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Abstract

We develop a model of rational bubbles based on the assumptions of un-
known market liquidity and limited liability of traders. In a bubble, the price
of an asset rises dynamically above its steady-state value, justified by ratio-
nal expectations about future price developments. The larger the expected
future price increase, the more likely it is that the bubble will burst because
market liquidity becomes exhausted. Depending on the interactions between
uncertainty about market liquidity, fundamental riskiness of the asset, the
compensation scheme of the fund manager, and the risk-free interest rate,
we give a condition for whether rational bubbles are possible. Based on this
analysis, we discuss several widely-discussed policy measures with respect to
their effectiveness in preventing bubbles. A reduction of manager bonuses or
a Tobin tax can create or eliminate the possibility of bubbles, depending on
their implementation. Monetary policy and long-term compensation schemes
can prevent bubbles.
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1 Introduction

Under what conditions are asset price bubbles possible? Which policies can prevent
them? In the light of recent economic experience, these questions seem important
and topical. The last 15 years have seen at least two important market developments
that are now considered as bubbles. Both the so-called dot-com bubble in the late
1990s and the recent housing bubble in the United States and elsewhere produced
large reallocations of wealth during their buildup and after their crashes, thereby
affecting real macroeconomic variables. Although the phenomenon of bubbles has
long been recognized, economic policy has not been able to prevent their repeated
occurrence. Neither does a commonly accepted model of bubbles exist that can be
generally used to generate policy advice. Our paper contributes to the development
of such an understanding, which might eventually help in guiding policymakers. To
this end, we develop a theoretical model, show circumstances under which bubbles
can occur, and discuss which policy measures can help in their prevention.

We construct a simple workhorse model of a bubble based on the crucial assumption
that the potential amount of liquidity in the market is not precisely known. As
financial markets become more complex and opaque, the assumption of imprecise
information about market size seems very natural. Within a bubble, traders are
only willing to invest if they believe that there might be another market participant
in the future to whom they can sell the asset at a higher price. As observed by
Tirole (1982), if the maximum market liquidity were known, the highest possible
price of an asset could be computed by the traders, and by backward induction, no
bubble could emerge in the first place.1

The second important feature of our model is limited liability. In particular, we
consider investors who delegate investment to fund managers.2 The model applies,
however, directly to more general intermediated finance, such as through banks,
investment banks, insurance companies, and private equity firms, as well as to non-
intermediated, debt-financed investments. In the absence of a bubble, we find that
the risk appetite induced by the limited liability of fund managers pushes asset

1Also, Santos and Woodford (1997) show that the conditions for the existence of bubbles are
very restrictive if one assumes a fixed number of households that participate in the asset market
and own finite aggregate endowments. Tirole (1985) analyzes “rational” bubbles that are possible
in overlapping-generations models if the real interest rate is smaller than the growth rate of the
economy. The present paper does not require this assumption. Note that a stochastic growth rate
would induce an uncertain future market size as is assumed here.

2According to the OECD database on institutional investors’ assets, in 2007 institutional in-
vestors in the U. S. managed assets worth 211.2% of GDP, showing their prominent role in in-
vestment decisions. Furthermore, their size has grown steadily over the last decade, with a yearly
average growth rate of 6.6% from 1995-2005 within the OECD(17) area (see Gonnard, Kim, and
Ynesta, 2008).
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prices above their fundamental values (as already shown by Allen and Gale, 2000);
because of limited liability in case of a low or zero return, the fund manager can
increase her expected payoff by engaging in riskier assets. Equilibrium asset prices
are therefore driven above fundamentals, but in a static way. These price deviations
are not induced by expectations and are not subject to sudden corrections (bursts).

Adding the assumption of uncertain market liquidity extends the space of possi-
ble price paths drastically. Combined with a high-powered incentive scheme, an
expectations-induced bubble with a dynamic price path may emerge. In such a
bubble, traders are aware that they are in a bubble.3 A high price reduces the prob-
ability that current asset holders will find future buyers at a yet higher price. Given
this increased risk, they demand a higher expected gain from the asset. This acceler-
ator mechanism drives prices up over time until the bubble collapses because either
the previously unknown maximum market liquidity is reached or the underlying
fundamental breaks down (e. g., due to bankruptcy of the issuing firm).4

Importantly, the model allows for bubbles in some parameter ranges, but not in oth-
ers. The above-explained feedback between higher prices and an increased fragility
of the bubble may not have a fixed point right away or at some future date. In either
case, there is no possible price path, and the bubble is unfeasible in the first place.
Depending on the interaction of limited liability, uncertainty about the market size,
riskiness of the asset, and the risk-free interest rate, the prerequisites for bubbles
can be fulfilled or not.5 We can thus discuss policies to prevent bubbles. This is

3Referring to the dot-com bubble, Brunnermeier and Nagel (2004) provide evidence that hedge
funds were riding the bubble, a result similar to a previous finding by Wermers (1999). They relate
this to, among others, a short-term horizon of the managers. This is in line with our model.

4Note that, in this model, the existence of a bubble requires neither heterogeneous traders nor
asymmetric information among them. This stands in contrast to a series of existing papers on
bubbles. In Allen, Morris, and Postlewaite (1993), private information can drive a price above
its fundamental value. Scheinkman and Xiong (2003) and Bolton, Scheinkman, and Xiong (2006)
assume that buyers of an asset hope to sell it to overoptimistic agents in the next period. This
is only possible in the case of heterogeneous beliefs. In Hong, Scheinkman, and Xiong (2006),
the presence of overoptimistic agents and short-sale constraints create bubbles, where prices drop
after an increase in asset float. Allen and Gorton (1993) show that asymmetry of information
between investors and heterogeneous managers can lead to deviations of prices from fundamentals
if liquidity needs are stochastic. The model of Brunnermeier and Abreu (2003) relies on dispersed
opinions that, in combination with coordination failure, can trigger bubbles. Also, in Pástor and
Veronesi (2006, 2009), there is initial noisy information and learning over time, leading to stock
price behavior that can be confused with a bubble. Froot, Scharfstein, and Stein (1992) analyze
which information can influence trading, potentially leading to herding equilibria. In DeLong,
Shleifer, Summers, and Waldmann (1990), rational traders’ behavior is influenced by noise traders,
who follow positive-feedback strategies. Allen, Morris, and Shin (2006) highlight the role of higher-
order expectations if traders have asymmetric information. Liquidity needs of firms that are not
fully met by uninformed investors can lead to bubbles in Farhi and Tirole (2010). In Plantin and
Shin (2010), not all traders have market access at a given point in time.

5Taking the housing bubble as an example, we find that all conditions that are favorable for the
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particularly important because, in the model, bubbles harm the welfare of market
participants. One of the widely discussed possible policy measures is a reduction of
bonuses. We find that a system that reduces bonus payments can actually backfire
and increase the parameter range where bubbles are feasible. Only a cap on bonuses,
if it is small enough, can effectively prevent the emergence of bubbles. Similarly, a
financial transaction (Tobin) tax enlarges the parameter range where bubbles are
possible, if levied on all forms of financial assets. On the other hand, if imposed
on risky assets only, it prevents the emergence of bubbles. Also, a monetary pol-
icy rule that takes asset price inflation into account can render bubbles impossible.
Finally, mandatory long-term compensation and/or capital requirements fulfill the
same purpose.

The remainder of this paper is organized as follows. Section 2 introduces the model.
Section 2.2 develops a steady-state (rational expectations) equilibrium price process.
Section 3 constructs a simple example of a non-steady-state (rational expectations)
equilibrium price process, which we call a bubble. We give a necessary and sufficient
condition for the existence of such example bubbles. In section 4, we show that this
very condition is necessary and sufficient for the existence of bubbles in general. The
condition lends itself to basic policy analysis, which is done in section 5 by discussing
several policy measures. In section 6, we show that bubbles reduce welfare. While
all other sections take the managers’ compensation scheme as given, we consider
one (of possibly many) ways to endogenize bonus payments in section 7. Section 8
concludes. All proofs are in the appendix.

2 The Model

2.1 Setup

Consider an infinite horizon economy with overlapping generations of two types
of agents, investors and fund managers.6 In period t, a continuum of measure
N investors is born, each with an initial endowment of 1 dollar. N is stochastic
but fixed over time. Market participants know the distribution F (N) and density
f(N), but not the actual realization. Investors consume and die in the next period,

emergence of bubbles were fulfilled. Low interest rates prevailed for a long period, while increasingly
international financial flows and more complex financial instruments obscured the potential market
liquidity. Furthermore, the 2004 decision of the Securities and Exchange Commission to allow
the large investment banks to take on more debt increased their limited liability and increased
uncertainty about the maximum market liquidity even further.

6Like Allen and Gale (1997), we use the OLG structure as a metaphor for other sources of
non-modeled market imperfections, such as heterogeneous liquidity preferences.
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t+ 1. They cannot directly participate in the financial market. However, there is a
continuum of fund managers (short: managers) whom investors employ to invest in
bonds or stocks. Because the number of managers is assumed to be unlimited, an
investor will always find a manager to handle her wealth. Each manager can handle
the funds of one investor only. The manager is compensated by a linear scheme with
limited liability. Her compensation can consist of a success-dependent bonus and
a base salary S. For earning a gross yield y, she receives max{α (y − β); 0} + S,
with S ≥ 0, α ∈ [0; 1], and β ≥ 0.7 The parameters are treated as exogenous for
now and will be endogenized in section 7. Note that this formulation encompasses
different setups. For example, debt-financed, non-intermediated investments would
correspond to α = 1 and β set to the debt repayment.8

There are two assets, a safe asset (short: storage) of unlimited supply and a single
risky asset (short: asset) of volume 1. The safe asset bears a net interest of r. The
risky asset can be interpreted as shares of a firm. This firm pays dividends of d in
each period.9 However, in each period, there is a probability 1− q that the firm will
go bankrupt and cease to pay dividends forever. Hence, the time of bankruptcy is
determined by a Poisson process. The risky asset is traded on a competitive market
in each period. Its price follows an endogenous time-discrete stochastic process
{p̃t}t≥0.

2.2 The Steady-State Price

Consider the following simple stochastic process {p̃t}t≥0. The price of the asset is
a constant, p̃t = p̄. Only if the underlying firm goes bankrupt (with probability
1− q) and cash ceases to flow, the price drops to p̃t = 0. Hence, the price follows a
very simple binomial process with Prt{p̃t+1 = p̄|pt = p̄} = q. Zero is an absorbing
state. Let us derive the price p̄ for which this process is a rational expectations
equilibrium.

In a market equilibrium, prices must be such that the managers’ compensation is
the same for storage and for the risky asset. If the manager opts for storage, her
compensation is max{0; α (1+r−β)}+S = α (1+r−β)+S.10 If the manager buys

7As a limiting case of the model, β = 0 coincides with unlimited liability.
8Contracts in which a manager has to surpass a hurdle rate to receive a bonus in addition to her

base salary are frequently used in the literature. E. g., using the return to a benchmark portfolio
as the hurdle rate, Ou-Yang (2003) and Dybvig, Farnsworth, and Carpenter (2010) show that this
kind of contract is optimal. Bernanke, Gertler, and Gilchrist (1999) use a similar contract with
α = 1 and S = 0. They build on Townsend (1979), who derives the functional form of this contract
as optimal in a setting with costly state verification.

9One may also interpret the asset as real estate. If the house is used as rental property, d is the
rent per period.

10We assume for now that β ≤ 1 + r. In section 7, this assumption is endogenized.
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shares of the firm at a price pt = p̄, she benefits from the dividend with probability
q. She thus earns d/pt with probability q. If the firm does not pay a dividend, the
price drops to zero. Otherwise, the price remains at p̃t+1 = p̄, and the manager
additionally gets pt+1/pt = p̄/p̄ = 1 from selling the asset. This stochastic process
is depicted in figure 1.
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Figure 1: The Price Process in Steady State.

Parameters are γ = 2, β = 0.9, q = 95%, d = 1, and r = 10%.

In steady state, a manager’s expected compensation on date t is

Etmax
{
0; α

( p̃t+1

pt
+
d

pt
− β

)}
+ S = q α

( p̄+ d

p̄
− β

)
+ S (1)

The market must clear, so managers must be indifferent between storage and the
risky investment,

α (1 + r − β) + S = q α
( p̄+ d

p̄
− β

)
+ S, (2)

⇒ p̄ =
d q

(1− β) (1− q) + r
. (3)

The steady-state price p̄ price depends on the compensation scheme (β). The fun-
damental value obtains as the market equilibrium, in the absence of delegation,

p :=
d q

1− q + r
. (4)

Hence, only if β = 0 (no delegation or unlimited liability) or if q = 1 (no risk),
fundamental value and steady-state price are equal, p = p̄. The effect that managers
with limited liability push prices of risky assets above their fundamental levels has
been analyzed before by Allen and Gale (2000). We get the following comparative
statics.
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Remark 1 The ratio between steady-state price and fundamental value p̄/p is higher
for a low risk-free rate r, high fundamental risk (large q), and high-powered compen-
sation packages (high β).

Let us make one important clarification. In the numerical example for figure 1, the
fundamental value is p = 6.33, but the steady-state price is p̄ = 9.05. This price
deviation is due to the limited liability of managers. However, it is a static deviation,
which is driven by fundamentals (q, d, and r) and the managers’ compensation
package (β and α, where α is irrelevant). The price deviation is hence driven by
future risk (q) and dividends (d), but not by fund managers’ expectations about
future price developments. The deviation is constant over time and cannot burst, so
its existence is less interesting from a financial stability perspective. Nevertheless,
this deviation can magnify price movements resulting from, e. g., changing dividend
payments. By contrast, the bubble described in the following section is dynamic by
nature. It can be sustained only if the price is expected to continue increasing in
the future. Increasingly large price deviations will be fueled by the expectation that
future managers will buy at an even higher price. A bubble grows dynamically, and
it can burst at any time.

3 An Example of a Bubble

Consider now a situation where the price pt is above the steady-state price p̄ at some
date t. The only conceivable reason to buy is that managers expect the price to rise
even further, at least with some probability. Otherwise, it would be a dominant
strategy for managers to store rather than to invest in the asset. We will call this
expectations-driven price deviation a bubble. In this section, we discuss the existence
of bubbles under two specific assumptions, one concerning possible price paths {p̃t}t
and one concerning the distribution of liquidity F (N). Both assumptions will be
generalized in section 4.

First, let us concentrate on a trinomial process with

p̃t+1 =

⎧⎨
⎩

0, with probability 1− q
p̄, with probability q −Qt

pt+1, with probability Qt

(5)

with Qt ≤ q.11 All variables {pt, Qt}t will be determined endogenously. For our pur-
poses, trinomial processes are the simplest ones, allowing for a fundamental default
of the firm (case one), a bursting of the bubble (case two), and the continuation of
the bubble (case three).

11Note the notational difference between p̃t+1 and pt+1. p̃t+1 is the stochastic price at date t+1
that can assume three different values. pt+1 > pt is the largest of these realizations.
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Assumption 1 For now, consider only trinomial price processes, as in (5).

Second, let us concentrate on a parameterized version of F (N). To be concrete, we
assume that lnN is exponentially distributed; thus, F (N) = 1 − e−γ (lnN−lnN0) for
some positive constant N0, and F (N) = 1 − (N/N0)

−γ. Here, N0 is a lower bound
on the number of investors. Remember that N is fixed over time.

Assumption 2 For now, assume that lnN is exponentially distributed.

Because each investor possesses 1 dollar, an asset’s price p can never exceed N .
Hence, N can be interpreted as an unknown upper bound on liquidity in the mar-
ket. The smaller the value of γ, the more uncertainty exists about the number
of investors, i. e., the more uncertain is the liquidity potential of the market. For
γ → ∞, we get the limiting case of a known number of investors. The follow-
ing figure 2 shows the distributions and density functions for N0 = 20 and shape
parameters γ = 2 (solid) and γ = 4 (dashed).
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Figure 2: Examples of Density and Distribution Functions

Now we turn to the discussion of a bubble path. A possible price process is depicted
in figure 3. The process starts at some price p0 > p̄; the resulting bubble can then
grow further and further, p0 < p1 < p2 < . . . For a given price increase from pt
to pt+1, more liquidity will be absorbed by the market in t + 1 than in t. As a
consequence, pt+1 may exceed the liquidity potential N at some date. In this case,
the price hits a ceiling and no more price increases are expected; i. e., managers
cannot expect to sell the asset at a higher price in the future. Hence, the bubble
collapses back to the steady-state price p̃t+1 = p̄. This ceiling N is not pictured in
the figure as it is unknown. The date at which the bubble bursts is (and must be)
unknown, but with certainty the ceiling will be hit at some date.
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Figure 3: A Trinomial Price Process with a Bubble

As in figure 1, parameters are γ = 2, β = 0.9, q = 95%, d = 1, and r = 10%.

Alternatively, if the underlying firm goes bankrupt, the price will drop to p̃t+1 = 0.
Consequently, the conditional probability of a continuation (non-collapse) of the
bubble is

Qt = q Pr{pt+1 ≤ N |pt ≤ N} = q
1− F (pt+1)

1− F (pt)

= q
Nγ

0 /p
γ
t+1

Nγ
0 /p

γ
t

= q pγt /p
γ
t+1, (6)

where q is the probability that a firm continues to operate and Qt is the probability
that the firm’s asset price continues to rise. The probability that the bubble bursts
although the firm is still solvent is thus 1−Qt − (1− q) = q−Qt = q (1− pγt /p

γ
t+1).

If the share price falls because the firm is insolvent, we assume that the price will
drop to zero and no dividends will be paid. The bonus to the manager is then
α max {0/pt + 0/pt − β; 0} = 0. If, alternatively, the share price falls because a
bubble bursts, the price will drop to p̄. For now, let us simply assume that there is
no bonus if a bubble bursts. We give a condition and analyze the alternative in the
proof of proposition 1 in the appendix. The asset market can only be in equilibrium
if a modified version of (2) holds, taking into account the probability of a burst and
the increased bonus if the bubble does not burst,

α (1 + r − β) + S = Qt α
(pt+1 + d

pt
− β

)
+ S,

= q
( pt
pt+1

)γ

α
(pt+1 + d

pt
− β

)
+ S,

1 + r − β

q
=

( pt
pt+1

)γ
(
pt+1

pt
+
d

pt
− β

)
. (7)

Equation (7) implicitly determines a price process in a rational expectations equilib-
rium. For any given p0 > p̄, (7) implicitly defines p1, and (6) defines the according
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Q0, so all variables for p̃1 in (5) are defined. Then, starting from p1 in a next step,
(7) and (6) define p2 and Q1, so p̃2 is defined. Following this procedure gives the
complete process recursively. One such process is shown in figure 3.

However, equation (7) does not necessarily yield a solution for any set of parameters.
As discussed above, the higher the potential future price pt+1, the more likely it is
that the maximum liquidity N will be hit and the bubble will burst. The more likely
a bursting of the bubble is, however, the larger the expected price increase must be
to compensate managers for the risk they face. A feedback multiplier effect evolves,
which does not necessarily reach an equilibrium price pt+1 for all pt. This is the case
if there is a p̂ above which potential future price increases cannot compensate for the
accompanying higher risk of a burst. Because all market participants can calculate
the date t at which this p̂ is reached, if it exists, a bubble will burst with certainty
at some date t + 1, i. e., Qt = 0. If the bubble cannot be sustained at a date t + 1,
managers will anticipate this, and a backward induction argument shows that the
bubble will not be sustainable right from the start. An example is given in figure 4.
At date 7, the price has risen too high, i. e., above the dashed line representing p̂, and
the hypothetical bubble can no longer be sustained. Consequently, the according
initial price p0 cannot be part of a rational expectations equilibrium process in the
first place.
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Figure 4: A Trinomial Price Process with a Non-sustainable Bubble

Parameters are γ = 2, β = 0.9, q = 95%, and d = 1, but now r = 20%. Note that this
hypothetical bubble bursts with certainty after date 7, so it cannot emerge in the first place.

We are interested in conditions under which a bubble can or cannot be sustained. In
order to be sustainable, the implicit equation (7) must have a solution at any date
t, or equivalently, for any initial price pt. Rewriting (7) by defining the auxiliary
variable φt = pt+1/pt as the relative price increase yields

φγ
t

1 + r − β

q
= φt +

d

pt
− β (8)
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The left-hand side of the equation is independent of pt (it only depends on its ratio
to pt+1), but the right-hand side depends on the starting point pt. Figure 5 shows
the left-hand side (thick blue curve) and the right-hand side for two starting prices,
pt = p̄ (dashed black line) and pt = ∞ (thin black line), where both sides were
multiplied by q. First, consider pt = p̄. ¿From the figure, one can see that the
intersection with the thick curve is at φt = 1, which implies that pt+1 = φt pt = pt,
so there is no price increase. Starting with pt = p̄, we are of course in steady state,
and the price does not change over time. This steady state is a limiting case.

If the initial price is slightly above p̄ due to higher expectations, the straight line
shifts downward, implying that it intersects with the curve at some φt > 1. In
the next period, the price will be higher still, so the intersection φt+1 will be even
higher. A bubble emerges, and the growth rate φt = pt+1/pt increases with time.
For lim pt → ∞, the limiting line q (φ − β) is reached (solid line). Because the
intersection point moves right as pt increases, the bubble becomes less and less
stable; the probability of a burst, 1−Qt = 1− q/φt increases.

1.0 1.2 1.4 1.6 1.8 2.0
Φ

0.2

0.4
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0.8
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ΦΓ�1�r�Β�

q	�Φ�Β�

q	�Φ�d�p�Β�

Figure 5: Possibility of a Bubble

As in figure 3, parameters are γ = 2, β = 0.9, q = 95%, d = 1, and r = 10%.

Remark 2 In a bubble process, the relative price increase φt = pt+1/pt grows over
time and Qt falls over time, so the bubble becomes less stable.

In figure 4, we saw a hypothetical example of a bubble that was not feasible. Plotting
the left and right sides of equation (8) for this set of parameters yields figure 6. Here,
as the asset price increases and the straight line moves downward, at some point an
intersection between the line and the bold curve ceases to exist. As a consequence,
the asset price cannot rise without bounds. However, because of the upper bound,
a backward induction argument applies, and no rational price deviation can exist in
the first place.
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Figure 6: Non-Existence of Bubbles

Like in figure 4, parameters are γ = 2, β = 0.9, q = 95%, d = 1, and r = 20%.

As a consequence, in order to show that a bubble can be sustained in a market, it
suffices to consider large prices pt. In the limit pt → ∞, equation (8) simplifies to

φγ (1 + r − β) = q (φ− β). (9)

The equation does not depend on time, so we have dropped the index t. If (9) has
a solution for φ > 1, the corresponding market can sustain a bubble.12 This implies
that for arbitrarily high prices pt, there is always a price pt+1 that is high enough
to make fund managers buy at date t. If (9) does not have a solution for φ, then
there exists a price p̂ beyond which no further increase is impossible. Nobody will
buy, and the bubble will burst. Hence, using backward induction, the bubble cannot
begin to form at date t = 0. The only possible initial price is then p0 = p̄.

Existence of Bubble Processes. The above numerical examples in figures 3
and 4 seem to suggest that lower interest rate levels support bubbles, whereas higher
interest rates can puncture a bubble. Reassuringly, this is in line with traditional
intuitions about bubbles.

Let us now analyze more generally conditions under which bubble processes can
exist. In figure 5, one can see that the solution ceases to exist if the thin black line
no longer intersects with the thick blue curve, like in figure 6. A general condition
is given in the following proposition.

12There are at most two solutions to (9) with φ ≥ 1 (values of φ < 1 would stand for bubbles
with falling prices and, formally, negative probabilities of a burst). We do not consider the high
solution in the following because the corresponding equilibrium is unstable.
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Proposition 1 Under assumptions 1 and 2, in a rational expectations equilibrium,
a price process can exhibit a trinomial bubble if and only if γ < q/(1 + r − β) and

γγ
( β

γ − 1

)γ−1

≤ q

1 + r − β
. (10)

Figure 7 illustrates the proposition for the case γ = 2.

Figure 7: Parameter Range where Bubbles are Possible

Here, γ = 2. For parameters below the surface, bubbles are possible.

Remark 3 Bubbles tend to be possible for a low risk-free rate r, low fundamental
risk (large q), large uncertainty about liquidity γ, and high-powered compensation
packages (high β).

Remember that a higher risk of a bubble bursting implies a larger potential price
increase to compensate managers and that a larger potential price increase makes
bursting more likely. If and only if this problem has a fixed point at all times, a
bubble can emerge. If risk-free rates are higher, storage becomes more attractive to
managers; they need to be compensated by a larger potential price increase of the
risky asset in order to hold it. But this makes a burst yet more likely, which inhibits
the convergence to a new fixed point. Hence, for a larger risk-free rate r, bubbles
may cease to be possible. This is in line with the intuitions that central banks can
puncture bubbles by increasing interest rates and that bubbles are especially likely
to exist if interest rates are low. Furthermore, bubbles can exist especially if q is
high; that is, if the underlying asset is rather safe, which decreases the likelihood of
a burst. The parameter γ captures the uncertainty in the market. The smaller the
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value of γ, the larger are the mean and variance of the distribution, and the more
uncertain is the potential market size. The parameter N0 does not appear in the
analysis, which shows that, for the existence of a bubble, only the shape of the upper
tail matters; bubbles tend to exist for smaller values of γ. In the extreme case of
γ → 1, the expected market size becomes infinite, and γγ (β/(γ−1))γ−1 → 1. Hence,
a bubble can emerge if q > 1 + r − β. On the other hand, if γ → ∞, the market
size is almost certainly N0, and a bubble can never be sustained independent of the
sizes of other parameters. This is the traditional backward induction argument of
Tirole (1982). Finally, the parameter β describes how steep the incentive schemes
of managers are. The larger the value of β, the later the bonus payments to the
manager are activated, the stronger the power of the contract is, and the more
prominent the effect of the limited liability of the manager becomes. Hence, we
have the result that the emergence of bubbles may become possible in the context
of a high-powered compensation scheme for managers.

Note again the difference between the dynamic price deviation from the steady-
state price in this section and the static deviation of the steady-state price from the
fundamental value of section 2.2. Table 1 summarizes comparative statics for both.
An upward arrow means that the static deviation (left column) becomes larger or
that the necessary condition for a bubble to emerge is met for a larger range of all
other parameters (right column).

Static deviation Bubble condition
(Remark 1) (Remark 3)

γ — ↘
r ↘ ↘
β ↗ ↗
q ↘ ↗
d —

(but multiplier)
—

Table 1: Effects of Variations of Parameters

There is one major difference between the two columns. A static deviation is larger
for inherently risky assets, but bubbles tend to emerge for inherently safe assets.
Note one subtle but important difference between the inherent and the financial risk
of an asset. To give an example, building a house may be inherently safer than buy-
ing stock in a firm. But taking into account financial risk, a house may be a riskier
investment, especially if it is built during a bubble. Our model distinguishes between
these notions of risk. Inherent risk is captured by 1 − q, the risk of failure of the
underlying asset. Additional financial risk can occur if movements in fundamentals
are strongly magnified because the asset price deviates from the fundamental value
in a static way or because condition (10) holds and a bubble can form. Interestingly,
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the two sources of financial risk react similarly to most parameter changes, but their
reactions with respect to the underlying risk 1− q are directly opposed.

This fine differentiation suggests different explanations for the two most prominent
bubbles in recent decades. Real estate and mortgages are inherently safe, so ac-
cording to proposition 1, a speculative bubble on these assets should be feasible. In
this sense, the theory matches the recent real estate bubble.13 On the other hand,
dot-com firms are inherently risky. According to proposition 1, a speculative bubble
may be impossible, but the static deviation above potentially changing fundamen-
tals will be especially large. As a consequence, following our theory, the bursting of
the dot-com “bubble” may have been the correction of expectations, bloated by a
large multiplier.14

The Half Life of a Bubble. Given all of the above discussion, we can calculate
the half life of a trinomial bubble. Note first that the firm itself can default. In
each period, it survives with probability q; hence, after t periods, it survives with
probability qt. The half life T is the period after which firms have collapsed with
probability 50%, so qT = 1/2 and thus T = − ln 2/ ln q. Given that a bubble
can burst for two reasons, one fundamental (the firm defaults) and one financial
(market liquidity is exhausted), the half life of a bubble will always fall short of
T . The conditional bursting probability increases over time, and it has no closed-
form solution. However, we can derive comparative statics for a bubble that is fully
developed, thus for large pt. For this limit, φ = pt+1/pt is implicitly defined by (9),
and Q = q/φγ, so the half time T ′ of the bubble is given by

T ′ = − ln 2

lnQ
= − ln 2

ln q − γ lnφ
. (11)

Ceteris paribus, as φ increases, the half time decreases. In calculating the effects of
parameter changes on the half life of a bubble, we find that the same changes that
can impede a bubble’s formation also shorten the half life of a bubble.

Remark 4 dT ′/dr < 0; dT ′/dβ > 0; dT ′/dq > 0; and dT ′/dγ < 0.

13As argued in footnote 5, the development of the housing bubble was also promoted by the
constellation of the remaining parameters, i. e., low interest rates, opaque financial markets, and
the 2004 decision of the Securities and Exchange Commission to allow the large investment banks to
take on more debt, which corresponds to a higher β (see section 5.4). Allen and Gale (2000), among
others, also point to an empirical connection between financial liberalization, credit expansion, and
bubble emergence.

14Pástor and Veronesi (2009) model the learning process about the productivity of new tech-
nologies and apply it to the introduction of railroad and internet technologies. The mentioned
multiplier is then an amplification of movements generated by learning.
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4 Bubbles in General

This section delivers the main results of the paper. We have already shown that
if liquidity lnN is exponentially distributed (assumption 2), a trinomial process
(assumption 1) can develop a bubble if and only if condition (10) holds. More
formally, if (10) holds, there are multiple rational expectations equilibria within the
class of trinomial processes; otherwise, the equilibrium is unique.

This section shows that the condition is more general. First, and most importantly,
we can generalize assumption 1. Hence, if (10) is not satisfied, the steady-state equi-
librium is unique, without further qualifications. No bubbly equilibria are possible,
whether trinomial or of any other shape. Second, we can also generalize assump-
tion 2 about the probability distribution of liquidity.

4.1 Generalizing Assumption 1

We have argued that a very special kind of bubble process, the trinomial bubble,
exists if and only if (10) holds. We now make this result more general by showing
that if (10) fails to hold, the only rational expectations equilibrium process is the
non-bubble process with price p̄. The argument is intuitive. A trinomial bubble does
not exist if the thick curve and the thin straight line in figure 6 do not intersect, i. e.,
if there is no solution for φ, and hence prices in the bubble eventually increase too
quickly to be sustainable. The point in the graph where the line and the curve
are closest corresponds to the price increase with the lowest ratio of risk (of a
bubble burst, related to φγ) to potential gains (of a price increase, related to φ).
Concentrating all probability mass on this point maximizes the attractiveness of an
investment in the risky asset, thereby creating favorable conditions for the emergence
of bubbles. Distributing probability mass to other price increases, i. e., deviating
from the assumption of a trinomial price process, reduces the willingness of managers
to invest in the risky asset and can therefore eliminate the possibility of bubbles.
Thus if, for a given set of parameters, not even a trinomial bubble path exists, no
bubble can exist at all.

Proposition 2 Under assumption 2, in a rational expectations equilibrium, a price
process can exhibit a general bubble if and only if γ < q/(1 + r − β) and

γγ
( β

γ − 1

)γ−1

≤ q

1 + r − β
, (12)

hence if (10) holds.

15



4.2 Generalizing Assumption 2

Up to now, we have assumed that lnN is exponentially distributed. In this sub-
section, we will derive a bubble condition for general distributions of the liquidity
constraint N . However, the bubble condition (10) used the distribution-specific pa-
rameter γ. Hence, we need to find out what the essence of γ is, i. e., which property
of the distribution is captured by γ. Most importantly, γ describes the fatness of
the tail of the distribution, thereby measuring the uncertainty about the maximum
market liquidity.

Proposition 3 For a general distribution F (N) with density f(N), define

γ := min
{
n : lim

x→∞
xn f(x) �= 0

}
− 1. (13)

Then, in a rational expectations equilibrium, a price process can exhibit a general
bubble if and only if γ < q/(1 + r − β) and

γγ
( β

γ − 1

)γ−1

≤ q

1 + r − β
, (14)

hence, if (10) holds. If γ = ∞, bubbles are impossible.

We now discuss some intuitions for equation (13). We already know that the possi-
bility of a bubble depends on the shape of the distribution f(N) for large N , thus
for large prices. When lnN is exponentially distributed, the parameter γ actually
gives the order of convergence of F (N) → 1 for N → ∞. It also gives the order
if f(N) → 0 for N → ∞, less one. Intuitively, for a density function f(N) of any
other shape, the relevant statistic for the potential existence of a bubble is also the
order of convergence towards zero, as defined by (13). If f(N) decays very quickly,
the information about an upper liquidity ceiling is rather precise, so a bubble cannot
exist. If f(N) decays slowly, there is always room for further price increases without
hitting the liquidity ceiling with high probability, which makes the emergence of
bubbles possible. The proof of the proposition in the appendix is a more accurate
version of this intuition and also gives a concrete example.

5 Policy Measures

In this section, we examine whether certain policy measures that have been suggested
in the public debate can prevent the creation of bubbles in our model. Specifically,
we look at an asset-price augmented Taylor rule, caps on bonuses, mandatory long-
term compensation, and a financial transaction (Tobin) tax.
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5.1 Monetary Policy

We have already seen that a central bank can puncture a bubble by increasing
interest rates. Let us now analyze the impact of an automatic, pre-announced
interest rate increase in the case of a bubble, following a Taylor rule that takes
asset price inflation into account. Specifically, assume a version of the rule used in
Bernanke and Gertler (1999, 2001),

rt = r̄ + ψπ (πt − π̄) + ψ (pt/pt−1 − π̄), (15)

where πt is gross consumer price index (CPI) inflation and pt/pt−1 asset price in-
flation of the only risky asset in the economy, as defined above. For simplicity, we
neglect the influence of asset price inflation on CPI inflation by setting CPI inflation
equal to its target rate π̄, which is itself set to unity.15 This does not influence our
conclusions below. As in the above analysis, in a bubble, pt+1/pt converges towards
a constant φ. Inserting (15) into (9) yields

φγ
(
1 + r̄ + ψ (φ− 1)− β

)
= q (φ− β). (16)

As for (10), we can derive a condition for parameters r̄, ψ, β, γ and q to determine
whether (16) has a solution for φ > 1. Unfortunately, the condition is algebraically
complex. A bubble equilibrium exists if and only if

q (φ−β) ≥ φγ
(
1 + r̄ + ψ (φ− 1)− β

)
with

φ =
1

2ψ γ

(
(1− β − γ)(1− ψ) + r̄ + βγ − r̄γ + βγψ

+
√(

r̄+(1−β)(1−ψ))((1−γ)2(1+r̄−ψ)−β((1+γ2)(1−ψ)− 2γ(1+ψ))
))

> 1.

Figure 8 shows parameters r̄ and ψ for which bubbles can exist for γ = 2, β = 0.9
and r = 10%. The figure shows that, to prevent the emergence of bubbles, the
central bank can either raise the steady-state interest rate r̄ or threaten to raise
interest rates in the future if a bubble should occur by committing to a Taylor rule
with a positive ψ. If the central bank opts for the latter option, it never actually
needs to raise interest rates: interest rate increases occur only as a consequence
of asset price movements, but because of the credible announcement of this policy
(with a sufficiently large ψ), asset prices do not rise and bubbles are prevented.16

Remark 5 Monetary policy that systematically reacts to asset price increases re-
duces the range of parameters under which bubbles are possible.

15Hence, rt is the real interest rate. We implicitly assume that the central bank has at least
some impact on short-term real rates, as it is standard in monetary economic theory.

16In this respect, the model differs from Bernanke and Gertler (1999, 2001), who show that
monetary policy should not react to asset prices based on the assumption of exogenous bubbles.
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Figure 8: Effects of the Taylor Rule

This argument shows that an augmented Taylor rule could cause fewer distortions
than discretionary interest-rate policies do. However, if the central bank cannot
differentiate between price movements due to bubbles and changes in the underly-
ing fundamentals (such as the probability of bankruptcy, 1− q) or if it is uncertain
which assets to monitor, it faces a tradeoff between preventing bubbles and the risk
of unnecessarily changing the interest rate in times without bubbles. A thorough ex-
amination of this trade-off would require a fully specified DSGE (dynamic stochastic
general equilibrium) model, which is beyond the scope of this paper.

5.2 Caps on Bonuses

The bonus payment to a manager is B = α
(
φt + d/pt − β

)
if the underlying asset

continues to pay off (probability q) and if any bubble that exists does not burst
(probability 1−Q). Absent a bubble, this bonus payment is a constant. Let us first
ask whether a potential cap on this bonus would bind early or late in the life of a
bubble. In both cases, the bubble would have to burst with probability 1 at some
date t̄, so a backward induction argument would show that the bubble cannot exist
in the first place. In terms of the bonus payment, φt increases over time, but d/pt
decreases. In the aggregate, due to (8), we have

Bt = α
(
φt + d/pt − β

)
= αφγ

t (1 + r − β)/q.

Hence, bonuses increase over time in a bubble, and caps on bonus payments become
binding in later stages of a bubble. As a consequence, we can concentrate on large
prices pt so that φt approaches a constant and the maximum bonus is

B = α
(
φ− β

)
= αφγ (1 + r − β)/q.
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Now assume that the regulator puts a cap B̄ on the bonus. There are two ways in
which the regulation can be implemented. First, the compensation scheme could
be adjusted such that bonuses above B̄ cannot occur, for example by reducing α or
increasing β. However, α does not have an effect on the existence of bubbles, and
an increase in β would favor the emergence of bubbles. Hence, this policy could
backfire and render bubbles possible.

Second, one could put a cap on bonuses and adjust it to min{max{α (
(pt+1+d)/pt−

β
)
; 0}; B̄}. Then, the bubble will burst with certainty at some specific point if

α
(
φ − β

)
> B̄, hence if φ > B̄/α + β. Economically speaking, from a certain

point onwards, managers’ bonuses cannot rise further to compensate them for the
still-increasing risk of a bursting bubble. Consequently, for a given compensation
scheme with parameters α and β, a cap on bonus payments B̄ will render a bubble
unfeasible if B̄/α+ β < φ, with φ implicitly defined by (9).

Remark 6 To prohibit the emergence of a bubble by cutting bonuses, raising β
is counterproductive, reducing α is irrelevant, and putting a cap B̄ on bonuses is
effective if the cap is low enough.

The model can indicate which types of assets might need a cap on bonus payments
and for which assets the cap must be lowered. First, relatively safe assets (high q)
tend to develop bubbles, and the price increase φ is especially low for safe assets.
This implies that managers trading in markets with relatively safe assets (e. g.,
mortgages, bond markets) should have a ceiling in their bonus contracts that should
be relatively low for safer assets. Second, if interest rates r are high, bubbles can be
prevented. The opposite is true for low levels of r, calling for lower caps in times of
low interest rates. Third, bubbles can emerge especially for high benchmarks β, and
the limit price increase φ is lower for large β. Because B̄ < α (φ − β), the minimal
effective cap B̄ depends negatively on β. With a higher benchmark, the cap must
be stricter.

5.3 Long-term Compensation

In the recent political discussion, it has often been argued that managers’ incentives
should be made more sustainable such that they concentrate more on long-term goals
and avoid short-termism. The same argument might apply to the fund managers
in our model. To analyze this question, let us assume that the manager receives
max{0; α (y−β)} as before, but that she is liable with her compensation for potential
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future losses. Hence, she will get nothing if the accumulated yield is negative in the
next period. In steady state, the market price will then be

α (1 + r − β) = q2 α
(
(pt + d)/pt − β

)
,

pt = p̄ :=
d q2

(1− β) (1− q2) + r
,

i. e., smaller than without long-term liability. If a bubble exists, the probability that
the bubble does not burst after two periods is

Q = q2 pt/pt+2 = q2/φ2γ .

As a consequence, the one-period price increase φ is determined by

α (1 + r − β) = Qα
(
φ− β

)
= q2/φ2 γ α

(
φ− β

)
,

φ2 γ (1 + r − β) = q2
(
φ− β

)
.

The equation is similar to (9), but γ is substituted by 2 γ, and q is substituted by q2.
Because bubbles exist especially for small γ and large q, according to proposition 1,
we find that long-term liability prevents the formation of bubbles. For an even
longer liability period, the effect would be larger.

Remark 7 If fund managers are liable for future developments with their bonuses,
bubbles can be prevented.

5.4 Capital Requirements

We have already argued that our “fund managers” can be many kinds of financial
intermediaries, for example banks. In this case, capital regulation would be the
most prominent policy tool. Our model suggests that capital requirements have
the effect, among other things, of preventing bubbles. The reason for this effect is
straightforward. Assume that our fund manager is a bank that invests a total of one
dollar such that aggregate market liquidity remains at N$. The bank finances its
investment by either own capital or debt, where κ denotes the share of own capital.
Previous to investment, the perfectly competitive bank agrees to repay its debtors
a specified rate of return of β̄. In a stylized setup, the bank is liable to its debtors
only with its total return y generated in a given period. Hence, the bank’s profit is

max
{
0; κ y + (1− κ)(y − β̄)

}
= max

{
0; y − (1− κ)β̄

}
,

such that (1−κ) β̄ can be interpreted as the original parameter β used in the previous
sections, setting α to one and S to zero. A capital requirement regulation forces
the bank to reduce its level of debt, i. e., to increase κ, thereby lowering β of the
original model. As we have seen, this can prevent bubbles. The same would be true
for margin requirements or ceilings on leverage for investors.

Remark 8 Bubbles can be prevented by stricter capital requirements.
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5.5 Financial Transaction Tax

There are different possible ways to implement a so-called Tobin tax. In the follow-
ing, we assume that the tax must be paid by the buyer of an asset. We denote the
tax on transactions of the safe asset τ and the potentially different tax on the risky
asset τ ′. Under such a tax regime, the no-arbitrage condition (9) changes to

φγ (1 + r − β − τ) = q (φ− β − τ ′). (17)

The modified conditions for the existence of bubbles are then γ < [q (1 − τ ′)]/[1 +
r − β − τ ] and

γγ
(β + τ ′

γ − 1

)γ−1

≤ q

1 + r − β − τ
. (18)

The derivative of the left-hand side of the above expression with respect to τ ′ is
positive, i. e., increasing the tax on transactions of the risky asset can make bubbles
impossible. However, the way in which the tax is implemented is important. If it is
levied on all financial assets, including the safe one, τ equals τ ′ and the derivative
of the right-hand side w. r. t. the common tax rate is larger than the derivative of
the left-hand side. Hence, in such a case, the possibility of bubbles can actually be
created by the Tobin tax.

Remark 9 If the financial transaction tax is levied on the risky asset only, bubbles
can be prevented. However, placing the tax on the safe and the risky assets alike can
make bubbles possible.

6 Welfare

In order to justify any policy measure for the prevention of bubbles, it is necessary
to analyze the welfare effect of bubbles. We assume that all agents are risk neutral
and have identical utility functions, uit = cit−1 + ρ cit for agent i, who is born on date
t− 1. Consumption of this agent on date t is denoted by cit. The discount factor ρ
must satisfy 1/ρ ≤ 1 + r; otherwise, agents would have no incentive to invest in the
risk-free asset. As a consequence, cit−1 = 0. Taking ρ also as the inter-generational
discount factor, we can write

E0W = E0

∞∑
t=0

∑
i

ρtuit =

∞∑
t=0

ρtE0Ct,

where Ct is aggregate expected consumption on date t. Payments between managers
and investors in the same generation are mere transfers and do not directly enter
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the welfare function. Now, absent a bubble, the price of the asset is always p̄.
Hence, the generation that consumes on date 0 earns C0 = p̄ from selling the asset.
Generation 1 pays p̄ for the asset. Because there are N investors, each owning one
dollar, the aggregate endowment of generation 1 is N . The investment into the risk-
free asset is N − p̄ because p̄ is already spent on the risky asset. With probability
q, generation 1 also gets p̄ from selling the asset plus the dividend d. Hence, the
aggregate expected consumption of generation 1 is

E0C1 = q (d+ p̄) + (N − p̄) (1 + r).

Generation 2 buys the asset only with probability q; with probability 1− q, the firm
is bankrupt and there is nothing to buy. Hence,

E0C2 = q2 (d+ p̄) + (N − q p̄) (1 + r).

The equations for the following generations are similar. Let us now look at the ex-
pected consumption in a bubble. For concreteness, consider the trinomial ‘example’
bubble process of section 3. Generation 0 gets C ′

0 = p0 > p̄ from selling the asset.
Generation 1 buys the asset at price p0, but expects the price to rise to p1 with
probability Q0, to fall to p̄ with probability q−Q0, and to fall to 0 with probability
1− q. Hence,

E0C
′
1 = Q0 (d+ p1) + (q −Q0) p̄+ (N − p0) (1 + r),

and so on. Now consider welfare differences,

C ′
0 − C0 = p0 − p̄,

E0(C
′
1 − C1) = Q0 (p1 − p̄)− (1 + r) (p0 − p̄),

E0(C
′
2 − C2) = Q1Q0 (p2 − p̄)−Q0 (1 + r) (p1 − p̄),

and so forth. Hence, the aggregate welfare difference amounts to

E0ΔW = (p0 − p̄) +

∞∑
t=1

ρt
t−2∏
t′=0

Qt′
(
Qt−1

(
pt − p̄

)− (1 + r)
(
pt−1 − p̄

))

=

∞∑
t=0

ρt (pt − p̄)
(
1− ρ (1 + r)

) t−1∏
t′=0

Qt′ ,

which is non-positive if 1 + r ≥ 1/ρ. Consequently, the welfare effect of a bubble
is always negative and is zero only in the limiting case of 1 + r = 1/ρ. Besides the
effect of shifting consumption across generations, total resources are reduced in a
bubble because of the reduced investment in the safe asset—representing a foreign
bond, productive constant-returns-to-scale capital or the like.

Alternatively, one can argue in the following way. The payments of the risky asset
are not affected if there is a bubble. However, in a bubble, on date t, the young
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generation pays a price pt higher than p̄ to the old generation born on date t − 1.
This is simply a transfer of wealth between generations, with two consequences. Due
to the higher price pt > p̄, the young generation invests less into the safe asset, at
an opportunity cost of (1+r) (pt− p̄). The transfer is carried one period forward, so
it is discounted. Because the risk-free rate 1 + r exceeds the inverse discount factor
1/ρ, the aggregate welfare effect is negative. Because bubbles always involve prices
above p̄, this argument proves the following proposition.

Proposition 4 Assume that (10) holds and 1 + r > 1/ρ. Then, of all equilibria,
the steady-state equilibrium is strictly welfare optimal.

A social planner would set the price of the risky asset to zero. However, this is
not a feasible solution in a decentralized equilibrium. Note furthermore that, c. p.,
risk aversion of the agents would reinforce the negative welfare effects of bubbles
due to higher intergenerational consumption volatility. Hence, our analysis with
risk-neutral agents gives a lower bound of the welfare effects of bubbles.

7 Endogenizing the Compensation Scheme

In the above analysis, the parameters of the compensation scheme for the managers,
α, β, and S, are taken as exogenous. These parameters can be endogenized in many
different ways, for example by embedding the above bubble model into a model
with costly state verification or model hazard. In this section, we demonstrate one
very simple way of endogenizing the compensation scheme: by simply assuming
that investors are risk averse but managers are not. The parameters α, β, and S
are then the solution of an optimal risk-sharing problem. There is one conceptual
problem. Bubbles are possible for multiple price paths, all of which are rational
expectations equilibria. So, in parameter ranges where bubbles can exist, investors
cannot build ex ante expectations about their emergence. One way to bypass this
problem is to assume that the investor treats bubbles as zero-probability events. We
will find that investors, because of their risk aversion, set a high β, which facilitates
the emergence of bubbles and increases the risk for investors. Hence, financial
contracting involves an externality. An individually rational contract design can
lead to the destabilization of financial markets by creating the prerequisites for
bubbles.

The remaining setup is as described in the previous section; i. e., an investor delegates
the investment decision to a manager, whose actions she cannot observe. Because
there are more managers than investors in the economy, the investor can make
take-it-or-leave-it offers to the managers, which maximize the expected profit of the
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investor. In doing so, she has to consider the manager’s participation constraint.
Letting y again denote the revenue generated by the manager, the expected gross
profit of the investor is then17

EtΠ = Ety − Etmax
{
0; α (y − β)

}
− S.

We restrict the parameter α to be less than or equal to unity because, in the opposite
case, a higher y can lead to a lower profit of the investor. Put differently, in the
extreme, a very high realization of y could lead to bankruptcy of the investor under
α > 1. The manager will only accept the contract if it fulfills

Etmax
{
0; α (y − β)

}
+ S ≥ A, (19)

where A > 0 is the outside option of the manager (such as academia). Because
there is a continuum of managers, the investor will choose α, β, and S such that
the manager will be at the limit of her participation constraint. This implies that
equation (19) will hold with equality. Inserting this into the above profit function
yields EtΠ = Ety − A. Hence, the investor maximizes her profit by reaping the
complete surplus of the manager. The relation between S, α, and β can be seen by
rewriting (19) as

S = A+ Q̂ α β − α φ̂ with (20)

Q̂ =

∫ ∞

β

f(y) dy and φ̂ =

∫ ∞

β

y f(y) dy,

where the probability distribution of y is denoted by f(y). The risk-neutral manager
is indifferent between values of S, α, and β as long as this equation is fulfilled. The
risk-averse investor, however, has an incentive to minimize the variance of her profits
in the different states of the economy. To this end, let us rewrite the expected utility
of the investor as

EtU(Π) =

∫ β

0

U(y − S) f(y) dy +

∫ ∞

β

U (y [1− α] + α β − S) f(y)dy.

The investor maximizes this expression subject to (20), S ≥ 0, and α ≤ 1. Because
of her risk aversion, she tries to increase the profit in states with a low realization
of y relative to states with a high y. Therefore, she chooses α = 1, S = 0, and from
equation (20), we obtain

β =
φ̂−A

Q̂
. (21)

17By the standard risk-sharing argument, as, e. g., in Allen and Gale (1994), the investment
returns must be tranched, and the less risk-averse agent (here, the manager) retains the junior
tranche, whereas the more risk-averse agent (here, the investor) takes the senior tranche.
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The right-hand side decreases, starting from a large number for β = 0, to minus
infinity for β approaching infinity. Hence, a fixed point can be found with Q̂ = q
and φ̂ = q (1 + r). Equation (21) changes to

β =
(1 + r) q −A

q
< 1 + r.

Hence, we obtain the following remark.

Remark 10 A risk-averse investor chooses a loan contract with β < 1 + r.

Importantly, this condition does not contradict (10). Consequently, with endogenous
compensation contracts, the propositions immediately applies.

8 Conclusion

Our model endogenizes two reasons why the price of an asset may deviate from its
fundamental value. First, as also analyzed by Allen and Gale (2000), fund managers
may drive up the price of risky assets because of their limited liability. This effect
is larger for riskier assets. The price deviation is not driven by expectations and
is constant over time; it involves no dynamics. Second, a fund manager may be
willing to spend more than the fundamental value on an asset because she expects
to earn even more when she sells the asset. This price deviation is completely driven
by expectations and is dynamic, typically involving large, unpredictable abnormal
returns until the bubble bursts.

These two stories are in line with anecdotal evidence. During the dot-com bubble
(1998–2001), fantasies about the potential of internet firms were exuberant. The
asset prices of these firms may have been even more exaggerated due to the limited
liability of traders. Hence, the traders’ limited liability let the exuberance appear
magnified. When expectations became more realistic, asset prices collapsed because
the correction of expectations was again magnified. This complete argument follows
from the first story because it is especially reasonable for risky assets, like the stock
of dot-com firms.

Following the “as long as the music is playing, you’ve got to get up and dance”
explanation for the recent U. S. housing bubble, managers bought securities because
they assumed they could sell them at a higher price later, driving up prices. This ar-
gument follows the second story because it is especially reasonable for fundamentally
safe assets, like real estate. In both episodes, the circumstances that are, according
to our model, favorable for both types of price deviations were fulfilled.
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Our model suggests some possible ways to avoid such bubbles. One can increase
interest rates, implement a Taylor rule that reacts to asset-price developments, or put
a ceiling on bonus payments to fund managers. By virtue of its relative simplicity,
the model lends itself to further discussions. For example, one could consider several
assets and discuss whether the collapse of a bubble in one market can spread to other
markets. One could also plug bubbles into macro models and investigate business
cycle and growth effects. Especially after the recent burst of the housing bubble,
possible applications seem numerous and relevant.

Appendix

Proof of remark 1. We have

p̄

p
=

(1− q) + r

(1− β)(1− q) + r
.

Simple analysis proves the remark. �

Proof of proposition 1. In the exposition in the main text, we have treated only
the case in which no bonus is paid if a bubble bursts. Hence, we start the proof of
the proposition by giving a condition for this case and analyzing the alternative.

If a bubble bursts, the firm still pays the dividend, so the bonus payment to the
manager is

α max

{
d

pt
+
p̄

pt
− β; 0

}
= α max

{
d+ d q

(1−β) (1−q)+r

pt
− β; 0

}
. (22)

This implies that, if the price is only slightly above the steady-state price p̄ (i. e.,
the bubble is small), the manager will earn a bonus even when the bubble bursts.
The corresponding condition is

pt < p̂ :=
(
d+

d q

(1− β) (1− q) + r

)/
β. (23)

Now, if pt is less than p̂ such that (23) is satisfied, a modified version of (7) applies.
In market equilibrium,

α (1 + r − β) + S = Qt α
(
(pt+1 + d)/pt − β

)
+ (q −Qt)α

(
(p̄+ d)/pt − β

)
+ S,

1 + r − β

q
=

( pt
pt+1

)γ pt+1

pt
+
(
1−

( pt
pt+1

)γ) p̄

pt
+
d

pt
− β. (24)
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Again, starting from pt, we have an implicit equation for pt+1 in a rational expecta-
tions equilibrium. Substituting pt+1 = φt pt, we obtain

φγ
t

1 + r − β

q
= φt + (φγ

t − 1)
p̄

pt
+ φγ

t

( d
pt

− β
)
. (25)

However, in a bubble, the price pt increases over time and eventually exceeds the
threshold p̂. Therefore, to find out whether bubbles are feasible, it suffices to consider
the case pt > p̂, as we have done in the main text.

We have already argued that the probability that a bubble bursts increases with pt.
However, because pt is an increasing function of t, a bubble is sustainable if and
only if it is sustainable for pt → ∞. Hence, if (9) has a solution for φ, the bubble
is sustainable. Now consider the limiting case in which the line q (φ − β) and the
curve φγ (1 + r − β) only just touch. At the point of contact, the slopes must be
equal, so

(1 + r − β) γ φγ−1 = q,

which implies that the point of contact is φ = β γ/(γ−1). Substituting this solution
into (9), we find that the limiting case is reached at

( β γ

γ − 1

)γ

(1 + r − β) = q
( β γ

γ − 1
− β

)
.

Some algebra yields (10). We have checked the conditions under which (9) has a
solution. However, in a bubble, prices must increase, so φ > 1. Considering the
geometry of the problem, this is the case if the right-hand side of (9) is steeper in φ
than the left-hand side is at the point φ = 1. Otherwise, the curves would intersect
for φ < 1. Evaluating the derivatives of the left and right-hand sides of (9) at the
point φ = 1, we obtain the condition γ < q/(1 + r − β). �

Proof of remark 3. There are two conditions that may become increasingly strict
or lax. First, condition (10) is satisfied iff

(1 + r − β) γγ
( β

γ − 1

)γ−1

− q ≤ 0.

The derivative of this term with respect to q is negative, so the condition is more
likely to be satisfied for large q. The derivative with respect to r is positive; hence,
(10) holds for small r. The derivative with respect to γ is

(1 + r − β) γγ
( β

γ − 1

)γ−1

ln
β γ

γ − 1
.
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Now remember that the point at which the curves touch is φ = β γ/(γ − 1). The
above logarithm is therefore positive, and the complete derivative with respect to γ
is positive. A larger γ makes bubbles less likely. Finally, the derivative with respect
to β is

γγ
( β

γ − 1

)γ−1 (1 + r) (γ − 1)− β γ

β
.

Again, at the touching point, φ must exceed 1, so β ≥ (γ − 1)/γ. For the limiting
β = (γ − 1)/γ, the numerator of the above fraction becomes (1 + r) (γ − 1) −
β γ = −r (γ − 1) < 0. Hence, for any β larger than the limiting (γ − 1)/γ, the
numerator must be negative. Thus, the whole derivative is negative, and a larger β
makes bubbles more likely. The second condition, γ < q/(1 + r − β), has the same
comparative statics. �

Proof of remark 4. We start by discussing dT ′/dr. Because φ is implicitly given
by (9), let us define Ψ = φγ (1+r−β)−q (φ−β), such that Ψ = 0 at the equilibrium
φ. Then, the implicit function theorem yields

dφ

dr
= −∂Ψ/∂r

∂Ψ/∂φ
= − φγ

γ φγ−1 (1 + r − β)− q
.

Because ∂Ψ/∂φ < 0 and φγ > 0, we know that dφ/dr > 0. Now, because in (11),
dT ′/dφ < 0, the half life of a bubble drops as interest rates increase, dT ′/dr < 0.

Now consider dT ′/dβ. Following the same procedure as above, note that ∂Ψ/∂β =
q − φγ . Because q ≤ 1 but φ > 1, the term is negative. Consequently, dφ/dβ < 0,
and thus dT ′/dβ > 0.

Now let us turn to dT ′/dq. There are two effects. As a direct effect, considering
(11), T ′ increases as q increases. A real default of the firm would also make the
bubble burst. Hence, as the real half life of the firm increases, the half life of the
bubble is also lengthened. The second effect is indirect. ∂Ψ/∂q = β − φ < 0, which
implies dφ/dq < 0, implying a longer half life. Thus, both effects go in the same
direction, which implies that dT ′/dq > 0.

Finally, consider dT ′/dγ. The total derivative of Q is

dQ

dγ
=
∂Q

∂γ
+
∂Q

∂φ
· dφ
dγ

=
∂Q

∂γ
− ∂Q

∂φ
· ∂Ψ/∂γ
∂Ψ/∂φ

=
q2 φ−γ lnφ

(1 + r − β) γ φγ−1 − q
.

The numerator is negative, so the whole fraction dQ/dγ is negative. As a result, the
half life decreases as γ increases, dT ′/dγ < 0. Remembering that the variance of
the distribution is inversely related to γ, we can state that the half life of a bubble
increases with rising uncertainty about aggregate liquidity. �
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Proof of proposition 2. Assume that a price process exhibits a bubble, that
pt > p̄ at a date t, and that p̃t+1 is distributed with distribution F (p̃t+1). Then, in
a rational expectations equilibrium,

α (1 + r − β) + S =

∫ ∞

0

Qt α max
{ p̃t+1 + d

pt
− β; 0

}
df(p̃t+1) + S,

1 + r − β

q
=

∫ ∞

0

h(p̃t+1) df(p̃t+1), where (26)

h(p̃t+1) = max
{ pγt
p̃γt+1

( p̃t+1 + d

pt
− β

)
; 0
}

is an auxiliary function. The pt+1 implicitly defined by (7) solves this equation
for a distribution that has probability mass only at one point pt+1 (and zero and
p̄). The question is, from this three-point distribution, can we shift probability
mass to other prices such that the above (26) still holds? The answer depends
on the shape of h(p̃t+1). Some straightforward analysis shows that h(p̃t+1) is zero
up to p̃t+1 = β pt − d, then increases and decreases again. For p̃t+1 → ∞, it
again approaches zero asymptotically. The maximum of the integral is reached if all
probability mass is located at

p̃∗t+1 = γ
β pt − d

γ − 1
> β pt − d.

Hence, a trinomial process with the possible events p∗t+1, p̄, and 0 maximizes the
right-hand side of (26). Shifting probability mass to other parts of h(p̃t+1) reduces
the value of the integral. Note that no bubble can emerge if the left-hand side of
(26) is larger than the right side for any price path. We can therefore conclude that
if no trinomial bubble process exists, no other bubble process can exist either. On
the other hand, if a trinomial bubble process exists, it is an example of a general
bubble process. As a consequence, (10) is the general condition for the existence of
bubble processes in rational expectations equilibrium. �

Proof of proposition 3. For general F (N) with infinite support, equation (9)
reads

lim
p→∞

1− F (p)

1− F (φ p)
(1 + r − β) = q (φ− β).

Define the first term as

G(φ) := lim
p→∞

1− F (p)

1− F (φ p)
= q

φ− β

1 + r − β
.

If this equation has a solution for φ > 1, bubbles are feasible. We know that for
φ = 1, the left-hand side exceeds the right-hand side,

G(1) = 1 > q
1− β

1 + r − β
(27)
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because 1+r−β > q (1−β). Therefore, bubbles are feasible if and only ifG(φ) crosses
q φ−β

1+r−β
from above for some φ. A necessary condition would be G′(φ) < q

1+r−β
for

some φ > 1.

Let us delve deeper into the possible structure of G(φ). L’Hôpital’s rule yields

G(φ) = lim
p→∞

1− F (p)

1− F (φ p)
= lim

p→∞
f(p)

φ f(φ p)
=

1

φ
lim
p→∞

f(p)

f(φ p)
. (28)

In the original example, under assumption 2, f(p) = γ Nγ
0 p

−(1+γ), so G(φ) = φγ.
Now what shapes can G(φ) potentially take if assumption 2 is dropped? Because
of (13), γ + 1 is the smallest number such that xγ f(x) does not converge to zero.
In Landau notation, f(N) = c1 x

−γ−1 + O(|x|−c2), where c1 is a constant, and
c2 > γ + 1 such that the error term decays faster than the main component x−γ−1.
Consequently, with this approximation,

G(φ) = lim
p→∞

=
1

φ
lim
p→∞

c1 p
−γ−1 +O(|p|−c2)

c1 (φ p)−γ−1 +O(|φ p|−c2)
= φγ. (29)

Thus, the behavior of G(φ) only depends on the order of convergence of f(p) towards
zero for large p.

Let us, in addition to this proof, give an example for the procedure. Assume that
N follows the Levy distribution, N ∼ Levy(1, 1), thus

f(N) =
e1/(1−x)

√
π (x− 1)3/2

.

For this distribution, limx→0 f(1/x) x
−n is zero for n < 3/2, infinite for n > 3/2, and

1/
√
π for n = 3/2. Therefore, f(1/x) can be approximated by x3/2/

√
π for small x,

and f(N) can be approximated by N−3/2/
√
π for large N . In this example, n = 3/2

and γ = n− 1 = 1/2. �

Proof of remark 9. Let a tax on transactions of the safe asset be denoted by τ , a
tax on selling the risky asset by τ ′′, and a tax on buying the risky asset by τ ′. Hence,
τ ′′ = 0 means that the buyer of an asset has to pay the tax (the case analyzed in the
main text), while τ ′ equals zero if the seller pays the tax. The equilibrium condition
(9) is then

φγ (1 + r − β − τ) = q [φ (1− τ ′′)− β − τ ′].

Following the steps taken in the proof of proposition 1 yields φ = γ(β + τ ′)/[(γ −
1)(1− τ ′′)] as the touching point of both sides of the above equation. The condition
for φ > 1 turns into

γ <
q (1− τ ′′)

(1 + r)− β − τ
. (30)
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The modified condition for the existence of bubbles is then(
γ

1− τ ′′

)γ (β + τ ′

γ − 1

)γ−1

≤ q

1 + r − β − τ
.

The right-hand side of this equation increases in τ , while the left-hand side increases
in τ ′′ and τ ′. Considering equal tax rates on the risky and the safe assets, one can use
equation (30) to show that the derivative of the right-hand side w. r. t. the common
tax rate is larger than the derivative of the left-hand side for both cases, τ = τ ′′ and
τ ′ = 0, or alternatively that τ = τ ′ and τ ′′ = 0. �
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