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Abstract

In this paper, we introduce two new learning models: impulse-matching learning and
action-sampling learning. These two models together with the models of self-tuning
EWA and reinforcement learning are applied to 12 different 2 x 2 games and their
results are compared with the results from experimental data. We test whether the
models are capable of replicating the aggregate distribution of behavior, as well as
correctly predicting individuals’ round-by-round behavior. Our results are two-fold:
while the simulations with impulse-matching and action-sampling learning success-
fully replicate the experimental data on the aggregate level, individual behavior is
best described by self-tuning EWA. Nevertheless, impulse-matching learning has the
second highest score for the individual data. In addition, only self-tuning EWA
and impulse-matching learning lead to better round-by-round predictions than the
aggregate frequencies, which means they adjust their predictions correctly over time.

Keywords: Learning, 2 x 2 games, Experimental data

JEL: C72, C91, C92

1. Introduction

It is well known that rational learning, in the sense of Bayesian updating, leads
to the stationary points of the Nash equilibrium (e.g., Kalai and Lehrer, 1993).
But it also known that actual human behavior not necessarily converges to Nash
equilibrium. In fact, a vast body of literature indicates situations in which standard
theory does not perform as a good predictor for subjects’ behavior in experiments
(e.g., Brown & Rosenthal, 1990, Erev & Roth, 1998).

A recent publication by Selten & Chmura (2008) documents the predominance
of behavioral stationary concepts regarding descriptive power. In the paper, the
concepts of impulse-balance equilibrium (Selten & Chmura, 2008), payoff-sampling
equilibrium (Osborne & Rubinstein, 1998), action-sampling equilibrium (Selten &
Chmura, 2008) and quantal response equilibrium (McKelvey & Palfrey, 1995) out-
perform Nash equilibrium in describing the decisions of a population in twelve
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completely mixed 2 x 2 games. Moreover, payoff-sampling equilibrium and action-
sampling equilibrium perform better than quantal response equilibrium does. In ad-
dition the parameter-free concept of impulse-balance equilibrium performs equally
well as the parametric concept of quantal response equilibrium.! Furthermore, Go-
erg & Selten (2009) show that the advantage of impulse-balance equilibrium over
Nash equilibrium is not limited to 2 x 2 games, but also present in cyclic duopoly
games.

Presumably stationary behavior is a result of a learning process converging to
a stationary distribution of actions for both players, which is, as the above studies
demonstrate, not necessarily the Nash equilibrium. Therefore, constructing and
testing simple learning models with the predicted stationary states of the better
performing concepts suggests itself. For the two behavioral stationary concepts of
action-sampling equilibrium and impulse-balance equilibrium this is quite easy: both
yield precise expression for stationary behavior.

The main purpose of this article is to introduce two new learning models which
are based on the behavioral reasoning of action-sampling equilibrium and impulse-
balance equilibrium and test them in the environment of twelve repeated 2 x 2 games
with mixed equilibria. Hereby, the learning rules have to meet two challenges: first,
do they reproduce the aggregate behavior of a human population, and second, can
they adequately describe the observed behavior of a single individual?

For comparison, we include the models of reinforcement learning (Erev & Roth,
1995) and self-tuning experience-weighted attraction learning (Ho, Camerer & Chong,
2007). We decided to compare our results with reinforcement learning, as it was the
first model with application of rote learning to economics and it is the most cited
learning model in economics. Self-tuning EWA was selected to cover a broader set
of different learning variants, as it can describe weighted fictitious play, averaging
reinforcement learning, and models in between.?

For the analysis on the aggregate level, we conduct simulations with the four
learning models and the twelve 2 x 2 games experimentally investigated in Selten &
Chmura (2008). The simulations replicate the exact situation of the experiments.
In each simulation run, eight agents, four deciding as row players and four deciding
as column players, are randomly matched in each round over 200 rounds. In each
simulation run, one game is played and one learning model is applied. To judge the
predictive power on the aggregate level we compare the distribution of choices in the
simulation runs with the experimental data from Selten & Chmura (2008).

To investigate how well the learning models predict individuals’ behavior, we

'For further discussions please refer to Brunner, Camerer & Goeree (2011) and Selten, Chmura
& Goerg (2011).

2We decided not to include a pure version of fictitious play in our analyses since a population
of fictitious players would converge in the 2 x 2 games to the Nash equilibrium (Miyasawa, 1961,
and Metrick & Polak, 1994), which is clearly outperformed by the stationary concepts of impulse-
balance equilibrium and action-sampling equilibrium (Selten & Chmura, 2008). However, with
action-sampling learning and self-tuning EWA variants of fictitious play are included into our
analyzes. Furthermore, in this paper we solely focus on learning rules with at most one parameter.
Thus, more elaborate versions of fictitious play with additional parameters like the three parameter
model by Cheung & Friedman (1997) and the six parameter model of Chen et al (2011) are ignored.



separately evaluate the explanatory power of the learning models for each participant
of the 2 x 2 experiments. For each of the 864 subjects we compare the actual decision
in every round with the decision predicted by the learning model given the subject’s
history. To judge the power of the learning models, we introduce three benchmarks
which all learning models should beat. The first benchmark is the inertia rule, which
predicts for each round the same choice as executed in the round before. The second
benchmark is a random play with equal probability for each of the two decisions.
In addition, if the learning theories describe subjects’ behavior correctly over time,
their predictions should be more accurate than the observed aggregate frequencies.
Thus, as a more demanding benchmark, we include the empirical frequencies as a
criterion.

As Erev, Ert, & Roth (2010) state, there are three obstacles for the learning
literature: 1. small data sets, 2. problems of over-fitting (Salmon, 2001; Hopkins,
2002), and 3. relative small sets of models. We try to address these issues by
1.) using the large data set of Selten & Chmura (2008) with twelve 2 x 2 games
played by 864 subjects, 2.) using theories with at most one parameter , adjusting
the parameters over all games and applying only nonparametric analysis, and 3.)
applying and testing four different learning models. In fact, the results presented
in this paper are the condensed summary of the analyses with 7 learning models.
In addition to the already mentioned models, we introduce and test the concepts
of payoff-sampling learning and impulse-balance learning. Because both concepts
perform worse than the inertia benchmark and the random play benchmark, we do
not cover these two learning models in more detail. More information about these
two models can be found in the Appendix. To shed some additional light on the
performance of self-tuning EWA, we include a non-parametric version of self-tuning
EWA into our analyzes. We will refer to these results in the discussion. Additional
information about the omitted concepts as well as the comparison of all 7 learning
models can be found in the appendix.

Our results are twofold: our newly introduced models are able to capture the dis-
tribution of decisions on the aggregate level much better than self-tuning EWA and
reinforcement does, while self-tuning EWA describes the individual data in a much
more accurate way. On the aggregate level the learning models of impulse-matching
learning and action-sampling learning have the smallest distance to the experimen-
tal data, while the concepts of self-tuning EWA and reinforcement learning have
relatively high distances to the data. On the individual level, self-tuning EWA and
impulse-matching have the highest scores. In addition, these two learning concepts
are the only concepts that perform significantly better in describing individual round
by round behavior then the overall empirical frequencies.

2. The Learning Models

In the following, we will introduce impulse-matching learning and action-sampling
learning, which are based on the behavioral stationary concepts discussed in Selten
& Chmura (2008). In addition to the new learning models, the more established
concepts of reinforcement learning (c.p. Erev & Roth, 1998) and self-tuning EWA
(Ho, Camerer & Chong , 2007) are briefly explained.



Two of the discussed models, namely action-sampling learning and self-tuning
EWA are parametric concepts. In case of action sample learning the parameter
is the sample size. Self-tuning EWA is based on the multi-parametric concept of
experience-weighted attraction learning (Camerer & Ho, 1999). Self-tuning EWA
replaces two of the parameters with numerical values and two with functions. The re-
maining parameter A\ “measures sensitivity of players to attractions” (p. 835 Camerer
& Ho, 1999). The version of reinforcement learning examined here does not have a
parameter and the initial propensities are not estimated from the data. All inves-
tigated learning rules will start with randomization of .5 in the first round. Only
after all necessary information has been gathered, the corresponding learning rule
determines the following decisions.?

The parameters of the parametric concepts are estimated to lead to the best fit
over all data and over all games. For more details about the parameter estimation
on the aggregate level, refer to the results section 4.2; for details on the estimation
of the parameters on the individual level, refer to results section 5.2.

2.1. Impulse Matching Learning

Impulse-matching learning relates to the concepts of impulse-balance equilibrium
(Selten, Abbink & Cox, 2005 and Selten & Chmura, 2008) and learning direction
theory (Selten & Stoecker, 1986 and Selten & Buchta, 1999). After a decision and
after the realization of the payoffs, the behavior is adjusted to experience. Selten
and Buchta explain the concept by the example of a marksman aiming at a trunk:
"If he misses the trunk to the right, he will shift the position of the bow to the left and
if he misses the trunk to the left he will shift the position of the bow to the right. The
marksman looks at his experience from the last trial and adjusts his behavior [...].”
(p. 86 Selten & Buchta, 1999). Impulse-balance equilibrium and impulse-matching
learning overcome the limitation of learning direction theory defining a direction
only for ordered strategies, e.g., increasing a bid in an auction (cf. Ho, Camerer &
Chong , 2007) by shifting the probabilities of single actions.

To understand how impulse-matching learning works, suppose that in a period
the first of two actions has been chosen and that this action was not the best reply to
the action played by the other player. Then the player receives an impulse towards
the second action. Originally, an impulse was defined as the difference between the
payoff the player could have received for his best reply minus the payoff actually
received given the decision by the other player in this period. However, the theory
of impulse-matching learning is based on another impulse concept. Here, a player
always receives an impulse from the action with the lower payoff to the one with the
higher payoff. The resulting learning model is similar to the regret-based learning
models, which have already been successfully tested by Marchiori & Warglien (2008).
The name impulse-matching is due to the fact that this kind of learning leads to
probability matching by a player if the probabilities p; and (1 — p;) on the other
side are fixed, and the payoffs for the player is one if both players play the strategy

3This means, for example, that for impulse-matching learning, impulses into both directions
must have been experienced by the subject, and for reinforcement learning payoff-sums for both
actions must have been collected.



with the same number (one or two) and zero otherwise (cf. Estes, 1954).

To incorporate loss aversion, the impulses are not calculated with the original
payoffs, but with transformed ones. In games with two pure strategies and a mixed
Nash equilibrium, each pure strategy has a minimal payoff and the maximum of
the two minimal payoffs is called the pure strategy maximin. This pure strategy
maximin is the maximal payoff a player can obtain for sure in every round and it
forms a natural aspiration level. Amounts below this aspiration level are perceived
as losses and amounts above this aspiration level are perceived as gains. In line
with prospect theory (Kahneman & Tversky, 1979), losses are counted double in
comparison to gains. Thus, gains (the part above the aspiration level) are cut to
half for the computation of impulses. Figure 1 is taken from Selten & Chmura (2008)
and illustrates the transformation of the payoffs by the example of game 3.
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game 3 transformed game 3

*aspiration levels s,= 7, 5,= 6
Figure 1: Example of matrix transformation as given in Selten & Chmura (2008)

Impulse-matching learning can be described as a process in which a subject forms
impulse sums. The impulse sum R;(¢) is the sum of all impulses from j towards 4
experienced up to period ¢t —1. The probabilities for playing action 1 and 2 in period
t are proportional to the impulse sums Ry (¢) and Ra(t) :

B R;(t)
pi(t) = Ri(t) + Ro(t)

The impulses from action j towards action ¢ in period t are as follows:

,fori=1,2 (1)

ri(t) = maz|0, m; — ] (2)

for i,7 = 1,2 and 7 # j. Here, m; is the transformed payoff for action i given the

matched agents decision and 7; the one for action j. Afterwards the impulse sums
are updated with the new impulses:

Ri(t+1)=Ri(t) +ri(t) (3)

In the first round, all impulse sums are zero R;(1) = Ry(1) = 0, and until both
impulse sums are higher than zero, the probabilities are fixed to p;(t) = pa(t) = 0.5.



2.2. Action Sampling Learning

Action-sampling learning relates to the idea of the action-sampling equilibrium
of Selten & Chmura (2008). According to action-sampling equilibrium, a player
takes in the stationary state a fixed size sample of the pure strategies played by the
other players in the past and optimizes against this sample. The process of action-
sampling learning is a belief-based type of learning, which is very similar to fictitious
play. In fact, the model by Chen et al (2011) is a generalization of action-sampling
learning, which captures in addition inertia, recency and weighting of the grand
mean. Action-sampling learning is much simpler and can be described as a version
of fictitious play where only random periods are considered and not the whole data
from the history.

In the process of action-sampling learning, the agent randomly takes a sample
A(t) with replacement of n earlier actions ay, ..., a, of the other player. Let m;(a;)
be the payoff of action ¢ if the opponent plays action a;. For i = 1,2 let P(t) =
Z?Zl mi(a;) be the sum of all payoffs of the player for using her action ¢ against the
actions in this sample.

Therefore, in period ¢, the player chooses her action according to

1 if Pi(t) > P;(t)
pi(t) = 0.5 if P(t) = P;(¢) (4)
0 else
fori,7 =1,2 and i # j.
At the beginning, the probabilities are set to p; = p, = 0.5, until both possible
actions have been played by the opponent agents.

2.3. Reinforcement Learning

The concept of reinforcement learning is one of the oldest and best established
learning models in the literature; refer to Harley (1981) for an early application. For
experimental economics, it was first formulated and introduced by I. Erev and A.
E. Roth ( Erev & Roth,1995, and Roth & Erev, 1998). In the reinforcement model,
a player builds up a payoff sum B;(t) for each action i according to the following
formula:

B;(t) +m(t) if action ¢ was chosen in ¢

Bi(t) else. (5)

Bi(t+1) = {

Here 7(t) is the payoff obtained in period ¢. After an initial phase in which both

possible actions are used with equal probabilities, the probability of choosing action
¢ in period t is given by:

B
= B + Bo(t) (6)

This model presupposes that all payoffs in a player’s payoff matrix are non-
negative and at least one payoff in each column and row is positive, a condition

pi(t)



fulfilled by all twelve investigated games.* In the first round, the initial payoff sums
B;(t) are zero and the player chooses both possible actions with equal probabilities
p1 = po = .5. The initial phase ends as soon as both sums are positive, and only
from then on, equation 6 is applied to determine the probabilities.

Impulse matching learning and action-sampling learning are both based on be-
havioral stationary concepts. Reinformcent learning can converge to Nash equilib-
rium (Beggs, 2005) and therefore, we treat it in the following as the learning concept
that corresponds with Nash equilibrium.

2.4. Self-Tuning EWA

Self-tuning EWA was introduced by Ho, Camerer, & Chong (2007). It is based
on the experience-weighted attraction model (Camerer & Ho, 1999), but replaces
all but one parameter of this model with functions or fixed values. Of all models
discussed in this article, self-tuning EWA is the most sophisticated one because it can
capture different types of learning. The decisions are made according to attractions
A;(t) for each strategy i. Attractions are based on the payoffs 7(s;, s™(t)) which a
subject would have received for playing strategy s; given the actual decision s™(t)
by the matched player. The attraction updating function depends on an experience
weight N (), a change-detector function ¢(t), and the attention function J(¢):

PNt = DA =1) +[6(t) + (1 = 5() L (55, ()| (si, 5™ (1))

Ai(t) = N(t) (7>

Here I(z,y) is an indicator function equal to 1 for s(t) = s; and 0 otherwise. An
experience weight is applied to each attraction and it is defined as

N(t) = N(t — 1)é(t) + 1, with N(0) = 1. (8)

The change-detector function ¢(t) weights lagged attractions and represents ”a player’s
perception of how quickly the learning environment is changing” (p. 182, Ho, Camerer,
& Chong, 2007). It is defined as

8(1) =1~ 3S(0) (9

with S(t) being the so called surprise indez, which measures the deviation of the
matched players’ recent decisions from all previous decisions.> S(t) is the quadratic
distance between the cumulative history vector h}'(t) and the immediate history
vector r*(t) for the k strategies of the matched player m. The cumulative history
vector gives the relative frequency over all rounds and is defined as

S Iy, s (r) (10)

t

hi'(t) =

4For games with negative payoffs, this approach would not be adequate. To cope with negative
payoffs, the model used by Erev & Roth (1998) replaces the payoff 7(¢) in E.1 by 7(t) — Tmin,
where 7, is the smallest possible payoff of the player.

5The experiments were played with random matching and thus no identification of single players
is possible. Therefore, we assume that all matched players are perceived as one average player.



The immediate history vector gives the relative frequency in the recent rounds. For
2 x 2 games with mixed equilibria, it is defined as

=3 (zw vjv(m s%)))’

(11)

with W = 2. The surprise index is zero, if the strategy of the matched player did
not change from period ¢ — 1 to t. Otherwise it is 1 and the matched player changes
a lot between strategies.

2
S = S (b () — i (6)? (12)
k=1
The attention function 6(¢) generates a weight for foregone payoffs and turns the
attention to strategies which would have yielded higher payoffs. In games with a
unique mixed-strategy equilibrium, these payoffs are weighted with 1/W, with W
being the numbers of strategies played in equilibrium. Thus, in our 2 x 2 games with
mixed equilibria, it is set to be W = 2.

0 else.

5@):{% if (s, 8 (t)) > 7(1) 13

The attention function §(t) of self-tuning EWA captures the idea of learning
direction theory (Selten & Stoecker, 1986) that subjects have a tendency to move
into the direction of the strategy which was ex-post the best response. This is done
by shifting the attention and thus the probability towards the strategy with the
highest payoff. This is similar to the process of impulse-matching learning. The
resulting probability of playing action ¢ in period ¢, depending on the attractions, is
calculated as a logit response function:

PAAi(t-1)
pi(t) = W (14)
Here, A is the response sensitivity and this parameter must be specified to fit
the empirical data. To be consistent with the other models, we have chosen not to
estimate any additional values and the simulations start with pure randomization
with p; = ps = 0.5.

3. Games and Experiments

Our comparison of the investigated learning rules is based on the data of Selten
& Chmura (2008). In their study, twelve 2 x 2 games with pure equilibria in mixed
strategies were experimentally investigated. To cover a broad set of games, six
constant and six non-constant sum games were played. Figure 2 shows the twelve
games used in the experiment. The constant sum games are shown on the left side
of the figure and the non-constant sum games on the right side.

Note that the first six games have the same best-response structure as the second
six games and that the concepts of action-sampling equilibrium and Nash equilibrium



Constant sum games Non-constant sum games

L R L R
U 10 0 U 10 4
8 18 12 22
Game 1 Game 7
D 9 10 D 9 14
9 8 9 8
L R L R
9 0 9 3
U
Game 2 4 13 Game 8 7 16
D 6 8 D 6 11
7 5 7 5
L R L R
8 0 8 3
U
Game 3 6 14 Game 9 9 17
D 7 10 D 7 13
7 4 7 4
L R L R
7 0 7 2
U
Game 4 4 1 Game 10 6 13
5 9 D 5 11
6 2 6 2
L R L R
7 0 7 2
U
2 9 4 11
Game 5 1 3 Game 11 b ] 0
5 1 5 1
L R L R
! 1 ' 7 v ! 3 ’ 9
Game 6 Game 12
D 3 8 D 3 10
5 0 5 0

The payoffs for the column players are shown in the lower right corner,
the payoff for the row palyers are shown in the upper left corner.
Abbreviations used: L Left, R Right, U Up, D Down

Figure 2: The twelve 2 X 2-games taken from Selten & Chmura (2008).

only depend on this best response structure. Thus, the predictions of Nash equilib-
rium are the same for the first and the second six games and the same holds true for
action-sampling equilibrium. The predictions of Nash equilibrium, action-sampling
equilibrium and impulse-balance equilibrium are given in table 1.

All experiments were run at the BonnEconLab with students mainly majoring
in economics or law. The experiment was programmed with RatImage developed by
Abbink and Sadrieh (1995). The data was collected in 54 sessions with 16 subjects
each. In every session, only one game was played and this game was known by all
subjects. The games were played for 200 periods with matching groups consisting
out of eight subjects. For each constant sum game twelve independent matching
groups were gathered, for each non-constant sum game six independent matching
groups were gathered. Overall, 864 subjects participated.

The role of the subjects was fixed for the whole experiment, thus four subjects
in each matching group decided as column players and the other four as row players
throughout the whole experiment. At the beginning of each round, row and col-
umn players were randomly matched. After every round, subjects received feedback
about the other player’s decision, their own payoff, the period number and their



own cumulative payoff. Each participant received €5 for showing-up. In addition,
the payoffs in the 200 periods were accumulated and transferred into EURO. The
exchange rate was €0.016 Cent per payoff point. An experimental session lasted
between 1.5 and 2 hours and the average earning per subject was roughly €24,
including show-up fee.

4. Performance on the Aggregate Level

In this section, we investigate whether the learning algorithms can replicate the
aggregate distribution of actions generated by human subjects. In the following, we
will first introduce our measurement for the aggregate level. Thereafter, we discuss
the success of the different learning models in predicting/reproducing the aggregate
distribution of behavior.

4.1. Measure of Predictive Success on the Aggregate Level

For our analysis on the aggregate level, we conduct simulations keeping every-
thing the same as in the experiment, except that instead of real participants now
computer agents interact. Each agent interacts according to her history and to the
same learning model over 200 rounds. In each round, eight agents with fixed roles,
four deciding as row players and four as column players, are randomly matched and
all agents act in accordance to the same learning rule.

After each round, they receive feedback about the matched agent’s decision and
their payoff. Since none of the learning models makes use of the round number and
since the calculation of the cumulated payoff can be done by the agents themselves,
this information is not provided to the agents. It is crucial that the agents do not
receive more information than the subjects in the experiment did.

All learning models include stochastic elements. To avoid the influence of sta-
tistical outliers, 500 simulation runs per game are conducted. In each simulation
run, all agents act in accordance with the same learning model. To measure the
predictive success on the aggregate basis, we will compare the mean frequencies of
U and L in the simulations with the mean frequencies obtained in the experiments
by means of the quadratic distance. The mean quadratic distance () is the average
quadratic distance over all 12 games and over all 500 simulations. It is defined as

12 |
L L2 U U\2
[ p— - S — T + (s — 7T ,

with sZ and s¥, being the frequencies for L and U in game i and simulation
run n. Respectively, f& and fI are the mean frequencies for L and U observed
in the experiments with game number i. The frequencies of R and D need not be
considered in view of (st — fI)2 = (st — fI)? and (s, — fV)? = (sP — fP)2. The
predictive success of a learning model increases with a decreasing mean quadratic
distance, i.e., the smaller the mean quadratic distance is, the better the learning
theory fits the experimental data on the aggregate level.

10



4.2. Parameter Estimates

The concepts of action-sampling equilibrium and self-tuning EWA have a param-
eter which needs to be adjusted to the experimental data. We decided to estimate
for each learning model one parameter that minimizes the quadratic distance over
all games.® To estimate the optimal parameter, we ran for each parameter 500
simulations per game and calculated the mean quadratic distance. Thereafter, the
simulations were conducted with the parameter that yielded the smallest quadratic
distance.”

Mean Quadratic Distance

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
Sample sizes

Figure 3: Quadratic distances of action-sampling learning

The parameter of action-sampling learning is the size of the drawn samples.
Figure 3 gives the mean quadratic distances of action-sampling learning for 1 > n >
15. A sample size of n = 12 leads to the smallest quadratic distance, which is the
same sample size that also leads to the smallest distance for the stationary concept
(cf. Brunner, Camerer & Goeree, 2011)

Figure 4 gives the mean quadratic distances of self-tuning EWA for different
lambdas. The left part gives the mean quadratic distances for all tested lambdas
between 0 and 10, and the right part gives the quadratic distance for .2 < A < .3.

60ne could fit the parameter of the parametric concepts for each game separately. We believe
that this gives an unfair advantage to one-parameter theories over parameter-free ones. This
especially holds for the case of 2 x 2 games, where only two relative frequencies are predicted.
Adjusting a parameter separately for each game, so to speak, does half the job. One might use
methods to adjust the fit of a theory to the number of parameters used, but this only makes sense
if the non-adjusted performance of a model increased in case of parameters being estimated for
each game separately. For our simulations, only the quadratic distance of action-sampling learning
would benefit from such a procedure. The quadratic distance of self-tuning EWA (0.0805 vs.
0.0786) would change only slightly and this adjustment would not influence the relative ranking of
quadratic distances. Therefore, we decided to estimate only one parameter for each theory.

"To speed up this procedure, round-by-round data was only saved for the simulations with the
final parameter.

11
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Each point in the graph represents the mean quadratic distance over all twelve
games with 500 simulations runs per game with one specific lambda value. The
value leading to the smallest quadratic distance is A = 0.2775.

4.3. Relative Frequencies

Table 1 gives the observed mean frequencies for each learning type, mean fre-
quencies predicted by the stationary concepts and the observed frequencies in the
experiments. For the experimental games 1 to 6, the mean frequencies observed in a
game are based on the observed frequencies in twelve independent matching groups;
for games 7 to 12 they are based on the observed frequencies in six independent
matching groups. Each matching group consists of eight subjects. For each learning
type and game, the mean is based on 500 simulation runs, which produced 500 inde-
pendent matching groups per game. Each matching group consists of eight agents.
Figure 5 gives the typical development of probabilities over time in game 7 for each
of the learning types. This figure in combination with Table 1 already reveals some
differences between the learning rules.®

It is surprising that self-tuning EWA yields relative frequencies very near to .5
for each of the twelve games. This is probably connected to the fact that, in our
simulations, the whole population is of the same type and agents try to adjust to
an inaccurate history, and by this process generate a new inaccurate history for
themselves and the matched agents. Estimating the free parameter of this model
jointly for all games is not a reason for this behavior. If we estimate the optimal A
for each game separately, the resulting mean quadratic distance to the data improves
only marginally (0.081 vs. 0.079) and observed relative frequencies do not change

8The course of probabilities for all games is given in Appendix in section Appendix C.1
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Table 1: Relative frequencies for playing Let and Up in the simulations, predicted by
the stationary concepts and observed in the experiments for Up and Left

ED a0 < o0 f
o= [}
2 g = = g g 2
P [=% 5} = =< o) =
= g g 80 = E g 8 g O
, < 3 = i g = =
e Tw Zw oz g fg = 3
Z g =I= =] Si= 2 0 o .0 ) o
2B S |g &4 == 35 o= S =
=) RN =l LA o = '3 u s = L
E8 28 =8 gE £g 25 28 R
Game 1 L 0.574 0.710 0.345 0.499 0.580 0.705 0.909 0.690
U 0.063 0.095 0.121 0.499 0.068 0.090 0.091 0.079
Game 2 L 0.495 0.571 0.333 0.477 0.491 0.584 0.727 0.527
U 0.169 0.193 0.161 0.502 0.172 0.193 0.182 0.217
Game 3 L 0.770 0.763 0.503 0.541 0.765 0.774 0.909 0.793
U 0.157 0.211 0.128 0.492 0.161 0.208 0.273 0.163
Game 4 L 0.714 0.711 0.587 0.548 0.710 0.719 0.818 0.736
U 0.259 0.295 0.190 0.494 0.259 0.302 0.364 0.286
Game 5 L 0.632 0.639 0.566 0.524 0.628 0.643 0.727 0.664
U 0.296 0.323 0.241 0.495 0.297 0.329 0.364 0.327
Game 6 L 0.602 0.596 0.666 0.527 0.600 0.596 0.636 0.596
U 0.400 0.422 0.265 0.497 0.400 0.426 0.455 0.445
Game 7 L 0.637 0.709 0.380 0.564 0.634 0.705 0.909 0.564
U 0.098 0.094 0.170 0.485 0.104 0.090 0.091 0.141
Game 8 L 0.563 0.572 0.396 0.540 0.561 0.584 0.727 0.586
U 0.258 0.193 0.217 0.494 0.258 0.193 0.182 0.250
Game 9 L 0.767 0.762 0.525 0.600 0.764 0.774 0.909 0.827
U 0.185 0.212 0.165 0.489 0.188 0.208 0.273 0.254
Game 10 L 0.726  0.711 0.640 0.587 0.724 0.719 0.818 0.699
U 0.303 0.295 0.219 0.487 0.304 0.302 0.364 0.366
Game 11 L 0.648 0.640 0.609 0.572 0.646 0.643 0.727 0.652
U 0.354 0.324 0.289 0.492 0.354 0.329 0.364 0.331
Game 12 L 0.605 0.596 0.560 0.578 0.604 0.596 0.636 0.604
U 0.466 0.422 0.342 0.494 0.604 0.426 0.455 0.439
much.

Impulse-matching learning and action-sampling learning are quite close to their
stationary counterparts after 200 periods. The quadratic distances between impulse-
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Figure 5: Mean probabilities for left and right in the simulations runs and the
experiment for game 7 . Mean probability for left is given in black and the mean
probability for up is given in gray.

matching learning and impulse-balance equilibrium, as well as the one between
action-sampling learning and action-sampling equilibrium, are smaller than 0.001.
If we treat reinforcement learning as the learning counterpart to Nash equilibrium,
the difference in quadratic distances is 0.158. Self-tuning EWA has the highest dis-
tances towards all stationary concepts. This closeness results in high correlations
between the frequencies of the simulations and corresponding stationary concepts.
For impulse-matching learning and action-sampling learning, this is true for both
players (pairwise correlation with » > .9 and p < .01 for row and column players),
and for reinforcement only for row players (pairwise correlation with » > .9 and
p < .01). Correlations between observed frequencies from the experiments and the
simulations with action-sampling learning and impulse-matching learning are high
(pairwise correlation with » > .8 and p < .01 for both playes), but lower than the
ones with the stationary concepts. The frequencies of reinforcement learning are
correlated with the ones of the row player in the experiment (pairwise correlation
with 7 > .8 and p < .01), but not for the ones of the column players. The frequencies
of self-tuning EWA are not significantly correlated with the empirical data for each
of both players.
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Figure 6: Mean quadratic distances of the stationary concepts and the learning
models to the observed behavior (stationary concepts dark bars and learning models
in light bars).

4.4. Quverall Performance

Figure 6 gives the mean of the quadratic distance between the experiment and
simulations over all games and rounds for self-tuning EWA learning, reinforcement
learning, action-sample learning and impulse-matching learning. In addition, the
figure gives the mean quadratic distances between of the stationary counterparts (if
existing) and the data in black.?

We first turn our attention to the comparison of the simulations. The figure
reveals a clear order of explanatory power. The order from worst to best (highest
quadratic distance to lowest quadratic distance) is as follows: reinforcement learning,
self-tuning EWA learning, action-sampling learning and impulse-matching learning.
Because of the high number of observations (6000 per learning type), the order given
by Figure 6 is statistically robust (for all p < 0.01 Fisher-Pitman permutation test for
paired replicates). The difference between self-tuning EWA and reinforcement is very
small and irrelevant. However, the similarity between the two quadratic distances
does not mean that both theories make similar predictions. This can be seen for
example in Table 1 and in Figure 5. The figure demonstrates that the concepts of
self-tuning EWA and reinforcement fail to describe the aggregate behavior in the
2 x 2 experiments, in contrast to the other concepts. The quadratic distance of
self-tuning EWA is 18 times higher than the one of impulse-matching learning.

9The mean quadratic distances of the stationary concepts are either taken from Selten & Chmura
(2008) or from Brunner, Camerer, & Goeree (2011). There were some flaws in the paper by Selten
& Chmura (2008). For a detailed discussion, refer to Brunner, Camerer, & Goeree (2011) and
Selten, Chmura, & Goerg (2011).
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The quadratic distances of reinforcement learning and self-tuning EWA learning
are significantly bigger not only over all games, but also for the subsets of constant
sum games and non-constant sum games. However, reinforcement performs better
in constant sum games than self-tuning EWA does, while self-tuning EWA performs
better in non-constant sum games (both p < 0.01 Fisher-Pitman permutation test
for paired replicates). While the quadratic distance of impulse-matching is stable in
constant and non-constant sum games, the one of action-sampling learning is smaller
in constant sum games. Thus, action-sampling learning performs significantly better
in constant sum games, and impulse-matching learning performs significantly better
in non-constant sum games (both p < 0.01 Fisher-Pitman permutation test for
paired replicates).!?

Comparing the stationary concepts with the learning models reveals that self-
tuning EWA and reinforcement learning are not only outperformed by impulse-
matching learning and action-sampling learning, but by all stationary concepts. In
contrast, the learning models of action-sampling and impulse-matching perform very
well. Both learning models have higher predictive success than the other learning
models and additionally a higher predictive success than all stationary concepts.

4.5. Original Versus Transformed Games

The concept of impulse-matching learning is applied to the transformed game
rather than the original one. This transformation is an essential part of impulse-
matching learning and impulse-balance equilibrium (Selten & Chmura, 2008; and
Goerg & Selten, 2009), because both concepts involve a fixed loss-aversion. Losses
with respect to the pure strategy maximin are counted double. While double count-
ing of losses with respect to the pure-strategy maximin is an essential part of impulse-
matching learning, it is ignored by the other concepts (reinforcement learning, action-
sampling learning, self-tuning EWA). This raises the question, whether the good
performance of impulse-matching learning is an artifact of the incorporation of loss-
aversion. To investigate this point, we apply all learning models to the transformed
and to the original matrices.

Figure 7 shows the overall mean quadratic distances for self-tuning EWA learning,
reinforcement learning, payoff-sampling learning, impulse-balance learning, action-
sampling learning and impulse-matching learning applied to the original games and
to the transformed games, which are again based on 500 simulation runs per game
and learning model.

It can be seen that impulse-matching learning and reinforcement learning per-
form better when applied to the transformed games, whereas self-tuning EWA learn-
ing and action-sampling learning do less well. While the improvement of impulse-
matching learning in transformed games is expected, the benefit of applying rein-
forcement learning to transformed games is unexpected. This improvement is sub-
stantial, in the original game the quadratic distance is nearly 1.3 times higher than
in the transformed ones.

ORefer to the Appendix for more information about the performance in constant and non-
constant sum games.
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Figure 8: Mean quadratic distance over time

The theory of Roth and Erev (1998) applies a transformation of the original game
by replacing the payoff of a player by its difference to the minimal value in her matrix.
The transformation used here is different since it involves double weights for losses
with respect to the pure strategy maximin. However, in Selten & Chmura (2008),
no improvement of the predictive power of the Nash equilibrium was observed when
applied to the transformed game rather than to the original one. It is interesting that
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the picture looks different for the simulations over 200 rounds with reinforcement
learning, although it corresponds very much with Nash equilibrium (Beggs, 2005).
Although reinforcement learning improves when applied to the transformed ma-
trix, it still performs significantly worse than impulse-matching learning. Therefore,
and because of self-tuning EWA and action-sampling learning performing worse in
the transformed matrices, we can conclude that the good performance of impulse-
matching learning is not driven by the transition to the transformed matrices alone.

4.6. Changes over Time

Learning processes are always dependent on time and history, and therefore it
is of interest to check whether our above results remain stable over time. To check
stability of the order of explanatory power over time, we compare the first hundred
periods with the second hundred periods. Figure 8 gives the mean quadratic dis-
tances for periods 1-100 (left) and 101-200 (right) for the six learning models. The
basis of the comparison is always the observed mean frequencies for the correspond-
ing rounds (either round 1-100 or 101-200) in the experiments.

It is easy to recognize, that in the second half of the simulation runs, the explana-
tory power of self-tuning EWA and reinforcement learning decreases significantly
while the one of impulse-matching learning improves significantly (all Fisher-Pitman
permutation test for paired replicates p < 0.01). The concept of action-sampling
learning is rather stable over time and the statistically significant disimprovement
of action-sampling learning (p < 0.01) is economically negligible, with an increase
of the quadratic distances of only 0.0004.

The ranking of concepts by mean quadratic distances is stable over time, the
overall ranking for round 1-200 is the same in rounds 1-100 and 101-200.

5. Performance on the Individual Level

In this part, we investigate how well the learning rules describe the individual
behavior of the subjects in the 2 x 2 experiments. To judge the performance on
the individual level, we compare the individual decisions in every round with the
predicted decisions or predicted probability by the learning rule, given the history
of the subject.

5.1. Measure of Predictive Success on the Individual Level

To measure the predictive success of the learning theories describing the behavior
of a single individual, we apply the quadratic scoring rule on each of the 864 subjects
for each learning rule.!! The quadratic scoring rule was first introduced by Brier
(1950) in the context of weather forecasting. The rationale behind the quadratic
scoring rule is that for each round a score is determined, which evaluates the nearness
of the predicted probability distribution to the observed outcome.

1 Of course, one could calculate the proportions of subjects that are described best by each
learning rule. But this calculation of proportion is problematic: it depends on the number and
the performance of included learning concepts. Given that the score of one learning rule does not
depend on the competing learning concepts, we prefer to use the mean quadratic scores.
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In Selten (1998), the quadratic scoring rule is axiomatically characterized. The
characterizing properties of the quadratic scoring rule, as described in Selten (1998),
are: symmetry, elongational invariance, incentive compatibility, and neutrality. Sym-
metry means that the score of a theory must not depend on the numbering of the
decision alternatives. Elongational invariance assures that the score of a theory is
not influenced by adding or leaving an alternative which is predicted with a probabil-
ity of zero. Incentive compatibility requires that predicting the actual probabilities
yields the highest score. Finally, neutrality means that in the comparison of two
theories, among which one is right, in the sense that it predicts the actual probabili-
ties, and the other is wrong, the score for the right theory does not depend on which
of the two theories is the right one. This means that the score does not prejudge one
of the theories depending on the location of the theory in the space of probability
distributions.

We apply the quadratic scoring rule to measure the predictive success of a theory
for every period and subject and then calculate the mean over subjects, rounds,
and games. Accordingly, a score depending on the predicted probabilities and the
actually observed action is computed. In order to compute the score the observation
is interpreted as a frequency distribution where for the chosen action the relative
frequency is one, and for the action not chosen, it is zero.

The quadratic score ¢(t) of a learning theory for subject choosing action i in
period t is given as:'?

q(t) = 2pi(t) — pi(t) — (1 = pi(t))?

Here p;(t) is the predicted probability of the learning theory. The predicted
probability of the learning theory is calculated by applying the theory’s learning
algorithm on the whole playing history of this player. If no history yielding a positive
number smaller than 1 for p;(¢) is available, the player randomizes with p;(t) = .5.
This rule provides an initial phase. As soon as both probabilities are positive they
will remain positive forever.

If a player decides completely in line with the prediction of the theory, he receives
a score of 1; if he decides in complete contrast to the prediction the theory, he receives
a score of —1. The mean score ¢ is given as the mean of ¢(t) over all 200 rounds
and all 864 subjects. Of course, ¢ must be in the closed interval between —1 and
+1. Thus, in contrast to our measurement for the success on the aggregate level,
the success of a theory on the individual level increases with the score.

The concept of action-sampling learning always yields a probability of 1, 0 or .5
for one of the possible actions. Which action is chosen depends on the randomly
drawn sample. Therefore we calculate the probability of drawing a sample that
commands playing action 1 or action 2 as the predictions of this concept.

In addition to the investigated learning, rules we introduce three benchmarks.
The first one is a heuristic which we call the inertia rule. This rule commands to "do
exactly the same as in the preceding round”. This does not apply to the first period

121f the decision maker has n choices it is defined as: q(t) = 2p;(t) — 2?21 p3(t). The formula in
the text holds for the special case of n = 2.
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Figure 10: Quadratic scores of action-sampling learning for different sample sizes

in which both possible actions are chosen with equal probabilities. The player is
required to repeat the decision of the preceding period even if he deviated from this
rule in the past. Obviously, the inertia rule is not a serious decision rule, but it serves
as a benchmark that every learning rule should beat. The second benchmark is the
score, an agent would receive if he decided randomly between the two actions with
p = 0.5. In this case, the score would be 0.5 and again every learning rule should beat
this benchmark. The third benchmark are the aggregated observed frequencies taken
from the experiments. If a learning theory adequately describes the adjustments over
time, it should yield higher scores than these stationary probabilities, which do not
depend on this information.
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5.2. Parameter Estimates

On the individual level, we calculated for each parametric learning theory one
parameter, which leads to the highest mean quadratic score over all 864 subjects.
Figure 9 gives the mean quadratic scores for the parameter lambda of self.tuning
EWA between 0 and 10 (left side) and for lambda between .3 and .6 (right) side.
The highest mean quadratic score is reached for A = .436.

Figure 10 gives the mean quadratic scores of action-sampling for sample sizes
between 1 and 15. The optimal sample size for action-sampling is n = 6. Note
that the optimal sample size of action-sampling learning for the performance on the
aggregate level (n = 12) also performs very well on the individual level; it leads to
the second-highest mean quadratic score.

5.2.1. Overall Mean Quadratic Scores
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Figure 11: Mean quadratic scores, over all 108 independent observations. The
solid line gives the random rule benchmark.

Figure 11 gives the mean quadratic scores in the 108 independent observations
for each learning model. The randomization benchmark is included as a horizontal
line. The figure reveals a clear order of predictive success, from best to worst: self-
tuning EWA, impulse-matching learning, empirical frequencies, reinforcement learn-
ing, action-sampling learning, randomization benchmark and inertia benchmark.

Applying a two-sided permutation test for the pairwise comparison of the mean
scores over all independent observations reveals that the order given by the graph is
statistically robust. All pairwise comparisons between two learning models over all
games are at least significant on the 1% level. Table 2 gives all test results over all
games (top), over the constant-sum games (midle), and over the non-constant sum
games (bottom). This ranking is robust over all games, as well as for the subsets of
constant sum games and non-constant sum games.
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Table 2: Two-sided Significances in Favor of Row Concepts, Monte-Carlo approximation
of the two-sided Fisher-Pitman permutation test for paired replicates

Impulse Matching
Empirical Frequencies
Reinforcement

Action Sampling
Random. Benchmark
Inertia Benchmark

1% 1% 1% 1% 1% 1%

self-tuning EWA 1% 19 1% 1% 1% 1%

Learning 1% 1% 1% 1% 1% 1%
Impulse M.atching y;? %’ iz’) i(;? :;Z)
Learning 5% 10% 1% 1% 1%
Empirical s e i i
pirice n.s. 1% 1% 1%
Frequencies s, 1% 1% 1%

Reinforcement 1% 1% 1%
1% 1% 1%

Learning 10% sor I
i i 1% 1%
O g 1
© 5% 1%
Randomization 1%
Benchmark 1%
1%

Notes: Above: all 108 experiments;

Middle: 72 constant-sum game experiments;
Below: 36 non-constant sum game experiments.

All reported learning models perform significantly better than the inertia and
randomization benchmarks. However, only impulse-matching learning and self-
tuning EWA perform significantly better than the aggregated empirical frequencies
in describing the individual round-by-round behavior. No significant difference be-
tween reinforcement learning and the empirical frequencies are observed, and action-
sampling learning performs even worse than the empirical frequencies.

Although the inertia benchmark performs rather badly in describing subjects’
behavior, it does not imply that low inertia rates are observed. On the contrary,
in line with Erev & Haruvy (2005) and Erev, Ert, & Roth (2010) very high inertia
rates are observed. In 74% of all cases, subjects stick to their previous decision.
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Figure 12: Mean quadratic scores in the first and second half of the experiments

On the other side, this means that, in 26% of all cases, inertia predicts exactly
the opposite of observed behavior and receives the lowest score of all models (-1).
Nevertheless, a fraction of 13% of the subjects are best described by the inertia rule.
Overall, roughly 8% of the subjects are best described by reinforcement and action-
sampling learning, 23% by impulse-matching learning, and the majority of 47% is
best described by self-tuning EWA.

5.83. Mean Quadratic Scores over Time

To conclude our analysis, we now take a look at the quadratic scores over time.
Figure 12 gives the mean quadratic scores for rounds 1-100 and rounds 101-200. In
the first and the second half of the experiments, the same order of success is present
as over all rounds. For rounds 1-100, all differences between the scores, except for
the one of reinforcement learning and the empirical benchmark, are highly signifi-
cant (all Fisher-Pitman permutation test for paired replicates p < 0.01). As for the
overall comparison, no significant difference between the mean quadratic scores of
reinforcement learning and the empirical benchmark is observed. Although the order
remains the same over time, in the second half of the experiments the differences
between impulse-matching learning, reinforcement learning and the empirical bench-
mark decrease. The difference between reinforcement learning and impulse-matching
learning is no longer significant, while impulse-matching learning still performs sig-
nificantly better than the empirical benchmark.

Figure 13 gives the development of the mean quadratic scores per round over
time. Impulse-matching learning has the fastest increase of scores in the very early
rounds. In the first 10 rounds, impulse-matching learning performs better than
self-tuning EWA. The performance of self-tuning EWA increases continuously over
time, leading to higher scores per round after round 10, and after 25 rounds, the
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Figure 13: Mean quadratic scores per round over time for the learning models and
benchmarks

overall quadratic score of self-tuning EWA is above the one of impulse-matching.
The score of reinforcement learning also increases continuously over time, but at a
slower rate, approaching the performance of impulse-matching learning only in the
last 50 rounds. In addition, the graph reveals the increase of inertia over the rounds.
Over time, the score of the inertia benchmark approaches the score of the pure
randomization benchmark (.5). In the last periods, inertia has a higher predictive
power than randomization but still performs worse than the learning concepts.

6. Summary and Discussion

In this article, the models of impulse-matching learning, and action-sampling
learning have been introduced. Together with reinforcement learning and self-tuning
EWA, they were applied and tested in the environment of 12 repeated 2 x 2 games.

The newly introduced learning models are based on the behavioral reasoning of
action-sampling equilibrium and impulse-balance equilibrium, which had been suc-
cessfully tested in experimental 2 x 2 games by Selten & Chmura (2008). Therefore
the experimental dataset obtained by Selten & Chmura (2008) was used as a testbed
for the learning models. The experimental data comprises aggregate and individ-
ual behavior in 12 completely mixed 2 x 2 games, 6 constant sum games with 12
independent subject groups each, and 6 non-constant sum games with 6 indepen-
dent subject groups each. Each subject group consists of eight participants being
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randomly matched over 200 periods.

The learning models had to prove whether they could replicate the aggregate
behavior of the experimental population and whether they could explain the indi-
vidual behavior of single subjects. For the comparison with the aggregate behavior,
500 simulation runs per game and learning model were conducted. As in the exper-
iment, 200 rounds with random matching and four agents deciding as row players
and four agents as column players were simulated. Our measure of predictive power
for the aggregate is the quadratic distance between observed relative frequencies
in simulation runs and the mean frequencies observed in the experiments. For the
comparison with the individuals’ behavior, the models were applied to the history
of each participant. Then the actual decisions of every round were compared with
the predictions of the learning models given the subject’s history. For each subject
and round, a quadratic score, a measurement for the accuracy of a prediction, was
calculated and averaged over rounds, subjects, and games.

For our comparisons with the aggregate and the individual behavior we can
conclude two main results:

Main Result 1: The models of impulse-matching learning and action-sampling
learning are able to replicate the aggregate behavior.

The comparison of the four models yields the following order of predictive success
from best to worst: impulse-matching learning, action-sampling learning, reinforce-
ment learning, self-tuning EWA learning. Due to the high number of simulation runs,
this order is statistically robust, all pairwise comparisons are at least significant on
the 1% level.

The predominance of the new models, impulse-matching learning and action-
sampling learning, over the established models of reinforcement learning and self-
tuning EWA is stable over time and across the different game types (constant sum
and non-constant sum games). A further interesting result is that for reinforcement
learning the quadratic distance to the data is about 22% lower if applied to the
transformed matrixes instead to the original ones.

Main Result 2: On the individual level self-tuning EWA outperforms all other
learning concepts

Overall, the models of action-sampling learning, reinforcement learning, impulse-
matching learning, and self-tunig EWA perform better than simple randomization
with .5 and the inertia benchmark does. But only the models of self-tuning EWA and
impulse-matching learning perform significantly better in describing round-by-round
behavior than the aggregated frequencies from the experiment. The mean quadratic
score of self-tuning EWA is significantly above the ones of all other investigated
learning concepts, and impulse-matching learning has the second highest score.

The good performance of self-tuning EWA on the individual level is remarkable,
and not the results of the free parameter. A non-parametric version of self-tuning
EWA!? yields an only marginal lower quadratic score (0.624 vs. 0.637) and still
performs significantly better than impulse-matching learning. However, on the ag-

13 A non-parametric self-tuning EWA can be obtained by replacing the equation for calculating

the probabilities with p;(t) = %. We thank an anonymous referee for this suggestion.
=144
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gregate level the distance to the data increases even further ( 0.079 vs. 0.111) and
therefore impulse-matching learning performs significantly better in this domain
(both Fisher-Pitman permutation test for paired replicates p < 0.01). In addition
our data shows that over time inertia increases adding an inertia component to the
learning models might increase their predictive power. For example the model by
Chen et al. (2001) provides a multi-parameter generalization of action-sampling
learning that takes inertia and recency into account.

We conclude, that impulse-matching learning produces good results across fields
of applications (aggregate and individual level) while self-tuning EWA organizes ex-
isting individual data exceptionally well. Our results suggest, that if one is interested
in the aggregate behavior in a certain 2 x 2 game without any prior information (i.e.
no information for parameter estimates) upfront, impulse-matching learning results
in an extremely good approximation. In addition, impulse-matching learning pro-
vides good predictions for round-by-round behavior, but in this domain it is clearly
outperformed by self-tuning EWA. Obviously, self-tuning EWA interprets actual
history very well, while it fails to generate accurate behavior in simulations. Inter-
estingly, only the two concepts of impulse-matching learning and self-tuning EWA
have components of regret based learning and only these two concepts outperform
the empirical frequency benchmark.
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Appendix A. Additional Learning Models

Appendiz A.1. Impulse-balance learning

The algorithm for impulse-balance learning is very similar to the one of impulse-
matching learning. Only the calculation of impulses differs, therefore equation A.1
replaces 2 of impulse-matching learning. All other equations (1 and 3) remain the
same. In contrast to impulse-matching a player receives only actual impulses. This
means, the player does not receive an impulse if his action was a best reply against
the other player’s decision. Thus, for impulse-balance learning the impulses from
action j towards action ¢ in period t is as follows:

(A.1)

t) mazx|0,m; — ;] , if the chosen action is j
’]”Z» =
0 else.

for 7,7 = 1,2 and ¢ # j. Again, 7; is the transformed payoff for action i given
the matched agents decision and 7; the one for action j. Afterwards the impulse
sums are updated with the new impulses. In the first round all impulse sums are
zero Ri(1) = R2(1) = 0 and until both impulse sums are higher than zero the
probabilities are fixed to pi(t) = pa(t) = 0.5.

In fact both learning rules are so similar, that they lead to the same stationary
points in 2 x 2 games. To illustrate this, we take a look at the structure of the
investigated experimental 2 X 2 games, as introduced by Selten & Chmura (2008).

L R
ar, +cr, apr
U by by + dy
ar, aRr + Cr
dp +dp bp

Figure A.14: The Structure of the Experimental 2x2-Games

The figure shows the transformed payoffs, the payoffs for the column-players are
shown in the lower right corner and the payoft for the row-palyers are shown in the
upper left corner. The following equations must be fulfilled: ar,ag, by, bp > 0 and
cr,Cr,dy,dp > 0. In the following py and pp are the probabilities of the row player
for U and D and q; and gy are the probabilities for L and R by the column player.
In the following we will only look at the row player, the behavior in equilibrium of
the column player is calculated analogously.

In case of impulse-balance equilibrium the expected impulses for each of the both
strategy must be the same. Hereby, the row player receives only an impulse towards
U for the proportion of plays in which he would choose down (given by pp) and the
other player at the same time would have chosen L (given by ¢r). Therefore the
expected impulse for U is given by ppqrcr. Applying the same reasoning leads to
puqrcr as the expected impulse for D of the row player. Thus the impulse-balance
equation, which must be fulfilled in equilibrium is given as:

PpqrLCr, = PUYRrRCR
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In case of impulse-matching equilibrium, the row player receives always an im-
pulse of ¢y, towards U if the column player plays L. The column player does so with
a probability of ¢r. In addition the row player always receives an impulse of cg to-
wards D if the column player choses R. The column player plays R with a probability
of gr. Impulse-matching equilibrium is reached if the ratio of the two probabilities
of U and D is the same as the ratio of expected impulses for U and D.

bu _ qrcr
Pp 4RCR

By transforming we obtain the impulse-balance equation of impulse-balance equi-
librium:

PpqrLCr, = PU4RrRCR

Therefore, impulse-matching equilibrium and impulse-balance equilibrium have
the same mixed stationary points in case of the described 2 x 2 games. However, for
other types of games both concepts do not necessarily lead to the same stationary
points.

Appendiz A.2. Payoff-Sampling Learning

Payoff-sampling learning relates to the stationary concept of Osborne & Rubin-
stein (1998) which was first applied to experimental data in Selten & Chmura (2008).
The behavioral explanation of the stationary concept is that a player chooses her
action after sampling each alternative an equal number of times, picking the action
that yields the highest payoff.

To implement this behavior payoff-sampling learning is based on samples from
earlier periods. The samples are randomly drawn with replacement and fixed sample
sizes. The agent draws two samples (s1(t), s2(t)) of earlier payoffs, one sample with
payoffs from rounds in which she chose action 1 and one with payoffs from rounds
in which she chose action 2. In the following S1(t) and Ss(t) denote the payoff sums
in s1(t) and sq(t), respectively.

After the drawing of the samples, the cumulated payoffs S;(t) and Sy(t) are
calculated and the action with the higher cumulated payoff is played, if there is one.
If the samples of both possible actions have the same cumulated payoff the agent
randomizes with p; = py = 0.5.

1 if Sz(t) > Sj(t)
pi(t) = < 0.5 if Si(t) = S;(t) (A.2)
0 else

fori,j =1,2 and 7 # j.

As before p;(t) is the probability of playing action i in period ¢. At the beginning
and until positive payoffs for each action have been obtained at least once, the agent
chooses both actions with equal probabilities, i.e. p; = ps = 0.5.

The optimal sample sizes are calculated analogously to the ones of action-sampling
learning. Figure A.15 gives the mean quadratic distances and the mean quadratic
scores for different sample sizes. For the quadratic distance the optimal sample size
is n = 2 and for the quadratic scores it is n = 1.
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Figure A.15: Figure gives the mean quadratic distance (left) and the mean
quadratic score (right) of payoff-sampling for different sample sizes

Appendiz A.3. Parameter-free stEWA

One of the referees suggested to additionally test a parameter free version of
self-tuning EWA. This allows a better comparison between the similar action choice
mechanisms of impulse-matching learning (based on impulses) and self-tuning EWA
(based on attractions) without the bias of an estimated parameter. Therefore, the
probability of playing action ¢ in period ¢ depending on the attractions is not calcu-
lated as a logit response function with the parameter \. Instead the probabilities are

calculated with the relative attractions. Thus, equation 14 is replaced by equation
A.3.

AR
> At —=1)
Everything else stays unchanged.

pi(t) (A.3)
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Appendix B. Comparison of all learning models

Appendiz B.1. Aggregate performance
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Figure B.16: Mean quadratic distance for all learning models and stationary con-
cepts (dark grey)

Appendiz B.2. Individual performance
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Figure B.17: Mean quadratic scores for all learning types
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Appendix C. Mean probabilities of simulations over time

Appendiz C.1. Main learning models

32



Spunor (g I9A0 sjuswLIodxo o) Ul selduenbaly pur ‘oures 1od SUNI SUOIIRINWIS ()G
I0A0 dn pue 9o 10 Surures] urjdures-uoirjoe jo seniiqeqoid ure[y QT 9INIIJ

dn uespy uswniedxy - dn Aupgeqold - ----- o uesy uswuadxy « Yo7 Aljigeqold
punoy

002 05} 00} 05 0 002 05} 00} 08 0 002 oS+ 00} 0s 0
o
- o
- O
- o
- o
-
o
- o

33



SpUNoI ()7 ISAO SJUSWILIOAXD ) UL SOIOUNDOI] UroW Se [[oM se ‘oured Iod Sunl suoremuis ())G
IaA0 dn pue 9jo[ 10 Surtures] sulyojeur-osnduur jo soniqeqord uesy g1 9InIrg

dn uespy uswniedxy - dn Aupgeqold - ----- o uesy uswuadxy « Yo7 Aljigeqold
punoy

002 oS} 00} 0S 0 002 oS} 00} 08 0 002 oS} 00} 05 0
o
“““““““““““““““ e
s — ——-=====-=-=5c--coco-eooseeooeen” T L ~
— —— — St
)

2k b o]

g
N

6 8 L
F o
““““““““““““““““ - oo RN
R — : ; N
e \, \,ug
r
5 ... ftoO
“““““““““““ e L N
, & \\/uv
\, : B
. F o

34



SpUnNoI (g I0A0 syUdWILIOdXo d1[) Ul SOIOUNDOI} UreW Se [[oM Se ‘Oures Iod SUNI SuoIje[nuis
006 IoAa0 dn pue 1Jo[ 10j SUIULIED] JUSWISIIOJUIDI JO sol[Iqeqold Uesy :0g°D °INn3I1q

dn uespy uswniedxy - dn Aupgeqold - ----- o uesy uswuadxy « Yo7 Aljigeqold
punoy

|
\

4! Al ok
s
- e o e Tt T N
e
. ro
] F o
6 8 N

|
\
|

<) S 14
““““““““ o o o o
° T Tttt o .,/,/ o
— — [ »
. ro
. [ o

35



SpUNoI () I0A0 syUdWILIOdXo o) Ul SOIOUNDOI} UrsW Se [[oM se ‘Oures Iod SUNI SuoIje[nuis
00G o0 dn pue 3jo] 10] Surures] YAAH surunj-jes jo soniqeqord uesjy :1g D 9In3rg

dnuswiiedxy - dngoiques|y - ---------- youawuedxy . yoqoidues|y
punoy
002 051 00k 0S 0 002 051 00l 05 0 002 05t 001 0 0

- o
F o
S
“““““““““““““““““““ et T ettt I
r o
o

¢l b ol
r o
F o
- - e e e A m e e e e m e e m e m e m e == ") e e e e - m e mm e — .- - - -~ - -—=-==-=~5 IHV
R L o
S

6 8 L
- o
F v
‘‘‘‘‘‘‘‘ P o o
2
S

9 <] 14
o
F o
T L ) — — — - — — IH«V
. - o
o

36



Appendiz C.2. FExcluded learning models
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Appendix D. Parameter estimates
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