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Abstract

We show that a steeply increasing workload before a deadline is

compatible with time-consistent preferences. The key departure

from the literature is that we consider a stochastic environment

where success of effort is not guaranteed.
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1. INTRODUCTION

Life is full of tasks which have to be completed by a prespecified date.

For example, a husband needs to repair something before the mother-in-

law will visit; a student may have to complete a proof for the next math

class; a researcher must complete a presentation for a conference. People

sometimes delay or procrastinate with the completion of such tasks.1

Their workload is steeply increasing before the deadline.

∗Max Planck Institute for Research on Collective Goods, Kurt-Schumacher-Str. 10,

53113 Bonn, Germany, weinschenk@coll.mpg.de. I thank Christoph Engel, Martin

Hellwig, Fabian Herweg, Oliver Himmler, Aniol Llorente-Saguer, Daniel Müller, and

Dan Silverman, as well as seminar participants at the Max Planck Institute for Re-

search on Collective Goods in Bonn and at the EEA Conference 2010 in Glasgow for

helpful comments and suggestions.
1For empirical evidence, see, for example, Ellis and Knaus (1977), Solomon and

Rothblum (1984), and McCown et al. (1987).
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The literature explains this phenomenon by use of time-inconsistent,

present-biased preferences (O’Donoghue and Rabin, 1999, 2001, 2007;

Akerlof, 1991; Brocas and Carrillo, 2001). In contrast, typical models

with time-consistency predict that a person distributes her effort equally

across time (O’Donoghue and Rabin, 2007). Because of discounting, a

time-consistent person may optimally choose a slightly increasing work-

load (Fischer, 2001). However, “quantitatively, the fully rational model

appears to require an extremely high rate of time preference or elasticity

of intertemporal substitution to generate serious procrastination” (Fis-

cher 2001, p. 249). That is, a steeply increasing workload is seen as

incompatible with the time consistency assumption. We show that in a

stochastic environment this is no longer true. That is, a time-consistent

person may optimally choose a steeply increasing workload. Therefore,

we provide—to the best of our knowledge—the first explanation why a

steeply increasing workload can be fully rational.

In our model, we suppose that a person has to solve a task (e.g., prove

a mathematical result). The rough intuition why a steeply increasing

workload is fully rational is as follows. When there is a lot of time left,

the person does not have to worry much about the deadline. Then she

optimally exerts some risky approaches with low effort costs (e.g., looking

in related papers). These are unlikely to be successful, but have low risk-

adjusted effort costs. When the task is not solved shortly before the

deadline, the solution gets urgent. Then the person optimally chooses

relatively safe approaches which require a lot of effort (e.g., create a self-

reliant proof). Although these have high risk-adjusted effort costs, they

are very likely successful.

We validate and strengthen the results when we change from a dis-

crete to a continuous approach space. For a specific family of effort cost

functions, we illustrate our findings and yield a further result: not only

the expected per-period effort costs, conditional that the task is not yet

solved, increase in time; the unconditional expected effort costs also in-

crease.

Our findings are not a critique of the concept of present-biased pref-
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erences. We think it is extremely useful to explain phenomena like unde-

sired delay. Our point is that a steeply increasing workload is perfectly

compatible with the assumption of time consistency and can therefore

not be seen as a proof for time inconsistency.

Our paper is related to Weitzman (1979) who studies the problem of

searching for the best outcome when there are alternative sources. To ex-

plore a source, the person has to invest. Unlike in our model, there is no

deadline. The problem is one of selection and optimal stopping.2 In our

problem, the stopping rule is degenerated: stop if and only if an approach

was successful or the deadline is reached. Nonetheless, our selection prob-

lem is nontrivial because of the deadline. Roberts and Weitzman (1981)

determine the optimal funding criteria in a multiple stage investment

problem, where information about the final benefit is revealed bit by bit.

In their setting, the only decision is to stop or continue. That is, there

is no selection problem.

In Bisin and Hyndman (2009), a person’s effort costs evolve stochasti-

cally in continuous time and she has to invest once to complete the task.

In contrast to our model, the success of effort is guaranteed. They show

that it may be optimal to “wait for better times”. Formally, the optimal

decision rule is to wait to exert effort until costs are less than a certain

threshold.

The paper proceeds as follows. In the next section, we describe the

model with a discrete approach space. We analyze it in Section 3. In

Section 4, we consider a continuous approach space. In Section 5, we

discuss and extend the model. Finally, we offer some concluding remarks

in Section 6.

2When stopping, the person receives the maximum reward she has thus far uncov-

ered. Sources differ in their potential rewards as well as in their costs. The reward

space is much richer than in our model, where an approach can either be successful

or not.
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2. THE MODEL

The person has to solve some task within T ≥ 2 periods. There is a

finite number of different classes. Each class contains at least T identical

approaches; we discuss this assumption in Section 5.1. The character of

an approach of class i is determined by the class-specific effort cost ci ∈

R≥0 and the class-specific probability that the task is solved pi ∈ [0, 1].

In each period, the person exerts one approach and each approach can

be conducted at most once. The success probabilities are uncorrelated.

The person is risk-neutral and minimizes the expected effort costs of

the solution. When two or more classes have the same success probabili-

ties, they must have, by definition, different costs. All classes except the

one with the lowest cost are inferior and not important for the person’s

problem. Call the set of all classes which are not inferior in this sense I.

We number the classes belonging to I with 0, 1, ..., n and arrange them

according to their success probabilities: pi < pj for i < j.

We assume that there is a default class 0 with ci = pi = 0. When the

person exerts an approach of class 0, she essentially does nothing. We

also suppose that there is a safe class which is surely successful: pn = 1.3

In Section 5.3, we assume that completion of the task is not mandatory

and show that this allows us to drop the assumption that there is a safe

class. We normalize all costs so that cn = 1. We want to answer the

following related questions. When does the person optimally exert which

approach? How does the person’s workload evolve over time?

3. ANALYSIS

The optimal stopping rule is simple: when the person has solved the

task, she optimally exerts approaches of class 0. But which approach

should she exert when the task is not yet solved? The person’s strategy

for this case is denoted by s = (s1, ..., st, ..., sT ), where st ∈ I. This

3Otherwise we would have the problem that the person cannot guarantee to solve

the task. Then the person’s problem is no longer well defined.



WEINSCHENK: INCREASING WORKLOAD IN A STOCHASTIC ENVIRONMENT 5

vector specifies which approach the person exerts in t, conditional that

no previous approach was successful. By permuting the elements of the

vector s such that the elements are arranged in an ascending order of

their classes, we obtain a new vector which we call S. This vector can be

interpreted as the arranged vector of all approaches which are conducted

in some period, given that the task is not solved.4

The person can, in principle, apply a mixed strategy. Mixed strate-

gies can only be weakly optimal when the person is indifferent between

several approaches. This is generically never the case and the person

is equally well-off when she plays only pure strategies. Therefore, we

will concentrate on pure strategy equilibria. But the concept of mixed

strategies is useful to yield some insights.

3.1. THE RELEVANT SET

We call a class dominated if there is some other class or mixtures of

classes which yield the same success probability with lower costs. We

denote the set of classes which are not dominated the relevant set IR,

where IR ⊆ I. Note that a person’s strategy s need not contain all

elements of IR. But all components of an optimal strategy s have to be

elements of IR; otherwise the person could improve.

L e m m a 1: The set of relevant classes IR forms a weakly convex and

weakly increasing line in the p− c space. No class is below this line. The

classes 0 and n are always part of IR.

Proof: See appendix.

Geometrically, the set of relevant classes can be found as follows.

Form the convex hull around all classes. The relevant set is then given

by the classes on the lower part of the convex hull. This can be seen in

Figure 1, where the relevant set are the classes on the bold lines.

4For example, if s = (2, 1, 1, 3) then S = (1, 1, 2, 3). The same vector S is yielded

for other strategies, like s = (3, 1, 1, 2) or s = (3, 1, 2, 1).
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Figure 1: The set I, the convex hull, and the set IR.

When the relevant set consists only of classes 0 and n, then the per-

son’s problem is trivial: exert once an approach of class n in some period

and otherwise conduct approaches of class 0. The same is true when

there is no i ∈ {1, .., n − 1} with ci/pi < 1. Because approaches of the

classes 0 (n) fail (succeed) for sure, there is no role for stochasticity. To

avoid this and to make the problem interesting, we impose the following

assumption.

A s s u m p t i o n 1 : There is at least one class of approaches for which

pi > 0 and ci/pi < 1.

3.2. THE CLASSES 0 AND n

The person has to solve the task no later than the end of T . Her strat-

egy s must therefore contain an approach of the safe class n. But is it

worthwhile for the person to exert an approach of another class before

eventually exerting a safe approach? Investing in approach i ∈ {1, n−1}

in t − 1 and in approach n in t (when there was no success in t − 1) is

strictly better than the other way round (actually, i is never exerted) if

and only if

pi1 > ci. (1)

That is, with probability pi approach i is successful and the effort costs

in t of cn = 1 are avoided. This benefit must exceed the costs of ci.
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Because of Assumption 1, there exists at least one class for which (1)

holds. Hence, the person optimally exerts an approach of class n only in

the last period T (given that the task is not yet solved).

We already know that the person optimally exerts approaches of class

0 once the task is solved. But can it be optimal to exert approaches of

class 0 before? The answer is no. The intuition is that by doing so the

person would forego the opportunity to solve the task with some other,

relatively cheap approach.

L e m m a 2: The person exerts an approach of class n only in period

T and when the task is not yet solved. Approaches of class 0 are only

exerted once the task is solved.

Proof: See appendix.

3.3. THE INCREASING WORKLOAD RESULT

Consider the subproblem where the ordered vector of approaches which

is possibly exerted S is given. In which sequence should the approaches

which S contains be exerted?

Denote the expected costs of solving the task under the optimal strat-

egy, given that the task is not solved, measured at the beginning of period

t, by Et[C]. Suppose an approach of class i is exerted in t and, possibly,

when this approach is not successful, an approach of class j in t+1. Then

the expected costs of the solution at the beginning of t are

(1− pi)(1− pj)Et+2[C] + ci + (1− pi)cj, (2)

whereas they are

(1− pi)(1− pj)Et+2[C] + cj + (1− pj)ci (3)

when the sequence of the approaches i and j is permuted. Hence, it is

optimal to conduct i before j if

ci
pi
<
cj
pj
. (4)
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When (4) holds with > it is optimal to exert j before i and the person

is indifferent when (4) holds with equality. This observation yields the

following lemma.

L e m m a 3: Given the ordered vector of approaches which is possibly

exerted S and that the task is not yet solved, the person conducts the

approaches in an ascending order of risk-adjusted costs ci/pi.

Because Lemma 3 holds for all vectors S, it implies that as long as

the task is not yet solved, the person conducts approaches with weakly

increasing risk-adjusted costs. The intuition for this result is that the

expected costs of a solution are minimized when the person starts with

approaches which have low risk-adjusted costs.

One may presume that as long as the task is not solved, it is always

optimal to exert approaches of the class with the lowest risk-adjusted

costs, except in the last period T . This conclusion is wrong. To see this,

consider the following example. There are three periods, T = 3, and the

following four classes:

c0 = 0, p0 = 0,

c1 = 0.1, p1 = 0.4, c1/p1 = 1/4;

c2 = 0.4, p2 = 0.8, c2/p2 = 1/2;

c3 = 1, p3 = 1, c3/p3 = 1.

In t = 3, the person optimally exerts an approach of class 3. There-

fore, E3[C] = 1. In t = 2, the expected costs of completion are 0.1+0.6×

1 = 0.7 when the person exerts an approach of class 1, whereas they are

0.4 + 0.2 × 1 = 0.6 when she chooses an approach of class 2. Hence, in

t = 2, she optimally chooses an approach of class 2. In t = 1, exerting

an approach of class 1 causes expected costs of 0.1 + 0.6 × 0.6 = 0.46,

which is lower than the costs when choosing an approach of class 2:

0.4 + 0.2× 0.6 = 0.52. Therefore, the optimal strategy is s = (1, 2, 3).

From Lemma 1 we know that the relevant set forms a weakly convex

and weakly increasing line in the p − c space and the class 0 is in the

relevant set. Hence, the property of increasing risk-adjusted costs ct/pt
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implies that also the non-adjusted costs ct and the success probability pt

are weakly increasing in the time t. When it comes to the periods T − 1

and T we can be sure that there is a strict increase because of Lemma 2.

P r o p o s i t i o n 1 : Given that the task is not yet solved, with pro-

ceeding time the person conducts approaches which become weakly more

costly and more promising in terms of success. There is a strict increase

from T − 1 to T .

That is, the workload (measured by the effort cost ct) is weakly in-

creasing in t until the person has success. Intuitively, when there is a

lot of time left, the person does not care much about the deadline and

therefore tries some cheap and risky approaches. These are unlikely to be

successful, but have low risk-adjusted costs. When the task is not solved

shortly before the deadline, solving gets urgent. Then the person chooses

expensive but safe approaches. Although these have high risk-adjusted

costs, they are very likely successful.

We finally show that the expected costs of a solution are increasing

in time t.

P r o p o s i t i o n 2 : Et[C] ∈ (ct/pt, cT/pT ) for all t < T and Et[C]

is strictly increasing in time t.

Proof: See appendix.

The intuition is that the expected cost of a solution, Et[C], is increas-

ing because the person exerts approaches which become incrementally

inefficient in terms of risk-adjusted costs.

4. CONTINUOUS APPROACH SPACE

In this section, we assume that there is a continuum of approaches. We

validate and strengthen the results we have shown in the previous sec-

tion with a discrete approach space. For a specific family of effort cost

functions, we illustrate our findings and yield a further interesting result:



WEINSCHENK: INCREASING WORKLOAD IN A STOCHASTIC ENVIRONMENT 10

not only do the expected per-period effort costs increase in time, condi-

tional that the task is not yet solved; the unconditional expected costs

also increase.

Suppose that the person can choose in every period the success prob-

ability p ∈ [0, 1]. This causes effort costs of c = f(p). In the previous

section, where we have considered a discrete approach space, we have seen

that the relevant set contains the costless class 0 and that the relevant

set is convexly and increasingly ordered in a p− c diagram. Considering

a continuous approach space, we therefore now assume that f(0) = 0,

f ′(·) > 0, and f ′′(·) > 0. Additionally we assume that f(·) is twice

continuously differentiable.

The person’s problem can be solved recursively. When period T ar-

rives, and the task is not yet solved, she has to choose p∗T = 1, which

results in costs of f(1). When we go back to period t < T , she minimizes

the expected costs of a solution

min
pt

f(pt) + (1− pt)Et+1[C]. (5)

This yields the first-order condition5

f ′(p∗t )− Et+1[C]
!
= 0. (6)

One can write

Et[C] = f(p∗t ) + (1− p∗t )Et+1[C]. (7)

Note that p∗T = 1, ET [C] = f(1), (6), and (7) determine the optimal

sequence of success probabilities p∗ = (p∗1, ..., p
∗
t , ..., p

∗
T ) which the person

chooses when the task is not yet solved. When the task is solved, it is

optimal to choose pt = 0.

From (6) we see that

dp∗t
dEt+1[C]

=
1

f ′′(p∗t )
> 0. (8)

5One can directly show that with a continuous approach space (i) it is never optimal

to choose p = 0 when the task is not yet solved and (ii) p = 1 is only chosen in T and

when the task is not solved. Therefore, corner solutions are not an issue.
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As with a discrete approach space, we have thatEt[C] ∈ (f(p∗t )/p
∗
t , f(1)/1)

for all t < T and that Et[C] is increasing in t. The reasons are almost the

same as in the proof of Proposition 2. Together with (8), this implies that

p∗t is increasing in time t. Because f ′(·) > 0, the per-period effort costs

f(p∗t ) are increasing, too. Because of the assumptions made on f(·), we

yield that f(p∗t )/p
∗
t is also increasing. The next proposition summarizes.

P r o p o s i t i o n 3 : Given that the task is not yet solved, the work-

load, f(p∗t ), is strictly increasing in time t. Also, p∗t , f(p
∗
t )/p

∗
t , and Et[C]

are strictly increasing in t.

Because of the strict increases, these findings are stronger than the

ones of Proposition 1.

4.1. A SPECIFIC FAMILY OF EFFORT COST FUNCTIONS

We now consider the following family of effort cost functions:

f(p) = αpγ , (9)

with α > 0, γ > 1, and p ∈ [0, 1]. Because the expected costs of a

solution Et[C] are also linear in α, one can normalize α = 1.

Figures 2-5 show how the optimal success probability of a period p∗t

(blue line), the per-period effort costs f(p∗t ) (red line), and the expected

costs of a solution Et[C] (green line) evolve over time for different values

of the parameter γ. The numerical data can be found in the appendix.

The diagrams show the case where the person has ten periods to solve

the task. When a shorter horizon, T < 10, is considered, one has to cut

off the first 10− T periods of the figures.

The figures illustrate that the optimally chosen success probabilities

p∗t are increasing in γ. The reason is that a higher γ implies lower effort

costs for all interior levels of p. Also the per-period effort costs for the

optimal success probability are lower, which results in lower expected

costs of a solution. Obviously, in the last period, t = 10, all variables are

the same for all values of the parameter γ.
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Figure 2: γ = 1.5.
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Figure 3: γ = 2.
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Figure 4: γ = 3.
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Figure 5: γ = 5.

The figures also clarify that in our stochastic environment a steeply

increasing workload can be optimal. It is hard to qualify what “steeply”

means. But we think that, for example, the quadrupling of the effort

costs f(p∗t ) from the penultimate to the last period in the quadratic cost

specification (γ = 2) can be seen as a steep increase.

Propositions 1 and 3 have shown that the per-period effort costs are

increasing in time, conditional that the task is not yet solved. Put dif-

ferently, we showed that the workload of the person is increasing, given

that she works. Next, we explore the unconditional expected effort costs.

That is, we measure the expected workload, taking into account that the

person may quit working because she already solved the task.6

Time has two counteracting effects on the unconditional expected

effort costs. First, in early periods the task is less likely solved than in

6These unconditional expected effort costs can also be interpreted as the average

per-period effort costs when there is a continuum of persons and each person plays

her own game.



WEINSCHENK: INCREASING WORKLOAD IN A STOCHASTIC ENVIRONMENT 13

late periods. Remember, once the task is solved, the person chooses not

to work in any of the remaining periods. Only when the task is not solved

does the person try to solve the task by choosing a success probability

p∗t > 0, which results in positive effort costs of f(p∗t ) > 0. Therefore, this

effect predicts that the unconditional expected effort costs are higher in

the early periods than in the late periods. Second, from before we know

that when the task is not yet solved, the person invests more in the late

than in the early periods. Formally, f(p∗t ) is increasing in t. This effect

predicts that the unconditional expected effort costs are increasing in

time. We conducted a numerical analysis; see the appendix. It suggests

that the latter effect always dominates. That is, the person’s effort costs

are on average higher in late than in early periods.

P r o p o s i t i o n 4 : Given that the task is not yet solved in period

τ ≤ t, for all γ > 1, the unconditional expected effort costs in period t

are increasing in t.

So Proposition 4 says that the person’s expected workload is increas-

ing until the deadline T .

Returning to the illustration with T = 10, the ratio between the

unconditional expected effort costs of period 10 and 1 is 2.33 for γ = 1.5,

2.58 for γ = 2, 3.01 for γ = 3, and 3.70 for γ = 5.7 These numbers

indicate that (i) the ratio is increasing in γ and (ii) the expected workload,

measured by the unconditional expected effort costs, is quite substantially

increasing between periods 1 and 10. As one can see from the tables in

the appendix, around 80 percent of this increase occurs in the last step

from period 9 to 10. That is, the expected workload increases relatively

moderately until period 9; then there is a sharp increase in period 10.

7The numerical data as well as a richer series of the unconditional expected effort

costs are given in the appendix.
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5. DISCUSSION AND EXTENSIONS

In this section, we explore whether our results are robust when we con-

sider (i) a scarce approach space, where the approach space is not only

discrete, but where each class contains not necessarily at least T ap-

proaches, (ii) discounting of future effort costs, and (iii) a setting where

completion of the task is no longer mandatory, but instead rewarded.

5.1. SCARCE APPROACHES

Up to now, we have assumed that approaches are abundant. What hap-

pens when the approach space is discrete and approaches are scarce in

the sense that each class contains not at least T approaches?8

Consider the extreme example where each class contains only one

approach. Suppose that the person has three periods to solve the task,

and there are four classes:

c0 = 0, p0 = 0,

c1 = 0.1, p1 = 0.2, c1/p1 = 1/2;

c2 = 0.2, p2 = 0.6, c2/p2 = 1/3;

c3 = 1, p3 = 1, c3/p3 = 1.

From Lemma 3 we know that the person optimally conducts the ap-

proaches in an ascending order of risk-adjusted costs ci/pi. Hence, the

person first exerts approach 2, then 1, and then 3 (given that no success is

reached). Therefore, when approaches are scarce, the person’s workload

(measured in terms of the effort costs ct) is not necessarily monotonically

increasing. The relationship can be non-monotonic. However, Assump-

tion 1 guarantees that the workload is always increasing from T − 1 to

T (when the task is not yet solved) because we know from before that

(i) approach n is exerted last9 and (ii) no approaches with risk-adjusted

8Our analysis showed that our results stay completely valid when each class con-

tains at least T − 1 approaches.
9With a scarce approach space, there may exist multiple optima. However, when

there is some, even slight, discounting of effort costs and the person is able to do
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costs above one are conducted. That is, even if approaches are scarce,

the model predicts that the workload is at least increasing shortly before

the deadline.

Additionally, with many classes it may be no problem that each class

contains only few approaches. In Section 4, we considered the extreme

case where there is a continuum of classes and showed that the person

will optimally exert approaches of different classes in every period.

5.2. DISCOUNTING

We implicitly assumed that there is no discounting. What happens when

future costs are discounted with rate δ ∈ (0, 1)? We consider the simplest

case where there is a continuous approach space, effort costs are f(p) =

pγ, with γ > 1, and two periods to complete the task, T = 2. In t = 2,

the person chooses p∗2 = 1. In t = 1, she minimizes the present value of

the expected costs of completion

min
p1

pγ1 + δ(1− p1)1. (10)

This yields

p∗1 =

(

δ

γ

)
1

γ−1

. (11)

Because γ > 1 > δ, with discounting we also get that p∗1 < p∗2 = 1. That

is, with discounting the workload is also increasing. Observe that dis-

counting has a negative impact on p∗1, which makes the workload increase

even more sharply over time. Because p∗1 is continuous in δ, discount rates

close to 1 lead to results which are quantitatively very similar to the ones

without discounting.

5.3. REWARD FOR COMPLETION

We assumed that the person has to complete the task until the deadline

T . Some real-world situations may be better described by assuming that

a task does not have to be completed for sure, but rather that completion

nothing as often as she pleases, it is uniquely optimal to exert approach n last.
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is rewarded (or equivalently, that failure is punished). Let the reward

the person receives for completing the task within the deadline be R.

Consider again the case where there are two periods, T = 2, and a

continuous approach space. In t = 2, the person is no longer forced to

choose p2 = 1. She maximizes the expected reward minus her effort costs:

max
p2

p2R− f(p2). (12)

When the reward is sufficiently high, the person chooses to solve the task

for sure: p∗2 = 1 if R ≥ f ′(1). Otherwise, p∗2 solves

f ′(p∗2) = R. (13)

In t = 1, she maximizes the expected reward minus her effort costs and

also takes into account that by completing the task now she foregoes the

continuation payoff of reaching period t = 2,

max
p1

p1R− f(p1)− p1(p
∗
2R− f(p∗2)). (14)

The continuation payoff is positive whenever limp→0 f
′(p) < R. We as-

sume that this condition is satisfied, otherwise the problem is trivial and

the person always chooses zero effort. Comparing (12) and (14), we see

that the person is less eager to complete the task in t = 1 than in t = 2.

The reason is that a failure in the first period still leaves the possibility

open that the task is completed in the second period. This finding indi-

cates that we should still get the result that the workload is increasing.

We now prove this by showing that p∗1 < p∗2, which implies f(p∗1) <

f(p∗2). Suppose, contrary to our claim, that p∗1 > p∗2. Then p∗2 is smaller

than one and solves (13). The first-order condition of (14) is

f ′(p1) = R− (p∗2R− f(p∗2)). (15)

Comparing (13) and (15) clarifies that p∗1 cannot exceed p∗2 because the

continuation payoff is positive. The same line of arguments implies that

whenever p∗2 < 1, we must have p∗1 < p∗2. It remains to show that whenever

p∗2 = 1, we have p∗1 < 1. When p∗2 = 1, the continuation payoff of reaching
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period two is R − f(1). Using this result, we see from (15) that p∗1 = 1

requires

f ′(1) ≥ f(1). (16)

This cannot hold because we assumed that f(0) = 0 and f ′, f ′′ > 0.

Observe that when completion is rewarded, but not mandatory, we

can relax the assumption that there is a class of approaches which are

successful for sure. The problem is then still well-defined. Alternatively,

when completion of the task is not mandatory, we can assume that high

levels of effort are prohibitly costly so that the person will never choose

them. From above we know that we still get the result that the workload

is increasing.

Is the workload also increasing when the approach space is discrete?

It is straightforward to show that when completion is rewarded, but not

mandatory, Lemma 3 also remains valid. This lemma is the key to show

that the workload is increasing.

6. CONCLUDING REMARKS

We show that in a stochastic environment a person optimally chooses

an increasing workload. Time-inconsistent preferences are not needed to

explain a steeply increasing workload.

We model stochasticity very simply. There exist alternative, possibly

more complicated ways to capture stochasticity. Because the intuition

for our results seems to be quite general (and not specific to the way we

modeled stochasticity), we expect that our results still hold in alternative

formulations of stochasticity.

O’Donoghue and Rabin (2008) consider a multiple step setting where

the completing of a project requires several steps of effort. A possible di-

rection for future research would be to study such a multiple step setting

with stochasticity.
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APPENDIX A: PROOFS

PROOF OF LEMMA 1

We prove the weak convexity property by contradiction. Suppose, in

contradiction, that the person exerts an approach of a class i and there

are two classes j and k so that pi = ψpj+(1−ψ)pk and ci > ψcj+(1−ψ)ck,

with ψ ∈ (0, 1). Then the person can improve by playing a mixed strategy

with weight ψ on the approach of class j and weight 1−ψ on the approach

of class k. When the relevant set of classes forms a weakly convex line,

then these classes are not dominated in the aforementioned sense by

some other classes or mixtures of them. This proves the weak convexity

property.

Next, we prove that no class is below the line in the p − c space

formed by IR. Suppose, in contradiction, that there is a class i which

does not belong to IR and is below the line formed by IR in a p − c

diagram. Because IR forms a weakly convex and weakly increasing line

in the p− c space, see above, class i cannot be dominated. This is shown

in Figure 6. The bold line shows some hypothetical IR. The grey area is

the space where classes are dominated. Because the class i is below this

area, it cannot be dominated by this hypothetical IR. This also holds for

all other possible IR to which class i does not belong. Therefore, class

i is not dominated and has, by the definition of IR, to belong to IR; a

contradiction.

Finally, because the class 0 has p0 = 0 it cannot be replicated by a

mixture of other classes. The same is true for class n because pn = 1.

Hence, the classes 0 and n cannot be dominated and are part of IR.

Because of this and ci ∈ R≥0, it is straightforward that the line formed

by the relevant set is weakly increasing. �

PROOF OF LEMMA 2

We have already shown that an approach of class n is only conducted

in period T and when the task is not yet solved. Next, we show that

approaches of class 0 are only exerted once the task is solved. We prove
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c

p

class i

1

1

Figure 6: Graphical proof that class i cannot be dominated.

by contradiction.

Suppose that the person’s strategy is s
′ = (s′1, ..., s

′
t = 0, ..., s′T =

n). That is, even when there is no success until t the person exerts an

approach of class 0 in t. Then the person yields the same expected payoff

when she chooses the strategy s
′′ = (s′′1 = s′1, ..., s

′′
t = s′t+1, ..., s

′′
T−1 =

s′T = n, s′′T = s′t = 0). That is, with s
′′ the person exerts the approaches in

the same order as with s
′ until t−1. From t on, she exerts all approaches

one period earlier until T−1. In T , she exerts an approach of class 0. But

there is a third strategy s
′′′, which in terms of payoffs dominates s′′ and

therefore also s
′: s

′′′ = (s′′′1 = s′′1, ..., s
′′′
T−2 = s′′T−2, ..., s

′′′
T−1 = i, s′′′T = n),

where i is an approach of a class with ci/pi < 1. The reason why s
′′′

dominates s
′′ is simple: From before, see especially (1), we know that

the person optimally exerts an approach of class n only in T . This is not

the case for strategy s
′′. The person can improve by using s

′′′. �

PROOF OF PROPOSITION 2

From before we know that in T the person will exert an approach of class

n. Hence,

ET [C] = cn/pn = cT/pT = 1. (17)

One directly gets that the expected costs of the solution are a weighted

average of the expected costs of the solution in the next period and the
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risk-adjusted costs of the current period:

Et[C] = (1− pt)Et+1[C] + pt
ct
pt
. (18)

We know that before T the person will conduct approaches with risk-

adjusted costs below one and in an ascending order of risk-adjusted costs

(see Lemma 3 for the last point). Hence, cT−1

pT−1
< 1. Therefore,

ET−1[C] = (1− pT−1)ET [C] + pT−1
cT−1

pT−1

∈

(

cT−1

pT−1

,
cT
pT

)

. (19)

For period T − 2 we get

ET−2[C] = (1− pT−2)ET−1[C] + pT−2
cT−2

pT−2

. (20)

Because ET−1[C] ∈
(

cT−1

pT−1
, cT
pT

)

and cT−2

pT−2
≤ cT−1

pT−1
we get that

ET−2[C] ∈

(

cT−2

pT−2

,
cT
pT

)

. (21)

The arguments can be repeated which yields that

Et[C] ∈

(

ct
pt
,
cT
pT

)

(22)

for all t < T .

From (19) we see that ET−1[C] < ET [C]. Is Et[C] also increasing in

t in earlier periods? Applying (22) for t+1, we see from (18) that Et[C]

is strictly increasing in t because of ct
pt

≤ ct+1

pt+1
. �

PROOF OF PROPOSITION 4

We first consider the periods t ≤ T − 2. Applying (6) for the specific

functional form f(p) = αpγ yields

γpγ−1
t

!
= Et+1[C] (23)

and for period t+ 1

γpγ−1
t+1

!
= Et+2[C]. (24)



WEINSCHENK: INCREASING WORKLOAD IN A STOCHASTIC ENVIRONMENT 21

Similarly, (7) for period t+ 1 is

Et+1[C] = pγt+1 + (1− pt+1)Et+2[C]. (25)

Plugging (25) into (23) yields

γpγ−1
t = pγt+1 + (1− pt+1)Et+2[C]. (26)

Plugging (24) into this equation yields

pt =

(

pγt+1

(

1− γ

γ
+ p−1

t+1

))
1

γ−1

. (27)

We first want to prove that at the beginning of every period t ≤ T − 2

the effort costs in t are lower than the expected effort costs of t+1. That

is, we want to show that

pγt < (1− pt)p
γ
t+1. (28)

Plugging (27) into (28) yields, after substituting p for pt+1,

pγ

(

1−

(

pγ
(

1− γ

γ
+ p−1

))
1

γ−1

)

−

(

pγ
(

1− γ

γ
+ p−1

))
γ

γ−1

> 0.

(29)

We conducted a numerical analysis with the software Mathematica. The

Figures 7-9 illustrate the results. The numerical results show that for

p ∈ (0, 1] and γ > 1, (29) indeed holds. That is, the expected effort costs

are increasing until period T − 1.

Finally, we want to show that at the beginning of period T − 1 the

effort costs of T − 1 are also lower than the expected effort costs of T .

When T is reached pT = 1. Using (23) implies that

pT−1 =

(

1

γ

)
1

γ−1

. (30)

But this is just (27) with pt+1 = 1. So the former steps also apply for

t = T − 1. �
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Figure 7: The inequality (29) for p ∈ (0, 1] and γ ∈ [1, 100].
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Figure 8: The inequality (29) for p ∈ (0, 1] and γ ∈ [1, 5].
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Figure 9: The inequality (29) for p ∈ (0, 1] and γ ∈ [1, 1.00001].
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APPENDIX B: NUMERICAL RESULTS

NUMERICAL RESULTS OF THE EXAMPLE

Here are the numerical data of the T = 10 example for different values of

γ. The calculations were made with the software Microsoft Excel. The

unconditional expected per-period effort costs are denoted by E[f(p∗t )].

t pt f(pt) E[f(p∗
t
)] Et[z]

1 0.12058806 0.041875158 0.041875158 0.499949295

2 0.13193795 0.04792417 0.042145087 0.520886874

3 0.145757348 0.055647504 0.042480421 0.544848959

4 0.162985877 0.065799858 0.042909093 0.572672711

5 0.185129507 0.079655078 0.043478108 0.60557264

6 0.214783103 0.09954058 0.044273711 0.645400179

7 0.256896533 0.130207909 0.045475005 0.695170469

8 0.322511812 0.183154856 0.047533864 0.760274424

9 0.444444444 0.296296296 0.05209699 0.851851852

10 1 1 0.097681856 1

Table 1: Numerical results for γ = 1.5.

t pt f(pt) E[f(p∗
t
)] Et[z]

1 0.150178593 0.02255361 0.02255361 0.277803576

2 0.16355346 0.026749734 0.022732497 0.300357185

3 0.179699396 0.032291873 0.022954038 0.327106919

4 0.199624333 0.039849875 0.02323624 0.359398792

5 0.224918499 0.050588331 0.0236093 0.399248667

6 0.258270264 0.066703529 0.024128424 0.449836998

7 0.3046875 0.092834473 0.024907785 0.516540527

8 0.375 0.140625 0.026234235 0.609375

9 0.5 0.25 0.02914915 0.75

10 1 1 0.058298299 1

Table 2: Numerical results for γ = 2.
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t pt f(pt) E[f(p∗
t
)] Et[z]

1 0.200609649 0.008073381 0.008073381 0.104585932

2 0.21690417 0.010204781 0.008157604 0.120732694

3 0.236316697 0.013197243 0.008261464 0.141142257

4 0.259903612 0.01755646 0.008393132 0.167536743

5 0.289293373 0.024211152 0.008566252 0.202649663

6 0.327163966 0.035018408 0.008805665 0.251071967

7 0.378338133 0.054155223 0.009162529 0.321108782

8 0.452806 0.092840296 0.009764854 0.429419228

9 0.577350269 0.19245009 0.011076146 0.615099821

10 1 1 0.024324905 1

Table 3: Numerical results for γ = 3.

t pt f(pt) E[f(p∗
t
)] Et[z]

1 0.278513901 0.001675847 0.001675847 0.023382131

2 0.298148091 0.002355918 0.001699762 0.030085519

3 0.321121843 0.003414674 0.00172911 0.039509191

4 0.348458374 0.005137532 0.001766118 0.053167886

5 0.38168894 0.008101172 0.001814493 0.073718014

6 0.423246156 0.013582043 0.00188096 0.106122704

7 0.477334268 0.024780671 0.001979329 0.160450877

8 0.552233245 0.051358548 0.002144084 0.259573562

9 0.668740305 0.133748061 0.002500163 0.465007756

10 1 1 0.006192264 1

Table 4: Numerical results for γ = 5.



WEINSCHENK: INCREASING WORKLOAD IN A STOCHASTIC ENVIRONMENT 25

LITERATURE

Akerlof, George A. (1991). Procrastination and Obedience. American Economic Re-

view Papers & Proceedings 81, 1-19.

Bisin, Alberto and Kyle Hyndman (2009). Procrastination, Self-Imposed Deadlines

and Other Commitment Devices. Mimeo.

Brocas, Isabelle and Juan D. Carrillo (2001). Rush and Procrastination Under Hy-

perbolic Discounting and Interdependent Activities. Journal of Risk and Uncertainty

22, 141-164.

Ellis, Albert and William J. Knaus (1977). Overcoming Procrastination. Institute for

Rational Living, New York.

Fischer, Carolyn (2001). Read this Paper Later: Procrastination with Time-Consistent

Preferences. Journal of Economic Behavior & Organization 46, 249-269.

McCown, William, Thomas Petzel, and Patricia Rupert (1987). An Experimental

Study of some Hypothesized Behaviors and Personality Variables of College Student

Procrastinators. Personality and Individual Differences 8, 781-786.

O’Donoghue, Ted and Matthew Rabin (1999). Doing It Now or Later. American

Economic Review 89, 103-124.

O’Donoghue, Ted and Matthew Rabin (2001). Choice and Procrastination. Quarterly

Journal of Economics 116, 121-160.

O’Donoghue, Ted and Matthew Rabin (2007). Incentives and Self Control. In Richard

Blundell, Whitney Newey, and Torsten Persson, eds., Advances in Economics and

Econometrics, Volume 2: Theory and Applications (Ninth World Congress), Cam-

bridge University Press, 215-245.

O’Donoghue, Ted and Matthew Rabin (2008). Procrastination on Long-Term Projects.

Journal of Economic Behavior & Organization 66, 161-175.

Roberts, Kevin and Martin L. Weitzman (1981). Funding Criteria for Research, De-

velopment, and Exploration Projects. Econometrica 49, 1261-1288.

Solomon, Laura J. and Esther D. Rothblum (1984). Academic Procrastination: Fre-

quency and Cognitive-Behavioral Correlates. Journal of Counseling Psychology 31,

503-509.

Weitzman, Martin L. (1979). Optimal Search for the Best Alternative. Econometrica

47, 641-654.


