover, the functions u, f1, ..., fT and u′, f ′
1, ..., f

′
T both represent � in the above

sense, if and only if, there exist positive affine transformations a0,a1, ...,aT ∈ A

such that u′ = a0u and f ′
t |Ũ ′

t
= atft|Ũt

a0
−1.

The representation theorem recursively constructs an aggregate utility function ũt that
depends on the utility in the respective period u(xt) and on the welfare derived from

a particular lottery pt+1 over the future. Whereas aggregation of current utility and

future welfare is additive in all periods, uncertainty evaluation relies on the generally
nonlinear uncertainty aggregation rules Mft . Graphically, constructing aggregate period

t welfare recursively works its way through the uncertainty tree corresponding to the
lottery pt. Starting in the last period, the representation evaluates possible outcomes

by u and aggregates over last subtrees of the last period by employing the uncertainty

aggregation rule MfT . The second step evaluates possible outcomes in the preceding
period, again by u, and adds the values to the discounted utility of the attached subtree

(yielding the ũT−1 values). Uncertainty evaluation and time aggregation alternate until
the aggregate utility for period t is obtained. A non-recursive evaluation of the decision

trees is only possible for special cases, which are discussed in sections 6 and 7.

For degenerate lotteries, Mft(x̃t, ũt) = ũt(x̃t) holds. Therefore, the evaluation of certain
consumption paths simply becomes

x
t �t x

′t ⇔
T
∑

τ=t

βτ−t u(xtτ ) ≥
T
∑

τ=t

βτ−t u(x′tτ ) . (7)

Thus, for certain consumption paths, the model coincides with the standard discounted
utility framework. Observe that the discount factor β in Theorem 1 can be smaller,

greater, or equal to unity. For uncertain consumption, Theorem 1 gives a more general

evaluation framework. This theorem avoids the implicit assumptions of risk neutrality
present in the intertemporally additive discounted expected utility standard model. This

risk neutrality assumption is discussed in the next section.
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4 Intertemporal Risk Aversion

Traeger (2010) introduces the concept of intertemporal risk attitude in a general frame-
work with non-stationary preferences. This section gives a slightly simplified definition for

decision makers with stationary preferences. The concept of intertemporal risk attitude
yields a one-dimensional measure of risk aversion for a multi-commodity world. In contrast

to the Arrow Pratt measure of risk aversion, it is independent of the measurement scale
used for the goods under observation. I start by giving an axiomatic characterization.

Then, I characterize intertemporal risk attitude in the representation of Theorem 1.

4.1 Axiomatic Characterization of Intertemporal Risk Attitude

This section employs a special notation for constant consumption paths. The path

x̄
t = (x̄, x̄, ..., x̄) denotes the certain constant consumption path that gives outcome x̄ from

t until T . Recall that for x ∈ X
t the consumption path (x̄−i, xi) denotes the consumption

path where the ith entry of x̄ is replaced by outcome xi. Then,
∑T

i=t
1

T−t+1
(x̄−i, xi)

describes a lottery that delivers consumption paths with outcomes x̄ in all but one
period. The risk state i determines the period in which the outcome x̄ is replaced

by outcome xi. The lottery draws this period i from {t, ..., T} with equal probability.
The following is a two-period example of such a lottery. An economic agent seeks em-

ployment for two years. He has the choice between two different contracts. The first
contract offers him a short vacation in both years. The second contract offers him a

long vacation during the first year and no vacation during the second year (terminat-

ing the contract after one year is not possible). The distinct entries of his consump-
tion paths are x̄ = (short vacation, short vacation) and x = (long vacation, no vacation).

The corresponding lottery constructed as above becomes
∑2

i=1
1
2
(x̄−i, xi) =

1
2
(long vacation, short vacation) + 1

2
(short vacation, no vacation).

Now, assume (or adjust the vacation length so that) the agent is indifferent between

the two contracts. Then, the agent exhibits intertemporal risk aversion if he prefers either
of the two certain paths over the lottery, in which he might end up with more vacation

but might also end up with less vacation. In general, a decision maker exhibits weak

intertemporal risk aversion in period t < T if, and only if, the following axiom is satisfied:

A7w (weak intertemporal risk aversion) For all x̄, x ∈ X
t

x̄ ∼t x ⇒ x̄ �t

∑T

i=t
1

T−t+1
(x̄−i, xi) .

A decision maker exhibits strict intertemporal risk aversion in period t < T if, and only

if, the following axiom is satisfied:

15



Once Upon a Time Preference

A7 s (strict intertemporal risk aversion) For all x̄, x ∈ X
t

x̄ ∼t x ∧ ∃ τ ∈ {t, ..., T} s.th. (x̄−τ , xτ ) 6∼t x̄

⇒ x̄ ≻t

∑T

i=t
1

T−t+1
(x̄−i, xi) .

I start with the interpretation of the strict axiom. The first part of the premise in axiom

A7 s states that a decision maker is indifferent between a constant consumption path
delivering outcome x̄ in every period and the consumption path x. The second part of the

premise requires that at least some outcome xτ is considered non-indifferent to x̄ so that

the path (x̄−τ , xτ ) is non-indifferent to the path x̄. Together, the two assumptions in the
premise imply that some of the reassembled consumption paths (x̄−i, xi) with i ∈ {t, ..., T}

are preferred to the constant path, while others are judged inferior. The outcomes xt that
are better than and those that are worse than x̄ balance such that receiving them all with

certainty makes the decision maker indifferent with respect to the constant consumption

path. The second line of axiom A7 s states that an intertemporal risk averse decision maker
prefers the certain constant consumption path over the lottery that exchanges, with equal

probability, one of the outcomes. For some draws of the period i, the decision maker will
receive a consumption path that makes him better off, but for others, he receives a path

that makes him worse off.

The interpretation of the weak axiom A7w is analogous, with the only difference that
the consumption path x is allowed to coincide with x̄, and that the implication only

requires that the lottery is not strictly preferred to the certain and constant consumption
path. If axiom A7 s [A7w] is satisfied with ≻t [�t] replaced by ≺t [�t], the decision maker

is called a strong [weak] intertemporal risk seeker in period t. I say that a decision maker

is intertemporal risk averse (seeking) if his preferences satisfy intertemporal risk aversion
(seeking) in all periods. If a decision maker satisfies weak intertemporal risk aversion as

well as weak intertemporal risk seeking, the decision maker is called intertemporal risk

neutral.

The representation of Theorem 1 invites an alternative interpretation of axiom A7 s.

Here, the first part of the premise requires that for two consumption paths x̄ and x, the
discounted per period utility adds up to the same aggregate utility (see equation 7). The

second part of the premise requires that in at least one period, the utility gained from
consumption path x differs from the utility gained from the outcome x̄. Then, the lottery

in axiom A7 s delivers in expectation the same utility as the certain consumption path x̄.
A decision maker is defined to be strictly intertemporal risk averse if he prefers the certain

consumption path x̄ over the lottery that leaves him either worse or better off, and yields

the same utility as the certain consumption path in expectation. Here, intertemporal risk
aversion can be interpreted as risk aversion with respect to welfare gains and losses, where

16



Intertemporal Risk Aversion

welfare is described by the certainty additive utility function.

4.2 Functional Characterization of Intertemporal Risk Attitude

The following theorem characterizes intertemporal risk aversion in terms of the preference
representation of Theorem 1.

Theorem 2: Let the functions f1, ..., fT represent preferences � in the sense of Theo-

rem 1. The following assertions hold for all t ∈ {1, ..., T − 1}:

a) A decision maker is strictly intertemporal risk averse [seeking] in period t in the
sense of axiom A7 s if, and only if, ft|Ũt

is strictly concave [convex].

b) A decision maker is weakly intertemporal risk averse [seeking] in period t in the
sense of axiom A7w if, and only if, ft|Ũt

is concave [convex].

c) A decision maker is intertemporal risk neutral in period t if, and only if, ft|Ũt
is

linear.

Intertemporal risk attitude is described by the curvature of the functions ft. As pointed

out at the end of the preceding section, in the representation of Theorem 1, intertemporal

risk aversion can be interpreted as risk aversion with respect to utility gains and losses.
Thus, the standard intuition associating concavity with risk aversion applies. In contrast

to measures of atemporal risk aversion, the argument of ft is not measured in consumption
but in utility units. Precisely, it is measured in current value certainty additive utility

units: combining equations (5) and (6) shows that ft weights utility ũt(xt, pt+1) = u(xt)+

βMft(pt+1, ũt+1), where utility from period t consumption is undiscounted and in current
value units.

Combining part c of Theorem 2 with Theorem 1 gives an axiomatic characterization
of the discounted expected utility standard model: if intertemporal risk neutrality is

required in all periods,13 then ft is linear in all periods. A linear parameterization makes

the uncertainty aggregation rule itself linear, i.e., Mft = E. With linear uncertainty
aggregation, the lotteries no longer have to be evaluated recursively, and the expected

value operator in Theorem 1 can be pulled to the first period (see also section 6).14

To derive a quantitative characterization of risk attitude, I define for a twice-differentiable

function ft the measures of relative intertemporal risk aversion as the functions RIRA*
t :

13Instead of characterizing intertemporal risk neutrality by joint weak intertemporal risk aversion and
seeking, it can obviously be defined by replacing �t in axiom A7w by ∼t.

14In the case of anticipated learning a recursive evaluation could still be preferable to enriching the
state space (here X) by informational variables that permit the necessary conditioning of an expectation
operator that is pulled to the first period.
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Ũt → IR with

RIRA*
t(z) = −

d2

dz2
ft(z)

d
dz
ft(z)

z ,

and of absolute intertemporal risk aversion as the functions AIRA*
t : Ũt → IR with

AIRA*
t(z) = −

d2

dz2
ft(z)

d
dz
ft(z)

.

I define RIRA*
t[x̃t] = RIRA*

t(z)|z=ũt(x̃t) and AIRA*
t[x̃t] = AIRA*

t(z)|z=ũt(x̃t) as the in-

tertemporal risk aversion measures at the point in consumption space x̃t, where ft is
defined by Theorem 1. Because of the affine freedom a0 in the representation of Theo-

rem 1, these risk measures are not yet well-defined. The reason is discussed in detail by

Traeger (2010); however, the following intuition is straight forward: the standard Arrow
Pratt measures of relative and absolute risk aversion are not well-defined unless a cardinal

measure scale for the consumption commodity under observation is fixed. Similarly, the
measures of absolute and relative intertemporal risk aversion are not well-defined, unless

a cardinal measure scale is fixed. Intertemporal risk aversion and the curvature of ft
measure risk aversion with respect to welfare gains and losses, where welfare is measured
by the abstract concept of the intertemporally additive utility function u. By observing

trade-offs under certainty, the preference relation fixes this measure scale up to affine
transformations. Analogously to standard risk aversion measures, the measure of relative

intertemporal risk aversion RIRA*
t is well-defined only if a zero welfare level is fixed. The

measure of absolute intertemporal risk aversion AIRA*
t is well-defined only if a unit of

welfare is fixed.15

Proposition 1: Let preferences � be represented in the sense of Theorem 1.

a) Choose x0 ∈ X and fix u(x0) = 0. Then, the risk measures RIRA*
t for a pref-

erence representation in the sense of Theorem 1 are well-defined for t ∈ {1, ..., T},
and the value of RIRA*

t[x̃t] only depends on the preferences � and the point x̃t in

consumption space.
b) Choose x1, x2 ∈ X satisfying x1 ≻T x2 and fix u(x1) − u(x2) = 1. Then, the

risk measures AIRA*
t for a preference representation in the sense of Theorem 1 are

well-defined for t ∈ {1, ..., T}, and the value of AIRA*
t[x̃t] only depends on the pref-

15The affine transformation a0 in the uniqueness part of Theorem 1 points out what happens if unit
and/or zero level are not fixed. For example a doubling of u would correspond to an increase in welfare
range and a decrease in welfare unit. The function ft measuring risk aversion with respect to welfare
gains and losses has to offset this change in measurement by applying the inverse of a0. While such
an adjustment is necessary to represent the same preferences, it changes the numerical value of the
intertemporal risk measures.
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erences � and the point x̃t in consumption space.

The preferences of a decision maker are concerned with real outcomes, not with numbers
in the Euclidean space. Numbers only serve as a representational tool and depend on

the chosen coordinate system (i.e., measurement scale). The proposition implies that
the risk measures RIRA*

t and AIRA*
t do not depend on how one measures the point x̃t

in consumption space (see Traeger (2010) for a further elaboration). This invariance is

particularly attractive when modeling risk aversion with respect to characteristics, such as
quality, that are not equipped with a natural measurement scale. In such cases, whether a

decision maker is risk loving or risk seeking in the sense of the Arrow Pratt measures is only
a question of the applied measurement scale (Traeger 2010). In contrast, the measures of

intertemporal risk aversion are invariant to changes in the measurement scale of goods,

and they are well-defined and one-dimensional also in a multi-commodity setting. Note
that instead of fixing both unit and zero level in Proposition 1, simply fixing the range of

u implies uniqueness as well.16

5 Risk Stationarity

In the certainty stationary setting of Theorem 1, the functions ft characterizing intertem-

poral risk aversion can vary arbitrarily over time. This section extends stationarity to the

evaluation of uncertain consumption plans.

5.1 Axiomatic Description for a Finite Planning Horizon

The risk stationarity axiom extends the assumption that the passage of time does not
change preferences to the ranking of uncertain consumption plans. To obtain such a

stationary evaluation of general uncertain outcomes, it proves sufficient to require sta-

tionarity only for “coin toss” compositions of certain consumption paths, i.e., probability
a half mixtures of type 1

2
x+ 1

2
x
′. As with certainty stationarity in section 3.1, I split the

motivation of the axiom into two steps. The first requirement, corresponding to equation
(2) becomes:

1
2
(x, x) + 1

2
(x′, x) �t|T (x′′, x) ⇔ 1

2
(x, x) + 1

2
(x′, x) �t+1|T+1 (x

′′, x) (8)

16I marked the measures of RIRA*
t and AIRA*

t with an asterix because they measure intertemporal risk
aversion with respect to current value welfare changes, in contrast to the measures introduced in Traeger
(2010) that measure intertemporal risk aversion in the general non-stationary setting with respect to
present value welfare changes.
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for all x, x′, x′′ ∈ X
t+1, x ∈ X and t ∈ {1, ..., T}. With a rolling time horizon, the mere

passage of time does not change the ranking among different uncertain scenarios.17

The second step to arrive at the axiom of risk stationarity connects the relations �t+1|T

and �t+1|T+1. Again, I require that scenarios whose outcomes coincide in the last period of
a finite planning horizon T+1 rank the same independently of whether the decision maker

applies a planning horizon of T + 1 or T . This statement translates into the following
equivalence:

1
2
x+ 1

2
x
′ �t+1|T x

′′ ⇔ 1
2
(x, x) + 1

2
(x′, x) �t+1|T+1 (x

′′, x) (9)

for all x, x′, x′′ ∈ X
t+1, x ∈ X and t ∈ {1, ..., T}. Together, equations (8) and (9) bring

about the following axiom for stationarity of risk attitude in a setting with a finite planning

horizon:

A8 (risk stationarity) For all t ∈ {1, ..., T − 1} and x ∈ X :
1
2
(x, x) + 1

2
(x′, x) �t (x

′′, x) ⇔ 1
2
x+ 1

2
x
′ �t+1 x

′′ ∀ x, x′, x′′ ∈ X
t+1.

The decision maker ranks lotteries of the form 1
2
x+ 1

2
x
′ the same when they are faced in

period t as when they are faced in period t+1. When facing them in period t, the additional

outcome x at the end of the planning horizon, which coincides for all consumption paths,

does not change his ranking.

5.2 Relation to the Infinite Planning Horizon Setting

I briefly show how to derive the usual infinite horizon risk stationarity axioms from the
assumption expressed in equation (8). Instead of the finite consumption paths (x, x) and

(x′, x) the decision maker faces the paths x
∞, x′

∞ ∈ X∞. In the infinite horizon setting
�1|T+1=�1|∞=�1|T . Then, by time consistency, equation (8) for t = 1 is equivalent to

1
2
x
∞ + 1

2
x
′∞ �1|∞ x

′′∞ ⇔ (x1,
1
2
x
∞ + 1

2
x
′∞) �1|∞ (x1, x

′′∞)

for all x∞, x′
∞
, x′′

∞ ∈ X∞ and x1 ∈ X . Similarly for t = 2 equation (8) is equivalent to

(x1,
1
2
x
∞ + 1

2
x
′∞) �1|∞ (x1, x

′′∞) ⇔ (x1, x2,
1
2
x
∞ + 1

2
x
′∞) �1|∞ (x1, x2, x

′′∞)

for all x∞, x′
∞
, x′′

∞ ∈ X∞ and x1, x2 ∈ X . The latter statement for t = 2 can be

transformed using the corresponding statement for t = 1 into the requirement:

1
2
x
∞ + 1

2
x
′∞ �1|∞ x

′′∞ ⇔ (x1, x2,
1
2
x
∞ + 1

2
x
′∞) �1|∞ (x1, x2, x

′′∞)

17Observe that, in contrast to equation (2), equation (8) has to hold in all periods t ∈ {1, ..., T }.
However, by time consistency A5 all the requirements in equation (8) can be carried over into the first
two periods (see subsection 5.2). The important characteristic of the requirement is only that uncertainty
resolves in all the different periods.
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for all x∞, x′
∞
, x′′

∞ ∈ X∞ and x1, x2 ∈ X . By induction, one obtains the general require-

ment:

1
2
x
∞ + 1

2
x
′∞ �1|∞ x

′′∞ ⇔ (xt, 1
2
x
∞ + 1

2
x
′∞) �1|∞ (xt, x′′∞) (10)

for all x∞, x′
∞
, x′′

∞ ∈ X∞, t ∈ IN and x
t ∈ X t. A corresponding18 axiom for stationarity

of risk attitude is found in Chew & Epstein (1991, 356).

5.3 The Risk Stationary Representation

Preference stationarity for the evaluation of uncertain scenarios, together with assump-
tions A1-A5, yield the following representation.

Theorem 3: Choose a non-degenerate closed interval U∗ ⊂ IR+. Preferences � satisfy

axioms A1-A5 and risk stationarity A8 if, and only if,
there exist a continuous and surjective function u : X → U∗, a discount factor

β ∈ IR++, and ξ ∈ IR that represent preferences as follows:
Define ũt : X̃t → IR for t ∈ {1, ..., T} by ũT (xT ) = u(xT ) and recursively

ũt−1(xt−1, pt) = u(xt−1) + βMexp−ξ

(pt, ũt) ,

then, for all periods t ∈ {1, ..., T}

pt �t p
′
t ⇔ Mexp−ξ

(p′t, ũt) ≥ Mexp−ξ

(p′t, ũt) ∀ pt, p
′
t ∈ Pt .

Moreover, given U∗ the function u is determined uniquely as are the measures of
intertemporal risk aversion AIRA*

t = ξ and RIRA*
t = ξ id, where id denotes the

identity.

Risk stationarity implies that the functions ft characterizing uncertainty aggregation in
Theorem 1 coincide for different periods. Moreover, the axiom yields a constant coefficient

of absolute intertemporal risk aversion ξ (implying the functional form ft(z) = exp(−ξz)).

These two implications of axiom A8 can be associated with equations (8) and (9), respec-
tively. While the idea underlying equation (8) causes uncertainty aggregation to coincide

in different periods, it is the assumption of “coinciding last outcome independence” (9)
that is mostly responsible for constant absolute intertemporal risk aversion. Finally, recall

from page 17 in section 4.2 that AIRA*
t measures intertemporal risk aversion in terms of

current welfare. The measurement with respect to the undiscounted welfare scale is cru-
cial for making intertemporal risk aversion constant over time. Stationarity is an axiom

that puts the decision maker in the position of his future self. This future self evaluates

18Unlike the above formulation, the authors require condition (10) for all lotteries, not just for the
probability a half (‘coin toss’) combinations that I have used and which prove sufficient in my setting.
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the outcomes of the lottery in the future period without discounting, just as the present

self evaluates the outcomes of the lottery in the present without discounting. Both agents
evaluate outcomes in undiscounted current welfare units and have the same ranking of

lotteries. It is important for the subsequent analysis that the risk aversion coefficients
in Theorem 3 are constant in current value terms. For a quadratic utility function u,

the representation of Theorem 3 coincides with Hansen & Sargent’s (1995) model of risk-
sensitive decision making. Theorem 3 identifies their risk-sensitivity parameter as the

parameter of absolute intertemporal risk aversion measured in current value units.

6 Timing Indifference

Recursive utility models, as employed in the preceding sections, generally imply an in-
trinsic preference for early or late resolution of uncertainty. Motivated by a normative

perspective on rational decision making, I will impose intrinsic timing indifference. First,
I state and discuss the assumption, and then I give the representation.

6.1 Indifference to the Timing of Risk Resolution

A rational decision maker generally prefers an early resolution of uncertainty whenever it
permits refining later choices and improving outcomes (or outcome probabilities). Such

a preference for an early resolution is instrumental in giving rise to better outcomes (in
expectation). Kreps & Porteus (1978) show that, in addition, general recursive utility

models allow the decision maker to exhibit an intrinsic preference for an early or late

resolution of uncertainty. Such a decision maker prefers early (or late) resolution of un-
certainty even if the obtained information does not enable him to change future outcomes

(or outcome probabilities). Traeger (2007) analyzes the relation between intertemporal
risk aversion and an intrinsic preference for the timing of uncertainty resolution. I argue

for indifference to the timing of risk resolution from a perspective of rational decision

making, or from a normative perspective of a public decision maker. A decision maker
who is non-indifferent to the timing of risk resolution is willing to give up wealth for ad-

vancing or postponing information that has no effect on future behavior or payoffs. Such
an action does not seem rational from an individual perspective, nor would we want a

public decision maker to give up social wealth for such a purpose.19 The formal statement
of the timing indifference axiom is

19Note that a frequent justification of non-trivial timing preference is based on the argument that
only recursive models featuring non-indifference to the timing of risk resolution make it possible to
disentangle Arrow Pratt risk aversion from the elasticity of intertemporal substitutability. However,
while this reasoning is true for the widespread generalized isoelastic model, it is not true in general. Any
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A9 (indifference to the timing of risk resolution)

For all t ∈ {1, ..., T − 1}, xt ∈ X, pt+1, p
′
t+1 ∈ Pt+1 and λ ∈ [0, 1]:

λ(xt, pt+1) + (1− λ)(xt, p
′
t+1) ∼t (xt, λpt+1 + (1− λ)p′t+1).

A decision maker who is indifferent to the timing of risk resolution does not distinguish

between a lottery in which the uncertainty about the future faced in period t + 1 (i.e.,
whether he faces the future pt+1 or p′t+1) resolves in period t (lottery on the left) or in

period t+1 (lottery on the right). This uncertainty about the future faced in period t+1

is described by the probability mixture λ and 1 − λ. Axiom 9 is always satisfied in the
intertemporally additive expected utility standard model.

6.2 The Timing-Indifferent Representation

A decision maker who is indifferent to the timing of risk resolution makes no use of the
information in which period uncertainty resolves, unless this information is of consequen-

tial use. Then, preferences can be represented non-recursively. First, the description of
uncertainty can be reduced to atemporal lotteries. As opposed to Kreps & Porteus’ (1978)

temporal lotteries, atemporal (or standard) lotteries abandon the recursive structure and
express uncertainty as probability measures over consumption paths. I denote these stan-

dard lotteries by pxt , p
′x
t ∈ ∆(Xt). Second, the evaluation of uncertainty no longer requires

the recursive structure, i.e., the alternating aggregation over uncertainty and time. I there-
fore restrict the definition of uncertainty aggregation rules to the subdomain X

t ⊂ X̃t

yielding functionals Mft : ∆(Xt)× C0(Xt) → IR. Uncertainty aggregation rules now take
as inputs lotteries pxt and evaluations ũt : X

t → IR of consumption paths. Traeger (2007)

shows how the probability measures pxt ∈ ∆(Xt) are derived from their recursive counter-

parts pt ∈ Pt by “integrating out” the information on the timing of risk resolution. This
relation, however, is only needed to prove the representation within the general axiomatic

setting. For an application of the representation theorem, it is sufficient to describe the
uncertain future directly by the measures pxt ∈ ∆(Xt), i.e., by probability distributions

over consumption paths.

Theorem 4: Choose a non-degenerate closed interval U∗ ⊂ IR+. Preferences � satisfy

axioms A1-A5, certainty stationarity A6, and timing indifference A9 if, and only
if, there exist a continuous and surjective function u : X → U∗, a discount factor

β ∈ IR++, and ξ ∈ IR that represent preferences as follows:

model of non-trivial intertemporal risk aversion, including the upcoming representation, allows such a
disentanglement of Arrow Pratt risk aversion and intertemporal substitutability.
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Define the functions ũt : X̃t → IR for t ∈ {1, ..., T} by

ũt(x
t) =

T
∑

τ=t

βτ−1u(xtτ ) ,

then, for all periods t ∈ {1, ..., T}

pt �t p
′
t ⇔ Mexp−ξ

(pxt , ũt) ≥ Mexp−ξ

(p′xt , ũt) ∀ pt, p
′
t ∈ Pt . (11)

Moreover, given U∗, the function u is determined uniquely, as are the measures of

intertemporal risk aversion AIRA*
t = βt−1 ξ and RIRA*

t = βt−1 ξ id.

The representation evaluates outcomes in all periods with the stationary utility function
u. A consumption path is evaluated by the discounted sum of per period utility. To eval-

uate an uncertain future, the decision maker weights the aggregate welfare of the possible

consumption paths with their respective probabilities and applies the uncertainty aggre-
gation rule Mexp−ξ

. For a decision maker starting directly with an atemporal (standard)

lottery description, equation (11) in particular implies

pxt �t p
′
t
x

⇔ Mexpξ

(pxt , ũt) ≥ Mexpξ

(p′xt , ũt) ∀ pxt , p
′
t
x
∈ ∆(Xt) .

The model coincides with the widespread discounted utility framework for the evaluation

of individual consumption paths but generally employs nonlinear uncertainty aggregation

over the welfare generated by the different paths. Note that under the above assumption
of axiom A9, a result by Chew & Epstein (1989, 110) permits replacing the independence

axiom A3 with a collection of weaker assumptions. Assuming a quadratic utility function
u yields the risk-sensitive control model of Whittle (1990, 2002) and Bouakiz & Sobel

(1992). Theorem 4 identifies the corresponding risk-sensitivity parameter as the coefficient

of absolute intertemporal risk aversion in the present period.20

As in the risk-stationary setting, uncertainty evaluation takes the form of constant ab-

solute intertemporal risk aversion. However, in contrast to the earlier representations,
the representation in Theorem 4 aggregates over uncertainty only in the present. If the

decision maker is in period t, all uncertainty evaluation relies on the single function

ft = exp−ξ, independent of the period in which uncertainty resolves. In contrast, the
recursive representation in the earlier sections relied on period-specific uncertainty aggre-

gation. Alternatively, the preferences characterized by Theorem 4 can be expressed in
terms of the general recursive representation given in Theorem 1 (see the proof of Theo-

rem 4), where they correspond to the case ft = exp−ξβt−1

for t ∈ {1 . . . T}. As explained

on page 17 in section 4.2, these functions ft characterize the current-value measures of

20This parameter ξ is also the measure of absolute intertemporal risk aversion when measuring in-
tertemporal risk aversion with respect to present value welfare.
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intertemporal risk aversion, which are stated in Theorem 4. In contrast, the function

exp−ξ used (for all t) in Theorem 4 characterizes intertemporal risk aversion in present-
value terms.21 Thus, measured with respect to present-value welfare units, the coefficient

of absolute intertemporal risk aversion is constant over time. Keeping the measurement
of intertemporal risk aversion in terms of current-value welfare as before, results in co-

efficients that are discounted at the same rate at which the decision maker discounts
utility.

In the following, I elaborate an intuition as to why the current-value measure of in-

tertemporal risk aversion has to be discounted. I consider a decision maker who faces a
lottery over outcomes in period T and uses a recursive evaluation as in Theorem 1. First,

let the lottery take place in period t with 1 < t < T . For example, a coin is flipped in
period t, determining consumption levels in period T . The decision maker assigns utility

to each of the possible lottery outcomes22 and aggregates over uncertainty according to his

intertemporal risk attitude in period t. Second, let the coin toss and the decision maker’s
risk evaluation take place in period t−1. Then, with respect to their values in period t, the

utilities attached to the lottery outcomes are discounted by the factor β. In consequence,
the welfare variation corresponding to the utility at risk is also discounted. If the decision

maker’s coefficient of absolute intertemporal risk aversion was the same in period t − 1

as in period t, the smaller welfare variation would imply a smaller effective risk aversion.
The decision maker would exhibit an intrinsic preference for early resolution of risk. Only

if AIRA*
t−1 > AIRA*

t can the decision maker be timing indifferent. It turns out that the
coefficient of absolute intertemporal risk aversion has to be discounted precisely at the

same rate of pure time preference as the utility function u. The important difference to

risk stationarity is that for timing indifference, the agent does not put himself into the
position of a future self but evaluates risk resolutions in different periods from the present

perspective. Consequently, the coefficient of absolute intertemporal risk aversion would
be constant over time only if we were to measure it with respect to present-value welfare

gains and losses. In summary, the discounting of welfare variations calls for a discounting

of current-value intertemporal risk aversion if the decision maker is to be indifferent to
the timing of risk resolution.

Preferences in Theorem 4 are not required to satisfy risk stationarity. I close this section
by drawing attention to the following consequence. When the agent puts himself in the

position of his future period-t self, he still discounts utility in period t with the discount

21Traeger (2010) shows how to represent the general (non-stationary) recursive representation using
uncertainty aggregators that measure intertemporal risk aversion in present-value welfare units.

22More precisely, he assigns utilities to each of the consumption paths from t until T , which I assume
to coincide except for their period T outcomes.
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factor βt−1. Thus, the discount factors are fixed with respect to calendar time as opposed

to the amount of periods that the evaluated outcome lies in the future (futurity). If we
apply the representation of Theorem 4, making the discount factor depend on futurity

rather than calendar time, we violate time consistency.

7 Implications for Discounting

This section elaborates on the consequences of the above results for long-term evaluation.

First, combining the assumptions of risk stationarity and indifference to the timing of risk
resolution implies a zero rate of pure time preference. Second, an intertemporal risk averse

decision maker gives less weight to the future the less he knows about the consequences

of his (in)actions.

7.1 The Loss of Time Preference

Risk stationarity puts the decision maker in the position of his future self and requires
him to rank lotteries in the same way as he would in the present period. Therefore, his

intertemporal risk aversion has to be constant when measured with respect to current-

value welfare gains and losses. Timing indifference is a requirement for a decision maker

who evaluates different lotteries from the perspective of the present. The ranking of

lotteries must be independent of the time of risk resolution. Herto, intertemporal risk
aversion has to be constant when measured in present-value terms, and the current-value

measure AIRA*
t picks up the discount rate. In consequence, there is only one situation in

which an intrinsic devaluation of the future is compatible with both axioms: for a decision

maker who is intertemporal risk neutral, neither the assumption of risk stationarity nor

that of timing indifference have bite.23 The coefficient of absolute intertemporal risk
aversion is AIRA*

t = 0 for all t ∈ {1, ..., T} and, therefore, is independent of β. For

a nontrivial model of intertemporal risk averse decision making, the following result is
obtained.24

Theorem 5: Preferences � axioms A1-A5, strict intertemporal risk aversion A7 s, risk

stationarity A8, and timing indifference A9, if and only if, there exists a represen-
tation in the sense of Theorem 4 with ξ > 0 and β = 1.

23Precisely, risk stationarity has no additional bite with respect to the assumption of certainty station-
arity.

24I do not specify the period for which axiom A7 s has to hold. As a consequence of the other ax-
ioms, a decision maker who satisfies strict intertemporal risk aversion in some period also satisfies strict
intertemporal risk aversion in all periods.
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A decision maker who accepts the axioms presented in this paper cannot discount the

future for reasons of pure time preference (β = 1). Note that the non-recursive repre-
sentation in the theorem is equivalent to the recursive representation in Theorem 3, with

absolute intertemporal risk aversion ξ > 0 and a discount factor of β = 1.
From the normative perspective or rationality point of view, Theorem 5 argues for a

zero rate of pure time preference. From a theoretical perspective, this theorem identifies
a tension among intertemporal risk aversion, risk stationarity, and timing indifference.25

Together, Theorems 3 to 5 also supply a simple test to determine which of the axioms

is violated if β differs from unity: constancy of the coefficient of absolute intertemporal
risk aversion AIRA∗

t over time identifies the violation of timing indifference, a discounted

coefficient indicates risk stationarity, and a degenerate coefficient implies intertemporal
risk neutrality. Finally, note that weak future independence in the stationarity axiom,

as characterized by equation (9), is innocent when it comes to eliminating pure time

preference. In Theorem 3, weak future independence is responsible for the constancy
of absolute intertemporal risk aversion over outcomes. However, in Theorem 5, this

constancy is already implied by the timing indifference represented in axiom A9.

7.2 Discounting for Reasons of Uncertainty

A decision maker satisfying the axioms underlying Theorem 5 does not discount future
utility for reasons of mere impatience. However, an intertemporal risk averse decision

maker can effectively discount future utility if uncertainty increases exogenously over

time. To illustrate this point, I assume that outcomes are independently distributed over
time and described by the measures p1, p2, ..., pT with pt ∈ ∆(X). Then, the distribution

over consumptions paths is captured by the product measure pxt = pt ⊗ ... ⊗ pT for
t ∈ {1, ..., T}. I will determine the utility discount factors that would arise if preferences

satisfying the axioms of Theorem 5 were to be represented by the standard discounted

expected utility model. I assume that uncertainty increases over time. Because outcomes
are multidimensional, and because the dimensions affected by uncertainty can change over

time, I model an increase of uncertainty over the resulting utility. To make this definition
precise, I denote with pu

t the welfare lottery induced in utility space by the uncertainty

pt over outcomes xt (pushforward of pt under u). Let Pt(z) = pu
t ([0, z]) denote the

cumulative distribution functions. Without loss of generality, I assume the utility range

25Recall that Chew & Epstein (1989, 110) have shown that in the context of axiom A9 the independence
axiom can be replaced by a collection of significantly weaker axioms, making it a less likely to be violated
(on its own).
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U∗ = [0, 1]. Then, pu
t second order stochastically dominates pu

t+1 if
∫ z

0
Pt+1(z

′)− Pt(z
′) dz′ ≥ 0 (12)

for all z ∈ [0, 1]. Second order stochastic dominance is not just a measure of uncertainty;

it can also indicate that outcomes in period t+ 1 are certain but sufficiently undesirable.
I follow Rothschild & Stiglitz (1970) in confining the definition to a better-suited notion

of increasing uncertainty by requiring that both probability distributions yield the same

expected utility, which is equivalent to the requirement that equation (12) holds with
equality for z = 1. The graphical interpretation of increasing uncertainty is that the

probability distribution in t + 1, in this case over utility, has more weight in the tails.
To show that the utility discount factors decrease strictly over time uncertainty has to

increase strictly: I assume the existence of z∗ ∈ (0, 1) such that equation (12) holds
with strict inequality. Then, the distribution in period t + 1 has strictly more weight

in the tails than the distribution in period t. In summary, the sequence of probability

measures p1, p2, ...pT exhibits strictly increasing uncertainty (weight in the tails) if for all
t ∈ {1, ..., T − 1}: equation (12) holds for all z ∈ [0, 1] exhibiting equality for z = 1, and

there exists z∗ ∈ (0, 1) such that equation (12) holds as a strict inequality.26

Proposition 2: Let preferences be represented in the sense of Theorem 5. Let the se-

quence p1, p2, ...pT exhibit strictly increasing uncertainty as defined above. Then,
the unique weights β̄1...β̄T satisfying the equation

Mexp−ξ(

pt ⊗ ...⊗ pT ,
∑T

τ=t u
)

= E
∑T

τ=t β̄tu(xt) for all t ∈ {1, ..., T} (13)

are falling over time: β̄t+1 < β̄t for all t ∈ {1, ..., T − 1}.

The right-hand side of equation (13) represents a discounted expected utility evaluation,
whereas the left-hand side represents the evaluation based on Theorem 5. The discount

factors β̄t in the proposition are falling over time, though not usually at a constant rate
as in the standard discounted expected utility model. How quickly they fall depends on

both the agent’s intertemporal risk aversion and how much uncertainty increases over time.

Observe that the falling sequence of discount factors depends on the particular future the
decision maker faces. A reduction in risk increases these utility weights. In contrast, a

reduction of risk does not affect the exogenous utility weights in the discounted expected
utility model. In consequence, with endogenous uncertainty, representation Theorem 5

favors a low-risk wealthy future compared to the discounted expected utility model.

Proposition 2 shows how utility is discounted in a scenario with exogenous uncertainty.
However, economic applications such as a cost benefit analysis of a long-term project

26An equivalent characterization is that the riskier random variable can be obtained from the less risky
random variable by adding noise (Rothschild & Stiglitz 1970).
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generally depend on marginal utility rather than absolute utility. Let the outcome space

be Euclidian: X ∈ IRn. I define a (certain) project with a payoff sequence (ǫt)t∈{1,...,T}, ǫt ∈
IRn, that adds the certain payoff ǫt to the uncertain baseline consumption xt, independent

of the state of the world. The project is assumed to be small in the sense that ǫt << xt,
i.e., every dimension of the project payoff is small against baseline consumption.27 The

standard model evaluates such a project by the welfare change
∑T

t=1 Eβ
t−1u′(xt)ǫt and

recommends implementation if the sum is positive. In general, u′(xt) is a gradient and ǫt
a vector. The welfare change is easily converted into monetary equivalents if desired.

Proposition 3: Preferences and exogenous uncertainty satisfy the same conditions and

are represented as in Proposition 2. A marginal project augments consumption
by the certain payoff sequence (ǫt)t∈{1,...,T}. Let the functions β̃t : X → IR, t ∈

{1, ..., T}, be such that

E
∑T

t=1 β̃t(xt)u
′(xt)ǫt

characterizes the first order welfare change for all projects ǫ ∈ IRn×T . Then,

β̃t+1(x) < β̃t(x) for all x ∈ X, t ∈ {1, ..., T} and

β̃t(x) > β̃t(x) ⇔ u(x) < u(x) for all t ∈ {1, ..., T} .

For a given consumption (or utility) level, the weights on marginal utility also decrease

over time. Once again, exogenous uncertainty does not usually decrease these effective

discount factors β̃t(x) at a constant rate. Marginal utility (or project payoff) receives a
higher weight in those states of the world leading to lower utility levels. Thus, compared

to the standard model, preferences based on Theorem 5 give relatively more weight to
payoffs in bad states of the world.

7.3 Consequences for Long-Term Evaluation

I discussed two different rationales for discounting, pure time preference and increasing
uncertainty under intertemporal risk aversion. Although both rationales reduce the effec-

tive weight given to future expected welfare, there are three important differences. First,
a positive rate of pure time preference implies exponential discounting (assuming time

consistency). Under intertemporal risk aversion, the form of discounting will generally

depend on risk aversion and the way uncertainty increases over time. Second, marginal
utility and payoffs receive a higher weight, i.e., are discounted relatively less, for bad

27The proposition analyzes first order welfare changes for all projects. These are useful approximations
to the actual welfare changes only for small projects.
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states of the world. Third, once uncertainty becomes endogenous to decision making, an

intertemporal risk averse decision model will gain relatively higher welfare from low-risk
scenarios. Before I illustrate these differences in a conjecture on climate change evaluation,

I discuss a conceptual concern regarding the choice of the time horizon in intertemporal
evaluation.

Propositions 2 and 3 do not generally yield exponential discounting and convergence
of the welfare function in the limit of an infinite time horizon. For economic agents,

the assumption of a finite planning horizon is most likely more reasonable than that of

an infinite horizon. The time span until our sun turns into a red giant is negligible as
opposed to infinity. The interesting question is not whether the time horizon is finite

or infinite. The interesting question is how sensitive the decision model is to the time
horizon. A zero rate of pure time preference evokes the impression that the model would

be highly sensitive to the cut-off of the planning horizon. This intuition is generally

wrong. The model ranks different future scenarios resulting from different courses of
action. A meaningful time horizon should include those periods for which we foresee

(probabilistically) how our actions change the future.28 If we adhere to this rule, the
model is insensitive to the time horizon. This insensitivity is precisely the consequence of

the weak future independence assumption accompanying stationarity and playing a more

prominent role in the finite horizon setting: if we drop a common future when comparing
two scenarios, the resulting ranking does not change.29

There might be actions so daunting that we do not know how long the changes persist.
Decisions on war and climate change may fall into this category. With a positive rate

of pure time preference, we can simply adopt an infinite time horizon, at least for a

bounded utility function or a sufficiently slow growth rate in the economy. In the present
undiscounted model, the situation becomes more delicate. It is useful to step back and

interpret the assumption of an infinite planning horizon. Nobody truly argues that we
can plan for an infinite horizon. The point is that we do not know when to cut the

horizon and that we want to avoid an arbitrary cutoff because an evaluation might be

sensitive to such arbitrariness. We can think of the rate of pure time preference as a
continuous chipping away at the planning horizon. Rather than making a decision on

28I assume for the discussion that the decision maker wants to take all long-run consequences of his
actions into account, just like in an infinite horizon discounted expected utility model. If a decision maker
purposely only cares for e.g. his finite life time horizon the discussion is not essential, even though I still
would consider a model explicitly assigning utility to the outcome ‘dead’ as superior (in which case the
discussion applies).

29It follows from the risk stationary representation in Theorem 3 that weak future independence in the
risk stationarity axiom A8 implies also that a common uncertain future does not change the ranking of
lotteries.
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what the planning horizon should be, we decide on a rate that chips away at it. We know

that optimal policies with long-term effects are highly sensitive to this rate, just like they
would be to an arbitrary cutoff of the time horizon in a deterministic world. A prominent

example is the debate on climate change evaluation (Nordhaus 2007).
The present framework does not permit the continuous chipping away at the time hori-

zon. If we deliberately decide to take the consequences of current actions into account, we
have to give the resulting welfare changes full weight. This requirement is unproblematic

as long as we acknowledge that predicting policy implications from now into an infinite

future does not take uncertainty sufficiently seriously. Any consequences of actions we
take today blur out over a sufficiently long time horizon. Even when initiating war or

climate change, we cannot truly tell how these actions will affect probabilities over the
welfare distribution of a world in a million years. I conclude that rather than introduc-

ing arbitrariness, the model eliminates arbitrariness by eliminating the rate of pure time

preference, which chips away at the time horizon at an arbitrary30 rate. An intertemporal
risk averse decision maker gives less weight to the future the less he knows about the

consequences of his (in)actions.
I use climate change evaluation to illustration how a long-term evaluation based on

preferences satisfying Theorem 5 differs from an evaluation in the standard model. Fol-

lowing a report on climate change carried out by Sir Nicholas Stern (2007), the discount
rate for long-term evaluation has been one of the most hotly debated parameters in eco-

nomics. The Stern review employs a close-to-zero rate of pure time preference based on
ethical arguments. Nordhaus (2007) shows that the discounting assumptions in the Stern

review drive the result that the review obtains a social cost of carbon that is ten times

higher than Nordhaus’s (2008) estimates (for the current commitment period under opti-
mal policy). Theorem 5 derives a zero rate of pure time preference solely from axioms on

rational decision making under uncertainty rather than ethical arguments. Apart from
the absence of pure time preference, preferences satisfying Theorem 5 also imply a dif-

ferent risk evaluation. An adaptation project that focuses on payoffs in bad states of the

world will increase welfare relatively more, as compared to other projects and standard
preferences. Finally, greenhouse gas mitigation projects affect the overall uncertainty re-

garding future production and consumption possibilities. If we fixed greenhouse gas stocks
at the current (or preindustrial) levels, uncertainty over climate factors during the next

centuries would be fairly low. If we double or triple the greenhouse gas stocks, climate

factors will change significantly, and our knowledge regarding these changes is limited. In

30Arbitrary in the sense that the free parameter in Koopmans (1960) is any strictly positive number. Of
course, individuals can pick it deliberately within the discounted expected utility framework. Normative
reasonings usually only speak to an elimination of the rate.
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consequence, high-mitigation scenarios receive an additional welfare bonus with respect

to low-mitigation scenarios. Thus, replacing pure time preference with intertemporal risk
aversion could yield an even higher abatement recommendation than the one put forth in

the Stern (2007) review.31

8 Discussion of the Assumptions

The first factor in composing the model presented here is a general risk attitude. Empirical

evidence shows that people are more averse to risk than they are averse to intertemporal
substitution (see the end of this section). Such evidence could be meaningless if there were

a normative reason to override how people behave in this context. However, there does
not seem to be any such argument. The concept of intertemporal risk aversion distills

the essence of the general risk attitude assumption. I have discussed this axiom in several

dozen audiences of trained economists, and I have never received more consent on an
axiom. I think the axiom passes introspection for a large part of decision makers. Even a

decision maker who is intertemporal risk neutral might want to judge the decision model
of his choice based on its robustness with respect to extensions of the preference domain.

For this decision maker a positive pure time preference is knife-edge.

Opening up to intertemporal risk attitude already largely demolishes the discounted
expected utility model: if a decision maker signs off on the remaining assumptions under-

lying the discounted expected utility model, this workhorse is lost. The two remaining
ingredients relevant to my conclusion only prevent the decision maker from reconstructing

the demolished workhorse. One way of getting the pure rate of time preference back into

the game is by introducing an intrinsic preference for early or late resolution of risk. The
price for this reconstruction effort is a willingness to pay for receiving information that is

of no consequential use earlier or later. If we are fully devoted to pure time preference,
this might be the least bitter pill to swallow. It is the pill that is swallowed in the Epstein-

Zin-Weil model. I think it is fair to say that a good number of researchers employing this

31A relevant factor in the trade-off will be how much of the overall uncertainty is driven by climate
change and how much of it is exogenous to climate change policy (or to what degree strong climate policy
can induce other uncertainties in the economic system). Note that Nordhaus (2007) argues that pure
time preference does not matter much for climate change evaluation if the elasticity of intertemporal
substitution is reduced to keep the consumption discount rate the same, matching market interest. The
empirical models discussed at the end of section 8 disentangle Arrow Pratt risk aversion from intertem-
poral substitutability and explain market interest rates as well as including the risk free rate puzzle and
the equity premium puzzle. Their estimates of the elasticity of intertemporal substituion go exactly the
opposite direction of what Nordhaus suggests: Despite using rates of pure time preference close to zero,
they find an intertemporal elasticity of 1.5, which is even higher then the values of 0.5 used by Nordhaus
and of 1 used by Stern.
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model are not aware that they are even swallowing this pill. Others swallow the pill con-

sciously but in the belief that it is the only way to disentangle Arrow Pratt risk aversion
from the willingness to smooth consumption over time, i.e., to incorporate a non-trivial

intertemporal risk attitude. Rationality clearly objects to paying for information without
consequential use and even more to paying to receive such information earlier or later.

The third ingredient is risk stationarity. This stationarity assumption is always met
in the discounted expected utility model. The question is whether we are willing to give

up risk stationarity to save our workhorse. Stationarity implies that we rank different

consumption bundles independently of calendar time. If this assumption is challenged,
it is usually due to the exclusion of habit formation. In the one-commodity model, this

criticism is warranted. However, the choice space employed in the current analysis easily
absorbs state variables that capture an explicit model of habit formation. What sta-

tionarity rules out is an explicit dependence of the welfare function on calendar time. If

we believe that preferences change over time, we have to construct a meaningful model
of preference change. This model should be independent of calendar time. Otherwise,

we introduce into the model an arbitrariness that defeats its purpose of supporting the
agent in making deliberate decisions. Moreover, if we were to promote an alternative

model, it must exclude the subdomain of history-independent decision making and of

decision making with explicit habit formation independent of calendar time. Including
these preferences in the domain is sufficient to eliminate the pure rate of time preference.

The preceding paragraph makes a strong case for stationarity of preferences in general.
The paper shows that we can save the discounted expected utility model by keeping

stationarity for certain choices and giving up only the stationary ranking of uncertain

scenarios. It is worthwhile to briefly comment on both stationarity assumptions separately.
Certainty stationarity lies at the very foundation of the discounted expected utility model.

Without certainty stationarity, there is no well-defined pure rate of time preference. Risk
stationarity implies that the risk aversion functions do not depend on calendar time. If we

were to make time consistent choices without the assumption of risk stationary choices,

we would be forced to use a different decision model in every period. If we were to give
up time consistency instead, we could use the same decision model in every period, but

we would revise those plans of ours that involve uncertain outcomes from one period to
the next, even without any changes in information. Both options are objectionable.

Finally, I briefly examine the other axioms of the paper. Transitivity and completeness

are reasonable assumptions in order to develop a decision framework that, in principle,
should be able to rank all relevant scenarios. Independence is an axiom that has been re-

laxed on behavioral accounts, particularly in the context of ambiguity where uncertainty
is not captured comprehensively by unique probability distributions. In situations of

risk, the independence axiom is still the benchmark for rational choice. The requirement
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that the present decision support framework satisfy independence in the case of objective

probabilities is suffcient to eliminate the pure rate of time preference. The assumption of
certainty separability is a convenient way to relate the general framework to the discounted

expected utility model given that the discounted utility framework is intertemporally ad-
ditive. It proves sufficient to extend risk attitude within the certainty additive preference

domain to eliminate pure time preference. The relevant question is whether we want our
model to exhibit the discussed characteristics, at least in this restricted domain. If we

are to take the discounted expected utility model seriously in the first place, the answer

ought to be “yes”. Moreover, habit formation can be absorbed even into this restricted
preference domain as long as there exists an explicit calendar-time-independent model of

habit formation. Finally, I assume time consistency. It is probably the least contestable
axiom in a model of rational decision making. If we were to drop time consistency, the

decision maker would constantly revise his plan, even without changes in information. A

decision support system suggesting that a decision maker would permanently change his
mind without the arrival of new information seems neither rational nor helpful.

I have discussed the assumptions entering a decision support framework designed to
help one make rational decisions rather than merely describe behavior. Adhering to a

normatively desirable decision framework can imply significant deviations from actual

behavior. This final paragraph points out that these deviations are likely smaller than
one would initially assume. The Epstein-Zin-Weil model for disentangling Arrow Pratt

risk aversion from aversion to intertemporal substitution is a model of intertemporal risk
aversion. It implicitly assumes constant relative intertemporal risk aversion as opposed

to the constancy of the absolute measure of intertemporal risk aversion that follows from

the axioms of this paper. When Epstein & Zin (1991) estimate the model, they find a
rate of pure time preference around zero. Moreover, they find a utility function that is

close to the logarithmic form, which is the only overlap between the models of constant
absolute and constant relative risk aversion. Later estimates of the Epstein-Zin-Weil

model follow Campbell’s (1996) approach of log-linearizing the Euler equations, which

cancels pure time preference in the estimated equations. However, Bansal & Yaron (2004)
solve a variety of asset pricing puzzles by calibrating a sophisticated asset pricing model

with Epstein-Zin-Weil preferences, and they calibrate pure time preference to 0.1%. The
same calibration is chosen by Nakamura et al. (2010) who develop a model for analyzing

consumption disasters using Epstein-Zin-Weil preferences.32 As do other estimations like

Vissing-Jørgensen & Attanasio’s (2003), these papers also find that Arrow Pratt risk aver-

32Similarly, the well-known preference for increasing income streams (Loewenstein & Sicherman 1991)
or health (Chapman 2000) is an indicator that agents are less impatient than we generally assume when
it comes to far reaching decisions .
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sion is much stronger than aversion to intertemporal substitution, implying intertemporal

risk aversion.

9 Conclusions

The discounted expected utility model is the workhorse of economics. It lives on a long

tether and grazes on all fields of our discipline. Over the years, behavioral economics has
cast into doubt its performance in capturing the actual behavior of economic agents. In

contrast, its axiomatic foundation has still been going strong and the model clearly holds

the pole position when it comes to rational decision making. The current paper lays out
why the discounted expected utility model does not win this normative rationality race

either. The discipline uses the model frequently and insightfully to analyze trade-offs,
economic behavior, and strategic interactions, even in behavioral economics. However, I

analyzed rational, deliberate decision making and showed that the defining characteristic

of the discounted expected utility model, the utility discount rate, is no longer convincing
if we extend the preference domain to take risk attitude seriously.

One way to save the discounted expected utility model is by eliminating intrinsic risk
aversion. A decision maker following this path must be aware that regaining pure time

preference is knife edge. A different way to regain pure time preference is to accept a

framework that incurs costs in order to obtain information of no consequential use at an
earlier or later point in time. Theorem 3 states the decision support framework for decision

makers who are willing to swallow this pill. Decision makers not prepared to do so can give
up the stationary evaluation of risk. Theorem 4 states the decision support framework

for these individuals or agencies. The risk aggregation in this framework depends on

calendar time. Thus, the decision maker effectively switches his decision support model
every period to remain time consistent. Alternatively, the decision maker can give up

time consistency and employ the representation in Theorem 3 with discounting and risk
aggregation depending on futurity rather than on calendar time. Then, reevaluating

scenarios tomorrow would result in revisions of the (formerly) optimal plan.

Different parts of the profession will swallow different pills. I swallow the opening
remark by Harrod (1948) and it will leave a much bitterer taste on my tongue than

it used to. If I were to use the discounted expected utility model again as a decision
support framework, I will be aware that literally my passion and impatience cheat my

rationality. The decision maker seeking a rational model without bitter taste who wants to

account for risk aversion has to employ the representation of Theorem 5: an undiscounted
model. His weights on future welfare reflect how much he knows about the consequences

of his (in)actions. Such a decision maker follows the normatively most desirable path.
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Normative desirability, however, often comes at a cost. It is fair to ask how much an

evaluation in this framework differs from an evaluation underlying observed choices. I
argued that the difference between the present model and observed choice in a context

of deliberate decision making might be smaller than we would initially think. Individuals
or agencies do not foresee the future. They face serious uncertainties regarding income,

funding, health, changes in the social or business network, technological innovations,
natural disasters, terrorist attacks, and many more. I showed that such uncertainties can

act as if agents discount future welfare and noted empirical evidence for such discounting

in the asset pricing literature. However, once the agents can influence state-specific payoffs
or the uncertainty itself, the two models imply very different results.

A special feature of the present framework is its finite planning horizon. It avoids Kreps
& Porteus’ (1978) finding that ordering certain consumption streams over an infinite time

horizon requires a strictly positive time preference. I discussed whether the model might

be unduly sensitive to the choice of the time horizon. If we are to account for the full
consequences of an action or policy, we should include those periods for which we foresee

(probabilistically) how our actions will change the future. At some finite point in time,
the differences caused by our actions blur. Then, the weak future independence assump-

tion accompanying stationarity kicks in: if we drop a common future when comparing two

scenarios, the resulting ranking does not change. Thus, the present framework requires
us to evaluate precisely what changes we can realistically foresee in comparing different

scenarios. Then it is insensitive to the time horizon. In contrast, the discounted expected
utility model chips away continuously at the time horizon by means of pure time pref-

erence. We know that the evaluation of long-term policy scenarios is highly sensitive to

this utility discount rate. At the same time, this continuous chipping away at the time
horizon is convenient. For example, in the climate change context, with a 3% rate of

pure time preference, we do not have to worry about our model’s quality in predicting
global warming and sea level rise beyond some 150 years, even if these changes persist

over several thousand years. Passion and impatience have always been easier to follow

than deliberate decision making.
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Appendix

A Proofs for Section 3

Proof of Theorem 1: The proof builds on Theorem 2 in Traeger (2010) delivering
a representation for non-stationary preferences. I show that axiom A6 makes it possible
to pick coinciding utility function for evaluating outcomes in different periods and to
translate the recursive description of aggregate utility in Traeger (2010) into the ‘current
value’ form of the representation stated here.
Sufficiency: For a given a ∈ IR++, the proof makes use of the notation A

a = {aa ∈ A :
a
a(z) = a z+b , b ∈ IR}. I define for a given sequence of continuous functions ut : X → IR

with range Ut, t ∈ {1, ..., T}, the normalization constants ϑt by setting ϑT = 0 and for
t < T

ϑt =
U t+1Ut−U t+1U t

Ut−U t
.

By axioms A1-A5, Corollary 3 in Traeger (2010) implies the existence of the following
preference representation for �. There exist continuous functions ut : X → IR with
range Ut and strictly increasing and continuous functions f ∗

t : IR → IR such that defining
recursively the aggregate welfare functions ũ∗

t : X̃t → IR by ũ∗
T (xT ) = u(xT ) and

ũ∗
t−1(xt−1, pt) = ut−1(xt−1) +Mf∗

t (pt, ũ
∗
t ) +

ϑt−1

θt

the expression Mf∗

t (pt, ũ
∗
t ) represents the lotteries pt in the sense of equation (6). More-

over, the sequences of tuples (ut, f
∗
t )t∈{1,...,T} and (u′

t, f
∗
t
′)t∈{1,...,T} both represent �, if and

only if, for some a ∈ IR++ there exist affine transformations at ∈ A and a
a
t ∈ A

a for all
t ∈ {1, ..., T} such that (u′

t, f
∗
t|Ũt

) = (aa
t ut , atf

∗
t
′|Ũ ′

t
a
a
t
−1 ).

To translate axiom A6 into the representation stated above, recall that Mf∗

τ (x̃τ , ũ
∗
τ) =

ũ∗
τ (x̃τ ). Recursive application yields for x ∈ X

t that Mf∗

t (x, ũ∗
t ) =

∑T

τ=t uτ(xτ ) + ct for
some constants ct ∈ IR. Therefore, axiom A6 with x = (x2, ..., xT ) translates into the
requirement

∑T

τ=2 uτ−1(xτ ) +
✟
✟

✟✟uT (x) ≥
∑T

τ=2 uτ−1(x
′
τ ) +

✟
✟
✟✟uT (x)

⇔
∑T

τ=2 uτ (xτ ) ≥
∑T

τ=2 uτ(x
′
τ ) .

for all x, x′ ∈ X
2. The above equivalence implies that

∑T

τ=2 uτ (xτ ) and
∑T

τ=2 uτ−1(xτ ) are
both representations for �2 |

X
2 . In consequence, by the uniqueness result stated above,

there exist a ∈ IR++ and bt ∈ IR, t ∈ {1, ..., T − 1}, such that ut = a ut+1 + bt for all
t ∈ {1, ..., T − 1}.33 I use this freedom in (ut)t∈{1,...,T} to eliminate the affine displacement

33Here it is u′
t = ut+1. Coincidence of the representations (only) on the certain outcome paths is

enough to assure the uniqueness result for (ut)t∈{1,...,T}.
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parameter bt by defining u′
t = ut −

∑T−1
τ=t a

τ−tbτ for t ∈ {1, ..., T − 1}. For u′
t find that

u′
t = ut −

∑T−1
τ=t a

τ−tbτ = aut+1 + bt − bt − a
∑T−1

τ=t+1 a
τ−tbτ = au′

t+1. Letting u = u′
1 and

β = a−1 yields ut = βt−1u. The change of the representing utility functions from ut to
u′
t corresponds to the affine transformations u′

t = a
1
t ut with a

1
t(z) = z −

∑T−1
τ=t a

τ−tbτ and

requires an according transformation of the representing functions f ∗
t to f ∗

t
′ = f ∗

t a
1−1

.
Then, the sequence of tuples (βt−1u, f ∗

t
′)t∈{1,...,T} represents �.

The normalization constants ϑt for the representing tuples (βt−1u, f ∗
t
′)t∈{1,...,T} are

ϑt =
U t+1U t−Ut+1U t

U t−Ut

= βtU βt−1U −βtU βt−1U

βt−1(U−U)
= 0 .

Using the tuples (βt−1u, f ∗
t
′)t∈{1,...,T} in the representation therefore yields the following

recursive definition of aggregate utility

ũ∗
t (·, ·) = u′

t(·) +Mf∗

t+1
′

(·, ũ∗
t+1) + 0 = βt−1u(·) +Mf∗

t+1
′

(·, ũ∗
t+1) .

which is equivalent to

β1−t ũ∗
t (·, pt+1) = u(·) + β β1−(t+1)f ∗

t+1
′ −1

(

Ept+1
f ∗
t+1

′
(

β(t+1)−1β1−(t+1) ũ∗
t+1

)

)

.

Defining ũt = β1−tũ∗
t and ft(z) = f ∗

t
′(βt−1z) for all t yields the representation

ũt(·, pt+1) = u(·) + β f−1
t+1

(

Ept+1
ft+1 ◦ ũt+1

)

stated in the theorem.
Necessity: Axioms A1-A5 follow immediately from the necessity part in Theorem 2 in
Traeger (2010). To see that axiom A6 is always satisfied in the representation observe
that Mfτ (x̃τ , ũτ ) = ũτ (x̃τ ) and recursively Mft(x, ũt) =

∑T

τ=t β
τ−t u(xτ ). Then, axiom

A6 is seen to hold by verifying the following equivalence
∑T−1

τ=1 β
τ−1 u(xτ+1) +✘✘✘✘✘✘

βT−1 u(x) ≥
∑T−1

τ=1 β
τ−1 u(x′τ+1) +✘✘✘✘✘

βT−1u(x)

⇔
∑T

τ=2 β
τ−2 u(xτ ) ≥

∑T

τ=2 β
τ−2 u(x′τ ) .

Uniqueness: The representation is a special case of the representation in the sense of
Corollary 3 in Traeger (2010), stated at the beginning of this proof. Here, ut = βt−1 u

and f ∗
t = ft ◦ a for some a ∈ A. Thus, the uniqueness result follows immediately from

Corollary 3 in Traeger (2010). ✷

B Proofs for Section 4

Proof of Theorem 2: The proof translates axiom A7 s into the representation of
Theorem 1. Using the premise, I translate the second line of the axiom into a concav-
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ity condition for ft. The resulting equation (17) would be a straight forward concavity
condition, if the equation had to hold for all convex combinations in the argument of ft.
However, the premise only requires equation (17) to hold for a limited set of convex com-
binations. The proof that the limited requirement still yields concavity of the functions
ft works, with one exception, analogous to the according proof for the non-stationary
analysis carried out in Traeger (2010). I point out the step that differs and, hereafter,
refer the reader to the proof of Theorem 3 in Traeger (2010).
The proof is divided into four parts. The first part derives the (restricted) concav-

ity condition. The second part relates the rest of the proof to the one carried out in
Traeger (2010). The third part deals with statements b) and c) of the theorem. The
fourth part takes care of the necessity of the axioms for weak/strict intertemporal risk
aversion/seeking.
Sufficiency: Part I: This part of the proof translates axiom A7 s into the representation
of Theorem 1. I start with the first line, i.e the premise:

x̄ ∼t x

⇒
T
∑

τ=t

βτ−t u(x̄) =
T
∑

τ=t

βτ−t u(xτ ) . (14)

The existence of τ ∈ {t, ..., T} such that (x̄−τ , xτ ) 6∼t x̄ translates into

u(xτ ) 6= u(x̄) for some τ ∈ {t, ..., T}. (15)

The second line of axiom A7 s yields

x̄ ≻T

∑T

i=t
1

T−t+1
(x̄−i, xi)

⇒
∑T

τ=t β
τ−tu(x̄) > f−1

t

[

∑T

i=t
1

T−t+1
ft

[

∑T

τ=t β
τ−tu ((x̄−i, xi)τ )

]]

⇒ ft

[

∑T

τ=t β
τ−tu(x̄)

]

>
∑T

i=t
1

T−t+1
ft

[

∑T

τ=t β
τ−tu ((x̄−i, xi)τ )

]

.

Using equation (14), the left hand side can be transformed as follows:

ft

[

∑T

τ=t β
τ−tu(x̄)

]

= ft

[

T−t
T−t+1

[

∑T

τ=t β
τ−tu(x̄)

]

+ 1
T−t+1

[

∑T

τ=t β
τ−tu(xτ )

]]

= ft

[

1
T−t+1

[

∑T

i=t

∑T

τ=t β
τ−tu ((x̄−i, xi)τ )

]]

= ft

[

∑T

i=t
1

T−t+1

[

∑T

τ=t β
τ−tu ((x̄−i, xi)τ )

]]

,
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yielding the inequality

ft

[

∑T

i=t
1

T−t+1

[

∑T

τ=t β
τ−tu ((x̄−i, xi)τ )

]]

>
∑T

i=t
1

T−t+1
ft

[

∑T

τ=t β
τ−tu ((x̄−i, xi)τ )

]

. (16)

Define the function z̃ : Xt → IR by z̃(x) =
∑T

τ=t β
τ−tu (xτ ). Restricting the domain to

those consumption paths that satisfy condition (15), the function is onto the interior of the
interval Ũt which I denote by Γ =

(
∑T

τ=t β
τ−tU ,

∑T

τ=t β
τ−tU

)

. For given consumption
paths x̄, x ∈ X

t I define zi = z̃
(

(x̄−i, xi)
)

. In this notation equation (16) becomes

ft

(

∑T

i=t
1

T−t+1
zi

)

>
∑T

i=t
1

T−t+1
ft(zi). (17)

If equation (17) had to hold for all zi ∈ Γ it would be a straight forward condition for
strict convexity of ft. However axiom A7 s does not immediately imply that the equation
has to be met for every sequence (zi)i∈{t,...,T} with zi ∈ Γ. Equation (17) only has to hold
for sequences (zi)i∈{t,...,T} which are generated by consumption paths x̄, x ∈ X

t that satisfy
the premise of axiom A7 s.
Part II: It is left to show that equation (17) implies strict concavity of ft also if it only
has to hold for sequences (zi)i∈{t,...,T} which are generated by consumption paths x̄, x ∈ X

t

that satisfy the premise of axiom A7 s. This part of the proof is mostly analogous to the
proof of Theorem 3 in Traeger (2010), which first shows that the condition implies local
strict concavity of ft, then weak concavity on the entire set Γ, and finally strict concavity
on Γ.34 The only difference in the proof is that the stationarity assumption in this paper
permits to generate every point zo ∈ Γ from a constant consumption path, i.e. for all
zo ∈ Γ exists x̄ ∈ X such that zo = z̃(x̄). This fact is immediate from observing that
z̃(x̄) = u (x̄)

∑T

τ=t β
τ−t is continuous as a function of x̄ and onto Γ. Therefore, for every

zo ∈ Γ a set of local perturbations x around the constant consumption x̄ generating zo,
which satisfy the premise of axiom A7 s, can be used to derive local convexity of ft. In
the non-stationary setting, not all zo ∈ Γ can be generated by a constant consumption
path. That fact slightly complicates the respective analysis and, there, requires a stronger
axiom for the definition of intertemporal risk aversion (enlarging the domain on which
the axiom of intertemporal risk aversion restricts preferences).
Part III: Assertion b) is obtained by replacing A7 s by A7wand the strict inequaties by
their weak counterparts.35 A decision maker is intertemporal risk neutral if his preferences
satisfy weak risk seeking as well as weak risk aversion. Therefore, assertion b) implies

34The step proving local strict concavity corresponds to part two of the respective proof. The fact that
the functions ft are not assumed to be differentiable slightly complicates the step from local to global
concavity which is shown in part three of the proof of Theorem 3 in Traeger (2010).

35In this case the second step in part three becomes redundant.
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that the function ft ◦g
−1
t has to be concave and convex at the same time and, thus, linear.

Necessity: Part IV: Necessity is implied by Theorem 3 in Traeger (2010) for x = x̄. ✷

Proof of proposition 1: The proposition is an immediate consequence of proposition
4 in Traeger (2010). For part a) observe that fixing the zero level for u(x0) in the repre-
sentation of theorem 1 fixes the zero level of ut for all periods. ✷

C Proofs for Section 5

Proof of Theorem 3: The proof is divided into four parts. In the first part, I translate
axiom A8 into the representation of Theorem 1 and derive a functional equation for the
functions ft parameterizing uncertainty aggregation. I translate the solution back into
the representation in part two of the proof. Part three shows necessity of the axioms and
part four shows uniqueness and calculates the measures of intertemporal risk aversion.
Sufficiency: Part I: First, note that axiom A8 implies axiom A6 by choosing x = x

′.
Therefore, a representation in terms of Theorem 1 exists. In the following, I translate
axiom A8 for t ∈ {1, ..., T −1} into the latter representation. Note that, by definition of x
as an element of Xt+1, the period τ entry of the consumption path (x, x) ∈ X

t corresponds
to (x, x)τ = xτ+1 for τ ∈ {t, ..., T − 1}. The left hand side of the equivalence in axiom A8
translates into

1
2
(x, x0) + 1

2
(x′, x0) �t (x

′′, x0)

⇔ f−1
t

{

1
2
ft

[

∑T−1
τ=t β

τ−tu(xτ+1) + βT−tu(x)
]

+1
2
ft

[

∑T−1
τ=t β

τ−tu(x′τ+1) + βT−tu(x)
]}

≥
[

∑T−1
τ=t β

τ−tu(x′′τ+1) + βT−tu(x)
]

.

For given consumption x, x′, x′′ ∈ X and x ∈ X I define S =
∑T

τ=t+1 β
τ−(t+1) u(xτ ),

S ′ =
∑T

τ=t+1 β
τ−(t+1) u(x′τ ), S

′′ =
∑T

τ=t+1 β
τ−(t+1) u(x′′τ ) and A = βT−t u(x). Varying the

consumption paths x, x′ and x
′′ in X

t+1 implies a variation of S, S ′ and S ′′ over the interval

[1−βT−t

1−β
U, 1−βT−t

1−β
U ]. Similarly, as x is varied in X the value A takes on any number in

the interval [βT−t U, βT−tU ] . The introduced notation translates the above inequality,
corresponding to the left hand side of the equivalence in axiom A8, into

f−1
t

{

1
2
ft
[

S + A
]

+ 1
2
ft
[

S ′ + A
]

}

− A ≥ S ′′. (18)
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In the same notation the right hand side of the equivalence in axiom A8 translates into

f−1
t+1

{

1
2
ft+1

[

S
]

+ 1
2
ft+1

[

S ′
]

}

≥ S ′′. (19)

For every lottery pt+1 ∈ Pt+1 exists a certainty equivalent that is a certain consumption
path.36 In consequence, for any choice of x, x′ ∈ X

t+1 exists a certainty equivalent x
′′ ∈

X
t+1 to the lottery 1

2
x+ 1

2
x
′ ∈ Pt+1 such that equation (19) holds with equality. Then, by

axiom A8 also equation (18) has to hold with equality. Combining these two equalities
by replacing S ′′ yields the requirement

f−1
t

{

1
2
ft
[

S + A
]

+ 1
2
ft
[

S ′ + A
]

}

− A = f−1
t+1

{

1
2
ft+1

[

S
]

+ 1
2
ft+1

[

S ′
]

}

. (20)

for all S, S ′ ∈ [1−βT−t

1−β
U, 1−βT−t

1−β
U ] and A ∈ [βT−t U, βT−t U ].

Part II: Observe that the right hand side of equation (20) is independent of A. Therefore,
the left hand side has to be constant in A. The condition corresponds to a functional
equation solved by Aczél (1966, 153). The only solutions for a continuous function ft
satisfying equation (20) are ft(z) = at exp(−ξtz) + bt and ft(z) = atz + bt with at, bt ∈ IR
and ξt ∈ IR, ξt 6= 0 for t ∈ {1, ..., T − 1}.
Acknowledging that the left hand side of equation (20) is independent of A, both sides

of equation (20) characterize an uncertainty aggregation rule with respect to a variation
in S and S ′. The parameterizing functions of uncertainty aggregation rules are unique
up to affine transformations. As both sides have to coincide, ft+1 has to be an affine
transformation of ft. But affine transformations of the parameterizing function of an
uncertainty aggregation rule do not affect the representation. Therefore, I can choose
ft(z) = exp(−ξz) for all t ∈ {1, ..., T} in case of the first class of solutions. Note that
Theorem 1 is stated in term of increasing functions ft. Because ft(z) = exp(−ξz) can
decrease in z I should more precisely pick ft = sgn(−ξ) exp(−ξz). However, the multi-
plication with a negative number does not change the resulting uncertainty aggregation
rule. In the case that ft is linear for one and thus for all t, I choose ft = id for all
t ∈ {1, ..., T}. The latter case is identified with ξ = 0. In fact, observe that defining

Mexp0 = limξ→0M
exp−ξ

yields by l’Hospital’s rule:

Mexp0

(pt, ũt) ≡ lim
ξ→0

Mexp−ξ

(pt, ũt) = lim
ξ→0

ln
[ ∫

dpt exp(−ξũt)
]

−ξ

= lim
ξ→0

∂
∂ξ

ln
[ ∫

dpt exp(−ξũt)
]

∂
∂ξ

− ξ
= lim

ξ→0

∫

dptũt exp(−ξũt)
∫

dpt exp(−ξũt)

=

∫

dptũt

1
= Eptũt .

36See proof of Theorem 2 in Traeger (2010), induction hypothesis 2.
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Substituting the restricted uncertainty aggregation rules into the representation of The-
orem 1 yields the representation given in Theorem 3.
Necessity: Part III: The representation is a special case of Theorem 1. Therefore,
axioms A1-A5 follow immediately from the necessity part of Theorem 1. The following
calculation shows that axiom A8 is satisfied for all t ∈ {1, ..., T −1}, x ∈ X and x, x′, x′′ ∈
X
t+1 in the case ξ 6= 0:

1
2
(x, x) + 1

2
(x′, x) �t (x

′′, x)

⇔ 1
−ξ

ln
(

1
2
exp

[

− ξ
∑T−1

τ=t β
τ−tu(xτ+1)

]

exp
[

− ξβTu(x)
]

+1
2
exp

[

−ξ
∑T−1

τ=t β
τ−tu(x′τ+1)

]

exp
[

−ξβTu(x)
]

)

≥

T−1
∑

τ=t

βτ−tu(x′′τ+1) + βTu(x)

⇔ 1
−ξ

ln
(

1
2
exp

[

−ξ
∑T

τ=t+1 β
τ−(t+1)u(xτ )

]

+ 1
2
exp

[

− ξ
∑T

τ=t+1 β
τ−(t+1)u(x′τ )

])

≥
∑T

τ=t+1 β
τ−(t+1)u(x′′τ )

⇔ 1
−ξ

ln
(

1
2
exp

[

− ξũt+1(x)
]

+ 1
2
exp

[

− ξũt+1(x
′)
])

≥ ũt+1(x
′′)

⇔ 1
2
x+ 1

2
x
′ �t+1 x

′′ .

In the case ξ = 0 both sides of the above inequalities are linear. Thus, the term βTu(x)
cancels as well and axiom A8 is satisfied.
Uniqueness: Part IV: The restriction that u is onto a given U∗ fixes u uniquely, elim-
inating the affine freedom a0 in the representation of Theorem 1. Therefore, by the
uniqueness result of Theorem 1, the functions ft are determined up to (‘outer’) affine
transformations yielding unique measures

AIRA*
t(z) = −

d2

dz2
ft(z)

d
dz

ft(z)
= −

d2

dz2
at exp(−ξz)+bt

d
dz

at exp(−ξz)+bt
= ξ

and accordingly

RIRA*
t(z) = −

d2

dz2
ft(z)

d
dz

ft(z)
z = ξz .

✷
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D Proofs for Section 6

Proof of Theorem 4: The proof builds on a representation theorem derived in Traeger
(2007) for timing-indifferent preferences in a non-stationary setting.
Sufficiency: By axioms A1-A5 and timing indifference axiom A9 Theorem 4 in Traeger
(2007) gives the following representation. For all t ∈ {1, ..., T} exist strictly increasing
continuous functions ut : X → IR, such that defining the functions ũt : X

t → IR by

ũt(x
t) =

∑T

τ=t uτ (x
t
τ )

the expression Mft(pxt

t , ũt) represents preferences in the sense of equation (11). For a
derivation of the lotteries pxt ∈ ∆(Xt) from their respective counterparts pt ∈ Pt =
∆(X̃t) by ‘integrating out’ the information on the timing of risk resolution I refer to
Traeger (2007). The identical reasoning as for the representation in Theorem 1 shows
that certainty stationarity in the sense of axiom A6 ensures the existence of a discount
factor β ∈ IR++ and a continuous function u : X → IR such that the functions ut in the
above representation can be chosen as ut = βt−1u.
As shown in the proof of Theorem 4 in Traeger (2007) the functions ft in the recur-

sive representation differ from the parameterizing function of the uncertainty aggrega-
tion rules in the non-recursive representation by a normalization factor which, in the
stationary setting, coincides with the discount factor. Therefore, the representation in
Theorem 4 corresponds to a representation in the sense of Theorem 1 with the choice
ft(z) = exp(−ξβt−1z) as is easily verified by the following calculation:

Mft(pt, ũt) = f−1
t

(

Ept ft

[

u(xt) + β f−1
t+1

(

Ept+1
ft+1 ◦ ũt+1

)])

= 1
−βt−1ξ

ln
(

Ept exp
[

−βt−1 ξ
{

u(xt) + β 1
−βtξ

ln
(

Ept+1
exp

[

−βt ξ ũt+1

]

)}])

= 1
−βt−1ξ

ln
(

Ept exp
[

− βt−1 ξ u(xt)
]

Ept+1
exp

[

− βt ξ
(

u(xt) +

βMft+2(pt+2, ũt+2)
)]

)

= 1
−βt−1ξ

ln
(

Ept exp
[

− βt−1 ξ u(xt)
]

Ept+1
exp

[

− βt ξ u(xt)
]

Ept+1
...
)

,

which, omitting the details on integrating out the information on the timing of risk reso-
lution, becomes

Mft(pt, ũt) =
1

−βt−1ξ
ln
(

E
pxt

exp
[

− βt−1 ξ u(xt)
]

exp
[

− βt ξ u(xt)
]

...
)

= 1
−βt−1ξ

ln
(

E
pxt

exp
[

ξ
∑T

τ=t−βτ−1 u(xτ )
]

)

,

which is a strictly increasing transformation of the expression in the representing equa-
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tion (11). Therefore, the measures of intertemporal risk aversion are immediately calcu-
lated from the relation ft(z) = exp(−ξβt−1z), yielding the results stated in the theorem.
Necessity: Necessity of the axioms follows from their necessity in the representations of
1 above and Theorem 4 in Traeger (2007).
Uniqueness: Uniqueness of u and the measures of intertemporal risk aversion is an
immediate consequence of Proposition 1.

✷

E Proofs for Section 7

Proof of Theorem 5: The assertion follows from a comparison of the time dependence
of intertemporal risk aversion in the representation oft Theorem 3 and Theorem 4.
Sufficiency: The representation has to be a special case of the representations in Theo-
rem 1 satisfying risk stationarity A8 and in Theorem 4 satisfying timing indifference A9.
The proof of Theorem 3 shows that risk stationarity requires the representing functions ft,
characterizing uncertainty aggregation in Theorem 1, to coincide for different periods (up
to possibly time dependent affine transformations that do not affect uncertainty aggre-
gation). The proof of Theorem 4 shows that timing indifference requires these functions
ft in Theorem 1 to be of the form ft(z) = sgn(−ξ) exp(−ξβt−1z) for all t ∈ {1, ..., T}.37

Theorem 2 a) a strictly intertemporal risk averse decision maker implies ξ > 0. Thus,
β 6= 1 implies by Theorem 4 a change of ft over time that contradicts the constancy
required resulting from risk stationarity (there is no affine transformation taking ft into
f ′
t for t 6= t′ if it is of the given form). The only representation that satisfies both axioms
has to have a discount factor β = 1.
Necessity: Necessity follows from necessity in Theorems 3 and 4 and the fact that both
representation coincide for β = 1. ✷

Proof of proposition 2: The cumulative probability distribution of welfare in period t

is defined as Pt(z) = pu
t ([0, z]) on the interval [0, 1] and continuous from the right. Strictly

increasing uncertainty implies by definition that equation (12) holds for all z ∈ [0, 1]
exhibiting equality for z = 1. Then Theorem 2 in Rothschild & Stiglitz (1970, 237) shows
that for any strictly increasing concave function f ∈ C0([0, 1])

Epu
t
f ≥ Epu

t+1
f ⇒ f−1

(

Epu
t
f
)

≥ f−1
(

Epu
t+1

f
)

.

37Because f∗
t (z) = exp(ξβt−1z) is decreasing in z the theorem has to be applied to the function

ft = sgn(ξ) exp(ξβt−1z) which increases and characterizes the same uncertainty aggregation rule.
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The uncertainty aggregation rule Mexp−ξ

(pt, u) is characterized by the strictly increasing
and concave function f(z) = − exp(−ξ z) (see footnote 37). It follows from f−1

(

Epu
t
f
)

=

f−1
(

Ep
t
f ◦ u

)

= Mf(pt, u) that

Mexp−ξ(

pt+1, u
)

≤ Mexp−ξ(

pt, u
)

for all t ∈ {1, ..., T − 1} .

Strictness of this inequality follows from the existence of z∗ ∈ (0, 1) such that equation (12)
holds as a strict inequality and the fact that the distribution functions Pt are continuous
from the right. In contrast, the fact that equation (12) holds with equality for z = 1
implies the existence of ū ∈ IR such that E u(xt) = ū for all t ∈ {1, ..., T}. Observing

Mexp−ξ(

px1 , ũt

)

= Mexp−ξ(

p1, u
)

+Mexp−ξ(

p2, u
)

+ ...+Mexp−ξ(

pT , u
)

.

I can solve equation (13) recursively for the weights β̄t finding

β̄t =
Mexp−ξ

(pt, u(xt))

E u(xt)
=

Mexp−ξ

(pt, u(xt))

ū
<

Mexp−ξ

(pt−1, u(xt−1))

ū
= β̄t−1

for all t ∈ {1, ..., T − 1}. ✷

Proof of proposition 3: The first order welfare change gained by adding a marginal
certain consumption vector ǫt in all risk states is

Mexp−ξ

(pt, u(xt + ǫt) = Ep
t

exp(−ξu(xt))

Ep
t
exp(−ξu)

u′(xt)ǫt ⇒ β̃t(xt) =
exp(−ξu(xt))

Ep
t
exp(−ξu)

,

where ǫt and u′(xt) are vectors forming an inner product and β̃t : X → IR is the discount
function defined in Proposition 3. I find

β̃t+1(x)< β̃t(x) ⇔
exp(−ξu(x))

Ep
t+1

exp(−ξu)
<

exp(−ξu(xt))

Ep
t
exp(−ξu)

⇔
exp(−ξu(x))

exp(−ξMexp−ξ

(pt+1, u)
<

exp(−ξu(xt))

exp(−ξMexp−ξ

(pt, u)

⇔ exp
(

−ξ
[

u(x)−Mexp−ξ

(pt+1, u)
]

)

< exp
(

−ξ
[

u(x)−Mexp−ξ

(pt, u)
]

)

⇔ Mexp−ξ

(pt+1, u) < Mexp−ξ

(pt, u) ,

which was shown to hold in the proof of Proposition 2. The second statement in the
proposition follows immediately from the relation

β̃t(x) > β̃t(x) ⇔
exp(−ξu(x))

Ep
t
exp(−ξu)

>
exp(−ξu(x))

Ep
t
exp(−ξu)

⇔ u(x) < u(x) .

✷
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