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ABSTRACT 

This paper adumbrates a theory of what might be going wrong in the monetary SVAR 

literature and provides supporting empirical evidence. The theory is that macroeconomists may 

be attempting to identify structural forms that do not exist, given the true distribution of the 

innovations in the reduced-form VAR. The paper shows that this problem occurs whenever (1) 

some innovation in the VAR has an infinite-variance distribution and (2) the matrix of 

coefficients on the contemporaneous terms in the VAR’s structural form is nonsingular. Since 

(2) is almost always required for SVAR analysis, it is germane to test hypothesis (1). Hence, in 

this paper, we fit α-stable distributions to VAR residuals and, using a parametric-bootstrap 

method, test the hypotheses that each of the error terms has finite variance.  

Keywords: Vector Autoregression; Lévy-stable Distribution; Infinite Variance; Monetary 

Policy Shocks; Heavy-tailed Error Terms; Factorization; Impulse-Response Function 

JEL Classifications: C32, C46, C50, E30, E52 
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1. INFINITE-VARIANCE, ALPHA-STABLE SHOCKS IN MONETARY SVAR 

 

Following a seminal work by Sims (1980), economists often estimate vector autoregression 

(VAR) of the following form 

   (1) 

where Ys is a vector of economic variables, C(L) is a matrix polynomial in the lag operator L, 

and εt is a vector of serially independent disturbances with covariance matrix Σ.  

 Frequently, one uses such a reduced-form VAR to identify a structural or semi-

structural VAR (SVAR) such as  

   (2) 

where A is a square, nonsingular, positive definite matrix (Bernanke 1986; Blanchard and 

Quah 1989; Blanchard and Watson 1986; Sims 1986).
1
  

 SVARs of this form are used by macroeconomists to answer research questions such 

as: Do central banks cause recessions (Sims and Zha 2006a)? Could shocks to the supply of oil 

have something to do with these recessions (Bernanke, Gertler, and Watson 1997; Hamilton 

and Herrera 2004)? Could contractionary monetary policy shocks increase inflation (Barth and 

Ramey 2001)? Have the Fed’s policymaking rules changed over time, and if so, has the 

economy performed better as a result of such changes (Sims and Zha 2006b; Benati and Surico 

2009)? Are the properties of a particular dynamic stochastic general equilibrium model 

consistent with macro data (Smets and Wouters 2003)? Is the business cycle driven mostly by 

technology shocks, as opposed to monetary shocks or other “real” shocks (Galí 1999, Galí and 

Rabanal 2004; Francis and Ramey 2005)? What are the effects of fiscal-policy shocks (Romer 

and Romer 2010)? The use of SVAR techniques is almost ubiquitous in macroeconomics.  

Hannsgen (2008) argued that the disturbances in one or more of the equations in (1) might well 

have infinite unconditional variance when estimated using macro data and typical 

specifications. In fact, the paper reports results suggesting that infinite-variance stable 

distributions of the type discovered by Paul Lévy (1925) in the early 20th century fit the 

residuals from a standard monetary VAR model quite well. This empirical issue is crucial for 

                                                           
1
 Two key reference works that cover  SVAR are Lütkepohl (2006, especially 357–386) and Hamilton (1993, 

especially 324–340).  Breitung, Brüggemann, and Lütkepohl  (2004) focus on SVAR. Watson (1994) is an early 

handbook article on VARs, and SVARs in particular, while Christiano, Eichenbaum, and Evans (1999) and Stock 

and Watson (2001) are surveys that emphasize applied SVAR work in macroeconomics. Qin (2010) surveys VAR 

research since the late 1970s, providing an historical account of the “rise of VAR modeling approach,” and Sims 

(2010) provides a retrospective on the SVAR literature.  

ttt YLCY ε+= −1)(

ttt YLBAY η+= −1)(



4 

 

SVAR analysis using equations (2).  Most crucially, perhaps, if the true VAR reduced-form 

shock vector εt does not have a finite covariance matrix Σ, no structural representation such as 

(2) exists for system (1), unless we allow A to be singular. In particular, the vector of 

orthogonal shocks ηt = Aεt cannot be constructed when one or more components of εt has 

infinite variance (See section 3 and appendix 1 for more on this issue.)  

In a statistics journal, Hill (2006) has drawn attention to a broader array of problems with the 

use of VARs on data possessing fat-tailed distributions. Zarepour and Roknossadati (2008) 

have studied a VAR with infinite-variance non-Gaussian shocks. Long ago, Sims himself noted 

thick-tailed residual distributions in one of his first important articles on VARs (1980, p. 17). 

Nonetheless, very few articles have even pondered this issue, and it remains an important 

empirical question whether the shocks in VARs with typical specifications and variables in fact 

have finite second moments.  

 Any test of the hypothesis that a standard VAR model had infinite-variance innovations 

would presumably rest on the basis of existing tests for the normality of residuals and raw data. 

However, most normality tests were not designed to be implemented with alternative 

hypotheses involving infinite-variance distributions. Saniga and Miles (1979) were among the 

first to study the performance of standard normality tests when the alternative hypothesis was a 

stable, non-Gaussian distribution. Bera and McKenzie (1986) focused on the performance of 

the Jarque-Bera moment-based test against a stable non-Gaussian alternative. A more recent 

study by Frain (2007) considers simulation evidence on normality tests for stable variates. 

These and other articles have shown that some standard normality tests are fairly robust to 

problems that sometimes arise with heavy-tailed data. In an explicitly alpha-stable framework, 

DuMouchel (1983) and McCulloch (1997) explored the distributions of ML stable-distribution 

parameter estimators and related log-likelihood ratio test statistics for the null hypothesis α = 2. 

In the context of multi-equation time series econometrics, though, little or no work has been 

done on normality tests with a non-Gaussian stable alternative hypothesis.  

 Lately, however, a great deal of thought has been given to non-Gaussian, but finite-

variance, models in the SVAR context. Kilian (1998) found evidence of skew and excess 

kurtosis in the residuals of a monetary VAR. In an article that is highly relevant to this study, 

Kilian and Demiroglu (2000) showed that a parametric bootstrap could successfully correct 

severe size distortions in Jarque-Bera normality tests for VAR residuals and also has the 

advantage of reasonable power. Once the universe of alternative shock models for VARs is 
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expanded to time-varying, and/or dependent processes, a wide array of possibilities has been 

discussed, though these models also have finite-variance shocks (for example, Cogley and 

Sargent (2005), Gambetti, Pappa, and Canova (2008), Primiceri (2005), Lanne and Lütkepohl 

(2008a,b;  2010), Sims, Waggoner, and Zha (2008), and Sims and Zha (2006b)).
 
 

 Whether a given univariate distribution has infinite variance depends in practice only 

on the tails of the distribution, which determine if the expression for the population variance 

converges. However, numerous authors have shown in various ways that tail index estimators 

require very large sample sizes indeed—perhaps in excess of 10,000 observations with many 

common heavy-tailed distributions (Fofack and Nolan 1999; McCulloch 1997; Paolella 2001; 

Weron 2001).
2
 Hence, a test of the composite hypothesis that a particular VAR’s residuals 

have infinite variance could be very biased when the VAR was fitted to typical macroeconomic 

data sets.  

 An alternative approach is to condition our test on an assumption that the innovations 

have a stable distribution. Under this condition, the null hypothesis that a distribution has a 

finite variance is equivalent to the hypothesis that the stable-distribution parameter α = 2. 

Arguing in favor of this approach, there are numerous a priori reasons why a stable 

distribution is likely to be at least a good approximation for many datasets. Notably, the 

generalized central limit theorem places stable distributions at the center of modern statistics. 

This theorem establishes that stable distributions are the only ones that arise as the limit of a 

normalized sum of independently and identically distributed variates (Embrechts, Klüppelberg, 

and Mikosch 1997, 79–80; Feller 1971). As Paolella points out, “although there are numerous 

other distributions which possess heavier tails than the normal, if one wishes to interpret the 

error term as a random variable representing the sum of many external effects which cannot be 

realistically captured by the model, the stable Paretian is the only valid candidate” (2001, 

1095–1112). Moreover, many dependent processes have infinite-variance stable unconditional 

distributions (see, for example, Bartkiewicz, Jakubowski, Mikosch, and Wintenberger 2010). 

As a final example, Theorems 1 and 2 in Tucker (1968, p. 1386) show that when k random 

variates converge toward differing stable distributions with stable indexes αi , i = 1,2,3,…k , 

the convolution of all k variates converges to a stable distribution with α = min(α1, α2, α3,…., 

αk).  Hence, a weighted sum of random variables can have an infinite-variance limiting 

distribution if even one of the summands has such a limit. All of the results in this paragraph 

                                                           
2
 The bias of some tail-index estimators is often very large for stable distributions with α > 1.5. 
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demonstrate in various ways that one can in principle interpret a stably distributed error term as 

a sum of non-included variables with negligible effects, even without requiring that the non-

included variables be independently and identically distributed.   

 In the main part of this study, we adopt a classical hypothesis-testing approach to infer 

whether α = 2 in the shocks in a standard monetary VAR model, using residuals from VARs 

with two alternative lag-length specifications and several different sample periods. Hence, one 

would wish for a test that could demonstrate the empirical plausibility of a hypothesis that one 

or more innovations in a given VAR had (possibly asymmetric) stable distributions. 

 Unfortunately, though, as Borak, Misiorek, and Weron report, “there are no standard, 

widely accepted tests for assessing stability” (2011, 10). In fact, tests based on increasing sums 

of observations such as the one used by Fama and Roll (1971) have proven somewhat fragile in 

simulation studies and may even be unreliable for sample sizes typical in macroeconomic 

research (Fielitz and Rozelle 1983; Lau and Lau 1993, Lau and Lau 1997; Paolella 2001). 

Hence, following some of the suggestions of Nolan (2001) and Weron (2001), we will rely 

partly on a “visual inspection” method to discern how well the estimated stable distributions fit 

the residuals. Additionally, in a separate section of this paper, we report the results of an 

informal comparative analysis in the spirit of Blattberg and Gonedes (1974), Rachev and 

Mittnik (2000, chapter 4), and Tucker (1992). More specifically, we compare log-likelihoods 

and goodness-of-fit measures for our estimated stable distributions with those of fitted 

Student’s t distributions and generalized autoregressive heteroscedasticity (GARCH(1,1)) 

models. (We return to the GARCH(1,1) model in the last paragraph of this section.) This 

comparative exercise gives us some confidence that the stable model fits the error terms in our 

standard VAR model reasonably well.  

 Since this study is motivated largely by an infinite-variance critique of SVARs, 

statistical inference about the parameter α, often known as the characteristic exponent or stable 

index, is a key part of this paper. If the true stable parameter vector ��, �, �, �� for a given 

VAR equation i lies in the interior of the parameter space, the distribution of the ML estimate 

���	
 , ��	
 , ��	
 , ��	
� asymptotically approaches a multivariate normal law with a known 

covariance matrix equal to the inverse of the population Fisher information matrix 

(DuMouchel 1973). However, the use of large-sample confidence intervals to make inferences 

about the stable-distribution parameters in a VAR data-generating process is complicated by 

the fact that they are valid only conditionally on our estimates of the VAR’s coefficients. These 
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coefficients would have to be known to assure that the residuals were equal to the error terms, 

which are of course unobservable. Hence, DuMouchel’s asymptotic standard errors cannot be 

used in a straightforward way to construct confidence intervals for the stable parameters in a 

VAR model with stable shocks.  

 In this paper, we conduct tests of the null hypothesis  α = 2. Unfortunately, the 

distribution of the ML estimator fails to meet a key regularity condition in the Gaussian region 

of the parameter space, preventing the use of standard asymptotic distribution theory as the 

basis for such a test (DuMouchel 1973; 1983, 1022–1023). Nonetheless, convergence of the 

ML estimator is actually faster when α = 2. Michael Woodroofe showed that the ML estimator 

is superconsistent under normality, i.e., when α = 2, ����	
  2� � 1 as the sample size 

� � ∞ (DuMouchel 1983, 1022–1023 and appendix).  Hence, “the asymptotic behavior of a 

test of α = 2 is non-regular in a way that favors making a correct decision” under the 

maintained hypothesis of a general stable model (DuMouchel 1983, 1028).  

 To carry out our tests, we begin by estimating our VARs, making use of techniques and 

specifications that are somewhat standard in the macro SVAR literature. Then, for each VAR 

equation, we conduct parametric bootstrap tests of the null hypothesis that α = 2 under the 

alternative hypothesis � � �0, 2�. (Our parametric bootstrap technique is similar to that of 

Kilian and Demiroglu (2000)
 3

; see appendix 2 for details.) Our tests make use of (1) the ML 

estimator (Nolan 2001; DuMouchel 1973); (2) the empirical characteristic function estimator 

(Koutrouvelis 1980; Kogon and Williams 1998); and (3) the quantile estimator (McCulloch 

1986). Each of these estimators also serves as a bootstrap test statistic in this study. The fourth 

test is a likelihood-ratio (LR) test that is conservative relative to the LR test one could 

hypothetically conduct if one possessed a full ML estimator for a VAR model with stable 

shocks.  To wit, unrestricted estimates for LR tests are usually executed using a fully 

maximized likelihood function, which we lack for α < 2, because of our use of the least-

squares estimator. In this case, however, the asymptotic LR tests overcome our reliance on 

VAR coefficient estimates that may be suboptimal under the alternative hypothesis, by settling 

for a lower bound on the test statistic �2���  �2�ℓ���	
 ��� �!" �#; %& � ℓ���	
�; %&� that 

is usually needed for an LR test. (For more details, see also section 5.)  

                                                           
3
 The fact that the parameters lie on the boundary of the parameter space does not preclude a valid bootstrap, 

because we test only an equality restriction (Andrews 2000). 
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 Given that we are using the correct specifications, numerous tests imply that α < 2 in 

various VAR equations, especially those for nonborrowed reserves (NBR) and total reserves 

(TR), and for most of our tested sample periods. These findings uphold the notion that infinite-

variance innovations might present serious problems for SVARs, as suggested above and 

further explained in section 3 of this paper. The thrust of our conclusions generally persists 

under both of our lag-length specifications.   

 Our tests are based on a VAR model with shocks that are i.i.d. The i.i.d. assumption is 

probably not accurate for most of the error terms, at least in our full-sample VARs. In 

particular, standard ARCH tests reveal at least mild heteroscedasticity in most of the residuals 

from our full-sample VARs. This departure can complicate inference in two ways. First, the 

unconditional distributions of heteroscedastic datasets or residuals can appear to be fat-tailed, 

sometimes even when they are not. In fact, heteroscedastic models with finite variance have 

been key rivals for i.i.d. non-Gaussian, stable models, particularly in the field of finance (Clark 

1973; Ghose and Kroner 1995). Hence, it seems likely that heteroscedastic shocks would lead 

to downward bias in our estimates of α and probably to overrejection in our tests of normality. 

Second, serial dependence in the squares or absolute values of the shocks would reduce the 

efficiency of the coefficient estimates in VARs such as the ones in this paper.  

 Hence, in essence, it is useful to disentangle the effects of fat-tailed shocks from those 

of time-varying scale or variance. To some extent, this issue is resolved in this paper by 

examining residuals from VARs estimated on subsamples for which the null of 

homoscedasticity is not rejected. In addition, we re-estimate stable parameters for the full-

sample VARs after filtering (standardizing) their residuals using a GARCH(1,1) model (Borak, 

Misiorek, and Weron 2011, 24–28). Tests on the σt-filtered residuals yield estimates of α that 

almost all fall well below 2, though filtering the residuals generally increases ��. It thus appears 

that some of the VAR error terms in our models might combine standard stable, non-Gaussian 

shocks with time-varying scale, as in deVries (1991), Haas, Mittnik, Paolella, and Steude 

(2005), Liu and Brorsen (1995), and Mittnik, Paolella, and Rachev (2002). Nonetheless, we 

remain interested primarily in the unconditional distributions of the error terms in both full and 

partial samples. The reason for this focus is that most of the key results from the monetary 

VAR literature involve unconditional distributions. For example, more modern techniques such 

as the Markov-switching models introduced in Sims, Waggoner, and Zha (2008) do not allow 

one to obtain time-invariant impulse response functions, even for short sample periods. 
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 This study analyzes these issues as follows: section 2 provides background on stable 

distribution theory; section 3 presents an infinite-variance critique of SVARs; section 4 

discusses the data and estimation procedures used in the VARs from which we obtain our 

residuals; section 5 presents and discusses our estimates of stable parameters for the error 

terms in our full-sample VARs and our tests of the null hypothesis α = 2; section 6 extends our 

case to the error terms in VARs estimated for subperiods of our sample; section 7 uses a 

GARCH filtering technique to obtain signals regarding the conditional distributions of  our 

error terms; section 8 compares the fits of our estimated stable distributions with the fits of t 

distributions and those of our estimated GARCH shock models from the previous section; 

finally, section 9 further discusses the findings of this paper.   

  

2. ALPHA-STABLE DISTRIBUTIONS  

 

The many special statistical properties of alpha-stable random variables offer some theoretical 

reasons for the use of alpha-stable error terms in an econometric model (Bartels 1977) and 

suggest why alpha-stable distributions have been found in many kinds of scientific and 

financial data, starting in the early 1960s with the work of Mandelbrot and Fama (Mandelbrot 

1963, 1967; Fama 1963, 1965a and b; Palágyi and Mantegna 1999).
4
  

 Stable distributions, sometimes referred to as stable-Paretian or Lévy-stable 

distributions, are the only possible limiting distributions for sums of i.i.d. shocks. That is, a 

random variable X has a stable distribution if it has a domain of attraction, i.e., if there is a 

sequence of i.i.d. random variables Y1, Y2,…. and sequences of positive numbers {dn} and real 

numbers {an}, such that  

Xa
d

YYY d

n

n

n
⇒+

+++ ...21  

where the arrow symbol means “converges in distribution to” as the sample size n → ∞ 

(Samorodnitsky and Taqqu 1994: 5). If the Y’s have a finite variance, X is normally 

distributed.  

                                                           
4
 Stable distributions were largely discovered by Paul Lévy (1925). Two references on stable distributions and 

processes are Samorodnitsky and Taqqu (1994). More applied introductions can be found in Adler, Feldman, and 

Taqqu (1998), Borak, Misiorek, Weron (2011), Embrechts, Klüppelberg, and Mikosch (1997), Nolan 

(forthcoming), and Rachev and Mittnik (2000). Econometric results and issues involving stably distributed 

variables are discussed in Rachev, Kim, and Mittnik (1999a and b). Andrews, Calder, and Davis (2009) is a 

contribution in the area of autoregressive processes. 
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 Furthermore, an alternative definition is available. Except for a few special cases, stable 

distributions have no closed-form CDFs or PDFs. But a random variable Z has a stable 

distribution iff it has the same distribution as aZ + b, where Z can be characterized by the 

characteristic function 

'�(�  )�exp�-(.��  exp ��|(| 01 � -� tan 45�2 6 �78� (�9� 
with � � :�0,2;\1=  and � � >�1,1;, or by  

'�(�  )�exp�-(.��  exp ��|(|>1 ? -��2 5⁄ ��78� (��AB8|(|;� 
with �  1 and � � :>�1,1;=  
The parameters in this characteristic function have the following interpretations: 

α = characteristic exponent or stable index. This parameter affects the kurtosis of the 

distribution. Lower values of α are associated with higher peaks near the center of the 

distribution and with thicker tails. Figure 1 shows an example of how the value of α affects the 

shape of a stable distribution.  

β = skew parameter. Negative values mean that the distribution is skewed to the left and 

positive values indicate skew to the right.  

 In addition, the following parameters can be used to make the distribution wider or 

narrower or to shift it horizontally along the real line: 

γ = scale parameter (–∞ < γ < ∞) 

δ = location parameter (–∞ < δ < ∞) 

A normal distribution is a stable distribution with α = 2 and β = 0 and has no skew or excess 

kurtosis. Also, of course, normal distributions have finite variances. On the other hand, when α 

< 2, the variance is infinite and is sometimes said not to exist. As we see next, when one or 

more VAR error terms has a distribution with infinite variance, the consequences for SVAR 

analysis are serious indeed and go well beyond those caused by error terms with mildly thick-

tailed distributions and finite variances.   

 

3. VARs WITH ONE OR MORE INFINITE-VARIANCE ERROR TERMS DO NOT 
HAVE STRUCTURAL REPRESENTATIONS 
 

This paper examines the implications for SVARs of infinite-variance innovations. To see these 

implications, recall that the structural form of a VAR model of order p is 

tptpttt YBYBYBAY η++++= −−− ....2211       (2’) 
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where A and the Bis are k-by-k matrices of parameters, with A nonsingular; Yt, t = 1, 2, 3….., 

T, are k-component vectors of economic variables at time t; and ηt is a k-component vector of 

structural shocks. Presample values Y-(p-1), Y-(p-2),…, Y-1 , Y0 are taken as given. To keep the 

notation simple, we have not included a constant vector in this equation, though we use one in 

the specification described below. 

 In addition, SVAR uses a set of distributional assumptions about the structural shock 

vector like the following: 

stfor

stforIE

YYYE

E

st

ptttt

t

≠=

==

=

=

−−−

0

)'(

0),...,,(

0)(

21

ηη

η

η

.  

 

where I is the k-by-k identity matrix.
5
 An estimate of the structural form (2) is indispensible for 

much of the work that is done with VARs. The parameter matrices Bj and the structural shock 

vectors ηt, t = 1, 2, 3,…., T–1, T, of (2) are usually identified using the reduced form VAR
6
 

tptpttt YCYCYCY ε++++= −−− ....2211       (1’) 

where  

tt

jj

A

BAC

Ttforandj

ηε 1

1

....,3,2,1

−

−

=

=

=∀

        (3) 

The covariance matrix of εt is 

')''()'( 1111 −−−− ===Σ AAAAEE tttt ηηεε        (4) 

To find the needed parameter and shock estimates, one first estimates the reduced form (1). 

The residuals DF̂ from the estimated system are consistent estimates of the shocks εt, but the 

most important uses of SVARs require that we identify the ηt. To do this, one first obtains an 

estimate Σ� of the error covariance matrix. One must then make use of identifying restrictions. 

For example, most early articles adopted the identifying condition that A is a lower triangular 

matrix. In this case, A can be identified by decomposing Σ� into the product of a lower-

                                                           
5
 Many studies make more specific distributional assumptions about the disturbance term ηt, especially for 

maximum likelihood estimation (Hamilton 1994, 291–302). Also, E(ηtηt′) is sometimes assumed to be an arbitrary 

diagonal matrix D with strictly positive diagonal elements, rather than the identity matrix (Bernanke 1986; Sims 

1986).  
6
 The stability condition requires that the characteristic roots of the system (1) lie within the complex unit circle. 
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triangular matrix  H�IJ and its transpose H�IJK (the Cholesky factorization) and inverting the 

former to obtain H�. Estimates of ηt, t = 1, 2, 3…T–1, T, can then be obtained from the 

relationship  

L̂F  HDF̂ 
In the years since Sims’s (1980) article, macroeconomists have developed various new ways of 

identifying SVARs, including long-run restrictions (Blanchard and Quah 1989), sign 

restrictions (Uhlig 2005), and nontriangular patterns of zero restrictions on the elements of A 

(Bernanke 1986; Blanchard and Watson 1986; and Sims 1986). Almost all of these 

identification schemes involve factorizations of Σ.
7
  

The two main uses of the structural estimates are: 

1. Impulse response functions (IRFs) based on the structural moving average representation 

%F  MNLF ? MJLFIJ ?MOLFIO ?P 

which measure the effects over time of a one-unit or one-standard-deviation shock to a 

component of the structural shock vector ηt, and 

2. Forecast error variance decompositions (FEVDs), which reveal the proportion of the random 

variation of each variable in Yt that is due to variation in each component in the shock vector 

ηt.  

 

With the use of various identifying restrictions, the structural shocks are interpreted as 

estimates of monetary policy shocks, money demand shocks, technology shocks, and the like. 

However, when the covariance matrix Σ has one or more infinite components, the error-term 

specification for the VAR model (1 and 2) is not correct. Also, the decomposition Σ = A
-1

A
-1

' 

is not possible, and hence the structural model (2) cannot be obtained from the reduced-form 

VAR (1), once we have specified the error terms for the latter model correctly.
8
 In the case of a 

particular VAR DGP with infinite-variance innovations, all elements of an estimate Σ� will of 

course be finite, but a true finite Σ does not exist. Hence, the identification process is futile for 

such a DGP: there is no meaningful estimate of the structural shocks ηt and coefficients A and 

                                                           
7
 An instrumental-variables estimator for SVARs with long-run restrictions is presented in Shapiro and Watson 

(1989). Proposition 1 below applies to this case as well.  
8
 Also, if more than one innovation has infinite variance, some off-diagonal entries in the variance-covariance 

matrix will be infinite. 
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Bj in the corresponding structural model (2)
9
, making structural IR and FEVD analysis 

impossible.  

 A more rigorous statement of the existence problem posed for SVAR by infinite-

variance innovations might be of help. One reason is that the critique proposed here might 

seem only to call for different estimators of A and the rest of the structural DGP that do not 

make use of a factorization of Σ (e.g., Shapiro and Watson 1989). In fact, though, there exists 

no nonsingular A that transforms the innovation vector εt into a vector ηt of orthogonal shocks 

when one or more components of εt has variance σ
2
 = ∞. This is shown in the following 

proposition.  

 

PROPOSITION 1: Let εt and ηt be two random k-element vectors and let A be a k-by-k 

nonsingular matrix of real numbers, with ηt = Aεt. If one or more of the elements of εt has 

infinite variance, then  

IE tt ≠)'( ηη  

The proposition still holds if the identity matrix I above is replaced by any other finite k-by-k 

matrix W. 

Proof: See appendix 1.  

  

 Thus, when at least one innovation εit has infinite variance, no suitable transformation 

A exists that can generate structural shocks ηit satisfying the crucial identifying condition of 

orthogonality, or for that matter having any covariance matrix called for by a structural model 

such as (2). It is a simple matter to show that this transformability problem arises in almost all 

SVAR models if one or more of the reduced-form shocks has infinite variance. These include, 

for example, the A, B, and AB models presented in Lütkepohl (2006: 358–368), all of which 

explicitly require a finite covariance matrix Σ.   

                                                           
9
 Another implication of infinite variance time series is that standard estimators will generally be inefficient. 

Robust estimation for stable models is a complex subject; see footnote 4 for some references. Moreover, 

bootstraps for impulse response functions can fail when the shocks have thick tails (Kilian 1998). Athreya (1987) 

also discusses problems with the bootstrap under infinite variance. 



14 

 

 

4. THE RESERVES VAR: DATA, ESTIMATION PROCEDURE, AND 
PRELIMINARY RESULTS 
 

Our VAR was chosen to resemble closely many of those used in the monetary VAR literature, 

as initiated by Sims (1980) and documented in surveys such as Christiano, Eichenbaum, and 

Evans (1999); Leeper, Sims, and Zha (1996, 1–39); Sims (2010); Stock and Watson (2001). 

 The data are monthly and span the period January 1959–November 2007.
10

 The VAR’s 

variables are industrial production (IP), the consumer price index for all urban consumers 

(CPI-U), the producer price index (PPI) for crude materials
11

, the federal funds rate (FFR), and 

the Federal Reserve’s nonborrowed reserves (NBR) and adjusted total reserves (TR) series. All 

variables other than FFR were used in their officially deseasonalized forms and transformed by 

taking logs.
12

  A constant and 12 lags of each variable appear on the right-hand side of each 

equation in our primary VAR. We also performed various tests using a 3-lag specification.  

(The 12-lag specification was selected by starting with 12 lags and testing down with a 

standard LR test for the omission of the last lag; the 3-lag model was selected by the AIC and 

the FPE criterion.) Finally, we follow the bulk of the SVAR literature in estimating our VAR 

in levels.
13

 

 The coefficients of the reduced form (1) and the corresponding innovation vectors εt, t 

= 1, 2, 3,…., T–1, T, were estimated using equation-by-equation ordinary least squares (LS). 

This estimator is relied upon in numerous monetary-VAR articles such as Christiano, 

Eichenbaum, and Evans (1996), Lanne and Lütkepohl (2008b), Bernanke and Mihov (1998a 

and b), and Strongin (1995), which all employ specifications somewhat similar to the ones 

estimated in this paper.  In addition to the widespread use of the equation-by-equation LS 

estimator in the SVAR literature, at least two other reasons can be adduced to justify this 

study’s reliance on this method: 1) under the null hypothesis of i.i.d. normal shocks, equation-

by-equation LS is the ML estimator for the VAR (Lütkepohl 2006, 89–90).  Under the null 
                                                           
10

 This period does not precisely correspond to the sample period, because of the use of presamples for all VAR 

estimates reported in this paper. See notes below Table 3. 
11

 This commodity price index is generally included in monetary VARs for the reasons discussed in Sims (1992) 

and elsewhere in the subsequent literature. 
12

 The NBR variable, described below, fell to negative levels in January 2008, making the log transformation 

impossible. The decline began with a sharp fall in the previous month. A somewhat arbitrary decision was made 

to truncate the sample so as to omit the entire episode, rather than including one part of it but not another.     
13

 Differencing all of the variables in (2) or transforming (2) to a VECM would not affect the α of a VAR error 

term with a stable distribution, because a linear combination of α-stable variables is α-stable (Samorodnitsky and 

Taqqu 1994, 2). 
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hypothesis, this set of regressions yields pointwise consistent estimates of the realizations εi1 

,εi2, εi3,…, εi(t-1),εit, which can be used for our tests; or alternatively, 2) under a somewhat 

different null hypothesis of standard white-noise shocks with finite fourth moments, the 

coefficient estimators would be consistent and qualify as the efficient GLS estimators 

(Lütkepohl 2006, 73–75).  

 The principal empirical concern of this paper is the distribution of the innovations in 

the reduced-form VAR. The estimated innovations for each equation in our primary full-

sample VAR are plotted in figure 2, along with dotted lines at plus and minus one standard 

error from the mean. Some extreme observations are quite distant from the mean. Figure 2 

gives the impression that the scale of some of the shocks changes over time. Some additional 

results and diagnostics appear in Table 1. In general, standard regression output should be 

viewed as potentially misleading when one or more error terms has infinite variance, because 

autocorrelations and unconditional moments of order greater than 2 also do not exist in such 

conditions, and the corresponding sample statistics do not generally converge to constants, 

among many other problems (for example, see Cohen, Resnick, and Samorodnitsky 1998) . 

Nonetheless, Table 1 shows that each set of residuals indeed has excess kurtosis (with 

estimates ranging from 4.46 for IP to 123.60 for TR), and some are very skewed. The residuals 

tend to have very weak sample autocorrelations. Five of the six equations had R
2
s that 

exceeded 99.7 percent, and the lowest was greater than 98.1 percent. All of the characteristic 

roots of the VAR lay within the unit circle in the imaginary plane, meaning that the stability 

condition was met. Our 3-lag estimate yielded similar regression diagnostics, some of which 

are shown in Table 2. In the next section, we present the results of the key formal tests in this 

paper. 

 

5. DO A VAR’S REDUCED-FORM SHOCKS HAVE INFINITE VARIANCES? 
ESTIMATED CHARACTERISTIC EXPONENTS QR AND TESTS OF NORMALITY 
 

 

Proposition 1 in Section 3 establishes that we cannot orthogonalize the innovations in a 

standard VAR model when at least one of them has infinite variance. This section investigates 

the estimated shocks from the VAR described in section 4 above to see if they suffer from this 

problem. In this section, we limit our attention to unconditional stable distributions.  
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Here is our 6-equation stable VAR model, which is a version of (1): 

 

 

 

 

 

 

 

 

where the subscript i denotes the VAR equation number, t indexes time, SF is time t 

information, and S(.) is a general alpha-stable probability law, a concept that we presented in 

Section 2. The distribution F exists within the framework of a probability space �TU, VU, W�. 
(We drop the formal assumption that �X Y 1 in our tests below; imposing this constraint would 

not change any of our estimates.) One way of specifying this model would be to let F(.) be a 

general multivariate stable distribution (Samorodnitsky and Taqqu 1994, 55–110), though it 

would not be feasible to estimate such a model, which would be infinite dimensional. 

In any case, Proposition 1 in section 3 shows that it is germane to estimate the stable parameter 

vectors ��X, �X, �X, �X� , i = 1, 2, 3, 4, 5, 6 and test 

ZN: �X  2, for  -  1, 2, 3, 4, 5, 6  

against 

ZJ: �c � �1, 2�, for one or more j � :1, 2, 3, 4, 5, 6=   
Our feasible tests are of the form: 

ZNX:  �X  2  

against 

ZJX:  �X � �0, 2�  
 

Of course, these latter tests are not independent across all of the equations in a given VAR 

estimate.  

 Akgiray and Lamoureux (1989), Borak, Misiorek, and Weron (2011), Garcia, Renault, 

and Veredas (2010), Kogon and Williams (1998), Lombardi and Calzolari (2008), and Rachev 

and Mittnik (2000) discuss the relative merits of some methods for estimating stable 

 

DF f �DJF , DOF , DgF , DhF , DiF , DUF�j~W�D�,     D f �DJ, DO, Dg, Dh, Di, DU�K  
)�DF|SFIJ�  )�DF�  
WlX�DX�  mnDoW�D�  p��X , �X , �X , �X�,    H  :q � TU: qX  DX=  
�X � �1,2;,   -  1, 2, 3, 4, 5, 6   

  

for t = 1, 2, 3…, T–1, T 

with presample %I�rIJ�, %I�rIO�, %I�rIg�, … , %IJ, %N given 

ttt YLCY ε+= −1)(
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parameters. DuMouchel (1973) shows that except for some “exceptional parameter values,” 

including α = 2, the maximum likelihood (ML) estimates ��, ��, ��, and �� are consistent and 

)ˆ,ˆ,ˆ,ˆ(2/1 δδγγββαα −−−−n  

is asymptotically normally distributed with mean (0, 0, 0, 0) and covariance matrix nIJS-1
, 

where S is the Fisher information matrix.
14

 

Here, we use three estimators of α, β, γ, and δ: the quantile estimator of McCulloch (1986), the 

characteristic-function regression estimator of Koutrouvelis (1980) and Kogon and Williams 

(1998), and the ML estimator (DuMouchel 1973; Nolan 2001). For the ML procedure, we use 

an algorithm and software developed by Nolan (2001), which are discussed, for example, in 

Borak, Misiorek, and Weron (2011, 7–8 and 13) and Rachev and Mittnik (2000, 119–136).   

Our tests of normality were discussed briefly in the first section of this paper. Our preferred 

test is an LR test. In effect, we use our restricted ML (least squares) coefficient estimates 

t�	
� to concentrate the log-likelihood function.  This estimation procedure yields pointwise 

consistent estimates of the error terms of the restricted model. Then, we use the ML estimator 

for alpha-stable parameters, which is superconsistent under the null hypothesis (DuMouchel 

1983), to conduct valid two-step tests of α = 2 for these innovations. Our LR test is similar to 

the one discussed in McCulloch (1997), except that we are testing VAR residuals to make 

inferences about the error terms, while McCulloch analyzes a test to be used on stable data.
15

 

Hence, we cannot use McCulloch’s tabulated Monte Carlo critical values.
16

 

 As mentioned earlier, it is not feasible to estimate the general stable VAR model at the 

beginning of this section, because of its high dimensionality.  Fortunately, though, our use of 

LS coefficient estimates does not prevent us from conducting valid tests that lead to a number 

of fairly conclusive results. Our estimates enable us to obtain an LR test statistic –2LLRLB that 

can be used as a lower bound on the true test statistic that we would hypothetically find if we 

                                                           
14

 A typical element of this latter matrix is 

SXc  u vw
v�X

vw
v�c

x

Ix
1
w oq 

where f is the likelihood function and θi is an element of the stable parameter vector θ = (α, β, γ, δ)  (Nolan 2001, 

384). 
15

 For this use of the term “pointwise consistent,” see Greene (1993, 309). The superconsistency of the ML stable-

parameter estimator is covered in DuMouchel (1983).  Lanne and Lütkepohl use a similar two-step “quasi-ML” 

procedure in the context of a similar problem (2008b, 7).   
16

 We found that using the McCulloch (1997) Monte Carlo critical values for the LR test would have resulted in a 

large number of additional rejections of our null hypotheses, compared to our actual bootstrap LR test.  
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possessed full unrestricted ML estimates of the stable VAR model presented at the beginning 

of this section, as shown by the inequality below: 

–2LLRLB=�2�ℓ�2,0, ��	
�N, ��	
�N, t�	
�N; %& � ℓ���	
 , ��	
 , ��	
 , ��	
 , t�	
�N; %�& 
 �2�ℓ�2,0, ��	
�N, ��	
�N, t�	
�N; %& � maxy,z,{,| ℓ��, �, �, �, t�	
�N; %��  
} �2�ℓ�2,0, ��	
�N, ��	
�N, t�	
�N; %& � maxy,z,{,|," ℓ��, �, �, �, t; %�&  
 �2�ℓ�2,0, ��	
�N, ��	
�N, t�	
�N; %& � ℓ���~	
 , ��~	
 , ��~	
 , ��~	
 , t�~	
; %�& = –2LLR,  with 

probability 1 

where ℓ�·; %� is the log-likelihood function, the ML subscript denotes our ML stable-parameter 

estimates, MLR0 denotes our restricted (Gaussian) estimates, FML denotes hypothetical full 

ML estimators, and %  :%F=F�I�rIJ�  . The inequality demonstrates that the use of –2LLRLB 

rather than –2LLR in our LR tests is conservative, in the sense that it does not change any 

result from a failure to reject H0i to a rejection of H0i. Since the test statistic has a nonstandard 

distribution, we use parametric-bootstrap critical values. In addition to the LR test, we 

performed similar bootstrap tests of H0i, using our estimators ��	" , ��"~ , and ��	
 as test 

statistics. Our bootstrap tests are explained in appendix 2.   

 Our results for the full-sample VAR, with both 12-lag and 3-lag specifications, are 

shown in Table 3. Three estimates and four test statistics for each equation are reported on 

rows corresponding to each equation of the two VARs, with the 12-lag results appearing in the 

upper half of the table. Reporting first the results of the ML estimates and the corresponding 

tests, the null hypothesis of normality (α = 2) is rejected at the .01 level for all error terms in 

both VARs. For the 12-lag primary specification, ��	
 ranged from 1.55 to 1.77, while the ML 

estimates for the error terms in our alternative 3-lag VAR ranged from 1.40 to 1.75. The 

quantile and characteristic function estimators yielded estimates that did not differ greatly from 

the ML estimates. Moreover, bootstrap tests using these latter estimates rejected H0i for all i in 

both full-sample VARs, with all ��"~ tests achieving a .01 significance level.  

 For comparison, we also report results from Jarque and Bera (1987) normality tests in 

the right-hand column of Table 3, with bootstrap significance levels again indicated by one or 

two asterisks. The alternative hypothesis for this test is a nonnormal member of the Pearson 

family of distributions, though it has proven to be somewhat robust under a stable, non-

Gaussian alternative hypothesis (Bera and McKenzie 1986; Frain 2007). For both lag-length 
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specifications and all equations, these tests reject the null hypothesis at the .01 significance 

level.  

 Also, we provide a loose check on our work by reporting asymptotic confidence 

intervals in Table 3, below each ML estimate inside square brackets. These intervals are 

computed as ��	
 � 1.96 � ���	
O , where ��	
O is the upper-left element in  �IJSIJ with S = the 

Fisher information matrix, which is computed as explained in Nolan (2001) (see also footnote 

14). These confidence intervals assume exact knowledge of the coefficients Cj,  j = 1, 2, 3,…, 

p-1, p. Hence, they cannot be used for valid tests of the error terms in our VARs. As shown in 

the table, they do not contradict our findings that �X � 2 �- in our two full-sample VARs. 

Finally, table 3 also reports the results of bootstrap LM tests for ARCH (Engle 1982). Both 3- 

and 12-lag test equations were tried. For each full-sample VAR equation, at least one of these 

tests rejected the null hypothesis that the shocks were homoscedastic. We return to this subject 

below.    

 

6. SUBSAMPLE ANALYSIS 

 

It is has been noted many times that structural breaks have probably occurred in DGPs for 

postwar U.S. macro data (McConnell and Perez-Quiros 2000; Stock and Watson 1996, 2002).  

Moreover, as seen earlier in Figure 2, some of our full-sample residual series appear to include 

some fairly lengthy periods of high volatility or low volatility.  Hence, a subsample analysis is 

desirable as a way of increasing the number of homoscedastic residuals.  

 Two sample sets of sample breaks were used. First, following Bernanke and Mihov 

(1998a, 163), we break the sample at October 1979 and April 1988. In light of the need for a 

large dataset for each estimate, we use only the first and third of the three subsamples that we 

have created with these breaks. Also, for the same reason, we extend Bernanke and Mihov’s 

third subperiod to the end of our sample in November 2007. 

 The other sample break we employ is based on analyses by such authors as Stock and 

Watson (2002); Christiano, Eichenbaum and Evans (1999); Frale and Veredas (2009); and 

Lanne and Lütkepohl (2008a, b), who find it useful to break US macro datasets into 

subsamples at or near the February 1984 observation. Somewhat arbitrarily, we choose a 

specific break date of February 1984, resulting in separate estimates for January 1959–January 

1984 and February 1984–November 2007.  
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 Our subperiod tests lead to numerous rejections of H0i, as seen in Tables 4–7.
17

 The 

vast majority of tests reject normality in all of the subperiods that we studied, except for 

1966:1–1979:9, which had only T = 165 residual vectors for both specifications. The three 

different estimators yield estimates that tend to differ more than they do in the full sample, 

reducing their credibility somewhat. Nonetheless, the answers given by our five tests of 

normality—the tests based directly on the estimates ��	" , ��"~ , and ��	
; the lower-bound LR 

test; and the Jarque-Bera moment-based test (Bera and McKenzie 1986; Jarque and Bera 1987; 

Kilian and Demiroglu 2000)—tend to coincide even for our subsample estimates. More 

modern tests, except for the LR test; tests on shocks from VARs with more parsimonious 

specifications or estimated using more recent data; and tests on longer runs of data—all of 

these tended to result in more rejections of H0: α = 2.  

 Next, we focus on findings from our LR test, though the tests based on ��	
 and ��"~ 

resulted in more rejections of the null hypothesis α = 2. We are particularly interested in VAR 

equations whose error terms are homoscedastic, with α < 2. Such findings are common in 

Tables 4–7, particularly for the equations corresponding to our bank reserves variables, NBR 

and TOTRES. In particular, for the most recent subperiods that we tried, namely 1984:2–

2007:11 and 1988:4–2007:11, parametric-bootstrap LR tests on the latter two error terms all 

rejected normality at the .01 level of significance, while there were no signs of ARCH in these 

reserves equations. Among our two lag-length specifications and four subsamples, only two 

other error terms showed no signs of ARCH yet appeared to have α < 2: those in the IP and 

NBR equations in the 12-lag VAR for the 1959:1–1984:1 subperiod. Hence, in a number of 

cases, the heavy tails observed in the distributions of our full-sample VAR residuals cannot be 

convincingly explained by structural breaks in the covariance matrix for the innovations. 

Moreover, in recent samples, ARCH or GARCH is not a good explanation of the pronounced 

excess kurtosis in NBR and TOTRES residuals. 

 

                                                           
17

 The stability condition was not met by some of our subsample VARs. Some had one or two roots just outside 

the unit circle: for the 3-lag specification, the 1959:1–1984:1 and 1966:1–1979:9 subperiods and for the 12-lag 

specifications, the 1959:1–1984:1, 1966:1–1979:9, and 1988:4–2007:11 subperiods. Standard diagnostics were 

satisfactory in all cases. 
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7. RESULTS WITH GARCH-FILTERED RESIDUALS 

 

Suppose that the shocks in equation i of the reduced form (2) were generated by the widely 

used GARCH(1,1) model 

DXF  �XF�XF 
�XF~���M�0,1� 

�XFO  �XN ? �XJ�X�FIJ�O ? �XODX�FIJ�O  
�XNO  ��XO 

�X� Y 0  for �  0, 1, 2  ;  -  1, 2, 3, 4, 5, 6;   �  1, 2, 3, … , � � 1, �  

where the fourth line imposes an initial condition (Bollerslev 1986). If the εit were generated 

by this process, their unconditional distribution would be thick-tailed, despite the fact that the 

shocks υit were normally distributed. Moreover, as long as qi1 +qi2 < 1, we could be assured 

that the shock process, εit , was covariance-stationary and had finite unconditional variance 

(Nelson 1990).   

 This model has often been investigated as an alternative to an alpha-stable model for 

financial data (e.g., Ghose and Kroner 1995). For each equation i, a GARCH(1,1) model can 

be fitted to the estimated shock realizations DX̂F, t = 1, 2, 3,…., T from the VAR estimates 

reported in Section 4 to explore the possibility that a finite-variance, heteroscedastic model can 

account for the residuals’ thick tails. We estimate (7) using QML, which has been shown to be 

rather robust to nonnormality and/or serial dependence in the υit process (Jensen and Rahbek 

2004; Lee and Hansen 1994; Lumsdaine 1996).
18

 The estimated GARCH(1,1) models for the 

innovations in the full-sample VARs are shown in Tables 8 and 9. For i = 3, 4, corresponding 

to the error terms from the PPI and FFR equations in both lag-length specifications, 

��XJ ? ��XO � 1 

which suggests an IGARCH model (Engle and Bollerslev 1986). This sum is much greater 

than 1 for i = 5, 6 in both VARs, implying that processes generating the NBR and TOTRES 

shocks have infinite unconditional variances and are not covariance stationary. As we show in 

the next section, the GARCH models for these shocks do not appear to fit the residuals well 

compared to the two unconditional non-Gaussian models. The GARCH models for DXF, i = 1, 2, 

                                                           
18

 Some sources related to GARCH estimation in the presence of heavy tails include Linton, Pan, and Wang 

(2010), Hall and Yao (2003), Huang, Wang, and Yao (2008), Berkes, Horváth, and Kokoszka (2003), and 

Mikosch and Straumann (2006). 
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3, 4 were not precisely estimated, which means that we are short of information on which to 

base inference about whether the weak stationarity condition q1 + q2 < 1 is met in those cases. 

Our results for the standardized residuals ��XF  DX̂F ��XF⁄ , suggest that for all i, υit has infinite 

variance, given the assumption of a stable conditional distribution. This point is seen in table 

10. The conditional estimates ��	
 � >1.7043  1.9165;.  Two LM tests on each series of 

filtered residuals fail to reject a no-ARCH null in all cases but one at the 5 percent level using 

standard chi-squared test cutoffs, indicating that the filters may be yielding a good signal of the 

conditional distributions.  (These test statistics are among those shown in Table 10.) P-P plots 

for the ML estimates show alpha-stable fits that are roughly as good as those shown in Figures 

3–7 for the unfiltered residuals. Hence, our data suggest that many of the innovations in our 

VARs may have both time-varying scale parameters and infinite-variance conditional 

distributions. A model with these properties would almost certainly imply that the 

corresponding error terms had unconditional distributions with infinite variances. 

 

8. GOODNESS OF FIT VIS-À-VIS STUDENT’S t AND GARCH(1,1) MODELS 

 

The focus of this paper has been on pitfalls resulting from infinite variance in the innovations 

of monetary SVARs. This focus necessitates an emphasis on finding out whether one or more 

shocks in a given VAR has an infinite-variance unconditional distribution. To make such tests 

feasible, we have made an assumption of stability that cannot be tested formally. As Nolan 

observes, “As with any other family of distributions, it is not possible to prove that a given data 

set is stable” (2001, 388). 

 Nonetheless, a comparative analysis of several stochastic shock models along the lines 

of Blattberg and Gonedes (1974), Tucker (1992), and Rachev and Mittnik (2000, 149–190) 

might assure us that we have relatively good stable, non-Gaussian fits. At the same time, a 

well-fitting alternative shock model could shed additional light on the validity of the infinite-

variance critique, as long as the parameter space of the model in question could be partitioned 

into finite- and infinite-variance regions. Hence, for the innovation in each VAR equation, we 

measure the fit of a normal distribution, as well as three alternative shock models. The latter 

models include the GARCH(1,1) filtering model described in the previous section, the i.i.d. 

stable model used in section 5, and an i.i.d. Student’s-t model. The t distributions are fitted to 
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each set of residuals using the ML estimators for the t-distribution parameters µ, σ, and ν. For 

our stable fits, we use the ML estimates reported in Table 3.  

 As seen in Tables 11 and 12, we have a mixture of success stories to report in these 

exercises, some in support of the infinite-variance hypothesis. Three goodness-of-fit criteria 

are reported for each equation in both tested VAR specifications: 1) the log-likelihood of the 

model evaluated at the ML estimates; 2) the Anderson-Darling (AD) measure of fit; and 3) the 

Kolmogorov-Smirnov (KS) distance.
19

  

 As shown in Table 11, the standard VAR(12) model seems to have innovations that are 

fairly well modeled by all of the models other than the i.i.d. Gaussian shock distribution, 

whose fits are reported in the first three columns. Also, among the tested shock models, the 

NBR and TR innovations are best modeled using an i.i.d. stable non-Gaussian shock, 

according to almost all of the results reported in the last two rows of the table. For the other 4 

shocks, the AD and KS goodness-of-fit measures mostly favored the unconditional t model. 

The log-likelihood criterion chose the t distribution for the residuals in the CPI equation and 

selected the GARCH(1,1) model for the IP, PPI, and FFR residuals.  

 Turning to the innovations in the standard VAR(3) model, the data in the last three 

rows of Table 12 show that among the three tested models, the FFR, NBR, and TR shocks 

seem to conform best to a stable, non-Gaussian unconditional model, according to all three 

criteria. On the other hand, the IP innovations are best modeled by the unconditional Student’s 

t model, by all three criteria. The results are ambiguous for the CPI and PPI innovations, with 

at least one criterion selecting each of the three non-Gaussian models for these error terms. It 

should be pointed out that we have already mentioned the NBR and TOTRES shocks 

numerous times in this paper in connection with rejections of our null hypothesis, often for 

subsamples that appeared to be homoscedastic.  

 Following Michael (1983), Nolan recommends the use of variance-stabilized P-P 

plots
20

 to determine if a dataset is consistent with an hypothesis of stability (Nolan 2001, 388).  

Accordingly, such plots are reported in Figures 3–7 for the residuals from our 12-lag, full 

sample VAR. On each of these figures, we depict lines corresponding to our Student’s t and 

normal fits, in addition to our ML stable fits. Our P-P plots are constructed from points 

                                                           
19

 The Anderson-Darling and Kolmogorov-Smirnov measures of goodness-of-fit are somewhat standard. The 

formulas for these criteria can be found in Rachev and Mittnik (2000, 163). 
20

 The formula for the abscissa in Michael’s stabilized P-P plots is ti = (2/π)arcsin(((i–.5)/n)
.5
), and the ordinate 

can be found using si = (2/π)arcsin(((F(xi))
.5
) where xi is the i

th
 highest observation and F(.) is the estimated 

cumulative distribution function (Michael 1983, 12).  
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representing all observations. The variance-stabilizing transformation spreads observations 

near the tail of the distribution, so that the variance is roughly constant along the straight line. 

The figures seem to confirm that the unconditional stable and t models fit all six sets of 

innovations in our primary specification very well indeed, while the estimated normal 

distributions for most of the shocks appear to fit very poorly. The pattern in all 6 normal plots 

is to start out below the 45-degree line on the left side of the figure, quickly rise above the line, 

cross the line once again at approximately the median observation, and finally rise above the 

45-degree line again, remaining above the line for the observations in the right tail of the 

distribution. This pattern indicates that the Gaussian fit is not thick enough in either tail to fit 

the data, an observation consistent with the high kurtoses reported for the residuals in Table 1.  

 Overall, the P-P plots for the NBR and TOTRES residuals confirm the message of our 

goodness-of-fit and log-likelihood measures, which indicate that the alpha-stable distribution 

provides the best fit among our tested models for these shocks in our VAR(12) specification. 

For the other 4 error terms in the primary specification, the estimated t distributions seem to fit 

the residuals at least as well.  

 The tails are crucial in assessing the veracity of an hypothesis of infinite variance. Most 

of our stable plots seem to be relatively good in this regard. In particular, only the plots for the 

IP and FFR innovations seem to indicate poor stable fits for any observations at either extreme 

of their respective distributions.  Moreover, the t distributions appear to be somewhat 

handicapped in fitting the asymmetries of the empirical distributions of the CPI and NBR 

innovations, and also perhaps that of the FFR innovation.  

 P-P plots for the VAR(3) specification showed stable fits that were similar in quality, 

and non-variance-stabilized P-P plots for the stable fits seemed to cast an even more favorable 

light on our stable estimates. 

 Finally, it should be noted in passing that one of our estimated t-distributions, namely 

the one for the FFR shock in the VAR(3) model, had an estimated degrees-of-freedom 

parameter �̂ =1.982 <  2. This value, if correct, would imply an infinite-variance t distribution 

and hence a non-transformable VAR, by the argument in Section 3.  
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9. CLOSING DISCUSSION 

 

This paper reports estimates of the characteristic exponents α of the innovations DXF in a six-

variable monetary VAR. The reason for seeking these estimates is that for α < 2, alpha-stable 

distributions have infinite variances, making it impossible to transform the reduced-form DGP 

into a set of structural equations with orthogonal structural shocks. Proposition 1 shows that no 

method of finding orthogonal disturbances can work when at least one innovation has infinite 

variance, because no nonsingular transformation of the innovations yields orthogonal 

disturbances. For our somewhat typical 6-equation monetary VARs, we have reported a great 

deal of empirical evidence in Sections 5, 6, 7, and 8 that infinite variance is present, especially 

in the full-sample estimate. 

 The work by Hill (2006) cited in section 1 and other, similar efforts may offer some 

hope for an alternative approach when standard SVAR analysis is precluded by problems with 

infinite-variance. The empirical generality of the findings presented here is not yet known. 

Hence, caution seems warranted in the use of SVAR.  

 

  



26 

 

Appendix 1: Proof of Proposition 1 

PROPOSITION 1: Let εt and ηt be two random k-element vectors and let A be a k-by-k 

nonsingular matrix of real numbers, with ηt = Aεt. If one or more of the elements of εt has 

infinite variance, then  

IE tt ≠)'( ηη  

The proposition still holds if the identity matrix I above is replaced by any other finite k-by-k 

matrix W. 

 

Proof:  

We have  

εt = A
-1
ηt.        (A1)  

We shall assume that at least one element of εt has infinite variance and that, as above, E(ηtηt′) 

= I (or = W), and proceed until we find a contradiction. Without loss of generality, assume 

that the first element of εt has infinite variance. The first equation in the system (5) can then be 

written 

ktkttt aaa ηηηε 12121111 ....+++=  

where the a1t are the elements of the top row of A
-1

 and the ηjt are the elements of ηt. Then, the 

variance of ε1t is 

 (A2) 

Since by assumption the left side of (6) is infinite, at least one term on the right side must be 

infinite. But since E(ηtηt′) = I, the right-hand side of (6) equals k. This is a contradiction. The 

weaker assumption E(ηtηt′)= W, where W is some finite matrix, obviously implies a similar 

contradiction. Q.E.D. 

 

Appendix 2: Bootstrap Methodology 

We estimate the following reduced-form VAR, using two different lag-length specifications 

and a number of different sample periods: 

tptpttt YCYCYCY ε++++= −−− ....2211  

 with 

DF~��0, Σ�  

),cov(2),cov(2....),cov(2

),cov(2)var(....)var()var()var(
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 The parametric bootstrap procedure is somewhat standard (see, for example, Davidson 

and MacKinnon 2004) and is similar to the one used in Kilian and Demiroglu (2000) for a 

Jarque-Bera normality test.  

 The simulation uses a presample (Y-(p-1), Y-(p-2), Y-(p-3),….,,Y-1, Y0) representing the first 

p data vectors in the sample, the ML estimates t�c and Σ�	
 of the reduced-form coefficients Cj 

and the innovation covariance matrix Σ. In this case, the maximum likelihood estimator for the 

coefficients is the equation-by-equation least-squares estimator (Lütkepohl 2006, 87–93). 

The procedure goes as follows. Suppose the sample contains T + p observations. Generate T 

6 � 1 vectors DJ�� , DO�� , Dg�� , … , D IJ�� , D �� consisting of serially and component-wise 

independent draws from a standard normal distribution. Premultiply each vector by the lower 

triangular matrix VL, where Σ�  �
�� and VU is the transpose of VL. This yields the simulated 

shock vectors DF�!	  �
DF��, t = 1, 2, 3,….,T–1, T. 

 Next, create a bootstrap series as follows: set 

%I�rIJ��!	 , %I�rIO��!	 , %I�rIg��!	 , … , %IJ�!	 , %N�!	equal to %I�rIJ�, %I�rIO�, %I�rIg�, … , %IJ, %N.  Generate 

the rest of the series recursively, using the formula 

 

SIM

t

SIM

ptp

SIM

t

SIM

t

SIM

t YCYCYCY ε++++= −−−

))
....ˆ

2211  

t = 1, 2, 3,…, T–1, T 

Estimate Cj , j = 1, 2, 3,…, P–1, P and Σ for the simulated data using the ML estimators, as 

explained above. Save the bootstrap residual vectors �F�J, t = 1, 2, 3,….., T from these latter 

regressions. Stack these column vectors horizontally into a 6 � � matrix ��J. Repeat this 

simulation and estimation procedure 9,998 times, generating the bootstrap residual matrices 

D�O, D�g, ��h, … , ������,  and ������.   

Compute estimates and test statistics from each of these sets of bootstrap residual vectors. For 

example, the first component of the shock vector εt was the error term in the IP equation of the 

VAR. Using the first rows of D�J, D�O, ��g, … , ������, and ������, perform each bootstrap test 

for the IP residuals as follows. To begin, use McCulloch’s (1986) quantile estimator to 

generate 9,999 estimates of α. Sort them in ascending order. Call the 99th-lowest estimate 

�.NJ� and the 499th-lowest estimate �.Ni� . Reject the null hypothesis for the IP error term at the 1 

percent significance level if the quantile estimate ��	" � �.NJ� . If the null is not rejected in this 

step, then reject at the 5 percent level if ��	" � �.Ni� .  Repeating this bootstrap test procedure 
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for rows 2 through 6 of D�J, D�O, ��g, … , ������, and ������ yields test outcomes for the 5 other 

innovations in the VAR.  

 Next, form rejection regions and perform bootstrap tests as described in the previous 

paragraph for the Kogon-Williams (1998) estimator ��"~ and the ML estimator ��	
. Nolan 

describes his ML algorithm in Nolan (1999).  

The bootstrap LR test proceeds in a similar fashion. Again using each row of bootstrap residual 

vectors from the matrices D�J, D�O, ��g, … , ������, and ������, test the joint hypothesis H0: 

�  2 ��o �  0  using the log-likelihood ratio test statistic –2LLRLB 

=�24ℓ�2,0, ��	
�N, ��	
�N, t�	
�N; %& � ℓ���	
 , ��	
 , ��	
 , ��	
 , t�	
�N; %&6 for all 6 innovations. 

In this case, the critical values for the test are the 99th- and 499th-highest realizations of the 

bootstrap test statistic. (See Section 5 for a discussion of this test and test statistic.) 

Perform the bootstrap Jarque-Bera normality tests and the ARCH tests in a similar fashion to 

the other tests, obtaining and using different sets of critical values for each of the two lag-

length specifications used in the ARCH test equations. 

 Repeat the entire process in the preceding paragraphs for all four subsample periods 

and for both lag-length specifications.  

 All of these procedures seemed to converge as expected. 
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Figure 2. Reduced-Form VAR Least-Squares Residuals (Shocks) εt
LS
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Figure 3. Stabilized PP Plot for IP Residuals, 12-lag VAR, Full Sample
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Figure 4. Stabilized PP Plot for CPI Residuals, 12-lag VAR, Full Sample
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Figure 5. Stabilized PP Plot for PPI (Crude Materials) Residuals, 12-lag VAR, Full Sample
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Figure 6. Stabilized PP Plot for FFR Residuals, 12-lag VAR, Full Sample
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Figure 7. Stabilized PP Plot for NBR Residuals, 12-lag VAR, Full Sample
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Figure 8. Stabilized PP Plot for TOTRES Residuals, 12-lag VAR, Full Sample
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Table 1. Sample Statistics for Innovations ���, 6-Variable Monetary VAR, 1959:1–2007:11, 12-lag 
Specification (T=575) 

 IP Equation CPI Equation PPI Equation FFR Equation NBR Equation TR Equation 

R
2 

.999770 .999991 .997691 .981802 .998588 .998751 

Log likelihood 2102.953 2766.124 1256.021 -348.3336 1394.758 1445.107 

Std. Dev. 0.006249 0.001972 0.027257 0.443849 0.021413 0.019618 

Skewness 0.022306 0.175226 0.070495 -1.509032 2.794186 6.973937 

Kurtosis 4.464086 6.285196 12.24979 35.74013 47.98869 123.6040 

Jarque-Bera 

Probability 

51.40351 

0.000000 

261.5130 

0.000000 

2050.320 

0.000000 

25899.56 

0.000000 

49239.45 

0.000000 

353142.5 

0.000000 

Note: For the full-sample estimates and for our full-sample break (1959:1–1984:1 and 1984:2–2007:11), we made 

use of all data in both of our lag-length specifications, so as not to lose any information. In other words, the 12-lag 

VARs for the full sample and for 1959:1–1984:1 use data from 1959:1–1959:12 as a presample, whereas our 3-lag 

versions of those VARs use 1959:1–1959:3 as a presample period. For the other subperiods, the presample 

observations were drawn from months prior to the stated sample period. For example, for the 1966:1–1979:9 

VAR, the 3-lag VAR had a presample period of 1965:10–1965:12, and the presample period for the 12-lag VAR 

was 1965:1–1965:12. 

 

Table 2. Sample Statistics for the Innovations ���, 6-Variable Monetary VAR, 3-Lag Specification, 1959:1–
2007:11 (T=584) 

 IP Equation CPI Equation PPI Equation FFR Equation NBR Equation TR Equation 

R
2 

.999706 .999990 .997483 .977797 .998438 .998546 

Log likelihood 2049.329 2762.148 1244.609 -410.0522 1380.782 1417.596 

Std. Dev. .007247 .002138 .028746 .488734 .022767 .021376 

Skewness .561245 .006509 .198247 -1.466878 3.772518 8.449394 

Kurtosis 10.73691 5.995864 12.34196 35.06997 69.68863 166.8595 

Jarque-Bera 

Probability 

1487.248 

.000000 

218.4007 

.000000 

2127.450 

.000000 

25235.85 

.000000 

109604.7 

.000000 

660297 

.000000 
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Table 3. Results for Full Sample (1959:1-2007:11) VAR Innovations 
Presamples:1959:1–1959:12; 1959:1–1959:3 

VAR(12) 

equation for: 

Estimates of Stable 

Distribution 

Characteristic Exponent 

H0: α=2 

LR Statistic  

(–2LLRLB)  

for H0: 

0

2

=

=

β

α

and
 

Engle LM Test 

Statistic 

H0: No (G)ARCH 

Jarque-Bera 

Test of 

Normality 

H0: 
DF~���M� , �O� 
 

MCα̂  CFα̂  

MLα̂  
[95%  

asymptotic 

c.i.‡]
 

3-lag 

Test 

Equation 

12-lag 

Test 

Equation 

Industrial Prod. 1.6874** 1.8664** 
1.7692** 
[1.65,1.89] 

20.6794** 29.172** 39.973** 51.40** 

CPI-U 1.7279* 1.8189** 
1.7445** 
[1.62,1.86] 

58.2219** 52.052** 61.367** 261.51** 

PPI (crude 

materials) 
1.5987** 1.6141** 

1.5539** 
[1.42,1.68] 

192.0093** 70.356** 73.753** 2,050.32** 

Fed Funds Rate 1.5668** 1.5884** 
1.5607** 
[1.44,1.69] 

311.7442** 34.892** 77.131** 25,899.56** 

Nonborrowed 

Reserves 
1.7167* 1.7391** 

1.7330** 
[1.61,1.85] 

255.7571** 14.300** 14.075 49,239.45** 

Total Reserves 1.6864** 1.7543** 
1.7663** 
[1.64,1.88] 

433.9345** 10.868* 10.697 353,142.50** 

  

VAR(3) 

equation for: 

Estimates of Stable 

Distribution 

Characteristic Exponent 

H0: α=2  

LR Statistic  

(–2LLRLB) 

for H0: 

0

2

=

=

β

α

and
 

Engle LM Test 

Statistic 

H0: No (G)ARCH 

Jarque-Bera 

Test of 

Normality 

H0: 
DF~���M� , �O� 
 

MCα̂  CFα̂  

MLα̂  
[95% 

asymptotic 

 c.i.‡]
 

ARCH(3) 

Test 

Equation 

ARCH(12) 

Test 

Equation 

Industrial Prod. 1.5726** 1.7540** 
1.6498** 
[1.52,1.78] 

103.5208** 30.045** 42.786** 1,487.25** 

CPI-U 1.7415* 1.8201** 
1.7136** 
[1.59,1.83] 

55.1185** 78.043** 88.467** 218.40** 

PPI (crude 

materials) 
1.4275** 1.5615** 

1.4949** 
[1.37,1.62] 

213.9893** 82.045** 89.599** 2,127.45** 

Fed Funds Rate 1.3438** 1.4071** 
1.3979** 
[1.27,1.52] 

439.8073** 50.361** 129.672** 25,235.85** 

Nonborrowed 

Reserves 
1.7368* 1.6804** 

1.6811** 
[1.56,1.81] 

366.0446** 19.773** 20.024 109,604.7** 

Total Reserves 1.6023** 1.7376** 
1.7496** 
[1.63,1.87] 

613.9451** 17.527** 17.668 660,297.0** 

Significance levels for bootstrap test statistics are * for p=.05 and ** for p=.01. (See sections 1 and 5.) All critical 

values for the bootstrap tests were computed using a parametric bootstrap algorithm with n = 9,999 (see appendix 

2). The same set of bootstrap 9,999 runs was used for all tests reported for a given specification–sample period 

combination. Estimators of α were MCα̂ = McCulloch (1986) quantile estimator; CFα̂ = characteristic function 

estimator (this algorithm was first presented in Kogon and Williams 1998); MLα̂ = maximum likelihood estimator. 

‡ = conditional on estimates of error-term vectors ε¢, t  1, 2, 3, … , T � 1, T. The 95% confidence intervals 
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reported in square brackets beneath MLα̂  are based on the Fisher information matrix (DuMouchel 1973). Strictly 

speaking, these intervals are not valid for inference about the error terms, unless the true VAR coefficients are 

known. All three estimates, as well as the confidence intervals for the MLE, were computed using John Nolan’s 

STABLE 5.1 MATLAB® toolbox, purchased from Robust Analysis, Inc. The toolbox was run on MATLAB® 

R2010b and R2011a. The use of this new software accounts for some slight changes from the estimates presented 

in earlier versions of this paper. The (G)ARCH test statistic = T.R
2
, where T = VAR sample length, and R

2
 is the 

coefficient of determination from a least squares estimate of the test equation. This approach to testing for 

GARCH and ARCH was first suggested by Engle (1982) and the Jarque-Bera test statistic is from Jarque and Bera 

(1987). The bootstrap procedure in appendix 2 was also used to compute critical values for these latter tests.   

Table 4. Results for 1959:1-1984:1 Subsample VAR Innovations 
Presamples: 1959:1–1959:12; 1959:1–1959:3 

VAR(12) 

equation for: 

Estimates of Stable 

Distribution 

Characteristic Exponent 

H0: α=2 

LR Statistic  

(–2LLRLB)  

for H0: 

0

2

=

=

β

α

and
 

Engle LM Test 

Statistic 

H0: No (G)ARCH 

Jarque-Bera 

Test of 

Normality 

H0: 
DF~���M� , �O� 
 MCα̂  CFα̂  

MLα̂  
3-lag 

Test 

Equation 

12-lag 

Test 

Equation 

Industrial 

Prod. 
1.7260 1.9424* 1.9551 3.0145* 4.694 13.918 7.36* 

CPI-U 1.8244 1.9037** 1.8671** 12.8939** 38.604** 44.889** 43.20** 

PPI (crude 

materials) 
1.8005 1.8581** 1.8747** 60.8660** 18.901** 20.421 2,618.87** 

Fed Funds 

Rate 
1.5649** 1.7251** 1.7453** 101.4364** 17.931** 29.406** 4,130.54** 

Nonborrowed 

Reserves 
1.6854* 1.8536** 1.7808** 20.4521** 7.261 18.939 72.31** 

Total Reserves 1.7628 2.0000 1.9999 0.0000 1.608 16.360 .41 
  

VAR(3) 

equation for: 

Estimates of Stable 

Distribution 

Characteristic Exponent 

H0: α=2  

LR Statistic  

(–2LLRLB) 

for H0: 

0

2

=

=

β

α

and
 

Engle LM Test 

Statistic 

H0: No (G)ARCH 

Jarque-Bera 

Test of 

Normality 

H0: 
DF~���M� , �O� 
 MCα̂  CFα̂  

MLα̂  
ARCH(3) 

Test 

Equation 

ARCH(12) 

Test 

Equation 

Industrial 

Prod. 
1.5756** 1.8151** 1.7660** 46.7945** 1.430 31.723** 827.28** 

CPI-U 2.0000 1.8655** 1.7654** 23.1198** 28.839** 63.131** 80.15** 

PPI (crude 

materials) 
1.6572* 1.7256** 1.6726** 95.0605** 16.984** 29.329** 4,703.58** 

Fed Funds 

Rate 
1.2872** 1.4590** 1.3945** 159.6491** 22.594** 64.394** 4,041.70** 

Nonborrowed 

Reserves 
1.6589* 1.8265** 1.7526** 27.8273** 13.032** 28.114** 106.50** 

Total Reserves 2.0000 1.9430* 1.9380* 11.8520** .711 63.723** 53.59** 

See notes below Table 3. 
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 Table 5. Results for 1966:1-1979:9 Subsample VAR Innovations 
Presamples: 1965:1–1965:12; 1965:10–1965:12 

VAR(12) 

equation for: 

Estimates of Stable 

Distribution 

Characteristic Exponent 

H0: α=2 

LR Statistic  

(–2LLRLB)  

for H0: 

0

2

=

=

β

α

and
 

Engle LM Test 

Statistic 

H0: No (G)ARCH 

Jarque-Bera 

Test of 

Normality 

H0: 
DF~���M� , �O� 
 MCα̂  CFα̂  

MLα̂  
3-lag 

Test 

Equation 

12-lag 

Test 

Equation 

Industrial Prod. 1.8891 1.9626 1.9999 .0000 1.957 7.766 1.33 

CPI-U 1.7979 1.8648 1.8284* 13.4315 23.830** 27.905* 45.75 

PPI (crude 

materials) 
1.5987* 1.8071** 1.7452** 17.6958 17.112** 22.208 92.73* 

Fed Funds 

Rate 
1.6319 1.8449* 1.7642** 11.0474 11.901** 20.446 36.01* 

Nonborrowed 

Reserves 
1.8935 1.9432 1.8760 2.6099 .142 6.182 5.11 

Total Reserves 1.9271 1.9813 2.0000 .0000 4.157 15.480 .73 
  

VAR(3) 

equation for: 

Estimates of Stable 

Distribution 

Characteristic Exponent 

H0: α=2  

LR Statistic  

(–2LLRLB) 

for H0: 

0

2

=

=

β

α

and
 

Engle LM Test 

Statistic 

H0: No (G)ARCH 

Jarque-Bera 

Test of 

Normality 

H0: 
DF~���M� , �O� 
 MCα̂  CFα̂  

MLα̂  
ARCH(3) 

Test 

Equation 

ARCH(12) 

Test 

Equation 

Industrial Prod. 1.7590 1.9811 1.9823 .0012 .809 7.779 .33 

CPI-U 1.5456* 1.8277** 1.7818** 16.6233** 28.526** 34.296 60.61* 

PPI (crude 

materials) 
1.6624 1.6760** 1.6369** 44.6898** 11.996** 26.913* 538.66* 

Fed Funds 

Rate 
1.6162* 1.8410** 1.7369** 13.1812 5.096 9.299 52.45* 

Nonborrowed 

Reserves 
1.5688* 1.8832* 1.7965** 2.0135 4.019 13.683 5.65 

Total Reserves 1.7575 1.9761 1.9999 .0000 1.160 12.235 .85 

See notes below Table 3. 
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Table 6. Results for 1984:2-2007:11 Subsample VAR Innovations 
Presamples: 1983:2–1984:1; 1983:11–1984:1 

VAR(12) 

equation for: 

Estimates of Stable 

Distribution 

Characteristic Exponent 

H0: α=2 

LR Statistic  

(–2LLRLB)  

for H0: 

0

2

=

=

β

α

and
 

Engle LM Test 

Statistic 

H0: No (G)ARCH 

Jarque-Bera 

Test of 

Normality 

H0: 
DF~���M� , �O� 
 MCα̂  CFα̂  

MLα̂  
3-lag 

Test 

Equation 

12-lag 

Test 

Equation 

Industrial 

Prod. 
1.7634 1.8914** 1.8375** 11.6034* 16.321** 20.471 33.43 

CPI-U 1.6705* 1.8548** 1.7782** 26.1559* 12.886** 20.802 207.16* 

PPI (crude 

materials) 
1.5295** 1.7084** 1.5953** 45.3838** 45.886** 51.028** 171.64* 

Fed Funds 

Rate 
1.6915 1.7976** 1.7120** 36.9772** 2.514 43.219** 193.60** 

Nonborrowed 

Reserves 
1.4618** 1.6506** 1.6493** 139.5244** 3.129 2.297 11,060.19** 

Total Reserves 1.6042* 1.6901** 1.6816** 180.8232** 1.639 1.676 38,934.49** 
  

VAR(3) 

equation for: 

Estimates of Stable 

Distribution 

Characteristic Exponent 

H0: α=2  

LR Statistic  

(–2LLRLB) 

for H0: 

0

2

=

=

β

α

and
 

Engle LM Test 

Statistic 

H0: No (G)ARCH 

Jarque-Bera 

Test of 

Normality 

H0: 
DF~���M� , �O� 
 MCα̂  CFα̂  

MLα̂  
ARCH(3) 

Test 

Equation 

ARCH(12) 

Test 

Equation 

Industrial 

Prod. 
1.9644 1.9168* 1.8664** 9.6563 13.630** 18.586 26.00 

CPI-U 1.5186** 1.7179** 1.5848** 43.5816** 18.128** 39.283** 176.07** 

PPI (crude 

materials) 
1.4627** 1.6611** 1.5268** 57.5632** 54.261** 60.039** 224.21* 

Fed Funds 

Rate 
1.3255** 1.6682** 1.5061** 42.7829* 24.670** 53.715** 136.05** 

Nonborrowed 

Reserves 
1.6106** 1.5202** 1.5323** 268.3360** 6.394 6.068 41,554.01** 

Total Reserves 1.8037 1.6149** 1.6023** 381.6470** 4.018 4.144 145,966.8** 

See notes below Table 3. 
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Table 7. Results for 1988:4-2007:11 Subsample VAR Innovations 
Presamples: 1987:4–1988:3; 1988:1–1988:3 

VAR(12) 

equation for: 

Estimates of Stable 

Distribution 

Characteristic Exponent 

H0: α=2 

LR Statistic  

(–2LLRLB)  

for H0: 

0

2

=

=

β

α

and
 

Engle LM Test 

Statistic 

H0: No (G)ARCH 

Jarque-Bera 

Test of 

Normality 

H0: 
DF~���M� , �O� 
 MCα̂  CFα̂  

MLα̂  
3-lag 

Test 

Equation 

12-lag 

Test 

Equation 

Industrial 

Prod. 
2.0000 1.9401 1.9067 8.5964 18.010** 24.603* 23.04 

CPI-U 1.8266 1.8773* 1.8389* 22.0323 2.138 9.482 205.71 

PPI (crude 

materials) 
1.7713 1.8620** 1.8131** 21.5806* 18.217** 19.970 137.24* 

Fed Funds 

Rate 
1.7425 1.9431 1.9279 1.0027 1.751 4.719 3.93 

Nonborrowed 

Reserves 
1.8169 1.7341** 1.7624** 121.9855** .125 .286 15,848.09** 

Total Reserves 1.7205 1.7121** 1.7369** 146.4446** .130 .274 24,430.07** 
  

VAR(3) 

equation for: 

Estimates of Stable 

Distribution 

Characteristic Exponent 

H0: α=2  

LR Statistic  

(–2LLRLB) 

for H0: 

0

2

=

=

β

α

and
 

Engle LM Test 

Statistic 

H0: No (G)ARCH 

Jarque-Bera 

Test of 

Normality 

H0: 
DF~���M� , �O� 
 MCα̂  CFα̂  

MLα̂  
ARCH(3) 

Test 

Equation 

ARCH(12) 

Test 

Equation 

Industrial 

Prod. 
1.8876 1.9341* 1.8850* 7.961* 9.414* 13.072 19.49 

CPI-U 1.4456** 1.7046** 1.6092** 36.2592** 7.639 27.462** 240.96** 

PPI (crude 

materials) 
1.5028** 1.7569** 1.6576** 29.7809** 32.272** 44.075** 114.28** 

Fed Funds 

Rate 
1.5699** 1.8584* 1.7740** 4.3353 6.713 14.597 10.79* 

Nonborrowed 

Reserves 
1.8100 1.6721** 1.6795** 219.2355** 1.457 1.579 63,815.98** 

Total Reserves 2.0000 1.6431** 1.7441** 280.6783** 1.038 1.116 104,048.9** 

See notes below Table 3. 
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Table 8. Estimated Coefficients for GARCH(1,1) Model (7) of Shocks from 6-Variable   
                 VAR(12), Full Sample* 
 

Variance 

Equation for  

Variable QML Coef. 

Estimate 

S.E.** 

IP residual Constant 2.22 E-05 7.11 E-06 

 Resid(-1)^2 .2126 .0712 

 GARCH(-1) .2140 .1945 

CPI residual Constant 1.04 E-06 3.24 E-07 

 RESID(-1)^2 .1688 .0741 

 GARCH(-1) .5621 .1145 

PPI residual Constant 2.76 E-05 1.14 E-05 

 Resid(-1)^2 .2544 .0855 

 GARCH(-1) .7339 .0627 

FFR residual Constant .0075 .0029 

 RESID(-1)^2 .2754 .1198 

 GARCH(-1) .7062 .0800 

NBR residual Constant 3.07 E-05 1.39 E-05 

 Resid(-1)^2 .6979 .3830 

 GARCH(-1) .5499 .0359 

TR residual Constant 1.14 E-05 1.70 E-05 

 RESID(-1)^2 .7858 .5580 

 GARCH(-1) .5879 .0312 

Notes: *Presample variances computed using backcasting parameter = 0.7 

**S.E. = Bollerslev-Wooldridge (1992) robust standard error 

 

Table 9. Estimated Coefficients for GARCH(1,1) Model (7) of Shocks from 6-Variable   
                 VAR(3), Full Sample* 
 

Variance 

Equation for  

Variable QML Coef. 

Estimate 

S.E.** 

IP residual Constant 2.13E-06 6.02E-07 

 Resid(-1)^2 .0248 .0102 

 GARCH(-1) .9221 .0195 

CPI residual Constant 5.72E-07 1.07E-07 

 RESID(-1)^2 .1391 .0246 

 GARCH(-1) .7354 .0322 

PPI residual Constant 2.08E-05 6.48E-06 

 Resid(-1)^2 .3450 .0349 

 GARCH(-1) .6745 .0280 

FFR residual Constant .0041 .0015 

 RESID(-1)^2 .3549 .0350 

 GARCH(-1) .6834 .0311 

NBR residual Constant .0001 1.24E-05 

 Resid(-1)^2 1.834 .0680 

 GARCH(-1) .0852 .0154 

TR residual Constant 6.63E-05 8.86E-06 

 RESID(-1)^2 2.7431 .1116 

 GARCH(-1) .0480 .0372 

Notes: *Presample variances computed using backcasting parameter = 0.7 

**S.E. = Bollerslev-Wooldridge (1992) robust standard error 
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Table 10. Full Sample (1959:1-2007:11) VAR Results for GARCH-Filtered Residuals 
DX̂F

��XF
¤  

Filter: �XF
O  �XN ? �XJ�X�FIJ�

O ? �XODX�FIJ�
O , where i = equation number in VAR model 

 

VAR(12) equation 

for: 

Estimates of Stable 

Distribution 

Characteristic Exponent 

 

LR 

Statistic  

(–LLRLB)  

  

Engle LM Test 

Statistic 

 

Jarque-

Bera 

Test 

Statistic 

 MCα̂  CFα̂  

MLα̂  
[95%  

asymptotic 

c.i.‡]
 

3-lag 

Test 

Equation 

12-lag 

Test 

Equation 

Industrial Prod. 1.6849 1.9027 1.8444 
[1.74,1.95] 

11.8895 .6118 12.66955 35.01 

CPI-U 1.7762 1.8554 1.7769 
[1.66,1.89] 

34.9797 2.697325 11.7484 96.61 

PPI (crude 

materials) 
1.8852 1.8768 1.8153 

[1.71,1.93] 

34.0086 
3.7352 8.20525 144.26 

Fed Funds Rate 1.8864 1.8568 1.8421 
[1.74,1.95] 

73.2875 .443325 4.1078 1,016.56 

Nonborrowed 

Reserves 
1.6456 1.8446 1.8536 

[1.75,1.96] 

188.7763 
.076475 0.33235 51,749.66 

Total Reserves 1.5989 1.8281 1.8725 
[1.78,1.97] 

241.4658 .07245 0.271975 101,861.7 

  

VAR(3) equation 

for: 

Estimates of Stable 

Distribution 

Characteristic Exponent 

 

LR 

Statistic  

(–LLRLB) 

 

Engle LM Test 

Statistic 

 

Jarque-

Bera 

Test 

Statistic 

 MCα̂  CFα̂  
MLα̂  

[95% 

asymptotic 

 c.i.‡]
 

ARCH(3) 

Test 

Equation 

ARCH(12) 

Test 

Equation 

Industrial Prod. 1.6354 1.8181 1.7043 
[1.58,1.83] 

42.5659 19.44428 45.75698 116.62 

CPI-U 1.9707 1.8712 1.7802 
[1.67,1.89] 

31.2983 4.749088 11.97375 78.09 

PPI (crude 

materials) 
2.0000 1.9414 1.9165 

[1.83,2.00] 

18.3762 
2.583032 8.243744 63.08 

Fed Funds Rate 2.0000 1.8592 1.8070 
[1.70,1.92] 

61.6938 .43216 4.781792 476.05 

Nonborrowed 

Reserves 
1.5627 1.8002 1.7925 

[1.68,1.90] 

247.0763 
.082928 0.270976 92,083.84 

Total Reserves 1.6871 1.7853 1.7649 
[1.65,1.88] 

353.0423 .051392 0.251704 258,758.9 

Notes: See notes below Table 3. No significance levels shown on this page because of filtering. 

See notes below Table 3. ‡ = conditional on estimates of error-term 

vectors εt, t  1, 2, 3, … , T � 1, T. 

ttt YLCY ε+= −1)(
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 Table 11. Measures of Goodness of Fit for Error-Term Models for VAR(12), Full Sample (1959:1–2007:11) 
 Normal  

(i.i.d.)  

2-parameter model 

Student’s t (i.i.d.) 

3-parameter model 

Alpha-Stable 

(i.i.d.) 

4-parameter model 

GARCH(1,1) 

4-parameter model 
 DXF  �XF�XF, �XF~���M�0,1� 

�XF
O  �XN ? �XJ�X�FIJ�

O �XODX�FIJ�
O  

�XN
O  ��X

O 

 LL AD KS LL AD KS LL AD KS LL AD KS LL(N(0,1);��XF) 

IP 2,103.0 .1462 5.0175 2,117.9 .0662 2.4703 2,113.3 .1692 3.2248 2,119.3 .1107 5.0970 -816.1 

CPI-U 2,766.1 .1801 5.5547 2,796.9 .0764 3.0474 2,795.2 .1164 3.0908 2,790.5 .1377 5.1548 -815.6 

PPI (Crude Materials) 1,256.0 .3157 10.8857 1,353.6 .0675 2.3197 1,352.0 .0820 2.2106 1,388.8 .1145 4.3711 -815.3 

FFR -348.3 .3756 11.9169 -191.9 .0742 2.1579 -192.5 .1032 2.7361 -163.7 .1383 5.1481 -816.1 

NBR 1,394.8 .3118 9.1533 1,520.5 .0661 1.5419 1,522.6 .0499 1.1269 1,455.7 .2298 6.8753 -815.8 

Total Reserves 1,445.1 .5152 12.5962 1,658.2 .0964 2.0918 1,662.1 .0634 2.5362 1,565.1 .4556 9.2725 -815.7 

LL=log likelihood; AD=Anderson-Darling Measure of Fit; KS=Kolmogorov-Smirnov Distance 

 Table 12. Measures of Goodness of Fit for Error-Term Models for VAR(3), Full Sample (1959:1–2007:11) 
 Normal  

(i.i.d.) 

2-parameter model 

Student’s t (i.i.d.) 

3-parameter model 

Alpha-Stable 

(i.i.d.) 

4-parameter model 

GARCH(1,1) 

4-parameter model 
DXF  �XF�XF, �XF~���M�0,1� 

�XF
O  �XN ? �XJ�X�FIJ�

O ?�XODX�FIJ�
O  

�XN
O  ��X

O 

 LL AD KS LL AD KS LL AD KS LL AD KS LL(N(0,1);��XF) 

IP 2,049.3 .1945 7.1257 2,104.3 .0577 2.3144 2,101.1 .1722 2.4081 2,093.4 .1553 6.2910 -833.2 

CPI-U 2,762.1 .2247 6.4497 2,791.4 .1225 3.8983 2,789.7 .1022 4.5450 2,794.8 .1735 5.0583 -828.6 

PPI (Crude 

Materials) 

1,244.6 .3398 11.0483 1,353.7 .0613 1.9151 1,351.6 .1117 1.7361 1,434.8 .0924 3.1161 -828.2 

FFR -413.3 .4506 14.2341 -193.5 .0912 2.8816 -193.4 .0798 2.0657 -

1,280.4 

.1368 4.8741 -828.5 

NBR 1,380.8 .4147 10.7551 1,561.5 .0738 2.7201 1,563.8 .0603 2.5813 1,457.7 .2829 9.0277 -828.7 

Total Reserves 1,416.4 .6297 14.1476 1,719.1 .0931 3.2457 1,723.4 .0863 4.2136 1560.6 .3727 10.8914 -828.4 

LL=log likelihood; AD=Anderson-Darling Measure of Fit; KS=Kolmogorov-Smirnov Distance 

Note: In the tables above, italics are used to denote the winner of the competition corresponding to that cell in the table and all others for the same 

equation and measure of fit. For example, in the 12-lag specification, the shock in the PPI-for-crude-materials equation is best modeled by a stable, 

non-Gaussian distribution according to the Kolmogorov-Smirnov (KS) measure of distance, by a GARCH(1,1) model according to the likelihood 

criterion, and by a t distribution according to the Anderson-Darling (AD) measure of distance.  


