Giordani, Paolo E.; Rutaz, Michele

Working Paper
Coordination failures in immigration policy

WTO Staff Working Paper, No. ERSD-2011-02

Provided in Cooperation with:
World Trade Organization (WTO), Economic Research and Statistics Division, Geneva

Suggested Citation: Giordani, Paolo E.; Rutaz, Michele (2011) : Coordination failures in immigration policy, WTO Staff Working Paper, No. ERSD-2011-02

This Version is available at:
http://hdl.handle.net/10419/57584

Terms of use:
Documents in EconStor may be saved and copied for your personal and scholarly purposes.
You are not to copy documents for public or commercial purposes, to exhibit the documents publicly, to make them publicly available on the internet, or to distribute or otherwise use the documents in public.

If the documents have been made available under an Open Content Licence (especially Creative Commons Licences), you may exercise further usage rights as specified in the indicated licence.
Coordination Failures in Immigration Policy

Paolo E. Giordani
LUISS "Guido Carli" University

Michele Ruta
World Trade Organization

Manuscript date: December 2010

Disclaimer: This is a working paper, and hence it represents research in progress. This paper represents the opinions of the authors, and is the product of professional research. It is not meant to represent the position or opinions of the WTO or its Members, nor the official position of any staff members. Any errors are the fault of the author. Copies of working papers can be requested from the divisional secretariat by writing to: Economic Research and Statistics Division, World Trade Organization, Rue de Lausanne 154, CH 1211 Geneva 21, Switzerland. Please request papers by number and title.
COORDINATION FAILURES IN IMMIGRATION POLICY*

Paolo E. Giordani† Michele Ruta‡
LUISS "Guido Carli" University World Trade Organization

December 2010

Abstract

We propose a theoretical framework for analyzing the problems associated to unilateral immigration policy in receiving countries and for evaluating the grounds for reform of international institutions governing immigration. We build a model with multiple destination countries and show that immigration policy in one country is influenced by measures adopted abroad as migrants choose where to locate (in part) in response to differences in immigration policy. This interdependence gives rise to a leakage effect of immigration policy, an international externality well documented in the empirical literature. In this environment, immigration policy becomes strategic and unilateral behavior may lead to coordination failures, where receiving countries are stuck in welfare inferior equilibria. We then study the conditions under which a coordination failure is more likely to emerge and argue that multilateral institutions that help receiving countries make immigration policy commitments would address this inefficiency.

Keywords: Immigration policy, cross-border externalities, coordination failures, multilateral institutions.

JEL Classification: F02, F22, J61

*Acknowledgments: We would like to thank G. De Arcangelis, C. Devillanova, G. Facchini, F. Robert-Nicoud, R. Staiger and seminar participants at the Geneva Trade and Development Workshop, the European Trade Study Group Annual Meeting and the SIE Conference for comments and suggestions. Remaining errors are our responsibility. Disclaimer: The opinions expressed in this paper should be attributed to the authors. They are not meant to represent the positions or opinions of the WTO and its Members and are without prejudice to Members' rights and obligations under the WTO.

†Department of Economics and Business, LUISS "Guido Carli" University, Viale Romania 32, 00197 Roma, Italy (e-mail: pgiordani@luiss.it).
‡Economics Research Division, World Trade Organization, Rue de Lausanne 154, 1211 Geneva, Switzerland (e-mail: michele.ruta@wto.org)
1 Introduction

What type of multilateral institutions do countries need to govern international migrations? Several economists have recently raised this question (among others, Bhagwati, 2003, Hatton, 2007, and Hanson, 2009). In particular, Hatton (2007) examines whether the basic principles governing the World Trade Organization could improve international cooperation on migration between sending and receiving countries.

The present work aims at contributing to this debate but takes a somewhat different approach for two reasons. In our view, a prerequisite for a precise answer to the above question is the identification of the international externalities associated with unilateral policy-making in migration policy. In some sense, this is a key lesson that can be inferred from the economic literature on the multilateral trading system. As Bagwell and Staiger (1999 and 2002) show, the GATT/WTO system has effectively improved international trade policy cooperation precisely because it provides a framework to neutralize a key cross-border spillover associated with unilateral policy-making in the trade domain, the terms-of-trade externality. Second, the scope of our analysis is different - and possibly more limited - compared to Hatton (2007). Rather than looking at the problems of international cooperation between host and sending economies, we focus on the interaction of immigration measures implemented by countries that are on the receiving end of immigration. Our goal is to clearly identify the externality associated with immigration policy in this set of countries and to investigate the welfare implications of this economic interdependence.1

A large body of empirical literature has recently studied the long-run determinants of immigration policy and found four key (and somehow interrelated) channels: distributional, political economy, non-economic and international determinants. Distributional factors include the effect of immigration on the labor market and on welfare systems (Borjas, 1994 and 2003, Boeri et al., 2002, Razin et al., 2002). In turn, distributional determinants are channelled into government policies through voting and/or lobbying activity by interest groups that stand to lose or gain from immigration (Goldin, 1993, Facchini et al., 2008). Non-economic forces, such as racism or xenophobia, may influence voters’ attitudes - and, hence,

1While we explicitly model the migration decision of foreign workers (as further discussed below, the migratory decisions are the key transmission mechanism of policy spillovers), the welfare effects of emigration on the sending region are not analyzed in this work.
immigration policy (Dustmann and Preston, 2007, and O’Rourke and Sinnott, 2006). Finally, and crucially for the present work, immigration policy abroad is a determinant of immigration policy at home (Timmer and Williamson, 1998, Boeri and Brücker, 2005, Hatton and Williamson, 2005). The positive correlation between domestic and foreign measures suggests that countries aim at anticipating an externality associated with the immigration policy of other destination countries.

As these international determinants are a key concern of this paper, we briefly review the available evidence. In their historical account of migratory flows and immigration policy in the New World in the late 19th and early 20th century, Timmer and Williamson (1998) argue that countries in the New World must have paid close attention to each others’ policies as migrants were pulled from and pushed toward one country in response to less or more restrictive policies in others. In particular, they find that "Australia’s openness decreased flows to Canada, Brazil’s pro-immigrants subsidies reduced flows to Australia, and Argentina saw an increased share of the immigrant pie as the United States closed its doors" (Timmer and Williamson, 1998, p. 756). A second study that documents the immigration policy spillover is Boeri and Brücker (2005) who adopt a different methodology and look at a different immigration episode. In January 2004, the European Union enlarged to ten new member states from Eastern and Central Europe. Transitional arrangements allowed individual EU countries to temporarily breach the principle of free movement of people inside the Union and to impose restrictions on immigration from the new member states. Boeri and Brücker (2005) find that these arrangements affected the geographical orientation of migrants from the new member states and resulted in substantial diversion of migration flows from countries closing their borders to countries with more open rules.

Contrasting with these developments in the empirical literature, there have been few attempts to integrate these factors into formal models of immigration policy formation. In particular, most existing models, such as Benhabib (1996), de Melo et al. (2001), Dolmas and Huffman (2004), Ortega (2005) and Facchini and Willman (2005), incorporate some form of domestic factors, but are silent about international determinants. The main reason is that standard theory focuses on the effects of immigration on a single receiving economy.

2 See also Hatton and Williamson (2005).
3 There are some recent noticeable exceptions that are discussed at the end of the Introduction.
and considers as exogenous the migratory decision of foreign workers (see Borjas, 1995). These features, by construction, shut down any possible cross-border spillover created by immigration policy. The present work contributes to filling this gap in the formal literature by providing a simple and tractable model of immigration policy interdependence.

In our model immigration policy and migration choices are endogenous. The set up considers two regions. The receiving region is formed of a set of identical countries that choose independently immigration policy. In order to make a convincing case of the mechanism discussed in this paper, we rely on a general model that is broadly consistent with distributional, political economy and non-economic determinants of immigration policy (a specific model is presented in Appendix A). Immigration is assumed to have benefits and costs on host economies, so that there is an optimal number of foreign workers for each receiving country. The sending region is populated by a set of workers who can choose whether to migrate or not and -to a certain extent- in which country to move to. Migratory decisions depend on the economic incentives that foreign workers face and on the policy regulating migratory flows enacted in the receiving countries.

If the world had only a single receiving country, a host government could easily select a policy that supports the efficient level of immigration -that is, the level that optimally trades off the costs and benefits of immigration. Governments, however, do not act in a vacuum: immigration policy in one country alters the migratory choices of foreign workers and, hence, the flows of migrants into other destinations (the immigration policy spillover). Note that this externality is created by the international mobility of prospective migrants. When foreign workers choose, not only whether to migrate or not, but also where to migrate (i.e. the destination country), policy restrictions (liberalizations) in one country increase (decrease) migratory flows in other receiving economies, as a larger number of migrants will target the country with lower restrictions. In other words, the costs and benefits of immigration in any host economy are, in part, determined by the policy stance of other receiving countries. This international externality lowers the ability of national governments to optimally manage their immigration policy.

In this interdependent environment, coordination failures can materialize that lead to

4Few theoretical contributions have considered the interdependence between immigration policy in the host economy and immigration decisions. See, in particular, Bellettini and Berti Ceroni (2007), Bianchi (2007) and Giordani and Ruta (2010).
inefficient equilibria. The choice of immigration policy is strategic and defines a symmetric, simultaneous game among all destination countries from which multiple symmetric policy equilibria emerge that can be Pareto-ranked. The "cooperative solution", that is, the immigration policy associated with the optimal number of migrants for each country, is only one in the continuum of Nash equilibria of this policy game. Coordination failures in immigration policy may arise because, for each policy maker, expectations on the behavior of the governments of other destination economies are critical in the determination of the policy outcome of the receiving region. For instance, if any one government expects that others will strengthen immigration barriers, then it will find it convenient to restrict its policy stance to neutralize the negative externality of an excessive influx of migrants, thus triggering a series of restrictive measures. Too little immigration will result relative to the efficient level for the overall destination region. Similarly, beliefs of immigration liberalizations by other receiving economies will trigger a reduction in restrictions that will result in a Pareto-inferior equilibrium characterized by too much immigration.

Once we identify the problem that characterizes immigration policy in this framework, we discuss two further issues. First, we analyze the problem of equilibrium selection and show that coordination failures in immigration policy are not only possible, but they are also likely to emerge in presence of uncertainty on the policy strategy of other receiving governments. The game-theoretic literature has proposed alternative equilibrium refinements for coordination games admitting a multiplicity of equilibria. These refinements stress the fact that players may coordinate on a strategy which is less risky, even if Pareto-dominated. In particular, we characterize the immigration policy equilibrium that is robust to strategic uncertainty (Andersson et al., 2010) and show that the Pareto-efficient equilibrium is not robust -i.e. that the unilateral policy outcome may well support inefficiently low or high immigration.

The second issue that we investigate is how an increase in the international mobility of migrants (for instance due to technological innovations, such as improvements in transportation and communication means) affects the "likelihood" of a coordination failure. We find that an increase in migrants’ mobility does not change the efficient policy for the receiving region,
but it expands the set of equilibria (a measure of the indeterminacy of equilibria) and alters the robust equilibrium, as it increases each policy maker’s uncertainty about other governments’ strategies. Intuitively, both findings can be rationalized as an increased international mobility of migrants magnifies the cross-border externality associated with immigration policy. This suggests that the "globalization" may be amplifying the chances of coordination failures across destination countries, thus augmenting the need for policy coordination in the immigration domain.

While we leave a further discussion of the policy implications of our model to the conclusion, some preliminary considerations can be put forward. First, while both trade policy and immigration policy are characterized by a cross-border externality, the immigration policy game has radically different features. Trade policy interactions determine a (terms-of-trade driven) prisoner’s dilemma situation, while interactions in the domain of immigration policy lead to a trust dilemma, a coordination problem where governments achieve efficient policies only if they make mutually consistent decisions. Second, while the trade policy game leads to too little trade, coordination failures in immigration policy may determine either too little or too much immigration from the perspective of the receiving world. Third, multilateral institutions should help countries escape inefficient equilibria. This theory suggests that immigration policy commitments (that can be credibly enforced) can provide a coordination device to receiving countries.

Our work is related to several recent studies. The literature on asylum seeking has modelled the spillover effect in national refugee laws and emphasized that coordination problems may emerge in this context (Hatton, 2004, Facchini, Lorz and Willmann, 2006). The paper by Bubb, Kremer and Levine (2007), in particular, is closely related to ours. They show that restricting refugee law in some host countries (i.e. increasing the standard of proof to distinguish between refugees and migrants) may induce other host economies to do the same and that this may lead to a multiplicity of equilibria in refugee law. Recent formal work on immigration policy emphasizes different channels of international interdependence in this domain. Brücker and Schröder (2010) build a model where a destination country’s effort to improve the skill composition of its immigration pool induces other host economies to adopt similar immigration reforms. De la Croix and Docquier (2010) find positive externalities in immigration policy in a model where host economies have an aversion to the global
inequality created by barriers to international labor movements. Relative to these papers there are two main innovations in our work. First, the immigration policy spillover is the result of an endogenous response of potential migrants to differences in immigration policy in host economies. Second, we formally analyze the determinants of multiple equilibria in immigration policy and study the issue of equilibrium selection.

The paper is organized as follows. Section 2 introduces the multiple-country framework. In this setting, we formalize the immigration decision of foreign workers and the immigration policy spillover. In Section 3 we prove the existence of a multiplicity of Nash equilibria and carry out the comparative statics analysis. Section 4 studies the issue of equilibrium selection under strategic uncertainty. A concluding section discusses the implications of this model for the design of international institutions governing immigration.

2 A Multiple-Country Model of Immigration Policy

In this section we introduce a model of immigration policy with a sending region, populated by F workers, and a receiving region composed of m countries, indexed by $h = 1, \ldots, m$. Each host economy has identical fundamentals, but decides immigration policy independently of the other destination countries. Foreign workers can choose whether to migrate or not and where to locate in the receiving region. This setting is sufficient to determine the international spillover characterizing immigration policy and, hence, the type of strategic problem associated with unilateral immigration policy in the receiving world.

Immigration has benefits and costs for the host economies. Define the welfare of the generic economy h in the receiving region as a continuous function in the number of immigrants in the country, $W_h(I_h)$, and suppose that this function admits one and only one finite maximum at $I_h = \hat{I}$. This value of immigration is the one which optimally trades off costs and benefits of migrants for the host economy. While we are agnostic about the source of these costs and benefits, a standard model of immigration policy that supports this structure is presented in Appendix A.
2.1 Migratory Choices and the Policy Spillover

We now introduce the migratory choice of foreign workers. Immigration is a non-reversible decision. Each migrant faces a psychological cost to leave her own country, \(\theta_i \), which is uniformly distributed in \([0, \bar{\theta}]\), where \(\bar{\theta} \) is normalized to 1. The government in \(h \) can set up an immigration policy which is parametrized by a cost borne by immigrants once in the new country, \(\mu_h \in \mathbb{R}_+ \). This parameter can be interpreted in several ways, from the cost of bureaucratic procedures that each immigrant faces in the host economy to laws that affect the life of immigrants in the host country, such as the number of years to obtain voting rights or citizenship.

Migrants are internationally mobile, in the sense that in a world formed of several potential host economies they have some freedom in choosing their destination. Clearly, the international mobility of migrants is limited by a series of factors in addition to immigration restrictions in the receiving world, including primarily geographical distance, but possibly other factors such as technology (e.g. communication technologies) or cultural diversity (e.g. adaptability to different cultures).\(^6\)

We capture the limited international mobility of migrants by assuming that foreign workers are of two kinds. A fraction \(\Psi F \), with \(\Psi \in (0, 1) \), can decide freely which receiving country to move to in the set \(m \) ("free foreign workers"). The remaining fraction \((1 - \Psi)F\) are instead constrained in their choice ("constrained foreign workers"). For reasons of symmetry, we further suppose that each receiving country can attract at most \((1 - \Psi)F/m\) constrained foreign workers; that is, potential migrants of "constrained type" are distributed uniformly across the receiving region. The parameter \(\Psi \) captures the international mobility of migrants. A higher value of \(\Psi \), that is, an increase in the set of "free foreign workers", can be motivated by several factors that reduce the (non-policy) constraints to the migrants’ mobility, such as an improvement in transportation or telecommunication technologies.

A constrained foreign worker in the pool \((1 - \Psi)F/m\), indexed by \(i \), will migrate to \(h \) if and only if

\[
b_h (\mu_h) - \theta_i \geq 0,
\]

\(^6\)See, among others, Belot and Hatton (2008) and Grogger and Hanson (2008).
where b_h is the endogenous net benefit that the foreign worker receives if she migrates to country h, assumed to be a twice continuously differentiable and decreasing function of μ_h.\footnote{The fact that a tightening of immigration policy reduces the foreign workers’ benefits from immigration is a desirable feature for any reasonable model of immigration policy. The model developed in appendix has this feature.}

It is immediate to find the threshold value of the psychological cost (such that all those below that value are willing to migrate) as

$$\theta_h = b_h(\mu_h).$$

Given that θ_i is distributed uniformly in $[0, 1]$, the number of constrained migrants to h will be $b_h(\mu_h)(1 - \Psi)F/m$.

The number of free foreign workers potentially entering each country h is instead given by the whole pool of free foreign workers, ΨF. In addition to satisfying condition (1), free foreign workers will also compare the payoff obtained by migrating to country h to the one obtained by migrating to any other receiving country (denoted by $-h$).\footnote{The absence of asymmetric equilibria (which will be proven in Appendix C) allows us to simplify the notation: b_{-h} and μ_{-h} denote the (identical) benefit and policy set in all $m - 1$ countries other than h.}

Free foreign workers will target country h if

$$b_h(\mu_h) > b_{-h}(\mu_{-h}) \iff \mu_h < \mu_{-h}$$

Therefore, policy differences in the destination world affect migration choices. Specifically, the number of free foreign workers actually migrating to h is 0 if $\mu_h > \mu_{-h}$ (crowding out), and $b_h(\mu_h) \Psi F$ if $\mu_h < \mu_{-h}$ (crowding in). Finally, if $\mu_h = \mu_{-h}$, free migrants are indifferent and distribute symmetrically across the receiving region, that is, $b_h(\mu_h) \Psi F/m$ for any h.

As a result, immigration flows to country h are a function of h’s immigration policy as well as of the measures imposed in the rest of the destination countries. The total number of (constrained plus free) migrants to country h can then be described as $I_h(\mu_h, \mu_{-h}) = b_h(\mu_h) F_h$, where

$$F_h = \begin{cases}
F[(1 - \Psi)/m + \Psi] \equiv \bar{F} & \text{if } \mu_h < \mu_{-h} \\
(1 - \Psi)F/m \equiv \bar{F} & \text{if } \mu_h > \mu_{-h} \\
F/m \equiv \bar{F} & \text{if } \mu_h = \mu_{-h}.
\end{cases}$$

This effect of immigration policy abroad on the flow of migrants into the host economy is the key cross-border externality in this model and the mechanism of economic interdepen-

\[\text{Page 9}\]
idence that we highlight. Importantly, the theory closely captures the essential international policy spillover emphasized in the empirical literature discussed in the Introduction.

Two related considerations seem relevant. The first is on the interpretation of parameter \(\Psi \) in the model. If \(\Psi \) is equal to zero (i.e. no international mobility of foreign workers), then \(\tilde{F} = F = F' \) and there is no policy spillover. As \(\Psi \) increases, differences in immigration policies among destination countries have a larger effect on the flow of migrants. In other words, \(\Psi \) can be interpreted as an elasticity -i.e. the responsiveness of migrants to policy differences. Factors such as improvements in transportation and communication technologies or proximity are likely to increase this elasticity and hence magnify the size of the immigration policy spillover.

The second consideration relates to the size of this international externality. In their study, Timmer and Williamson (1998) find that the effect of the immigration policy spillover is statistically significant but small, while Boeri and Brücker (2005) show that policy differences increased by up to five times immigration to more open EU members compared to the counterfactual of free mobility in the EU. The two studies need not be in contradiction as they are consistent with different values of \(\Psi \) in the model. The international mobility of migrants from the Old to the New World in the 19th century was limited by distance and technological factors compared to modern immigration from Eastern to Western Europe. This is consistent with a higher value of \(\Psi \) in the latter immigration episode and, hence, with a stronger policy externality.

3 Multiple Policy Equilibria and Coordination Failures

Given the international externality created by the migratory behavior of foreign workers, we now characterize the equilibrium immigration policies by studying the strategic interaction among receiving countries. Formally, this interaction can be represented as a symmetric coordination game among the governments of the \(m \) destination countries, each deciding its own immigration policy in a non-cooperative fashion. As we will see, this game admits a continuum of symmetric, Pareto-rankable, Nash equilibria. In particular, we prove that there exists an interval of immigration policies \([\bar{\mu}, \overline{\mu}] \) such that, if all countries but \(h \) select any policy in that interval, country \(h \) will find it best to do the same. We also show that there
exists a pay-off dominant equilibrium belonging to that interval, and that such equilibrium
is associated with policy $\hat{\mu}$ which, if implemented by all host countries, is able to "attract"
the optimal number of migrants, \hat{I}, for all of them. This policy is the one solving equation
$\hat{I} = b_h(\hat{\mu}) \bar{F}$. All other equilibria around this optimal policy equilibrium are instead sub-
optimal and represent a coordination failure among the receiving countries driven by the
immigration policy spillover.

A coordination failure arises in this game because immigration policies across receiving
countries are strategic complements. To give an intuition, start from the optimal policy
equilibrium, $\hat{\mu}$. If all other countries but h restrict their policy above $\hat{\mu}$, country h is better
off following this restriction rather than suffering the “crowding in” of migrants that would
result from sticking to $\hat{\mu}$. This incentive continues up to policy $\bar{\mu}$. Symmetrically, if all
other countries but h loosen up their policy below $\hat{\mu}$, country h is better off by implementing
this softer policy stance rather than suffering a “crowding out” of migrants. This incentive
continues up to policy $\underline{\mu}$. A strategic complementarity across host countries is thus responsible
for the positive co-movement of immigration policies documented in the data.

Let us now define the payoff function of the government of generic country h as a func-
tion of its immigration policy, μ_h, and of the policy strategy followed by all other receiv-
ing countries, μ_{-h}, $\Pi_h(\mu_h, \mu_{-h})$. This payoff function can be found by substituting for
$I_h(\mu_h, \mu_{-h}) = b_h(\mu_h) F_h$ (where F_h is given in (2)) into the welfare function, $W_h(I_h)$. Intu-
itively, this payoff function is a step function which depends on whether μ_h is higher, lower
or equal to μ_{-h}. If it is lower, country h will experience a crowding in ($F_h = \bar{F}$), and the
payoff function is obtained by substituting for $I_h = b_h(\mu_h) \bar{F}$ into $W_h(I_h)$. If it is higher,
country h will experience a crowding out ($F_h = \underline{F}$), and expression $I_h = b_h(\mu_h) \underline{F}$ is instead
substituted into $W_h(I_h)$. Finally, if it is equal, migrants distribute equally across the host
region ($F_h = \hat{F}$), and the payoff function is obtained by substituting for $I_h = b_h(\mu_h) \hat{F}$ into
We can then write

\[\Pi_h (\mu_h, \mu_{-h}) = \begin{cases}
W_h (\mu_h, E) & \text{if } \mu_h > \mu_{-h} \\
W_h (\mu_h, \bar{F}) & \text{if } \mu_h = \mu_{-h} \\
W_h (\mu_h, F) & \text{if } \mu_h < \mu_{-h}.
\end{cases} \]

This payoff function is drawn in Figure 1. The solid curve in Figure 1 represents country \(h \)'s welfare when its immigration policy is equal to the one implemented in the rest of the receiving region \((W_h (\mu_h, \bar{F})) \). The dashed curve captures \(h \)'s welfare when its policy stance is more restrictive than abroad \((W_h (\mu_h, E)) \), while the dotted curve represents the opposite case \((W_h (\mu_h, F)) \). Each of them is assumed to be twice continuously differentiable and strictly concave in \(\mu_h \) (in the standard model of immigration policy developed in appendix we study the conditions for which this is the case -see Appendix B). Note that the optimal number of migrants for country \(h \) is unambiguously given by \(\bar{I} \) and, hence, the three functions have the same maximum. However, the policy delivering this level of immigration depends on whether this policy is higher, lower or equal to the one implemented abroad. In Figure 1, we have called these policy values respectively \(\bar{\mu}, \mu, \bar{\mu}. \)

Before proving the existence of the continuum of policy equilibria, we provide a simple intuition of this result. Along the interval \([\bar{\mu}, \mu] \) it is \(W_h (\mu_h, \bar{F}) \geq W_h (\mu_h, E), W_h (\mu_h, F). \) Assume that all other countries set up a policy \(\mu_{-h} \in [\bar{\mu}, \mu] \). Then, it is easy to show that, for country \(h \), any payoff associated with \(\mu_h \neq \mu_{-h} \) is lower than the one associated with \(\mu_h = \mu_{-h} \). In fact, suppose country \(h \) sets up a policy \(\mu_h \) lower than \(\mu_{-h} \). Then, for

\[\text{The pay-off function is not continuously differentiable, which prevents us from using the standard tools of differential calculus to find the best-response functions and the Nash equilibria of the game. Note also that, albeit more complicated, this function resembles the pay-off function of a Bertrand competition game with homogeneous goods, in which each firm’s profit depends on whether its price is higher, lower or equal to the one set up by its rivals (see for instance Tirole, 1988, pp. 209-211). In particular, the policy game described in this paper shares many features with price competition games where firms’ costs are assumed to be convex (Dastidar, 1995, Weibull, 2006).} \]

\[\text{Moreover, defining "open door" policy } (\mu^{od}) \text{ and "closed door" policy } (\mu^{cd}) \text{ as the policies which induce, respectively, all foreign workers and no foreign worker to emigrate to } h, \text{ it is possible to prove that } W_h (\mu^{cd}, \bar{F}) = W_h (\mu^{cd}, F) = W_h (\mu^{cd}, F), \text{ while } W_h (\mu^{od}, F) > W_h (\mu^{od}, \bar{F}) = W_h (\mu^{od}, \bar{F}) \text{ (as depicted in Figure 1). These proofs are available upon request from the authors.} \]
any $\mu_h < \mu_{-h}$, function $W_h(\mu_h, \bar{F})$ lies uniformly below $W_h(\mu_{-h}, \bar{F})$, that is to say, any $\mu_h < \mu_{-h}$ is associated with lower welfare than $\mu_h = \mu_{-h}$. On the other hand, suppose country h chooses a policy μ_h higher than μ_{-h}. Then, for any $\mu_h > \mu_{-h}$, function $W_h(\mu_h, \bar{F})$ lies uniformly below $W_h(\mu_{-h}, \bar{F})$. As a result, whatever $\mu_{-h} \in [\bar{\mu}, \bar{\mu}]$, country h’s best response is $\mu_h = \mu_{-h}$.

Policy μ belongs to the interval $[\bar{\mu}, \bar{\mu}]$ and is a Nash equilibrium. Indeed, it is the payoff dominant Nash equilibrium in that, if all other countries set up μ, country h is able to attract the optimal number of migrants \hat{I} by adopting the same policy, $\mu_h = \mu$. Equilibria surrounding the optimal policy equilibrium are Pareto-inferior outcomes which result from a coordination failure driven by the international policy spillover associated with migrants’ mobility across the receiving region. A graphical representation of the set of equilibria is provided in Figure 2. We can enunciate the following

INSERT FIGURE 2 HERE

Proposition 1 There exist a lower and an upper threshold, μ and $\bar{\mu}$, such that any symmetric configuration of immigration policies, $(\mu_1, \ldots, \mu_m) = (\mu^*, \ldots, \mu^*)$, for which $\mu^* \in [\bar{\mu}, \bar{\mu}]$, is a Nash equilibrium of the game. The optimal policy equilibrium $\mu_h = \mu$ belongs to the set of symmetric Nash equilibria. All other equilibria are sub-optimal and are Pareto-ranked by the distance from μ.

Proof. In Appendix C \blacksquare

The logic of the proof is simple and consists of exploiting some of the properties of the three welfare functions $W_h(\mu_h, \bar{F})$, $W_h(\mu_h, \bar{F})$, and $W_h(\mu_h, \bar{F})$ (such as continuity and strict concavity) to prove that, for any $\mu_h \in [\bar{\mu}, \bar{\mu}]$ and for any h, it is $W_h(\mu_h, \bar{F}) \geq W_h(\mu_h, \bar{F})$. $W_h(\mu_h, \bar{F})$. \hspace{1cm} \footnote{This reasoning only applies along the interval $[\mu, \bar{\mu}]$. Suppose for instance $\mu_{-h} > \bar{\mu}$. In this case, country h’s best response would be to slightly undercut policy μ_{-h}. This softer policy (implying a crowding in country h), would be associated with a higher welfare, that is, $W_h(\mu_h, \bar{F}) > W_h(\mu_{-h}, \bar{F})$. An analogous reasoning applies to policy values below μ.}
As a result, along that interval enacting the same policy as the rest of the region will be better than enacting any other policy above or below that policy.12

Another way to look at this set of Nash equilibria is by drawing the reaction curves of the host countries in the immigration policy game. The reaction function of generic country h is drawn as the black line in space μ_{-h}, μ_h in Figure 3. For any $\mu_{-h} \in [\mu, \bar{\mu}]$ country h’s best response is $\mu_h = \mu_{-h}$. Hence, along that interval, the reaction curve is a 45 degree line (as in Bryant’s (1983) game). For any $\mu_{-h} < \hat{\mu}$ ($\mu_{-h} > \bar{\mu}$), country h’s best response is to set up $\hat{\mu}$ ($\bar{\mu}$) -as that policy allows country h to attract the optimal number of migrants, \hat{I}. Hence, the reaction curve is a horizontal line along that policy value. When μ_{-h} is any value inside the interval $[\hat{\mu}, \mu)$, country h’s best response is to set up a slightly (by a however small ε) tougher immigration policy, and the best response is drawn as the solid black line slightly above the 45 degree line. Finally, when $\mu_{-h} \in [\bar{\mu}, \overline{\mu})$, country h’s best response is to set up a slightly (by a however small ε) softer immigration policy, and the best response is drawn as the solid black line slightly below the 45 degree line.13 The best-response function of country h can then be written as

$$br_h(\mu_{-h}) = \begin{cases}
\hat{\mu} & \text{if } \mu_{-h} < \hat{\mu} \\
\mu_{-h} + \varepsilon & \text{if } \mu_{-h} \in [\hat{\mu}, \mu) \\
\mu_{-h} & \text{if } \mu_{-h} \in [\mu, \bar{\mu}] \\
\mu_{-h} - \varepsilon & \text{if } \mu_{-h} \in (\bar{\mu}, \overline{\mu}] \\
\bar{\mu} & \text{if } \mu_{-h} > \bar{\mu}
\end{cases}$$

(4)

The reaction curve of country $-h$ is the mirror image of the one of country h and is depicted as the light grey line in Figure 3. They overlap along the interval $[\mu, \bar{\mu}]$, which then constitutes the measure of equilibria, while no intersection occurs when μ_h is lower than μ or higher than $\bar{\mu}$.

12Note that removing the assumption of symmetric fundamentals would not alter the logic of this result. Specifically, if countries had asymmetric fundamentals, the policy attracting the optimal number of migrants would differ across host economies. However, starting from this optimal policy configuration, strategic complementarities still characterize immigration policy.

13In rigorous mathematical terms the best response function is not defined when μ_{-h} belongs to $[\hat{\mu}, \mu)$ or to $[\bar{\mu}, \overline{\mu})$, the reason being that we have defined the policy variable μ as a continuous variable. With an abuse of notation we write $\mu_{-h} \pm \varepsilon$ instead of ε in the expression for the best-response function (4), as if variable μ were defined as a discrete variable which could only take multiple values of an indivisible ε. This is because we here privilege intuition to rigour. Of course, nothing substantial changes.
The above discussion illustrates the key problem associated with immigration policy when the receiving economy is formed by multiple countries: coordination failures can arise in this environment. The economy can be stuck in an inferior Nash equilibrium where restrictions to immigration are either inefficiently high \((\mu_h \in (\bar{\mu}, \bar{\mu}) \forall h)\) or inefficiently low \((\mu_h \in [\bar{\mu}, \tilde{\mu}) \forall h)\), and hence destination countries fail to attract the "right" number of foreign workers. The reason for this inefficiency is the international spillover created by immigration policy, which in turn results from the international mobility of migrants (i.e. their ability to choose their destination in addition to whether they want to migrate or not).

Starting at an inefficient equilibrium, no country can improve its welfare with unilateral immigration policy initiatives, but all receiving economies could be made better off under an agreement that called for mutual policy adjustments. In this respect, immigration policy has much to learn from trade policy, even if the structure of the immigration and the trade policy game is quite different. In particular, most authors consider current immigration policy in advanced economies as too restrictive.\(^{14}\) As this model shows, excessive restrictions can be the result of a coordination failure among receiving countries. No country would unilaterally choose to loosen up its policy stance as this would result in an influx of migrants beyond its efficient point. While each government, acting independently, is powerless to coordinate the policy choices of the others, an international agreement could provide governments with an avenue to commit to a reduction of immigration restrictions and escape from a coordination failure.

However, the model also makes quite clear the differences in the economic problem facing trade and immigration policy makers. Differently from the trade context, in the immigration policy game among receiving countries the key element is confidence rather than conflict. As it is well known from the trade literature (Bagwell and Staiger, 1999 and 2002), excessive trade restrictions can be the result of a terms-of-trade driven prisoner’s dilemma situation. In contrast, the analysis of this section shows that receiving countries face a trust dilemma, a coordination problem which leads to multiple equilibria. While in both situations govern-
ments can be stuck at an inefficient equilibrium, a key issue of the immigration policy game is equilibrium selection (an issue that does not emerge in a prisoner’s dilemma situation, where there is only one equilibrium). Governments may coordinate on the inefficient equilibrium as this is the one that is associated with policy choices that are less "risky", an issue that will be addressed in Section 4.

3.1 Migrants’ International Mobility and Coordination Failures

An important question is how the set of equilibria is affected by the underlying parameters of the model. In particular, in this subsection we study the effect on the receiving countries of a change in the international mobility of foreign workers (Ψ). As discussed above, this parameter captures the responsiveness of migrants to differences in the policy stance and is determined by factors, such as technology, that are likely to change over time.

We begin by stating the following

Proposition 2 An increase in international mobility of foreign workers (Ψ) expands the set of symmetric Nash equilibria, while it does not affect the Pareto dominant equilibrium. That is,

$$
\frac{d\mu}{d\Psi} < 0, \quad \frac{d\eta}{d\Psi} > 0 \quad \text{and} \quad \frac{d\hat{\mu}}{d\Psi} = 0.
$$

Proof. In Appendix D. ■

To grasp the intuition, recall that function $W_h (\mu_h, \tilde{F})$ is not affected by changes in Ψ as the adoption of the same policy across the receiving region neutralizes the spillover effect. Therefore, the solid curve in Figure 2 does not move as Ψ varies. On the other hand, following an increase in Ψ, function $W_h (\mu_h, \tilde{F})$ shifts leftward and function $W_h (\mu_h, \bar{F})$ shifts rightward. Intuitively, workers’ international mobility is responsible for the cross-border externality, which is the source of the equilibrium multiplicity. An increase in international mobility implies a more powerful externality and an ever expanding measure of policy equilibria.

Taken together, Propositions 1 and 2 have two implications. First, higher realizations of parameter Ψ, by expanding the set of equilibria, worsen the problem of coordination failure and indeterminacy. Second, as the "new" equilibria are more distant from the optimal policy, they are associated with lower welfare for the receiving region. To put it differently,
this result suggests that the new wave of globalization, driven by a fall in transportation and communication costs, may be exacerbating coordination failures and increasing the gains from immigration policy coordination for all receiving countries.

4 Selection of Equilibria under Strategic Uncertainty

The previous section illustrates the possibility of coordination failures in immigration policy due to the presence of multiple Nash equilibria in the immigration policy game. Whether coordination failures actually occur depends on which equilibrium policy makers coordinate. As shown above, the "payoff-dominant" equilibrium, the one associated with policy $\mu_h = \hat{\mu} \forall h$, is in the set of equilibria. This, however, is not necessarily the equilibrium that players select.

Experimental evidence on coordination games quite convincingly rejects the view that coordination problems will not occur in simple strategic interactions (Cooper et al., 1992, Van Huyck et al., 1990). One possible rationalization of this evidence is that payoff-dominance is not the only basis for coordination, and that players may converge towards other equilibria which present alternative salient features. An alternative proposed in this literature is that players coordinate towards the "risk-dominant" equilibrium (Harsanyi and Selten, 1988), the key insight being that a strategy may be preferred over the other if it is less risky in the face of strategic uncertainty.\(^{15}\)

An evolution of this equilibrium selection criterion, which applies to games characterized by a continuous space of strategies (as the immigration policy game introduced in Section 3), is the robustness to strategic uncertainty (Andersson et al., 2010). Whenever a game admits a continuum of equilibria, even the slightest uncertainty about the opponents' strategies might lead each player to deviate from any given policy equilibrium. It is then "arguably reasonable to require equilibria to be robust to small amounts of uncertainty about other players' strategies" (Andersson et al., 2010, p.2).\(^{16}\)

\(^{15}\) Whether players are more likely to coordinate towards payoff-dominant or risk-dominant equilibria is the focus of empirical literature (for a survey see Cooper, 1999). The experimental evidence in Cooper et al. (1992) shows that risk-dominance can provide a better guide to equilibrium selection than payoff-dominance.

\(^{16}\) Specifically, Andersson et al. (2010) show that there is only one equilibrium surviving the robustness test in a price competition game with a continuous strategy space and admitting a continuum of equilibria (Dastidar, 1995). Abbink and Brandts (2008) and Argenton and Muller (2009) provide experimental evidence in favor of this "robust equilibrium".
In this subsection we prove that there is a unique equilibrium which is robust to strategic uncertainty and show that the \textit{robust equilibrium} is different from the payoff-dominant equilibrium. This result reveals that coordination failures in immigration policy are not only possible but also likely to emerge.

We first formally characterize strategic uncertainty in the immigration policy game. Following Andersson et al. (2010), we model strategic uncertainty by assuming that the probabilistic belief of policy maker h about the action of any other government j in the receiving economy is given by:

$$\tilde{\mu}_{hj} = \mu_j + t\varepsilon_{hj},$$

where $t \in R_+$ and $\varepsilon_{hj} \sim \Phi_{hj}$ are statistically independent noise terms. The distribution Φ_{hj} belongs to an arbitrary family of probability distributions with non decreasing hazard rate function.

The introduction of this noise defines a new, "perturbed", game. Intuitively, the robust equilibrium is an equilibrium of this perturbed game when the noise tends to zero. More formally, if an equilibrium strategy profile $(\mu^r, ..., \mu^r)$ is the unique limit to any sequence of equilibria indexed by t as $t \to 0$, that strategy profile is \textit{robust to strategic uncertainty}. In the next proposition we prove that such limit exists and is unique.

\textbf{Proposition 3} \textit{There exists a unique equilibrium which is robust to strategic uncertainty. This equilibrium, $(\mu^r, ..., \mu^r)$, is defined by $W_h (\mu^r, F) = W_h (\mu^r, F) \forall h$ and is Pareto-inferior to the payoff dominant equilibrium $(\bar{\mu}, ..., \bar{\mu})$.}

\textbf{Proof.} In Appendix E. \hfill \blacksquare

Policy μ^r is the one for which the incentives to restrict or loosen the immigration policy stance for each strategically uncertain government in the receiving region exactly offset each other. As shown in Figure 4, the robust equilibrium of the immigration policy game corresponds to the point where the functions $W_h (\mu^r, F)$ (the dashed curve) and $W_h (\mu^r, F)$ (the dotted curve) intersect. In this point, denoted by A, the expected welfare loss associated with a policy higher or lower than the rest of the host region tends to zero.
As there is a continuous strategy space, for any policy μ_h, government h’s subjective probability that any other government will choose exactly the same policy is zero. Hence, with probability one, policy μ_h will either be the lowest or not. In the first case, country h will experience a crowding in, in the second it will experience a crowding out. In Figure 4, for any policy $\mu_h \in [\mu^*, \bar{\mu}]$, a government facing uncertainty on the strategies of other receiving governments has an incentive to lower its immigration restrictions. The reason being that the welfare if other countries’ policies are less stringent ($W_h(\mu_h, \bar{F})$) is lower than the welfare if other receiving countries’ immigration policies are more restrictive than the one set up in h ($W_h(\mu_h, \bar{F})$). Conversely, for $\mu_h \in [\mu, \mu^*]$, every government has an incentive to raise restrictions as the expected welfare under a crowding in ($W_h(\mu_h, \bar{F})$) is lower than under a crowding out of migrants ($W_h(\mu_h, F)$). Only for policy μ^* welfare under crowding in and crowding out are equal and a government has no incentive to alter its policy stance.

A comparison of the robust and Pareto-dominant equilibria sheds light on two issues. First, under strategic uncertainty, the immigration policy equilibrium is distinct from the one that maximizes welfare for the entire host region. The policy strategy robust to strategic uncertainty can be more or less stringent than the optimal policy depending on the fundamentals of the economy (which determine the shapes of the two curves in Figure 4). In this model, where immigration has both benefits and costs for the host economy, the presence of an immigration policy spillover may, therefore, induce countries to select an excessively restrictive or loose policy. In other words, this model suggests that coordination failures driven by the immigration policy spillover can give rise to both a "race to the top" and a "race to the bottom" in immigration restrictions in receiving countries (see, for instance, Boeri and Brücker, 2005).

Second, an increase in the international mobility of migrants (Ψ) does not affect the optimal immigration policy but alters the robust equilibrium. Intuitively, the expected welfare loss associated with both a crowding in and a crowding out increases with the size of the immigration policy spillover (the dotted and the dashed curves in Figure 4 move further apart, while the position of the solid curve is not affected by changes in Ψ, see Proposition 2). Therefore, globalization, in the sense of an increase in the international mobility of
migrants, exacerbates the strategic uncertainty by increasing the set of Nash equilibria, and has an ambiguous effect on the robust equilibrium on which governments coordinate.

5 Conclusions and Policy Implications

This paper has examined receiving countries’ motives in setting immigration policy and how the institutional framework, particularly the absence of effective coordination mechanisms, translates these motives into policy outcomes. The analysis shows that policy at home is influenced by measures adopted abroad. The reason is that migrants choose where to locate, in part in response to immigration policies in host economies. In the model, the international mobility of migrants gives rise to a policy spillover effect which rationalizes the evidence in recent empirical studies on immigration. In this interdependent environment, immigration policy becomes strategic and unilateral behavior may well lead to coordination failures, where receiving countries are stuck in a welfare inferior equilibrium. The theory also shows that inefficient policy equilibria are more likely to emerge when governments are uncertain about the immigration policy of other receiving countries and when the international mobility of migrants is stronger.

In the rest of this section, we discuss some implications of this model and come back to the initial question of this paper on the economic rationale for international institutions governing immigration. A first implication of the model is that the type of coordination problem facing immigration policy makers is different from the one facing trade policy makers. While both unilateral trade and immigration policies may lead to an inefficient equilibrium, the nature of this equilibrium in the two cases is not the same. In the trade policy game, the first-best policy outcome (i.e. trade openness) is not an equilibrium of the game as each government has an incentive to impose restrictions when the others choose free trade. Instead, the key element of coordination failures in the immigration policy game is the lack of confidence in the policy choice of other governments, not an inherent policy conflict as in trade policy. In other words, it is the inability of policy makers to commit to the efficient immigration policy vis-à-vis other countries that constrains efficient outcomes in this domain.

A second implication of the model is that, differently from other contributions in the literature (Hatton, 2007, Hanson, 2009), it provides a clear economic rationale for interna-
tional institutions dealing with immigration. Starting from an inefficient policy equilibrium, no receiving country could improve its welfare through unilateral policy actions. Specifically, if restrictions in advanced economies are excessively high (as most experts believe), a looser policy in any single country would result in a large influx of migrants that would lower its welfare. An international agreement that called for mutual policy adjustments in receiving economies (i.e. a joint reduction of restrictions) could improve upon the initial inefficiency by neutralizing the immigration policy spillover. While not the only possible rationale, this provides a strong case for the need of multilateral institutions in the immigration domain.

In facts, several international agreements and organizations aim at coordinating immigration policy. For instance, the stated objective of the International Organization for Migration is "to promote international cooperation on migration issues". Moreover, a forum for dialogue on migration and immigration policy is also provided by other international institutions, such as the OECD. While these arrangements help coordination through dialogue and the dissemination of information among receiving countries, they do generally not envisage an effective enforcement mechanism. This implies that the uncertainty on other governments’ strategies still characterizes policy makers’ decisions, which can lead to coordination failures.

An exception is Mode 4 of the General Agreement on Trade in Services (GATS), which provides an opportunity to WTO Members to take on commitments regarding the temporary presence of "natural persons" from a different Member who supply a service.\(^{17}\) While GATS Mode 4 has a limited scope, the binding nature of commitments within the WTO, backed up by the enforcement mechanism provided by its dispute settlement system, is an appealing feature of this system.\(^{18}\) In this sense, expanding the scope of Mode 4 may be in the interest of receiving countries. However, one should be aware of the difficulties of this process. Immigration policy is not limited to border measures, but includes a large number of tasks.

\(^{17}\) Natural persons falling within the scope of Mode 4 include independent contractual service suppliers and natural persons employed by service suppliers (WTO, 2004). Specifically, Mode 4 concerns a narrow (and not clearly defined) subset of temporary migration, as it excludes coverage of access to labour market, citizenship and employment on a permanent basis (see WTO Annex on Movement of Natural Persons).

\(^{18}\) The size and scope of Mode 4 movements are an issue of current debate and negotiation. While a number of WTO Members have undertaken Mode 4 commitments that cover short-term employees (the US binding of 65,000 H-1B visas is a noteworthy example), the overall degree of Mode 4 commitments are low. WTO Members have generally granted access to selected categories of highly skilled persons linked to a commercial presence, such as managers, executives and specialists. The Hong Kong Ministerial declaration in December 2005 called for a new impetus on Mode 4 commitments (e.g. an extension of the categories of natural persons included in the commitments and of the permitted duration of stay), but improvements in the ongoing Doha negotiations have been so far slow to materialize (see Carzaniga, 2009).
of behind-the-border measures that affect the welfare of foreign workers in the host economy. As the trade experience shows, regulating this policy can be extremely challenging.

Another implication of this analysis is that the extent of the coordination problem depends on the magnitude of the policy spillover effect. In the model this is captured by the size of the parameter Ψ -i.e. the international mobility of migrants. While in the paper we emphasized technology as a determinant of this parameter, other factors can influence the responsiveness of foreign workers to immigration policy differences. In particular, receiving countries that are more strongly interconnected, because of geographic proximity, common cultural background, or because they have formed an economic union, will experience stronger immigration policy spillovers and are, therefore, more likely victims of coordination failures. Institutions that allow for effective coordination (or, the creation of a single immigration policy) are more valuable in these circumstances. This provides formal support to the frequent calls in the policy debate for a single immigration policy in an integrated area such as the European Union (Boeri and Brücker, 2005). Similarly, a greater involvement of the States of the US (and, hence, a more limited role of the federal government) in immigration policy -implicit in the law passed in the State of Arizona in 2010- may lead to welfare reducing coordination failures within the US, as the choice of one State will inevitably affect others through location decisions of foreign workers within the US and trigger a series of policy responses in other States.

References

A Standard Model of Immigration Policy

This section introduces a specific model of immigration policy with standard features which may help give more structure to the reasoning developed in the main text. In particular, Subsection A.1 opens the "black box" of the welfare function we defined at the beginning of Section 2, \(W(I_h) \). Subsection A.2 does the same for the migratory choice, by specifying the foreign workers’ benefit from immigration.

A generic receiving country, denoted by \(h \) ("home"), is populated by \(N_h \) ("native") workers, each of whom supplies one unit of labor inelastically, and by \(K_h \) capitalists, each of whom is endowed with one unit of capital. A final good is produced competitively via a constant-return-to-scale technology in labor and capital:

\[
Y_h = K_h^\alpha L_h^{1-\alpha}.
\]

\(L_h \) is the sum of natives and immigrants working in country \(h \), that is, \(L_h = N_h + I_h \), where \(I_h \) denotes the endogenous number of migrants. The final good is the numeraire in the receiving economy, and its price is normalized to one. As the product market is competitive, input factors are paid their marginal productivities:

\[
w_h = (1 - \alpha) \left(\frac{K_h}{L_h} \right)^\alpha \quad \text{and} \quad r_h = \alpha \left(\frac{K_h}{L_h} \right)^{\alpha-1}.
\]

Country \(h \) has a welfare system that, de facto, redistributes income from capitalists to workers. Specifically, the policy consists of a fixed lump-sum transfer \(\gamma_h \) to (native and foreign) workers which is financed through a proportional tax \(\tau_h \in [0, 1] \) on the capital rent. This simple formulation captures the idea that welfare spending in \(h \) depends on the number of migrants.\(^{19}\) A balanced government budget implies

\[
\tau_h r_h K_h = \gamma_h (N_h + I_h),
\]

and hence the tax rate on capital income, as a function of the number of immigrants is

\(\text{\footnotesize 19} \)The welfare system is assumed to be pre-existent to immigration. This is reasonable when the size of the migrant labor force is low relative to the size of the native population. When this is not the case, one can think that welfare and immigration policy are jointly determined (see for instance Casella, 2005 and Armenter and Ortega 2010).
A.1 The Optimal Number of Immigrants

We introduce a general representation of the Home government preferences over immigrants, which includes both the case where policy makers maximize the host economy’s national welfare as well as the general possibility that governments are also motivated by the distributional effects of immigration among natives. We assume that agents use their (disposable) income to purchase the final good and have a linear utility function in consumption. Let us define the objective function of the government as a function of the number of immigrants as

$$\tau_h (I_h) = \frac{\gamma_h (N_h + I_h)}{r_h (I_h) K_h},$$

where we used the above balanced budget condition (5) to substitute for r_h and where $\beta \in [0,1]$ is the political bias (i.e. the weight on the utility of capitalists). This formulation includes as a special case national income maximization for $\beta = 1/2$.

The optimal number of migrants in country h, denoted by \hat{I}, is the one which maximizes condition (6). The FOC of this problem is

$$\frac{\partial W_h}{\partial I_h} = (1 - \alpha) \alpha \left(\frac{K_h}{N_h + I_h} \right)^{\alpha - 1} \left[(1 - \beta) \frac{N_h}{N_h + I} - \beta \gamma_h \right] = 0.$$

A number \hat{I} solving the FOC above is a maximum if the second derivative, evaluated in \hat{I}, is strictly negative, that is, if

$$\frac{\partial^2 W_h}{\partial I_h^2} (\hat{I}) = (1 - \alpha) \alpha \left(\frac{K_h}{N_h + I_h} \right)^{\alpha - 1} \left[(1 - \beta) \frac{N_h}{N_h + I} - \alpha \left(\beta - (1 - \beta) \frac{N_h}{N_h + I} \right) \right] < 0.$$

In Appendix B we provide a sufficient condition for \hat{I} to be the global maximum, that is, the only politically optimal number of migrants for the host country.

20 We refer to \hat{I} as the "optimal" number of migrants. Needless to say, this is the "politically-optimal" level of immigration, as it maximizes the government’s objective function, and it corresponds to the "socially-optimal" number of migrants only in the special case in which $\beta = 1/2$.
A.2 The Migratory Choice

We can now be more precise about the net benefits from migration for foreign workers \(b_h \) and thus about their migratory choice. Benefits from migration are given by \(w_h + \gamma_h \), that is, the salary plus the welfare transfer. Costs are given by \(\mu_h + \theta_i \), that is, the policy plus the psychological cost. If we normalize the wage rate in the sending region \((w^*) \) to zero, a constrained foreign worker \(i \) will migrate to \(h \) if and only if

\[
w_h + \gamma_h - \mu_h - \theta_i \geq 0, \tag{7}\]

from which we can determine the threshold value of the psychological cost as

\[
\theta_h = w_h + \gamma_h - \mu_h.
\]

Thus the number of constrained migrants (as function of \(\theta_h \)) will be \(\theta_h(1 - \Psi)F/m \).

On the other hand, a free foreign worker migrates to \(h \) if condition (7) holds, and if the payoff in \(h \) is higher than any other payoff in the rest of the host region, that is, if\(^{21}\)

\[
w_h + \gamma_h - \mu_h - \theta_i > w_{-h} + \gamma_{-h} - \mu_{-h} - \theta_i \iff \mu_h < \mu_{-h}.
\]

Immigration flows to country \(h \) are function of \(h \)'s immigration policy as well as of the measures imposed in the rest of the destination countries. In particular, the number of free foreign workers actually migrating to \(h \) is 0 if \(\mu_h > \mu_{-h} \) (crowding out), and \(\theta_h \Psi F \) if \(\mu_h < \mu_{-h} \) (crowding in). Finally, if \(\mu_h = \mu_{-h} \), free migrants distribute symmetrically across the receiving region, that is, \(\theta_h \Psi F/m \) for any \(h \).

The total number of migrants to country \(h \) can then be described as \(I_h = \theta_h F_h \), where \(\theta_h = w_h + \gamma_h - \mu_h \) and \(F_h \) is given in (2).

\(^{21}\)Since countries are symmetric by assumption, it is \(\gamma_h = \gamma_{-h} \). Moreover, it is easy to show that in this model \(dw_h/d\mu_h \in (0,1) \). Thus the following condition holds true.
B Characterization of the Pay-Off Function

The pay-off function, which is defined only implicitly in the main text (expression (3)), can here be characterized explicitly as

$$
\Pi_h (\mu_h, \mu_{-h}) = \beta \left[K_h \alpha \left(\frac{K_h}{N_h + \theta_h F_h} \right)^{\alpha-1} - \gamma_h [N_h + \theta_h F_h] \right] + (1 - \beta) \left[(1 - \alpha) \left(\frac{K_h}{N_h + \theta_h F_h} \right)^{\alpha} + \gamma_h \right] N_h,
$$

where θ_h and F_h are functions of both μ_h and μ_{-h}, and F_h is defined in (2). Thus, we can draw three distinct welfare functions depending on whether μ_h is higher, lower or equal to μ_{-h}. If $\mu_h = \mu_{-h}$, the welfare function, $W_h (\mu_h, \tilde{F})$, is given by (8) but where $F_h = \tilde{F}$. If $\mu_h > \mu_{-h}$ (crowding out), the welfare function $W_h (\mu_h, \tilde{F})$ is given by (8) but where $F_h = \tilde{F}$. Finally, if $\mu_h < \mu_{-h}$ (crowding in), then the welfare function, $W_h (\mu_h, \tilde{F})$, is still given by (8) but where $F_h = \tilde{F}$. The next subsection investigates the conditions under which the three welfare functions are strictly concave.

B.1 Strict Concavity of the Welfare Functions

Consider welfare function

$$
W_h (\mu_h, \tilde{F}) = \beta \left[K_h \alpha \left(\frac{K_h}{N_h + \theta_h \tilde{F}} \right)^{\alpha-1} - \gamma_h [N_h + \theta_h \tilde{F}] \right] + (1 - \beta) \left[(1 - \alpha) \left(\frac{K_h}{N_h + \theta_h \tilde{F}} \right)^{\alpha} + \gamma_h \right] N_h.
$$

The first derivative can be written as

$$
\frac{\partial W_h (\mu_h, \tilde{F})}{\partial \mu_h} = - \left\{ (1 - \alpha) \alpha \left(\frac{K_h}{L_h} \right)^{\alpha} \left[\beta - (1 - \beta) \frac{N_h}{L_h} \right] - \beta \gamma_h \right\} \frac{\tilde{F}}{(1 - \alpha) \alpha \left(\frac{K_h}{L_h} \right)^{\alpha} \frac{\tilde{F}}{L_h} + 1} = 0,
$$

30
where \(L_h = N_h + \theta_h F \). It is now possible to calculate the second derivative as

\[
\frac{\partial^2 W_h(\mu_h, F)}{\partial \mu_h^2} = \left\{ (1 - \alpha) \alpha \left(\frac{K_h}{L_h} \right)^\alpha \frac{1}{L_h} \left[(1 - \beta) \frac{N_h}{L_h} - \alpha \left(\beta - (1 - \beta) \frac{N_h}{L_h} \right) \right] \right\} \times \\
\left(\frac{F}{(1 - \alpha) \alpha \left(\frac{K_h}{L_h} \right)^\alpha \frac{F}{L_h} + 1} \right)^2 + \\
\left\{ (1 - \alpha) \alpha \left(\frac{K_h}{L_h} \right)^\alpha \left[\beta - (1 - \beta) \frac{N_h}{L_h} - \beta \gamma_h \right] \right\} \times \\
\left(\frac{F}{(1 - \alpha) \alpha \left(\frac{K_h}{L_h} \right)^\alpha \frac{F}{L_h} + 1} \right)^2 \times \frac{1 + \alpha}{(1 + \alpha^2 \left(\frac{K_h}{L_h} \right)^\alpha \frac{F}{L_h} + 1)},
\]

where again \(L_h = N_h + \theta_h F \). Simple algebra shows that the following condition on the parameters of the model ensures that \(\frac{\partial^2 W_h(\mu_h, F)}{\partial \mu_h^2} \) is strictly lower than zero for any value of \(\mu_h \):

\[
\beta > H(F) \equiv \frac{1 + \alpha}{(1 + \alpha^2 \left(\frac{K_h}{L_h} \right)^\alpha \frac{F}{L_h} + 1)} + \alpha^2 \frac{K_h^\alpha F}{N_h}. \tag{9}
\]

We assume that this condition is satisfied. Given that \(H(F) \) is a decreasing function in \(F \) (and given that \(F < \bar{F} < T \)), condition (9) also ensures the strict concavity of the other two welfare functions, \(W_h(\mu_h, F) \) and \(W_h(\mu_h, \bar{F}) \).

C Proof of Proposition 1

Welfare function \(W_h(\mu_h, F) \) admits a global maximum in \(\hat{\mu} \), and it is continuous, strictly decreasing and strictly concave in the interval \(\left(\hat{\mu}, \bar{\mu} \right) \). Welfare function \(W_h(\mu_h, \bar{F}) \) admits a global maximum in \(\bar{\mu} \), and it is continuous, strictly increasing and strictly concave in the same interval \(\left(\hat{\mu}, \bar{\mu} \right) \). Since \(W_h(\mu_h, \bar{F}) = W_h(\bar{\mu}, \bar{F}) \), and since \(\hat{\mu} < \bar{\mu} \), then the two curves must cross once and only once in the interval \(\left(\hat{\mu}, \bar{\mu} \right) \). Denote this intersection point by \(\bar{\mu} \).

Moreover, for exactly the same reasons, it must be that \(W_h(\mu_h, \bar{F}) \geq W_h(\mu_h, F) \) for any \(\mu_h \in [\mu, \bar{\mu}] \). An entirely analogous reasoning holds for the other interval, \((\bar{\mu}, \bar{\mu}) \): there exists a unique value \(\overline{\mu} \in (\hat{\mu}, \bar{\mu}) \), such that \(W_h(\overline{\mu}, \bar{F}) = W_h(\overline{\mu}, \bar{F}) \), and it must be that \(W_h(\overline{\mu}, \bar{F}) \geq W_h(\mu_h, F) \) for any \(\mu_h \in [\hat{\mu}, \bar{\mu}] \).

As a result, for any \(\mu_h \in [\mu, \overline{\mu}] \) it is \(W_h(\mu_h, \bar{F}) \geq W_h(\mu_h, F) \), \(W_h(\mu_h, \bar{F}), W_h(\mu_h, F) \), and hence whatever \(\mu_{-h} \in [\mu, \overline{\mu}] \), country \(h \)'s best response is \(\mu_h = \mu_{-h} \). Thus, any policy \(\mu_h \in [\mu, \overline{\mu}] \)
\(\forall h \) is a symmetric Nash equilibrium of the game.

Since \(\underline{\mu} < \bar{\mu} < \bar{\mu} \), policy \(\bar{\mu} \) is a Nash equilibrium of the game. Moreover, it is immediate to show that it is the optimal policy equilibrium: when all other countries \(- h \) set up \(\bar{\mu} \), then \(\mu_h = \bar{\mu} \) is the policy which maximizes welfare function \(W_h \left(\mu_h, \tilde{F} \right) \), as it allows country \(h \) to attract the optimal number of migrants \(\tilde{I} \). Moreover, since \(W_h \left(\mu_h, \tilde{F} \right) \) is strictly increasing in \(\mu_h \) in the interval \([\mu, \bar{\mu}] \) and strictly decreasing in the interval \([\bar{\mu}, \bar{\mu}] \), it is also immediate to verify that the efficiency loss is greater, the higher the distance from the optimal policy. This proves that the equilibria are Pareto-ordered by the distance of \(\mu^* \) from \(\bar{\mu} \).

Notice that any \(\mu_h < \underline{\mu} \) as well as any \(\mu_h > \bar{\mu} \ \forall h \) are not Nash equilibria. If all other countries set up policy \(\mu_{-h} \) in the interval \((\bar{\mu}, \mu) \), then \(W_h \left(\mu_h, \bar{F} \right) \geq W_h \left(\mu_h, \tilde{F} \right) \), and country \(h \)'s best response is to set up a slightly tighter policy. As a result, there are no equilibria below \(\underline{\mu} \). If instead \(\mu_{-h} < \bar{\mu} \) country \(h \)'s best response is simply \(\mu_{-h} = \bar{\mu} \). The same reasoning applies for \(\mu_h > \bar{\mu} \).

Finally, a simple contradiction argument (drawn from Amir et al., 1996) proves that asymmetric equilibria do not exist in this policy game. Let \((\mu_1, \mu_2, \mu_3, \ldots, \mu_h, \ldots, \mu_m) \) be an asymmetric equilibrium (thus with at least two \(\mu \)'s being distinct). Assume then, w.l.o.g., that \(\mu_1 = \text{max}_h \{\mu_h\} \) and \(\mu_2 = \text{min}_h \{\mu_h\} \) so that \(\mu_1 > \mu_2 \). Since the game is symmetric, every permutation of \((\mu_1, \mu_2, \mu_3, \ldots, \mu_h, \ldots, \mu_m) \) is also an equilibrium. Consider for instance \((\mu_1, \mu_2, \mu_3, \ldots, \mu_h, \ldots, \mu_m) \) and \((\mu_2, \mu_1, \mu_3, \ldots, \mu_h, \ldots, \mu_m) \). The fact that both of them are equilibria implies that country 1 strictly weakens its immigration policy from \(\mu_1 \) to \(\mu_2 \) as the other countries restrict theirs from \((\mu_2, \mu_3, \ldots, \mu_h, \ldots, \mu_m) \) to \((\mu_1, \mu_3, \ldots, \mu_h, \ldots, \mu_m) \), which contradicts the fact that country 1’s best-response is nondecreasing (see expression (4)).

D Proof of Proposition 2

The lower threshold \(\underline{\mu} \) is by definition the immigration policy such that \(W_h \left(\mu, \tilde{F} \right) = W_h \left(\mu, \bar{F} \right) \), where, remind, \(\tilde{F} \equiv F/m \) and \(\bar{F} \equiv (1 - \Psi)F/m \). Let us define

\[
G \left(\mu, \Psi \right) \equiv W_h \left(\mu, \bar{F} \right) - W_h \left(\mu, \tilde{F} \right) = 0
\]
as the implicit function of μ with respect to Ψ. It holds that
\[
\frac{d\mu}{d\Psi} = \frac{\frac{dG}{d\Psi}}{\frac{dG}{d\mu}}. \tag{10}
\]

We show that $d\mu/d\Psi < 0$.

The numerator writes as
\[
\frac{dG}{d\Psi} = \frac{dW_h(\mu, F)}{d\Psi} - \frac{dW_h(\mu, \tilde{F})}{d\Psi}. \tag{10}
\]
The second term is null as $W_h(\mu, \tilde{F})$ does not depend on Ψ. The first term can be shown to be negative. In fact
\[
\frac{dW_h(\mu, E)}{d\Psi} = \frac{\partial W_h(\mu, E)}{\partial I} \frac{\partial F}{\partial \Psi}.
\]
First note that $\partial W_h(\mu, E)/\partial I$ is positive since in point μ welfare increases with the number of immigrants. Second, since $I = b(\mu) E$, it is $\partial I/\partial F > 0$. Finally, it holds $\partial E/\partial \Psi = -F/m < 0$. Then it is $dW_h(\mu, E)/d\Psi < 0$ and hence $dG/d\Psi < 0$.

As regards the denominator in (10), it is
\[
\frac{dG}{d\mu}(\mu) = \frac{dW_h(\mu, E)}{d\mu} - \frac{dW_h(\mu, \tilde{F})}{d\mu} < 0
\]
as in point μ it is $dW_h(\mu, E)/d\mu < 0$ and $dW_h(\mu, \tilde{F})/d\mu > 0$. This proves that $d\mu/d\Psi < 0$.

The proof that $d\mu/d\Psi > 0$ is entirely analogous and is then omitted. Finally, it is trivial to show that the optimal policy is not affected by an increase in international mobility. Notice that function $W_h(\mu, \tilde{F})$ does not depend on Ψ, and thus μ, as a solution to equation $dW_h(\mu, \tilde{F})/d\mu = 0$, will not depend on Ψ either.

E Proof of Proposition 3

The proof will follow closely the argument developed in Andersson et al. (2010) for the price competition game. Let $t \in R_+$ and suppose that the government of each country h holds a
probabilistic belief about any other government j’s policy of the following form:

$$\tilde{\mu}_h = \mu_j + t \varepsilon_h,$$

for some statistically independent noise terms $\varepsilon_h \sim \Phi_{hj}$. Distribution Φ_{hj} belongs to an arbitrary family Δ of cumulative distribution functions, $D : R \rightarrow [0,1]$, characterized by non-decreasing hazard rate function.\(^{22}\)

Given that the support of random variable $\tilde{\mu}_h$ is $[\mu^{od}, \mu^{cd}]$, this variable distributes according to the following cumulative distribution function (c.d.f.):

$$D_{hj}^t(x) = \frac{\Phi_{hj} \left(\frac{x - \mu_j}{t} \right) - \Phi_{hj} \left(\frac{\mu^{cd} - \mu_j}{t} \right)}{\Phi_{hj} \left(\frac{\mu^{cd} - \mu_j}{t} \right) - \Phi_{hj} \left(\frac{\mu^{od} - \mu_j}{t} \right)}$$

The introduction of uncertainty defines a new, "perturbed", game. For any $t \in R_+$, a strategy profile $\mu \equiv (\mu_1, \mu_2, \mu_3, ..., \mu_h, ..., \mu_m)$ is a t-equilibrium if, for each player h, the strategy μ_h maximizes h’s expected payoff under the probabilistic belief of the form given in (11). Notice that a t-equilibrium is simply a Nash equilibrium of this perturbed game.

A strategy profile μ^r is (strictly) robust to strategic uncertainty if, for any collection of c.d.f.'s $\Phi_{hj} \in \Delta$, there exists a sequence of t-equilibria, $\langle \mu^t_k \rangle_{k=1}^\infty$ with $t_k \rightarrow 0$, such that $\mu^t_k \rightarrow \mu^r$ as $k \rightarrow \infty$. We now apply these definitions to our policy game.

For any policy μ_h that the policy maker of country h decides to implement, her subjective probability that any other policy maker will choose exactly the same policy is zero. Hence, with probability one, her policy will either be the lowest or not. In the first case, country h will experience a "crowding in", in the second it will experience a "crowding out". Under strategic uncertainty, country h will then select that policy which maximizes the following expected payoff function:

$$\Pi_h^t(\mu) = \prod_{j \neq h} \left[1 - \Phi_{hj} \left(\frac{\mu_h - \mu_j}{t} \right) / \Phi_{hj} \left(\frac{\mu^{cd} - \mu_j}{t} \right) \right] \cdot W_h(\mu_h, F) + \left\{ 1 - \prod_{j \neq h} \left[1 - \Phi_{hj} \left(\frac{\mu_h - \mu_j}{t} \right) / \Phi_{hj} \left(\frac{\mu^{od} - \mu_j}{t} \right) \right] \right\} \cdot W_h(\mu_h, F).$$

\(^{22}\)Many common distributions, such as the normal or the exponential distribution, present this feature. This is the only assumption we impose on this arbitrary family of distribution functions, and it is useful to provide easily a sufficient condition for the uniqueness of the robust equilibrium.
The expression above represents the expected payoff of country h when setting up policy μ_h. In particular, the first term is equal to the probability that μ_h is lower than any other policy $\mu_j \forall j$ times the payoff associated with the resulting "crowding in". The second term is instead given by the probability that μ_h is higher than at least one μ_j times the payoff associated with the resulting "crowding out". The FOC for the maximization problem writes as

\[
\frac{\partial \Pi_h^t(\mu)}{\partial \mu_h} = \prod_{j \neq h} \left[\Phi_{hj} \left(\frac{\mu_{cd}^{\mu_h}}{t_k} \right) - \Phi_{hj} \left(\frac{\mu_{cd}^{\mu_j}}{t_k} \right) \right] \times \left[\frac{\partial W_h(\mu_h, F)}{\partial \mu_h} - \frac{\partial W_h(\mu_h, E)}{\partial \mu_h} \right] - W_h(\mu_h, F) - W_h(\mu_h, E) \sum_{j \neq i} \frac{\phi_{hj} \left(\frac{\mu_{cd}^{\mu_h} - \mu_{cd}^{\mu_j}}{t_k} \right)}{\Phi_{hj} \left(\frac{\mu_{cd}^{\mu_h}}{t_k} \right) - \Phi_{hj} \left(\frac{\mu_{cd}^{\mu_j}}{t_k} \right)} + \frac{\partial W_h(\mu_h, F)}{\partial \mu_h} - \frac{\partial W_h(\mu_h, E)}{\partial \mu_h} = 0,
\]

where $\phi_{hj}(\cdot) = \Phi'_{hj}(\cdot)$. It can be proven that the objective function (12) is strictly concave along the interval $[\tilde{\mu}, \bar{\mu}]$ (to make the argument developed here less burdensome, this proof is provided separately in Subsection E1). Hence, every solution to the FOC above in that interval is a t-equilibrium.

Consider any sequence $\langle t_k \rangle_{k=1}^{\infty} \to 0$ and define $\lim_{k \to \infty} \mu_h^k \equiv \mu_h^*$ (for the Bolzano-Weierstrass theorem this limit exists and belongs to the interval $[\mu_{cd}, \mu_{cd}]$). We now investigate what happens to the solution to the FOC when t tends to zero. In particular, we prove that $\langle t_k \rangle_{k=1}^{\infty} \to 0$ implies $W_h(\mu_h^*, F) = W_h(\mu_h^*, E)$, whose solution is $\mu_h^* = \mu^* \forall h$.

The FOC can be rearranged as follows:

\[
t_k \left\{ \frac{\partial W_h(\mu_h^k, F)}{\partial \mu_h^k} \prod_{j \neq h} \left[\Phi_{hj} \left(\frac{\mu_{cd}^{\mu_h^k}}{t_k} \right) - \Phi_{hj} \left(\frac{\mu_{cd}^{\mu_j}}{t_k} \right) \right] \right\} + \left(\frac{\partial W_h(\mu_h^k, F)}{\partial \mu_h^k} - \frac{\partial W_h(\mu_h^k, E)}{\partial \mu_h^k} \right) = \left[W_h(\mu_h^k, F) - W_h(\mu_h^k, E) \right] \sum_{j \neq i} \frac{\phi_{hj} \left(\frac{\mu_{cd}^{\mu_h^k} - \mu_{cd}^{\mu_j}}{t_k} \right)}{\Phi_{hj} \left(\frac{\mu_{cd}^{\mu_h^k}}{t_k} \right) - \Phi_{hj} \left(\frac{\mu_{cd}^{\mu_j}}{t_k} \right)}.
\]

Suppose by contradiction that, when t tends to zero, it is $W_h(\mu_h^*, F) \neq W_h(\mu_h^*, E)$. Then,
in order for the FOC to be satisfied when \((t_k)_{k=1}^{\infty} \to 0\), it must necessarily be that

\[
\sum_{j \neq i} \Phi_{hj} \left(\frac{\mu_h^k - \mu_j^k}{t_k} \right) \to 0.
\]

The expression above says that, in the limit, the sum of the instantaneous probabilities that any \(\mu_j\) is equal to \(\mu_h\) must tend to zero. This is true if \(\mu_j^* \neq \mu_h^* \forall j\). We now show that this is impossible.

The fact that \(\Phi_{hj}(\mu_h^*, \mathcal{F}) \neq \Phi_{hj}(\mu_h^*, \mathcal{F})\) implies that, for the generic government \(h\), \(\Phi_{hj}(\mu_h^*, \mathcal{F})\) is either higher or lower than \(\Phi_{hj}(\mu_h^*, \mathcal{F})\). Suppose for instance it is higher (the reasoning under the opposite case in which \(\Phi_{hj}(\mu_h^*, \mathcal{F}) < \Phi_{hj}(\mu_h^*, \mathcal{F})\) is entirely analogous and is omitted). If that is the case then, in order for \(\mu_h^*\) to be a best response, it must necessarily be that \(\mu^r < \mu_h^* \leq \mu_j^*\) for any \(j\). But since \(\mu_j^* > \mu^r\), then also for country \(j\) it must be that \(\Phi_{hj}(\mu_j^*, \mathcal{F}) > \Phi_{hj}(\mu_j^*, \mathcal{F})\), and thus \(\mu_j^* \leq \mu_h^*\) for any \(h\). The two implications are true only when \(\mu_h^* = \mu_j^*\), which contradicts the above statement. As a result, in order for the FOC to be true, it must necessarily be that \(\Phi_{hj}(\mu_h^*, \mathcal{F}) = \Phi_{hj}(\mu_h^*, \mathcal{F})\) whose solution is \(\mu_h^* = \mu^r\) for any \(h\). This completes the proof.

E.1 Concavity of the Objective Function

We here prove that a sufficient condition for function (12) to be strictly concave along the interval \([\underline{\mu}, \bar{\mu}]\) is that distribution \(\Phi_{hj}\) has non-decreasing hazard rate. The FOC can equivalently be written as

\[
\frac{\partial W_h(\mu_h, \mathcal{F})}{\partial \mu_h} = \frac{\partial W_h(\mu_h, \mathcal{F})}{\partial \mu_h} \cdot \left(1 - \prod_{j \neq h} \left[\frac{\Phi_{hj}\left(\frac{\mu_h^c - \mu_j^c}{t}\right) - \Phi_{hj}\left(\frac{\mu_h^d - \mu_j^d}{t}\right)}{\Phi_{hj}\left(\frac{\mu_h^d - \mu_j^d}{t}\right) - \Phi_{hj}\left(\frac{\mu_h^d - \mu_j^d}{t}\right)} \right] \right) + \\
\prod_{j \neq h} \left[\frac{\Phi_{hj}\left(\frac{\mu_h^c - \mu_j^c}{t}\right) - \Phi_{hj}\left(\frac{\mu_h^d - \mu_j^d}{t}\right)}{\Phi_{hj}\left(\frac{\mu_h^d - \mu_j^d}{t}\right) - \Phi_{hj}\left(\frac{\mu_h^d - \mu_j^d}{t}\right)} \right] \times \\
\frac{\partial W_h(\mu_h, \mathcal{F})}{\partial \mu_h} - \frac{W_h(\mu_h, \mathcal{F}) - W_h(\mu_h, \mathcal{F})}{t} \sum_{j \neq h} \frac{\Phi_{hj}\left(\frac{\mu_h^c - \mu_j^c}{t}\right) - \Phi_{hj}\left(\frac{\mu_h^d - \mu_j^d}{t}\right)}{\Phi_{hj}\left(\frac{\mu_h^d - \mu_j^d}{t}\right) - \Phi_{hj}\left(\frac{\mu_h^d - \mu_j^d}{t}\right)} = 0.
\]
It is now easy to show that function $\partial \Pi^h_{\mu} (\mu) / \partial \mu_h$ is strictly decreasing in μ_h. Starting from the first addend, its derivative has the following expression and is negative:

$$
-\frac{\partial W_h(\mu_h, F)}{\partial \mu_h} \cdot D \left(\prod_{j \neq h} \left[\Phi_{hj} \left(\frac{\mu_h - \mu_j}{t} \right) - \Phi_{hj} \left(\frac{\mu^d_h - \mu_j}{t} \right) \right] \right) +
$$

$$
\left(1 - \prod_{j \neq h} \left[\Phi_{hj} \left(\frac{\mu_h - \mu_j}{t} \right) - \Phi_{hj} \left(\frac{\mu^d_h - \mu_j}{t} \right) \right] \right) \cdot \frac{\partial^2 W_h(\mu_h, F)}{\partial \mu_h^2} < 0
$$

where $D (\cdot)$ stands for "derivative with respect to $\mu_h"$. For practical reasons, the signs of the four terms are denoted under each of them. In particular, while the signs of the last three terms are self-apparent, the first term is negative whenever $\mu_h > \hat{\mu}$.

Turning to the second addend, the expression under the product operator is decreasing (as the cumulative distribution $\Phi_{hj} (\cdot)$ is an increasing function of μ_h). The derivative of $\partial W_h (\mu_h, F) / \partial \mu_h$ with respect to μ_h is also strictly decreasing by assumption. The difference $W_h (\mu_h, F) - W_h (\mu_h, F)$ is instead increasing in μ_h, at least for any $\mu_h < \hat{\mu}$. Finally, notice that the function under the sum operator is non-decreasing to the extent that the hazard rate, defined as

$$
\hat{h} \left(\frac{\mu_h - \mu_j}{t} \right) = \frac{\phi_{hj} \left(\frac{\mu_h - \mu_j}{t} \right)}{1 - \Phi_{hj} \left(\frac{\mu_h - \mu_j}{t} \right)},
$$

is assumed to be non-decreasing. Given that

$$
\Phi_{hj} \left(\frac{\mu_h - \mu_j}{t} \right) \leq \Phi_{hj} \left(\frac{\mu^d_h - \mu_j}{t} \right) \leq 1 \forall \mu_h
$$

a decreasing hazard rate implies that the function under the sum operator is decreasing as well.
Figure 1: The payoff function of receiving country h depending on whether μ_h is higher, lower or equal to μ_{-h}.
Figure 2: The policy equilibria of the game.
Figure 3: The best-response functions of country h (in black) and of country $-h$ (in grey).
Figure 4: The equilibrium robust to strategic uncertainty in point A.