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Abstract

This article is concerned with the welfare properties of trade when the behavior of agents

cannot be rationalized by preferences. I investigate this question in an environment of

matching allocation problems. There are two reasons for doing so: firstly, the finiteness of

such problems entails that the domain of the agents’ choice behavior does not need to be

restricted in any which way to obtain results on the welfare properties of trade. Secondly,

some matching allocation mechanisms have been designed for non-market environments in

which we would typically expect boundedly rational behavior. I find qualified support for the

statements that all outcomes of trade are Pareto-optimal and all Pareto optima are reachable

through trade. Contrary to the standard case, different trading mechanisms lead to different

outcome sets when the agents’ behavior is not rationalizable. These results remain valid

when restricting attention to “minimally irrational” behavior.
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1 Introduction

Trade leads to Pareto-optimal outcomes and any Pareto-optimal outcome can be reached via

trade. The First and Second Fundamental Theorems of Welfare Economics state sets of con-

ditions under which these two statements hold true. In this article, I investigate the question

whether and how the assumption of individual rationality is needed to obtain these results.

In other words: I ask whether the two introductory statements on the Pareto optimality of

trade can hold true without the assumption that the agents’ behavior is rationalizable, in the

sense that their choice functions can be derived from the maximization of some (transitive and

complete) preference relation.1

I treat this question within a framework of matching allocation problems, in which some

indivisible objects need to be assigned to some agents. In such environments, trade can be iden-

tified with trading-cycles-mechanisms (more on that in Section 4). Two main reasons underlie

my choice of this environment: first of all, such matching allocation problems are finite. This

entails that no assumptions on preferences are needed to show that trade leads to Pareto-optimal

outcomes and that any Pareto-optimal outcome can be reached via trade in the standard case

in which all agents’ behavior is rationalizable (see Abdlukadiroglu and Sonmez [1] and Bade

[6]). The same holds true for the welfare theorems proposed in the present paper; they hold for

all possible choice functions. This is important since assumptions such as local non-satiation or

convex upper contour sets are − if anything − harder to interpret and justify in an environment

of boundedly rational behavior.2

Secondly, some of the non-market environments for which economists have designed matching

mechanisms can serve as prime examples of cases in which to expect non-rationalizable behav-

ior. Take kidney allocation problems as an example. One difficulty with the implementation

of mechanisms that match donors to recipients is that doctors are reluctant to state complete

and transitive preferences over kidneys. However, the same doctors do not seem to have any

problem choosing the “best” kidney for a particular patient from a given set.3 This apparent

1The terms “rationalize” or “rationalizable” carry two different meanings in economic theory: in game theory,

a strategy profile is considered “rationalizable” if it survives the sequential elimination of dominated strategies. In

decision theory, a choice correspondence is considered “rationalizable” if there exists some transitive and complete

preference relation %, such that the choice correspondence maps any consumption set S to the set of %-maximal

elements in that set S. In this article, I only use the terms in the second sense.
2Some of the eminent studies of the equilibria of competitive markets with boundedly rational agents impose

such conditions on the behavior of agents to obtain results; see Fon and Otani [13], Gale and Mas Colell [14], and

Mandler [18].
3These statements reflect a private conversation with Utku Unver, who was involved in the design and practical

implementation of several kidney exchange mechanisms.
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contradiction could arise from doctors having only limited resources to test for quality of kid-

neys.4 If doctors are aware that their decision procedures can lead to non-rationalizable choices,

it is only reasonable for them to refuse to state complete rankings over kidneys.

Alternatively, consider the allocation of elementary school slots to students. Consider the

case in which decisions over schooling are not taken by a single agent, but arise out of the

interaction of some competing interests. One could think of a situation in which a mother

whittles down the available options to be presented to the father, who then chooses among

them. Choices that arise from such strategic interplay are generally not rationalizable.5 So,

given that the assumption of preference maximization appears strong in some environments in

which trading mechanisms have been implemented, we should ask whether the results on the

Pareto optimality of these mechanisms extend to environments with boundedly rational agents.

Some major hurdles need to be cleared before I can go on to state and prove the main results

of the present article: the first one concerns the fact that the notion of Pareto optimality builds

on the notion of individual preferences. This is problematic, since the very purpose of the present

paper is to cover behavior that cannot be explained by preference maximization. In Section 2

I define Pareto optimality in terms of two alternative notions of “individual preference”. I say

that an agent solidly prefers some object x to another object y if he never chooses y when x is

also available. Conversely, an agent lightly prefers x to y if he chooses x out of at least one set

that also contains y. Each of these two notions of preference yields a different notion of Pareto

optimality. For any matching allocation problem, the resulting two sets of Pareto optima are

nested.

The next hurdle is cleared in Section 4, which is concerned with a notion of “free trade”

that applies to an environment without money. In tune with the literature on housing problems,

I identify “trade” with mechanisms that assign property rights over all objects at the outset

and then let agents freely exchange houses in “trading cycles”. One last hurdle remains: some

4The following story might explain the contrast between the hesitance to state preferences and the readiness to

choose. Consider the task to find the “best” kidney for patient x out of a set of ten kidneys. Financial constraints

might force doctors to use some preliminary quick and cheap tests, to limit the set of kidneys on which they run

some more detailed and expensive tests. Call the kidney chosen according to this procedure kidney a. Does this

mean that a should be ranked above any of the other kidneys in the set? Maybe not. Consider the case in which

only a and some other kidney b are available, and assume that b was eliminated following the preliminary tests

in the case of the choice problem, with ten kidneys. Given that there are only two kidneys in the new choice

problem the doctors might now be able to run the detailed and expensive tests on both of them and discover that

kidney b is actually better than a for patient x. Choice functions that can be derived from such procedures have

been characterized by Manzini and Mariotti [20] and by Mandler [19].
5Choice functions that can be derived from such interactive procedures have been characterized by Xu and

Zhou [26] and by Apesteguia and Ballester [3].
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assumptions need to be made on the strategic behavior of agents in such mechanisms. Observe

that the assumption of fully strategic rationality seems overly demanding in an environment in

which individuals are not even individually rational. To resolve this tension, I define a notion of

truthful implementation in Section 5. This notion can be viewed as a form of boundedly rational

strategic behavior that approximates full strategic rationality.

Once all these hurdles are cleared, I adapt the First and Second Fundamental Theorem of

Welfare Economics to the environment of house allocation problems with boundedly rational

agents in Section 6. In accordance with the First Fundamental Theorem of Welfare Economics

I find that any outcome of trade belongs to the larger set of Pareto optima. In accordance

with the Second Fundamental Theorem of Welfare Economics, I find that any allocation in the

smaller Pareto set is reachable through trade. Exchanging the two Pareto sets in the preceding

two observations, one obtains stronger analogues of the Fundamental Theorems of Welfare. I

show that these stronger analogues do not hold. These observations are all owed to the fact that

the set of Pareto optima, according to the individual solid rankings of goods, can be very large

whereas the smaller set according to the individual light rankings can be very small (it might

even be empty). I show, in addition, that the sets of allocations that are implemented through

trade differ for different trading mechanisms. This yields an interesting contrast to the the case

of rationalizable behavior, in which these sets of allocations all coincide with the set of Pareto

optima.

I first establish these results for any choice functions. Since these results all depend on the

- potentially large - difference between the two Pareto sets, I go on to study cases in which

this difference is smaller: I restrict the sets of permissible choice functions. In this context,

I show that even when assuming that the agent’s behavior only “minimally” deviates from

rationalizable behavior, the main results of the article remain valid. Before going into detail,

though, the notions of trade and of truthful implementation as well as the results are previewed

with the help of a simple example (Section 3)

2 The Environment

The problems discussed in the article are represented by triplets E = (N,H, (ci)i∈N ), where

N denotes the set of agents and H the set of objects that is to be matched to the agents;

the vector (ci)i∈N denotes the set of all agents’ choice functions on H. The agents are simply

numbered N = {1, ..., |N |}, it is assumed that there are equally many agents and objects:

0 6= |N | = |H| < ∞. In accordance with the convention adopted in the literature, the objects

are called houses. Generic elements of the set of houses are denoted by x, y, w, and z. For each
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i ∈ N , ci : P(H) → H with ci(S) ∈ S is a choice function representing the choice that agent

i would make when given the opportunity to choose from a set S.6 If a choice function ci is

rationalizable, I write %i for the preferences that rationalize it. Note that the preferences %i

yield single-valued choice correspondences, if and only if %i is a linear order, meaning that it is

transitive, asymmetric and complete. Consequently, the present definition of a (house allocation)

problem is standard, except that the agents’ behavior is described by choice functions.7

For a particular problem E = (N,H, (ci)i∈N ), an allocation is defined as a bijection µ : N →
H. Allocations are denoted by vectors µ, with µi denoting agent i’s assignment. An allocation

rule φ maps problems E = (N,H, (ci)i∈N ) into allocations φ(E).

To judge whether a particular allocation µ is Pareto-optimal or not, some notions of indi-

vidual “preference” are needed. According to a the first and weaker definition, I say that agent

i lightly prefers house x over house y, formally xP ∃i y, if there exists a set of houses S ⊂ H,

such that x, y ∈ S and x = ci(S). On the other hand, I say that agent i solidly prefers house

x over house y, formally, xP ∀i y, if y 6= ci(S) for all S ⊂ H with x, y ∈ S. Observe that xP ∀i y

holds if there exists no set, such that y is chosen when x is available; conversely, there needs to

exist only one set containing x and y, such that x is chosen for xP ∃i y to hold. The two notions of

preference yield two notions of Pareto optimality: an allocation µ is called P ∀−Pareto-optimal

(P ∃-Pareto-optimal) if there exists no alternative allocation µ′, such that µ′iP
∀
i µi (µ′iP

∃
i µi and

µ′i 6= µi) for all i in some non-empty subset K of the set of agents N and µi = µ′i for all other

agents. I write PO∀(E) (PO∃(E)) for the sets of P ∀- (P ∃-)Pareto-optimal allocations for prob-

lem E . The notion of solid preference presented here (P ∀) is identical with (or very similar to)

the notions of preference that Bernheim and Rangel [8], Mandler [18], and Green and Hojman

[15] use to compare outcomes in terms of individual and collective welfare.

Let me summarize some of the important properties of the two notions of preference. Note

that xP ∀y implies xP ∃y. Moreover, yP ∀x holds if and only if xP ∃y is violated. The relation P ∃

is always complete, the relation P ∀ need not be. The two relations coincide if and only if the

underlying choice function is rationalizable which holds if and only if P ∃ is transitive, which,

in turn, holds if and only if P ∀ is transitive. While both relations might violate transitivity,

they do so in different ways. The statements xP ∀y and yP ∀z might hold, even if x and z are

6The set of all subsets of a set X is denoted by P(X).
7Note that the assumption of choice functions as a primitive of the model allows for a much larger range

of “irrationalities” as the assumption of agents that maximize some intransitive and/or incomplete preferences.

The latter assumption for example rules out an agent who chooses frozen yoghurt when offered ice-cream, frozen

yoghurt, and broccoli, but does choose ice cream when only frozen yoghurt and ice-cream are available. Such

choices are permissible in the present model. Examples of studies on trade and/or welfare that assume intransitive

and/or incomplete preferences are Gale and Mas Collel [14] as well as Fon and Otani [13].
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unranked by P ∀. However, is is impossible that zP ∀x would hold for the given case. So, P ∀ is

acyclic. In contrast, for some choice functions xP ∃y, yP ∃z, and zP ∃x hold; the completeness of

the relation P ∃ implies that x and z must be ranked. In sum, these observations imply that the

two different Pareto sets are nested for any problem: PO∃(E) ⊂ PO∀(E) holds for all problems

E . Moreover, for “highly irrational” choice functions there can be many cycles in P ∃, and P ∀

might leave many alternatives unranked. In this case, PO∃(E) might be very small, even empty,

and PO∀(E) might be large.

With these definitions of, and observations on P ∀- and P ∃-Pareto optimality in hand, the

guiding questions of the article can be formulated as follows: does free trade lead to P ∀- (P ∃-

)Pareto-optimal allocations? Is there a way to allocate ownership rights, such that free trade

results in a given P ∀- (P ∃-) Pareto-optimal allocation? Before a detailed definition and discussion

of the concept of free trade in the given context, I will discuss these questions with the help of

a simple example.

3 Example

Consider a house allocation problem E∗ = (N,H, (ci)i∈N ) with three agents (N = {1, 2, 3}) and

three houses H : = {x, y, z}. Let the agents’ choice functions be given by:

c1({x, y, z}) = x, c1({x, y}) = x, c1({y, z}) = y, c1({x, z}) = z

c2({x, y, z}) = y, c2({x, y}) = y, c2({y, z}) = z, c2({x, z}) = x

c3({x, y, z}) = z, c3({x, y}) = y, c3({y, z}) = z, c3({x, z}) = x.

The given house allocation problem has no P ∃-Pareto optima. To see this, observe that, on

the one hand, (x, y, z) /∈ PO∃(E) as (z, y, x) P ∃-Pareto-dominates (x, y, z), since c1({x, z}) = z

and c3({x, z}) = x. On the other hand, any allocation µ 6= (x, y, z) is P ∃-Pareto dominated by

(x, y, z) = (c1({x, y, z})), c2({x, y, z}), c3({x, y, z}). The set of P ∀-Paerto optima is non-empty.

To calculate it, observe that xP ∀1 y, yP ∀1 z, yP
∀
2 x, xP ∀2 z, zP

∀
3 y, and yP ∀3 x. The set of P ∀-Pareto

optima contains three elements (x, y, z), (x, z, y) and (z, y, x).8

For now, let me identify the notion of free trade within the present environment with Gale’s

top trading cycles mechanism as defined by Shapley and Scarf [23]. In Section 4, this mechanism

will be embedded in a larger class of trading mechanisms. According to the top trading cycles

mechanism, each agent initially owns one house. The mechanism prescribes that each agent

8To determine the set of P ∀-PO, all six possible allocations need to be checked. To see, for instance, that

(y, x, z) is not P ∀-Pareto-optimal, observe that agent 1 solidly prefers x to y, whereas agent 2 has the inverse

P ∀-preference.
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points to “his most preferred” house and each house points to its owner. At least one cycle

of agents and houses forms. All agents in these cycles are assigned the houses that they point

to. The procedure is repeated with the remaining agents and houses until all agents have been

assigned a house. The mechanism can be viewed as free trade from initial endowments, since,

on the one hand, every house is owned by someone at any moment of the mechanism and, since,

on the other hand, all exchanges are voluntary.

As far as the agents’ behavior is concerned, I assume, for now, that at each stage each agent

points to his choice out of the set of all remaining houses. If choices are rationalizable, this

type of behavior coincides with truth-telling, which, in turn, is an equilibrium in the top trading

cycles mechanism. This type of behavior could, therefore, be viewed as an approximation of

strategically rational behavior. I discuss the agents’ behavior in a mechanism and theories of

implementation at length in Section 5.

Given this assumption on the agents’ behavior, the top trading cycles mechanism implements

the (unique) allocation µ = (x, y, z). To see this, observe that according to the hypothesis on

the agents’ behavior, each agent i points to µi = ci(H) in the first stage of the mechanism -

no matter which initial allocation they are starting out with. Absent any conflict of interest,

each agent i is assigned µi in the first stage of the mechanism. In terms of the quest for welfare

theorems for agents with choice functions that are not rationalizable, the following observations

should be noted for this particular house allocation problem:

In tune with possible versions of the First and Second Fundamental Theorem, any outcome of

free trade is P ∀-Pareto-optimal and any P ∃-Pareto-optimal allocation can be reached through

free trade (in the case of the present example, the latter holds trivially, given that the set

of P ∃-Pareto optima is empty). These are the positive results. In terms of negative results,

note that there are some P ∀-Pareto optima that cannot be reached through free trade for any

initial allocation. So when using the criterion of P ∀-Pareto optimality, the Second Fundamental

Theorem of Welfare Economics fails. Conversely, for the notion of P ∃-Pareto optimality, the

First Fundamental Theorem fails: there is an allocation that is reached for all initial allocations

through free trade, even though this allocation is not P ∃-Pareto-optimal. These four observations

can conveniently be summarized as the subset relation PO∃(E∗) ( TR(E∗) ( P ∀ − PO(E∗),
where the notation TR(E∗) stands in for the set of all allocations reachable through trade in

the given housing problem E∗. The main result of the article extends this subset relation to a

much larger class of theories of trade and to all possible problems E . In particular, I consider

a class of trading mechanisms that allows for more unequal distributions of initial wealth than

does the top trading cycles mechanism. I also consider implementation theories according to
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which agents might not be so naive as to consider the set of all remaining houses as their actual

choice set. Finally I show that the strictness of the subset relation remains valid when allowing

only for “minimally irrational” problems E .

4 Trading Mechanisms

In this section, I sketch out Papai’s [21] definition of hierarchical exchange mechanisms,

which constitutes a large superclass of Gale’s top trading cycles mechanism. The two reasons

for doing so correspond to the two motivations given in the introduction: first of all, one might

criticize Gale’s top trading cycles mechanism as too restrictive a notion of “free trade” as each

agent starts out by owning exactly one house. In contrast, Papai’s [21] hierarchical exchange

mechanisms allow for the full spectrum of inequality of initial endowments, ranging from the

most equal case, according to which each agent owns exactly one house, to the most unequal

one, in which one single agent starts out owning all houses.

Secondly, to read the paper as an analysis of the behavioral welfare properties of mechanisms

that have been suggested in the literature, it is useful to study a class of mechanisms that

contains many of these mechanisms as special cases. This is the case for Papai’s [21] hierarchical

exchange mechanisms. Subsets of that class have been described by Abdulkadiroglu and Sonmez

[2], Svensson [24], Ergin [12], Ehlers, Klaus, and Papai [11], Ehlers and Klaus [9], Kesten [17],

Ehlers and Klaus [10], and Velez [25].

In a hierarchical exchange mechanism, all houses start out being owned by someone.

In a first stage of the mechanism, the designer asks all agents to point to their most preferred

houses. Each house points to its owner. At least one cycle of agents and houses forms. Any

agent in such a cycle is assigned the house he points to and leaves the mechanism with this

assignment (no agent or house can take part in two cycles). If an owner of multiple houses

leaves the mechanism, the subset of his houses that have not been assigned is passed on to the

agents who still await their assignments according to some fixed inheritance rule.9 Agents are

once again asked to point to their most preferred houses among the remaining ones and the

same procedure is repeated, until each agents has been assigned a house.10’11 A hierarchical

9So ownership rights in this class of mechanisms take two forms. Either an agent owns a house in the current

period, or he faces the option to become an owner of a house.
10An explicit and detailed definition of hierarchical exchange mechanisms can be found in Papai [21] pp. 1408-

1413.
11According to the definition by Papai [21], cycles are eliminated simultaneously. Bade [6] shows that for the

standard case of rationalizable choice functions, the order of elimination does not matter. To see that, for the
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exchange mechanism is denoted by Γ.

Hierarchical exchange mechanisms can be viewed as mechanisms arising out of the assignment

of ownership and the ensuing free trades among owners. At any moment in the mechanism,

each house is owned by someone, in the sense that the owner can appropriate the house as his

assignment and leave the mechanism. Before the final assignments are made, the ownership

of multiple houses is feasible. Any exchanges are voluntary. So one might argue that Papai’s

[21] hierarchical exchange mechanisms do represent the notion of trade that is appropriate for

matching allocation problems. Since these mechanisms allow for a very broad and fine spectrum

of initial endowments, ranging from maximal to minimal inequality, there are probably no other

mechanisms for matching allocation problems that could be described as mechanisms of “free

trade”.12 However, it is important to note that, as long as one identifies trade with some subclass

of the set of hierarchical exchange mechanisms, the results of the present article apply.

One might argue, in addition, that hierarchical exchange mechanisms (or some subclass

thereof) are of interest in their own right: most mechanisms that have been suggested in the

literature as optimal - from some point of view or other - are comprised by the set of hierar-

chical exchange mechanisms. Some of these mechanisms have been put into practice in real-life

matching allocation problems. It is, therefore, of interest to know how the sets of outcomes

of such mechanisms relate to the sets of Pareto optima in the matching allocation problems in

which they are used.

Hierarchical exchange mechanisms specify ownership rights and determine the agents who

hold these rights. To answer the main questions of the article, it must be possible to assign

these same rights in different ways to the different agents. If some mechanism Γ, for example,

prescribes that agent 3 starts out owning houses h1, h4 and h5, there should be an alternative

mechanism that prescribes that agent 1 starts out owning these houses. To this end, I define a

permutation p : N → N as an initial assignment of ownership for a hierarchical exchange

case of non-rationalizable choice functions, this order does matter, reconsider the Example provided in Section 3

together with Gale’s top trading cycles mechanism with the initial endowment (x, y, z). In stage one, each agent

points to his own endowment. According to the present definition of hierarchical exchange mechanisms, all three

top trading cycles are eliminated simultaneously and (x, y, z) is the resulting assignment. If, on the other hand,

only agent 2 and house y are eliminated in stage one, in stage two the agents 1 and 3 point to each other’s houses.

Given the sequential elimination of top trading cycles, the allocation (z, y, x) would be obtained.
12Pycia and Unver[22] characterize a superset of the set of all hierarchical exchange mechanisms: they show that

the set of all strategy-proof and Pareto-optimal allocation mechanisms is the set of “trading cycles with brokers

and owners”. These mechanisms cannot be described as the result of ownership assignments and free trade alone.

In Pycia and Unver [22]’s mechanisms, there are two types of control rights over houses: the rights of owners and

the rights of brokers. A broker’s control rights over some house do not involve the right to appropriate the house

himself.
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mechanism Γ. The mechanism that arises when permuting the roles of all agents by the bijection

p is denoted by pΓ, and is also called a permutation of a hierarchical exchange mechanism.

If under Γ some agent i is the initial owner of a subset of houses S, then for pΓ, agent p(i) is

the owner of this subset; if under Γ some agent i′ is supposed to inherit house x after the initial

owner i′′ of x is assigned y, then under pΓ, agent p(i′) is to inherit x after p(i′′) is assigned y.

Hierarchical exchange mechanisms generalize the top trading cycles mechanism insofar as

some agents might initially own multiple houses while others own none. Inheritance rules are

introduced to solve the problem that agents may not own multiple houses in any outcome

of a mechanism. Serial dictatorships constitute another special case of hierarchical exchange

mechanisms: in this case, the first agent is the initial owner of all houses; he forms a cycle by

pointing to one of his houses and is assigned that house; all remaining houses are inherited by

the next dictator. Any permutation of serial dictatorship consists in a reordering of the sequence

of dictators. Permutations of Gale’s top trading cycles mechanism consist in permutations of

the initial assignment of houses.

The definition of permuted hierarchical exchange mechanisms makes it possible to ask ques-

tions such as: is there an assignment of initial ownership rights, such that allocation µ arises for

some given type of trading mechanism? The next section is concerned with the last missing link

to answer such questions: of course, to know whether µ is implemented by some mechanism pΓ,

we need to have a theory on the agents’ behavior in a mechanism.

5 Implementation

To relate the allocations that can be reached via trade to the (different sets of) Pareto optima in

some housing problem E , we need to know which allocations are implemented by a mechanism.

Standard notions of implementation presume individual rationality and can, therefore, not be

applied directly to the present context. Moreover, the assumptions on the agents’ strategic

rationality, embodied in some notions of implementation, clash with the present assumption

that agents are not even individually rational. In this section, I first define a notion of truthful

implementation, which assumes that agents provide truthful answers to the designer’s questions.

In the ensuing discussion, I compare this notion of implementation with some other notions. I

will argue, in particular, that the bounded strategic rationality associated with truthful imple-

mentation blends nicely with the assumption that agents are boundedly rational in terms of

individual choice.

A mechanism Γ is said to implement truthfully an allocation µ in a housing problem E
if µ is the allocation that results when all agents provide truthful answers to the designer. In
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turn, an agent’s response is considered truthful if the following two conditions are met. First of

all, house x must be P ∀i −maximal in H ′ for agent i to claim that he likes house x most among

the set of remaining houses H ′. Secondly, there needs to be a set S′ of at least two houses with

S ⊂ S′ ⊂ H ′, such that ci(S
′) = x, where the set S is the set of houses currently owned by agent

i. Finally, T is called a theory of truthful implementation if it prescribes truthful answers

to the designer’s questions.

Let me first justify why such theories are called “truthful”. Consider the first requirement:

it implies that agent i cannot claim to like house y most out of the set H ′ when there exists

some other house z ∈ H ′, such that agent i would not choose y out of any subset S, if z was also

available in that subset S. If preferences are rationalizable, this condition holds, if and only if

agent i claims to most like the (unique) %i-maximal element in H ′. However, given that agents’

behavior is not necessarily rationalizable multiple houses might satisfy this requirement. This is

where the second requirement comes into play. It states that agent i should have some theory

on the set of houses S′ he is actually choosing from, and that this theory should be consistent

with the underlying facts. The houses currently owned by the agent (S) should certainly be in

that imaginary choice-set S′. He should, moreover, not perceive any houses that already left the

market to be part of his choice-set (which accounts for S′ ⊂ H ′). Finally, the requirement that

S′ should contain at least two elements implies that the agent should consider an actual choice

situation when choosing to point to his own house. To see that the set of truthful theories of

implementation is not empty, let S′ = H ′ for any set of remaining houses H ′. Then S ⊂ S′ ⊂ H ′,
ci(S

′) = ci(H
′), and there is no other house in H ′ that is solidly preferred to ci(H

′).13

If the agents’ behavior is rationalizable, hierarchical exchange mechanisms are strategyproof:

in fact, truth-telling (announcing one’s true preferences to the designer) is a dominant strategy

(in the normal form representation of any hierarchical exchange mechanism). So we might ask:

can truthful revelation as described above also be considered “equilibrium behavior” for the case

of agents whose behavior is not rationalizable? A minimal requirement for a strategy profile

to be an equilibrium should be that no agent can solidly improve upon his assignment when

changing his strategy, holding everyone else’s strategy fixed. It turns out that truth-telling need

13This is the theory of implementation used in the example in Section 3. One could also consider theories that

have more of an equilibrium flavor. Such a theory could require that an allocation is implemented by a mechanism

if the mechanism has an “e-strategy profile” that results in this allocation. A strategy profile is considered an

“e-strategy profile” if at any stage the set S′ that agent i based his choice ci(S
′) upon must not only contain

all houses currently owned by the agent, but also all the houses which are “offered” to i according to the given

strategy profile. Certainly these two theories are not the only ones that fit the notion of implementation advocated

above.
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not be an equilibrium as demonstrated by the following example:

Example 1 Let H = {x, y, z, w}. Let the choices of agents 1, 2, and 3 be rationalizable by

x �i y �i z �i w for i = 1, 2, 3. Let agent 4’s choice function be given by the conditions c4(S) 6= x

if z ∈ S, c4(S) 6= w if x ∈ S, c4(S) 6= y if w ∈ S, c4(y, z, w) = w, and c4(y, z) = y. Together

these choices imply that agent 4’s behavior is not rationalizable and that zP ∀4 x, xP ∀4 w, and

wP ∀4 y holds. Now let us consider the top trading cycles mechanism with an initial endowment

µ = (x, z, w, y). Truth-telling implies that the agents with rationalizable preferences all point to

house x. Agent 4 must point to house z since it is the unique maximizer of P ∀4 in H. There is

only one cycle, and that cycle is of minimal length. Agent 1 leaves with his initial endowment

x. In the next stage, agents 2 and 3 point to house y. Agent 4 must point to house w: he

cannot point to y as wP ∀4 y, he cannot point to z as c4(S′) 6= z for any set S′ containing z and

at least one other element. In this stage, agents 3 and 4 exchange houses, and agent 2 keeps his

endowment z. For this strategy profile, agent 2 would be better off by pointing to house y in

the first stage of the mechanism. In that stage, agent 4 is willing to swap houses with him. If

agent 2 chooses not to tell the truth in this stage, his final assignment is y instead of z, where

y �2 z.

In fact, the strategy profile described is the unique truthful strategy profile in the example.

Consequently, the same example can be used to show that some hierarchical exchange mecha-

nisms simply do not have truth-telling equilibria when the agents’ behavior is not rationalizable.

This observation forces a choice between truth-telling and equilibrium as solution concepts. Let

me detail some reasons why I chose to focus on truth-telling.

First of all, the assumption that agents follow “equilibrium behavior” would place some

stringent demands on the agents’ ability to reason strategically. I view it as problematic to

assume, on the one hand, that agents are not even individually rational, but to assume, on the

other hand, that agents are strategically rational. If violations of rationality are due to the

complexity of different decision situations, we should expect that strategic rationality is violated

more often than individual rationality, given that strategic reasoning generally involves a high

level of complexity.

Given the simple case of rationalizability, truth-telling is an equilibrium, therefore the as-

sumption of truth-telling can be viewed as a first-order approximation to strategic behavior in

the case of agents’ behavior not being rationalizable. Agents who are not aware that their own

behavior or some other players’ behavior is not rationalizable might believe that by truthfully

revealing their choices they are actually following equilibrium behavior.

Moreover, truthtelling could be interpreted as arising out of a form of shortsighted strategic
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rationality: suppose agent i follows the truthful strategy and is assigned house µi. Suppose that

H ′ is the set of houses still unassigned at the stage when agent i leaves the mechanism. The

requirements of truthtelling imply that agent i will not regret having pointed to µi in that stage

if he only considers that stage. There is no house left in H ′ that he would solidly prefer to µi;

moreover there is an imaginary choice set S′, out of which the agent would have chosen µi. In

further illustration of this point, observe that the argument that agent 2 can obtain a solidly

preferred house when deviating from the truthful strategy in Example 1 built on a comparison

of the houses available to that agent in different stages of the mechanism.

Let me finally note that it is far from clear how the implementation through strategically

rational behavior should be defined in the present context. Consider the definition according

to which a strategy profile should be considered an equilibrium if no agent can obtain a house

he solidly (or lightly) prefers to the one he is being assigned, if all agents follow the profile.

Now observe that the top trading cycles mechanism implements any allocation according to

this definition of equilibrium: simply fix the desired allocation as the initial endowment and

assume the strategy profile according to which each agent points to their own initial assignment.

According to this strategy profile, no player has any influence on the outcome of the mechanism

and might as well opt to point to his own endowment in the first stage of the mechanism.

With the notion of truthful implementation in hand, we can now characterize the alloca-

tions that are implemented by hierarchical exchange mechanisms. I denote the outcome of a

mechanism Γ with initial assignment of ownership p and the assumption of the theory of im-

plementation T for a given house allocation problem E by pΓT (E). Speaking in terms of the

problem E defined in Section 3, we have that pΓT (E) = (x, y, z), where Γ is the top trading

cycles mechanism, p is any permutation, and T is the theory of implementation according to

which agents always point to their choice out of the set of all unassigned houses.

6 Welfare Theorems

Using the concepts developed in the prior two sections, the main observation of the introductory

example can now be summarized as PO∃(E∗) (
⋃

p pΓ
∗
T ∗(E∗) ( PO∀(E∗), with E∗ being the

problem defined in that example, Γ∗ the top trading cycles mechanism, and T ∗ the truthful

theory of implementation according to which all agents at any stage point to their choice out

of the set of houses remaining in the mechanism. In words: all P ∃−Pareto optima of E∗ are

implementable through trade and any allocation that is truthfully implementable through trade

is P ∀−Pareto-optimal. These subset relations are strict: the allocation implemented through

trade is not P ∃−Pareto-optimal. Not every P ∀−Pareto-optimal allocation is the outcome of
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trade for some initial allocation of houses.

In this section, I show that these statements hold on a vastly more general level: namely, not

just for identification of “trade” with the top trading cycles mechanism Γ∗, but with any hierar-

chical exchange mechanisms Γ, not just for T ∗, but for all truthful theories of implementation,

not just for the E∗, but for all housing problems. The extensions of the First and Second Funda-

mental Theorem of Welfare Economics can now conveniently be stated as the following subset

relations, where the intersection
⋂

Γ,T and union
⋃

Γ,T are to be understood over the entire set

of hierarchical exchange mechanisms and the entire set of truthful theories of implementation.

Theorem 1 Any P ∃-Pareto optimum can be reached through any combination of a trading

mechanism with a truthful theory of implementation. Any allocation that is truthfully imple-

mentable by some trading mechanism is P ∀-Pareto-optimal. Thus,

PO∃(E) ⊂
⋂
Γ,T

(⋃
p

pΓT (E)

)
and

⋃
Γ,T

(⋃
p

pΓT (E)

)
⊂ PO∀(E) for all E .

The first subset relation translates to the following statement: for any P ∃-Pareto-optimal allo-

cation µ, any hierarchical exchange mechanism Γ, and any theory of implementation T , there

exists an initial allocation of ownership p, such that µ is implemented by pΓ for the theory of

implementation T . This is a version of the Second Fundamental Theorem of Welfare Economics.

The second subset relation extends the First Fundamental Theorem of Welfare Economics to

the environment of house allocation problems without rationalizability: any outcome of trade is

P ∀-Pareto-optimal; this does not depend on any particular hierarchical exchange mechanism Γ,

theory of implementation T , or initial assignment of ownership p.

Proof I start by showing that, for any P ∃-Pareto-optimal allocation µ, there exists an ordering

of agents, such that µiP
∀
i µk for all k > i and all i. To see this, suppose for all agents i there

existed some set Si ⊂ H, such that µi ∈ Si and µi 6= ci(Si). Now let all agents point to the owner

of ci(Si) under µ. Since there are only finitely many agents, at least one cycle forms. Consider

the allocation µ′ with µ′i = ci(Si) for all the agents in the cycle and µi = µ′i for all other agents.

Observe that all agents in the cycle lightly prefer their assignment under µ′ to their assignment

under µ: µ′i = ci(Si)P
∃
i µi for all agents i in the cycle. This yields a contradiction with the

P ∃-Pareto optimality of µ. So there must be at least one agent who chooses µi whenever it is

available. For this agent we have that µiP
∀
i x for all x ∈ H. Let i = 1. Since the restriction of

the allocation µ to the subsets of all remaining agents {2, · · · , |N |} and houses H \ {µ1} has to

be also P ∃-Pareto-optimal, the conjecture follows by induction.
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Next, I show that for any P ∃-Pareto-optimal µ and any mechanism Γ and theory of imple-

mentation T , there exists an initial assignment of roles p, such that µ is the outcome of pΓT . By

the first paragraph of the proof, the P ∃-Pareto optimality of µ allows me to order the agents,

such that µiP
∀
i µk for all k > i and all i. Now define p, such that at any given stage an agent

i owns a house if any agent l < i either currently owns a house or already left the mechanism

with his assignment. Assume, furthermore, that any agent i who is an owner of houses (also)

owns house µi. Now observe that for any theory of implementation T , agent i must point to

houses with indices l ≤ i, since µiP
∀
i µk for k > i. This means that at any stage (at least) the

agent with the lowest index leaves the mechanism. Furthermore, no agent’s request for a house

with an index lower than his own will ever be granted; this would require for at least some other

agent to accept a house with an index higher than his own. Consequently, the allocation µ arises

out of the mechanism Γ for the given theory of implementation T .

To see that every outcome of some pΓT is P ∀-Pareto-optimal, let µ be such an outcome and

assume w.l.o.g. that agents {1, · · · , l} have been assigned {µ1, · · · , µl} in the first stage of the

mechanism. So each of these agents imust have pointed to µi in the first stage, which implies that

µi is P ∀i -optimal in H for each i (by the requirement of the theory of implementation T ). By the

same argument, the houses assigned in the second stage must be P ∀i -optimal in H \{µ1, · · · , µl}
for the agents. Proceeding inductively, we can conclude that µ is P ∀-Pareto-optimal. �

The next theorem summarizes the negative results of the article:

Theorem 2 An allocation might not be P ∃-Pareto-optimal, even if it is implementable by any

combination of a trading mechanism with some truthful theory of implementation. Some P ∀-

Pareto-optimal allocations cannot be truthfully implemented through any trading mechanism.

Different trading mechanisms truthfully implement different sets of allocations. Formally, these

statements can be expressed as follows: there exist house allocation problems E ′, E ′′, and E ′′′ and

hierarchical exchange mechanisms Γ̃ and Γ, such that

PO∃(E ′) +
⋂
Γ,T

(⋃
p

pΓT (E ′)

)
;

⋃
Γ,T

(⋃
p

pΓT (E ′′)

)
+ PO∀(E ′′)

and
⋃
p,T

pΓ̃T (E ′′′) 6=
⋃
p,T

pΓT (E ′′′).

The first statement implies a failure of the First Fundamental Theorem of Welfare Economics

when adopting the notion of P ∃-Pareto optimality. It posits the existence of some housing

problems and allocations µ with the following features: for any notion of trade, there exists an

allocation of ownership rights, such that µ arises as the outcome of trade for the given house
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allocation problem. Still µ is not P ∃-Pareto-optimal in that problem. The second statement

shows the limits of the Second Welfare Theorem when adopting P ∀-Pareto optimality as the

measure of welfare: there are house allocation problems with P ∀-Pareto-optimal allocations that

cannot be reached by any hierarchical exchange mechanism Γ, initial allocation of ownership p,

and theory of truthful implementation T . Finally, the last inequality implies that different mech-

anisms of hierarchical exchange generally yield different sets of allocations for non-rationalizable

choice functions.

In the case of rationalizable preferences the full analog of both Fundamental Theorems of

Welfare Economics holds: in that case, we have P ∃i = P ∀i and, therefore, PO∃(E) = PO∀(E) :=

PO(E). Abdulkadiroglu and Sonmez [1] showed that serial dictatorship as well as Gale’s top

trading cycles mechanism each trace out the full Pareto set of any house allocation problem, in

terms of the formalism presented here
⋃

p pΓ̃(E) =
⋃

p pΓ(E) = PO(E)14 for Γ̃ and Γ Gale’s top

trading cycles mechanism and serial dictatorship respectively. Papai [21] showed that hierarchi-

cal exchange mechanisms are Pareto-optimal, in the sense that
⋃

Γ

(⋃
p pΓ(E)

)
⊂ PO(E). Bade

[6] complements this version of the First Fundamental Theorem of Welfare Economics with a

version of the Second to conclude that
⋃

p pΓ(E) = PO(E) holds for any hierarchical exchange

mechanism Γ. The next three examples of house allocation problems make up the proof of

Theorem 2.

Proof To see that the outcomes of different hierarchical exchange mechanisms need not coin-

cide, consider the following example:

Example 2 Let H = {x, y, z}, and let the choices of agents 1 and 2 satisfy c1({x, y, z}) = x,

c1({x, z}) = z, c2({x, y, z}) = y, and c2({y, z}) = z. Let agent 3’s behavior be rationalizable

by x �3 y �3 z. Observe that µ = (x, y, z) is achievable under top trading cycles. To see this,

assume µ as the initial allocation and assume a theory of implementation according to which

agents point to ci(H) in the first stage of the mechanism. The allocation (x, y, z) already obtains

in the first (and therefore last) stage of the mechanism. To see that µ is not implementable via

serial dictatorship, observe that under serial dictatorship either agent 1 or agent 2 has to be

the first dictator for (x, y, z) to result. If agent 1 is the first dictator, neither one of the two

remaining agents would pick µi as the second dictator. The same holds for the case in which

agent 2 is the first dictator.

14Note that I am not mentioning any theory of implementation. In the case of all choice functions being

rationalizable, there is a unique theory of truthful implementation. This theory corresponds to the play of

dominant strategies in the normal form game representation of the mechanism.
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To see that not every P ∀-Pareto-optimal allocation is reachable through some hierarchical ex-

change mechanism, consider the following example:

Example 3 Let H = {x, y, w, z} and let the choice functions of agents 1, 2 and 4 be ratio-

nalizable by x �i y �i z �i w for i = 1, 2, 4. Let the choice function of agent 3 be such

that ci(S) = y, if y ∈ S, c3({x, z, w}) = z, c3({z, w}) = w. The allocation µ = (x, y, z, w) is

P ∀-Pareto optimal. However, there is no hierarchical exchange mechanism and implementation

theory that implements µ. To see this, observe that when all houses are still available, x is the

unique P ∀i −maximizer for agents i=1,2, and 4, and y is the unique P ∀3−maximizer. Therefore,

in the first stage of any hierarchical exchange mechanism implementing µ, (only) agent 1 and

house x will be matched. By the same logic, in the second stage only agent 2 and house y will

be matched. In the third stage, the two remaining agents must view {z, w} as their choice set.

Since c3({z, w}) = w and c4({z, w}) = z, the resulting allocation cannot be µ.

To see that some allocations are not P ∃-Pareto-optimal, even though they can be reached

through any hierarchical exchange mechanisms, consider the following example.

Example 4 Let H = {x, y, z, w}. Let the choices of agents 1 and 2 be rationalizable by x �i

y �i z �i w for i = 1, 2. The choice functions of agents 3 and 4 have the following features:

y ∈ S implies that c3(S) = y, c3({x, z, w}) = w, c3({z, w}) = z, x ∈ S implies c4(S) = x,

c4(y, z, w) = z and c4({z, w}) = w. Observe that µ = (x, y, z, w) is not P ∃-Pareto-optimal

as wP ∃3 z and zP ∃4 w, since c3({x, z, w}) = w and c4(y, z, w) = z. However, µ is reachable for

any theory of implementation and any hierarchical exchange mechanism. To see this, fix a

hierarchical exchange mechanism and a theory of implementation. Define p, such that agent 1

is the initial owner of house x and house y is not initially owned by agent 3. In the first stage

of the mechanism, when no house has been assigned yet, there exist unique maximizers of all

agents P ∀i −rankings. Agents 1, 2, and 4 point to house x; agent 3 points to house y. For the

given assumption on the initial assignment, only house x and agent 1 leave the market. Define

p, such that agent 2 inherits house y, if he does not already own it. If there are two owners in

the second stage, define p, such that agent 3 is the other owner of a house. If there are 3 owners,

define p, such that agent 4 owns house w in the second stage. The requirement that agents

should point to houses that are P ∀i −maximal among the remaining houses implies that agents

2 and 3 must both point to house y. Given that agent 2 owns house y, he leaves the market

with this house. If agent 4 owns w and points to it for the given theory of implementation, he

appropriates this house and the desired allocation obtains. If not, there is a third stage, with

only agents 3 and 4 and houses z and w remaining. In this stage both must consider {z, w} as

17



their choice set. The last two agents’ choices from this set are such that the desired allocation

obtains.

�

The intuition for the difference between the sets of allocations implemented by different

mechanisms is that different mechanisms focus the agents on different choice sets when making

their decisions. If the agents’ behavior is rationalizable, such focus - and, therefore, the choice of a

particular hierarchical exchange mechanism - does not matter. However, in the present case, such

focus does lead to different choices and thereby different sets of outcomes. A similar intuition can

explain the gaps between the two Pareto sets and the set of allocations that are implementable

through trade. The reason why the allocation µ in Example 3 is not implementable is that at

the stage when agent 3 needs to choose house z to obtain the allocation µ, such a choice is not

compatible with truth-telling. The house z is P ∀3 -optimal among the remaining houses; however,

no choice set supports agent 3’s choice of z out of the remainder. The P ∀3 -optimality of z is

owed to the comparison of z with houses that are long gone and should therefore not have an

effect on choices in the current stage. The gap between the set of P ∃-Pareto optima and the set

of allocations that are implementable through any mechanism can be explained using the same

logic. In fact, the allocation µ in Example 4 is such that agents 3 and 4 can P ∃-improve by

exchanging their assignments. However, once houses x and y have left the market, both agent

3 and agent 4 would always choose in accordance with µ. Since for all mechanisms there exist

allocations of initial wealth p, such that x and y leave the market before the other two houses,

the allocation µ can be obtained for any hierarchical exchange mechanism.

Note that Theorems 1 and 2 remain valid, if we restrict our attention to any subsets of the

set of all hierarchical exchange mechanisms or the set of all theories of truthful implementation,

as the intersection of a smaller set of sets, is a superset of the intersection of a larger set of sets

and as the union of a smaller set of sets is a subset of the union of a larger set of sets. This

observation implies that the results do not depend on the permissive interpretation of “trade”

as the set of all hierarchical exchange mechanisms. If instead one wants to consider only top

trading cycles or any other subset of hierarchical exchange mechanisms as the appropriate set

of trade mechanisms, the results remain valid. The same holds for the set of theories of truthful

implementation.

There are already some versions of the First and Second Fundamental Theorem of Welfare

Economics in the literature on agents with non-rationalizable choices. All results that I am

aware of concern market environments with divisible goods. Bernheim and Rangel [8] prove
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a First Fundamental Theorem of Welfare Economics for markets that are standard except for

the assumption that the agents’ behavior need not be rationalizable. Their notion of Pareto

optimality relies on a notion of preferences that is very similar to the P ∀-preferences defined in

the present article. This result lies very much in line with Theorem 1. Interestingly, Mandler [18]

proves a version of the Second Theorem of Welfare Economics that also defines Pareto optimality

with respect to P ∀-preferences. This result stands in sharp contrast with Theorem 2 of the

present article, which claims that the Second Fundamental Theorem of Welfare Economics does

not apply to the case non-rationalizable agents when using the notion of P ∀-Pareto optimality.

Of course, there are some major differences in the framing of the problem: Mandler [18] studies

quasi-equilibria in a market environment that is standard except for the assumption that the

agents’ choices need not be rationalizable, whereas I study the outcomes of hierarchical exchange

mechanisms that match some indivisible goods to agents. But these differences do not drive the

stark discrepancy of the results. This discrepancy is caused by my imposition that for any

agent’s choice in a mechanism there needs to be some set that is consistent with the underlying

facts, such that the agent’s choice can be construed as a choice from this set. The imposition

of such a condition on Mandler’s [18] trading environment would possibly also considerably

shrink the set of allocations that are implementable through trade in his environment. The

same arguments apply to the difference between my results and the ones by Fon and Otani [13],

who prove a version of the First Fundamental Theorem and some price characterizations of the

set of Pareto optima, based on the assumption of intransitive and/or incomplete preferences.

The assumption of such preferences rules out many ‘irregularities” that are permissible under

the present framework. In their approach, just like in Mandler’s, individuals are always willing

to select any preference-maximal element of a choice set. An additional condition has to be

satisfied in my framework: the preference-maximal element has to be chosen out of a set S that

is consistent with the agent’s understanding of the mechanism.

7 Minimally Irrational Behavior

Up until now, any deviations from rationalizability were permitted. In the present Section I ask

how the main two theorems of the paper would change, if we limited our interest to particularly

appealing or small deviations of the assumption of rationalizability. Theorem 1 shows that

the set of all outcomes of trade is nested between the two Pareto sets for any problem E . It

consequently holds unchanged for any subset of problems.

In contrast, Theorem 2 makes three existence claims. Some problems have allocations that

can be reached through any trading mechanism and truthful theory of implementation, even
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if they are not P ∃-Pareto-optimal. Other problems have P ∀-Pareto optima that cannot be

reached through any combination of trading mechanism with a truthful theory of implemen-

tation. Finally, for some problems, the sets of allocations that are truthfully implementable

through different mechanisms might differ. So the question is whether such problems exist when

we limit the set of permissible problems.

Theorem 2 fails when restricting attention to problems with rationalizable choice functions.

In Section 2, I noted that the subset relation PO∃(E) ⊂ PO∀(E) holds for all E . If all agents’

choice functions are rationalizable, we have that PO∃(E) = PO∀(E). It is to be expected that the

gap between the two Pareto sets PO∀(E) \ PO∃(E) increases with the “degree” of irrationality

present in the problem E . One might conjecture that Theorem 2 fails (or at least some parts of

it do) if we restrict attention to problems with minimally irrational behavior. The question is:

how irrational do the agents need to be for Theorem 2 to hold? The answer is: not much at all!

To see this, note that all three examples used in the preceding proof either posit that an

agent’s choices are rationalizable or that they can be (up to renaming of alternatives) represented

by a choice function ci on H = {x, y, z} with ci(H) = x and ci({x, y}) = y. None of the examples

makes any further assumptions on the choices of agents from the sets {x, z} and {y, z}. Now

observe that, to be non-rationalizable at all, some violation of the weak axiom of revealed

preference must exist. Since the choice function ci posits nothing beyond a single such violation,

one must consider the difference between ci and a rationalizable choice function minimal. In

fact, since ci does not specify choices from the sets {x, z} and {y, z} these can be determined,

such that they represent a minimal deviation from rationalizability according to any theory that

measures the degree of such a deviation.

This means, in particular, that Theorem 2 continues to hold when restricting attention to

behavior that is sequentially rationalizable by just two rationales as defined by Manzini and

Mariotti [20], or to behavior that can be explained as choices via checklist of length two as

defined by Mandler [19]. Nothing changes when considering only behavior that is rationalizable

by a game tree with just two agents and two nodes as defined by Xu and Zhou [26]. By the

same logic, Theorem 2 remains valid when considering decision makers whose behavior can

be rationalized with at most two rationales following Kalai, Rubinstein and Spiegler [16], or

when considering decision makers that are minimally irrational following Ambrus and Rozen

[5] or following Apesteguia and Ballester [4]. No matter how little irrationality we permit in

housing problems, there are always some P ∀−Pareto-optimal allocations that are not truthfully

implementable by any hierarchical exchange mechanism. Different mechanisms will generally

implement different sets of allocations, even if we only allow for behavior that minimally deviates
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from rational behavior.

8 Conclusion

This paper set out to shed some light on the relation between Pareto optimality and trade under

the assumption that agents are boundedly rational. The problem was framed in an environment

of matching allocation problems. I defined two nested sets of (behavioral) Pareto optima (the

sets of P ∀− and P ∃−Pareto optima) for any matching allocation problem. Given that one uses

the more encompassing notion of Pareto optimality, the statement that any outcome of trade

is Pareto-optimal holds true, whereas the statement that any Pareto-optimal outcome can be

reached through trade does not. If one uses the more restrictive notion of Pareto optimality, one

obtains that any Pareto optimum can be arrived at through trade. However, the complementary

statement that any outcome of trade is Pareto-optimal does not hold for the more restrictive

notion of Pareto optimality.

While these results were first obtained for any non-rationalizable choice functions, they

were considerably strengthened by showing that the results do not change when admitting only

for “minimal deviations” from rationalizability. This latter observation implies, in particular,

that the results are also valid for the environments of kidney exchanges and school allocation,

as described in the introduction. Even if all agents’ choices follow decision procedures that

sequentially eliminate options like the doctors’ choices described in the introduction, there are

some P ∀-Pareto optima that cannot be reached through trade. Even if we assume that schooling

choices are determined by the strategic interplay of only two agents, who each act as maximizers

of transitive and complete preferences, different mechanisms of trade lead to different sets of

outcomes.

This last observation opens up some new questions on the design of matching mechanisms.

For rationalizable choice functions, the sets of allocations implemented do not differ across

different trading mechanisms. Any question that relies on the comparison of the outcome sets

of different mechanisms (for all initial allocations of ownership) is therefore idle. This changes

dramatically once we relax the assumption of rationalizability. We could now pose such questions

as: which mechanism leads to more egalitarian allocations? Or, which mechanism is more

indeterminate, in the sense that it has a larger set of outcomes? Or, which mechanism privileges

choices from large sets, in the sense that more agents receive houses they would choose out of

larger sets?

Another interesting arena for research is to take the intuitions behind the introductory

stories about decision procedures seriously. One could, for example, assume that patients do
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have (linear) preferences over kidneys, but that it is costly to learn theses preferences. An

allocation mechanism would then interact with some form of strategic information acquisition.

One could go on to use the agents’ ex ante utilities for different mechanisms to Pareto-rank

different mechanisms. In Bade [7], I provide some preliminary observations on this topic and

show, in particular, that not every Pareto Optimum can be reached through free trade in the

case that agents can endogenously acquire information about the objects to be distributed.

Similarly, one could explicitly model the interaction between family members when selecting

a mechanism for school choice. In any case, the results on the connection between trade and

Pareto optimality derived in this article will possibly still be of use as starting points for such

studies.
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