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Abstract

Forecasting based pricing of Weather Derivatives (WDs) is a new approach in
valuation of contingent claims on nontradable underlyings. Standard techniques are
based on historical weather data. Forward-looking information such as meteorolog-
ical forecasts or the implied market price of risk (MPR) are often not incorporated.
We adopt a risk neutral approach (for each location) that allows the incorporation
of meteorological forecasts in the framework of WD pricing. We study weather Risk
Premiums (RPs) implied from either the information MPR gain or the meteorolog-
ical forecasts. The size of RPs is interesting for investors and issuers of weather
contracts to take advantages of geographic diversification, hedging effects and price
determinations. By conducting an empirical analysis to London and Rome WD
data traded at the Chicago Mercantile Exchange (CME), we find out that either
incorporating the MPR or the forecast outperforms the standard pricing techniques.

Keywords: Weather derivatives, seasonal variation, temperature, risk premia
JEL classification: G19, G29, G22, N23, N53, Q59

1 Introduction

Weather Derivatives (WDs) are financial instruments to hedge against the random nature
of weather variations that constitute weather risk (the uncertainty in cash flows caused
by weather events). Two years after the first over the counter (OTC) trade of a WD
in 1997, the formal exchange Chicago Mercantile Exchange (CME) introduced derivative
contracts on weather indices in 1999. Both exchange traded and OTC derivatives are
now written on a range of weather indices, including temperature, hurricanes, frost and
precipitation. WDs differ from insurances, first because insurances cover low probability
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extreme events, whereas WDs cover lower risk high probability events such as colder
winters than expected. Second, a buyer of a WD will receive its payoff at settlement
period no matter the loss caused by weather conditions. For insurances, the payoff depends
on the proof of damages. Third, from the seller’s point of view, WDs eliminate moral
hazard and avoid the higher administrative and the loss adjustment expenses of insurance
contracts. The WD market is a typical example of an incomplete market in the sense that
the underlying weather indexes are non-tradable assets and cannot be replicated by other
underyling instruments, like there are in the equity market. Furthermore, the market
is relatively illiquid. Campbell and Diebold (2005) argued that this illiquidity is due to
non-standardisation of the weather. Given this, one might expect some inefficiencies in
the WD market. The protection is achieved, when two counterparties in the transaction
of a WD meet: a hedger (e.g. a farmer) who wants to hedge his weather risk exposure
and a speculator, to whom the risk has been transferred in return for a reward.

The pricing of WDs is challenging because in contrast to complete markets the assump-
tion of no arbitrage does not assure the existence of a unique risk neutral measure. Many
valuation techniques of WDs have overcome this problem: under an equilibrium represen-
tative framework (Cao and Wei (2004)), under the Equivalent Martingale Approach EMM
(Alaton et al. (2002); Benth (2003)), using marginal utility approach (Davis (2001)) or,
more generally, with the principle of equivalent utility (Brockett et al. (2010)). Standard
pricing approaches for weather derivatives are based on historical weather data, estimate
the physical measure by time series analysis and then calibrate the Market Price of Risk
(MPR) in such a way that the traded WDs are martingales under the risk neutral mea-
sure. Forward-looking information such as meteorological forecasts or the MPR are often
not incorporated in usual pricing approaches. Hence, important market information is not
considered in an informational efficient markets, where futures prices reflect all publicity
available information.

The literature on how to calibrate the MPR or how to incorporate meteorological weather
forecast into the price of weather derivatives is limited. From one side, we have the
studies from Härdle and López-Cabrera (2011) and Benth et al. (2011), who use inverse
techniques to imply the MPR from the temperature futures traded at CME and suggest
a seasonal stochastic behaviour of the non-zero MPR. On the other side, the work from
Jewson and Caballero (2003) describes how probabilistic weather forecasts, via single
and ensemble forecasts up to 12 days in advance, can be used for the pricing of weather
derivatives. Yoo (2004) incorporates seasonal meteorological forecasts into a temperature
model, which predicts one of three possible future temperature states. A new perspective
on the commodities pricing literature is given in Benth and Meyer-Brandis (2009), who
suggest the enlargement of the filtration information set and argue that the stochasticity
behaviour of the MPR is due to the misspecified information set in the model. Dorfleitner
and Wimmer (2010) include meteorological forecast in the context of WD based index
modelling. Ritter et al. (2011) combine historical data with meteorological forecast in a
daily basis to price WDs. In this paper, we adopt the risk neutral approach (for each
location) that allows the incorporation of meteorological forecasts in the framework of
WD pricing and compare it with the information gained by the calibrated MPR. The aim
is to study weather Risk Premiums (RP), a central issue in empirical finance, implied
from either the information MPR gain or the meteorological forecasts. The size of RPs is
interesting for investors and issuers of weather contracts to take advantages of geographic
diversification, hedging effects and price determinations. We quantify the RPs of weather
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risk by looking at the risk factor under different pricing measures and under different
filtration information sets.

We analyse the RPs for temperature derivatives, which constitute the majority of trading
volume in the weather market, in London and Rome. Our main goal is to determine the
nature of the risk factor embedded in temperature future prices. We find that the seasonal
variance of temperature explains a significant proportion of the variation in RPs. The
estimated forecast based prices reflect market prices much better than price without the
use of forecast. In both approaches, the RPs of futures are different from zero, negative
in winters and positive in summers.

The findings of this paper are presented as follows. In Section 2, we present the fundamen-
tals of temperature index derivatives (futures and options) traded at CME and review the
stochastic pricing model for average daily temperature and study its properties. Section 3
introduces the concept of RPs across different risk measures and under different filtration
information set. In the latter approach, meteorological weather forecasts are incorporated
into the WD pricing. In Section 4, we conduct the empirical analysis to temperature fu-
tures referring to London and Rome, with meteorological forecast data for London 13 days
in advance. Despite this relatively short forecast horizon, the models using meteorologi-
cal forecasts outperform the classical approach and more accurately forecast the market
prices of the temperature futures traded at the Chicago Mercantile Exchange (CME).
Section 5 concludes. All computations were carried out in Matlab version 7.6 and R.

2 Weather Derivatives

The most commonly weather instruments traded at the CME are futures, call and put
options written on weather indices. The CME traded futures can be thought as a swap,
such that one party gets paid if the realized index value is greater than a predetermined
strike level and the other party benefits if the index value is below. Typically, futures are
entered without a payment of premium. In exchange for the payment of the premium, the
call option gives the buyer a linear payoff based upon the difference between the realized
index value and the strike level. Below this level there is no payoff. On the other hand,
the put option gives the buyer a linear payoff based upon the difference between the strike
level and the realized index value.

The most popular underlying weather indices are temperature related. The reason is
the abundance of historical temperature data and the demand for a weather product
coming from end-users with temperature exposure. The weather indices most commonly
used in the market are the Heating Degree Days (HDD), Cooling Degree Days (CDD),
Cumulative Average Temperature (CAT) and the Cumulative total of 24-hour Average
Temperatures (C24AT). The HDD index is computed as the maximum of zero and 65◦F
(or 18◦C) minus the average temperature of the day, accumulated over every day of the
corresponding contract period. Equivalently, the CDD index is the accumulation of the
maximum of zero and the average temperature minus 65◦F (or 18◦C). CAT and C24AT
cumulate the daily average temperature (average of maximal and minimal temperature)
and the 24-hour average temperature of each day respectively. The corresponding trading
months for CDD and CAT contracts are April to October, for HDD October to April and
for C24AT contracts all months of the year. Temperature derivatives are offered for 24
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cities in the USA, 11 in Europe, six in Canada, three in Japan and three in Australia.
The notional value of a temperature contract, according to the product specification, is
20 USD, 20 AUD, 20 EUR, 20 GBP or 2500 JPY per index point. In addition to monthly
HDD, CAT and HDD futures and options, there are also HDD and CDD seasonal strips
futures for multiple months. This study will focus only on monthly temperature future
contracts.

2.1 Pricing Temperature Derivatives

The weather market is an example of an incomplete market, i.e. temperature cannot be
hedged by other tradeable assets. However, the dynamics of temperature futures should
be free of arbitrage. Therefore, a unique equivalent martingale measure does not exist
and standard pricing approaches cannot be applied. We assume that a pricing measure
Q = Qθ(t) exists and can be parametrized via the Girsanov transform, where θ(t) denotes
the market price of risk. Then the arbitrage free temperature futures price is:

F(t,τ1,τ2) = EQθ [YT {T (t)} |Ft] (1)

with 0 ≤ t ≤ T . YT {T (t)} refers to the payoff at T > t from the (CAT/HDD/CDD) tem-
perature index with measurement period [τ1, τ2] and Ft refers to the filtration information
set at time t.

The price of a put Ps or call option Cs written on temperature futures F(t,τ1,τ2) with strike
K at exercise price K at exercise time τ < τ1 is:

C(t,τ1,τ2) = EQθ
[
max

{
F(t,τ1,τ2) −K, 0

}]
P(t,τ1,τ2) = EQθ

[
max

{
K − F(t,τ1,τ2), 0

}]
(2)

Observe that although the payoff is not linked directly to the temperature but to a tem-
perature index, one needs first to model the temperature dynamics T (t) to solve Eq. (1).

2.1.1 Temperature dynamics in discrete time

Most of the models for daily average temperature discussed in the literature capture a
linear trend and mean reversion with pronounced cyclical dynamics and strong correlations
(long memory). Daily average temperature reflects not only a seasonal pattern from
calendar effects (peaks in cooler winter and warmer summers) but also a variation that
varies seasonally.

For a particular location, we propose the following model that captures seasonality effects
in mean and variations, as well as inter-temporal correlations:

1. Let Tt be the average temperature in discrete time with t = 1, . . .M . A conventional
model for Tt is a model with linear trend and a seasonal pattern Tt = Λt +Xt.

2. Λt is a bounded and deterministic function denoting the seasonal effect and it is the
mean reversion level of temperature at day t. The seasonality function might be
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modelled by using the next least squares fitted seasonal function with trend:

Λt = a+ bt+
K∑
k=1

ck cos

{
2π(t− dk)
k · 365

}
(3)

where the coefficients a and b indicate the average temperature and global warming,
urban heating effects or air pollution, Campbell and Diebold (2005). The series
expansion in (3) with more and more periodic terms provides a fine tuning but this
will increase the number of parameters. An alternative is modelling Λt by means of
a local smoothing approach:

arg min
e,f

1∑
t=365

{
T̄s − es − fs(t− s)

}2
K

(
t− s
h

)
(4)

where T̄s is the mean of average daily temperature in J years and K(·) is a kernel.
Asymptotically, they can be approximated by Fourier series estimators.

3. Xt is a stationary process I(0) that can be checked by using the well known Aug-
mented Dickey-Fuller test (ADF) or the KPSS Test. Empirical analysis of the
Partial Autocorrelation Function (PACF) in Diebold and Inoue (2001), Granger
and Hyung (2004) and Benth et al. (2011) reveal that the persistence (pronounced
cyclical dynamics and strong intertemporal correlation) of daily average is captured
by autoregressive processes of higher order AR(p):

Xt+p =

p∑
i=1

βiXt−l + εt, εt = σtet, et ∼ N(0, 1) (5)

The order of the appropriate AR(p) is chosen via the Box-Jenkins analysis and em-
pirical evidence shows that a simple AR(3), suggested by Benth et al. (2007), holds
for many cities and explained well the stylised facts of average daily temperature.

4. σt is a bounded and deterministic function, representing the smooth seasonal varia-
tion of daily average temperature at time t. This can be calibrated with the 2-step
GARCH(1,1) model of Campbell and Diebold (2005) (σ̂2

t,FTSG):

σ̂2
t,FTSG = c1 +

L∑
l=1

{
c2l cos

(
2lπt

365

)
+ c2l+1 sin

(
2lπt

365

)}
+ α1(σ2

t−1et−1)2 + β1σ
2
t−1, et ∼ N(0, 1) (6)

or via Local Linear Regression σ̂2
t,LLR:

argmin
g,h

365∑
t=1

{
ε̂2
t − gs − hs(t− s)

}2
K

(
t− s
h

)
(7)

with K(·) being a kernel.
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2.1.2 Temperature dynamics in continuous time

Since pricing is done in continuous time, it is convenient to switch to modelling in contin-
uous time. The literature in the last years has focused on the modelling and forecasting
of time series trend, seasonal and noisy components, which are exactly the elements that
characterize weather risk. Brody et al. (2002) suppose that the process Tt is modelled
with a fractional Brownian Motion (FBM). However it is not a semi-martingale, which is
a requirement to work under the incomplete market setting. Alaton et al. (2002) show
that an Ornstein-Uhlenbeck Model driven by a Brownian motion is enough to capture
the stylized facts of temperature. Benth et al. (2007) and Härdle and López-Cabrera
(2011) demonstrate that the dynamics of temperature Xt in (5) can be approximated in
continuous time with a Continuous-time AutoRegressive process of order p (CAR(p)) for
p ≥ 1:

dXt = AXtdt+ epσtdBt (8)

where ek denotes the k’th unit vector in Rp for k = 1, ...p, σt > 0 states the volatility, Bt

is a Brownian motion and A is a p× p-matrix:

A =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
... . . . 0

...
0 . . . . . . 0 0 1

−αp −αp−1 . . . 0 −α1

 (9)

with positive constants αk. The proof is by linking the states X1(t), X2(t), . . . , Xp(t) with
the lagged temperatures up to time t− p. Thus, for p = 3 and dt = 1 we get:

X1(t+3) ≈ (3− α1)X1(t+2) + (2α1 − α2 − 3)X1(t+1) + (−α1 + α2 − α3 + 1)X1(t) (10)

2.1.3 Pricing temperature models

Several authors have dealt with the pricing problem. Davis (2001) models HDD indices
YT {T (t)} with a geometric Brownian motion and then price by utility maximization
theory. Alaton et al. (2002) price WDs as in (1) but with a constant MPR. Benth (2003)
derived no arbitrage prices of FBM using quasi-conditional expectations and fractional
stochastic calculus. However, there is a discussion in the literature about the arbitrage
opportunities of this model. Others like Benth and Saltyte-Benth (2005) assume that the
process Xt follows a Lévy process, rather than a Brownian process, and get non-arbitrage
prices under a martingale measures determined via the Esscher transform.

Following Benth et al. (2007), by considering the CAR(p) model (8) for the deseasonalised
temperatures and by inserting the temperature indices (CAT/HDD/CDD) in (1), the risk
neutral futures prices are:

FHDD(t,τ1,τ2) =

∫ τ2

τ1

υt,sψ

[
c−m{t,s,e>1 exp{A(s−t)}Xt}

υt,s

]
ds (11)

FCDD(t,τ1,τ2) =

∫ τ2

τ1

υt,sψ

[
m{t,s,e>1 exp{A(s−t)}Xt} − c

υt,s

]
ds (12)
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FCAT(t,τ1,τ2) =

∫ τ2

τ1

Λudu+ at,τ1,τ2Xt +

∫ τ1

t

θuσuat,τ1,τ2epdu

+

∫ τ2

τ1

θuσue>1 A−1 [exp {A(τ2 − u)} − Ip] epdu (13)

with at,τ1,τ2 = e>1 A−1 [exp {A(τ2 − t)} − exp {A(τ1 − t)}], the p×p identity matrix Ip,

m{t,s,x} = Λs +

∫ s

t

σuθue>1 exp {A(s− t)} epdu+ x,

υ2
t,s =

∫ s

t

σ2
u

[
e>1 exp {A(s− t)} ep

]2
du (14)

and ψ(x) = xΦ(x) + ϕ(x) with x = e>1 exp {A(s− t)}Xt.

The explicit formulae for the CAT call option written on a CAT future with strike K at
exercise time τ < τ1 during the period [τ1, τ2] is given by:

CCAT(t,τ,τ1,τ2) = exp {−r(τ − t)} ×
[ (
FCAT(t,τ1,τ2) −K

)
Φ {d (t, τ, τ1, τ2)}

+

∫ τ

t

Σ2
CAT(s,τ1,τ2)dsφ {d (t, τ, τ1, τ2)}

]
(15)

where d (t, τ, τ1, τ2) =
FCAT(t,τ1,τ2)

−K√∫ τ
t Σ2

CAT(s,τ1,τ2)
ds

and ΣCAT(s,τ1,τ2) = σtat,τ1,τ2ep and Φ denotes the

standard normal cdf. The option can be perfectly hedged once the specification of the
risk neutral probability Qθ determines the complete market of futures and options. Then,
the option price will be the unique cost of replication.

To replicate the call option with CAT futures, one should compute the number of CAT
futures held in the portfolio, which is simply computed by the option’s delta:

Φ {d (t, T, τ1, τ2)} =
∂CCAT(t,τ,τ1,τ2)

∂FCAT(t,τ1,τ2)

(16)

The strategy holds close to zero CAT futures when the option is far out of the money,
close to 1 otherwise.

2.1.4 Calibrating the implied Market Price of Risk

Note that the advantage of the latter pricing approach is that it provides a closed form
solution for temperature futures. Hence, the calibration of the MPR θt from market data
turns out to be an inverse problem. Härdle and López-Cabrera (2011) infer the MPR from
temperature futures. From a parametric specification of the MPR, one checks consistency
with different contracts every single date. One finds the MPR by fitting the data:

arg min
θ̂

ΣI
i=1

(
F(θ,t,τ i1,τ

i
2) − F(t,τ i1,τ

i
2)

)2

(17)

with t ≤ τ i1 < τ i2, i = 1, · · · , I contracts, F(θ,t,τ i1,τ
i
2) denote the observed market prices and

F(t,τ i1,τ
i
2) are the model specified prices given in (11), (12) and (13).
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2.1.5 Meteorological weather forecasts

Equation (1) prices temperature futures based on the filtration Ft, which contains the
historical temperature evolution until time t. Benth and Meyer-Brandis (2009) state that
the main reason for the irregular pattern of the market price of risk is an inappropriate
choice of Ft. There is more information available in the market, such as forward-looking
information. Hence, Ft may be enlarged to a filtration Gt, which contains all relevant
information available at time t.

Ritter et al. (2011) enlarge the filtration by adding meteorological forecast values up to k
days in advance. These new filtrations are denoted by GMFk

t with k = 0, 1, 2, . . . being the
number of days in advance where meteorological forecast data are available. It follows:

Ft ⊂ GMF0
t ⊂ GMF1

t ⊂ GMF2
t ⊂ . . . ⊂ Gt

In an extended model, these meteorological forecast values are added to the historical
temperature data as if they were actually realized temperature observations. Then, a
discrete-time temperature model (see Section 2.1.1) is fitted to the to the “future” ex-
tended time series. The orders K and L of the Fourier series of the seasonality and
seasonal variance, see (3), (6), as well as the lag p of the autoregressive process (5) are set
beforehand. All other parameters, however, are estimated newly for every day t, according
to the data available on that day (historical temperatures up to day t− 1, meteorological
forecasts calculated on day t for the days t, t+ 1, . . . ). By using Monte Carlo simulation
and the simplifying assumption of an MPR = 0, theoretical futures prices with no mete-
orological forecast data (NMF) and theoretical prices including meteorological forecasts
k days in advance (MFk) can be calculated:

F̂NMF
(t;τ1,τ2) = E[YT (T (t))|Ft],
F̂MFk

(t;τ1,τ2) = E[YT (T (t))|GMFk
t ] (18)

where E(·) is the objective or physical risk measure. For every day t in the trading period,
these theoretical prices can be calculated and then compared with the actual market prices
to find out if the models using meteorological forecasts predict market prices better than
the standard model.

3 Risk premium

Another way to think about future prices is in terms of Risk Premiums (RPs). RP effects
are important in practice since issuers of weather contracts like to take advantages of
geographic diversification, hedging effects and price determination. We adopt two ways
for measuring the RP of weather risk. One is by looking at the risk factor under different
pricing measures and the other one is by considering different filtrations.

3.1 Different pricing measures

The RPs in future markets are defined as the difference between the future prices com-
puted with respect to the risk neutral measure and with respect to the objective measure,
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Geman (2005):

RP(t, τ) = EQθ [YT {T (t)} |Ft]− E [YT {T (t)} |Ft] (19)

The first term denotes the future price calculated from the risk neutral dynamics and
the second one is calculated from the objective dynamics. In other words, the RP is
defined as a drift of the temperature dynamics or a Girsanov type change of probability.
Putting (13) in (19) we obtain an expression for the RP for CAT temperature derivatives:

RPCAT(t,τ1,τ2) =

∫ τ1

t

θuσuat,τ1,τ2epdu+

∫ τ2

τ1

θuσue>1 A−1 [exp {A(τ2 − u)} − Ip] epdu

3.2 Information premium

In the previous section, the pricing measure was changed. Incorporating meteorological
forecasts changes the filtration. To measure the influence the enlargement of the filtration
has on the theoretical prices, Benth and Meyer-Brandis (2009) introduce the term “in-
formation premium (IP)”. They define it as the difference between the theoretical prices
calculated with and without using additional information such as weather forecasts:

IPGt = F̂ G(t;τ1,τ2) − F̂
F
(t;τ1,τ2) = E [YT {T (t)} |Gt]− E [YT {T (t)} |Ft] . (20)

The IP measures how theoretical prices change over time when meteorological forecasts are
considered. A non-zero information premium indicates that the meteorological forecasts
differ on average from the predictions made by the temperature model without meteoro-
logical forecasts. The information premium is positive (negative) if the prices based on
Gt are higher (lower) than those based on the filtration Ft.

4 Empirical Analysis

4.1 Data

The temperature data used in this study for London and Rome are the daily average
temperatures from 19730101 (yyyymmdd) to 20100201 and are provided by Bloomberg.
To obtain years of equal length, February 29 is removed from the data.

Meteorological forecast data is derived from WeatherOnline. These data consist of point
forecasts of the minimal and maximal temperatures for London from 0 to 13 days in
advance, calculated every day between 20081229 and 20100201. The forecasts of the daily
average temperature are calculated as the average of the forecasted minimal and maximal
temperature.

The prices used in this study are the market prices of the London and Rome HDD and
CAT futures contracts reported at CME as “last price” for every weekday in the trading
period as well as the daily traded volume “last volume”. The futures temperature data
was extracted from Bloomberg (20020101-20100201). A detailed description of the HDD
and CAT contracts for London can be found in Table 1.
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London Trading days Traded volume Days with vol>0 Payoff
Feb09 HDD 38/247 1430 11/12 366.0
Mar09 HDD 61/217 13800 18 300.0
Apr09 CAT 82/143 0 0 313.0
May09 CAT 102/249 200 4 441.0
Jun09 CAT 124/185 0 0 518.7
Jul09 CAT 145/206 250 4 570.0
Aug09 CAT 166/228 50 1 589.1
Sep09 CAT 187/249 0 0 487.1
Oct09 HDD 66/68 1270 5 160.4
Nov09 HDD 172/177 1650 1 241.3
Dec09 HDD 185/189 3250 10/11 429.5
Jan10 HDD 205/209 250 3 493.5

Table 1: Futures contracts for London used in this study overlapping with the period of
the meteorological forecast data; the number of trading days, the traded volume (number
of cleared trades), the number of days with volume>0 and the payoffs (in index points)
are shown. If two numbers are depicted, this indicates that less data than available were
used because of missing meteorological forecast data.

4.2 Results

We first conduct an empirical analysis of the average daily temperature data for London
and Rome. Figure 1 displays the seasonality Λt modelled with Fourier truncated series and
the Local linear regression. The latter estimator smooths the seasonal curve and captures
peak seasons. The inter-correlations of the detrended temperature are well modelled with
a simple autoregressive model of order p = 3. However, there is still seasonality remained
in the residuals, as the ACFs of detrended (squared) residuals show in Figure 2. The
empirical FTSG and LLR seasonal variations are displayed in Figure 3, which reveal
high variations for both cities in winter times. After removing the seasonal variation
of the residuals (corrected residuals), the ACFs of (squared) residuals in Figure 4 are
close to zero indicating that we sufficiently reduced the seasonal effect. The result is
are displayed with the log of a normal density in Figure 5 (adequate for the Ornstein-
Uhlenbeck pricing discussed in Section 2.1.3). The descriptive statistics given in Table 2
indicate the goodness of fit of the Local Linear (LLR) over the Fourier Truncated Series-
GARCH (FTS-GARCH) estimator.

4.2.1 Implied Market Price of Risk

In Rome and London, HDD futures are traded from Nov-April (i.e. i = 7 calendar
months) and CAT futures from April-Nov (i = 7). Our results for the implied MPR
are given in Table 3 and 4. Table 3 presents the descriptive statistics of different MPR
specifications for London-CAT and Rome-CAT daily futures contracts traded before mea-
surement period t ≤ τ i1 < τ i2 during 20031006-20101118 (6247 contracts in 1335 trading
dates and 38 measurement periods) and 20050617-20090731 (2976 contracts correspond-
ing to 891 trading dates and 22 measurement periods) respectively. The ranges for the
MPR specifications values of London-CAT and Rome-CAT futures are [-69.13,43.93] and
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Figure 1: An stretch of eight years plot of the average daily temperatures (gray line), the
seasonal component modelled with a Fourier truncated series (dashed line) and the local
linear regression (black line) using Epanechnikov Kernel.
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Figure 2: The ACF of Residuals of daily temperatures εt (left panels) and Squared resid-
uals ε2

t (right panels) of detrend daily temperatures for London (left) and Rome (right).
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Figure 3: The daily empirical variance (black line), the Fourier truncated (dashed line)
and the local linear smoother seasonal variation using Epanechnikov kernel (gray line) for
London (left) and Rome (right)
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Figure 4: The ACF of Residuals et (left panels) and Squared residuals e2
t (right panels)

of detrended daily temperatures after dividing out the local linear seasonal variance for
London (left) and Rome (right).
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London Rome
Period 19730101-20091019 19730101-20091019

Seasonality â(CI) 10.75(10.62,10.89) 14.74(14.63,14.86)
b̂(CI) 0.0001(0.00005,0.00009) 0.0001(0.00010,0.00013)
ĉ1(CI) 7.88(7.87,7.89) 8.81(8.80,8.82)
d̂1(CI) -157.27(157.26,157.28) -154.24(154.23,154.25)

ADF τ̂ -33.41* -37.62*
KPSS k̂ 0.17*** 0.06***
AR(3) β1 0.75 0.82

β2 -0.07 -0.08
β3 0.04 0.03

CAR(3) α1 -2.24 -2,17
α2 -1.55 -1.44
α3 -0.26 -0.22
λ1 -0.25 -0.22
λ2,3 -0.99 -0.97

Coefficients of the FTS ĉ1 4.02 2.64
ĉ2 0.94 1.07
ĉ3 -0.07 0.21
ĉ4 0.34 0.35
ĉ5 -0.11 -0.25
ĉ6 0.21 0.07
ĉ7 -0.06 -0.14
ĉ8 0.04 0.11
ĉ9 0.01 -0.12

êt
σ̂t

with FTS JB 190.60 637.26
Kurt 3.50 4.04
Skew 0.14 -0.10

êt
σ̂t

with LLR JB 274.05 461.51
Kurt 3.67 3.88
Skew 0.09 -0.11

Table 2: Coefficients of the Fourier Truncated Seasonal series (FTS), ADF and KPSS-
Statistics, the autoregressive process AR(3), continuous autoregressive model CAR(3),
eigenvalues λ1,2,3, of the matrix A of the CAR(3) model, seasonal variance {ci}9

i=1 fitted
with a FTS, Skewness (Skew), kurtosis (Kurt), Jarque Bera (JB) test statistics of the
corrected residuals with seasonal variances fitted with FTS-GARCH and with local linear
regression (LLR) for Rome and London. Confidence Intervals (CI) are given in paren-
thesis. Dates given in yyymmdd format. Coefficients are significant at 1% level. +0.01
critical values, * 0.1 critical value, **0.05 critical value, ***0.01 critical value.

13



[-64.55,284.99], whereas the MPR averages are (0.06, 0.0232) for constant MPR for dif-
ferent contracts, (0.66,−0.23) for one piecewise constant, (0.05,−0.31) for two piecewise
constant, (0.06, 0.02) for spline and (0.08, 0.00) when bootstrapping the MPR.

We conduct the Wald statistical test to check whether the MPR derived from CAT/HDD
futures is different from zero. We reject H0 : θ̂t = 0 under the Wald statistic that the
MPR is different from zero for Rome and London-CAT futures, see Table 3, it changes
over time and changes signs. These results suggest us that the weather market offers the
possibility to have different risk adjustments for different times of the year.

Table 4 describes the root mean squared errors (RMSE) of the differences between market
prices and the estimated futures prices with implied MPR values. Similar to Härdle and
López-Cabrera (2011), the RMSE estimates in the case of the constant MPR for different
CAT futures contracts are statistically significant enough to know CAT futures prices.
When the MPR is equal to zero, we speak about the existence of additional risk premium
revealing the evidence of buyers willing to pay for price protection.

4.2.2 Meteorological forecasts

Section 2.1.5 argues that additional forward-looking information should be included in the
pricing model. First, we compare the meteorological forecast data for 2009 and predictions
from the statistical model without any meteorological forecast data with the realized
temperatures in London in 2009. Figure 6 depicts the deviation in dependence of the
number of days in advance the forecasts were calculated. The short-term meteorological
forecasts clearly outperform those from the statistical model. The longer the forecast
horizon gets, however, the smaller the difference becomes, and for more than 10 days
ahead, the meteorological forecasts get worse than the statistical model. This supports
the assumption that meteorological forecasts contain additional information which can be
used for pricing weather derivatives.

The extended model from Section 2.1.5 computes theoretical prices for every contract on
every day t based on different filtrations, from not using any meteorological forecasts to
using forecasts 13 days in advance. As an example, Figure 7 shows the results for an
HDD contract for December 2009 with reference station London. This contract is offered
starting April 2009, but all prices remain constant for a long period. The theoretical
prices with and without meteorological forecasts equal as the accumulation period is too
far away for an influence of the forecasts on the expected temperature. This changes in
the last two months where there are higher fluctuations in all prices and bigger differences
between the theoretical prices. In this example, the theoretical prices with meteorological
forecasts seem to predict the market prices much better than the theoretical price without
using any forecast data.

The IP defined in (20) measures the influence the additional information has on the
theoretical prices. Figure 8 shows the IP for the same example as above, the London
HDD contract for December 2009. It can be seen that it is zero for a long time, but then
it fluctuates and changes its sign several times. Figure 8 also depicts the average IP for
all twelve contracts used in this study in absolute value. As expected, the meteorological
forecasts have the biggest influence in the last two months before maturity.

The RP (19) describes the difference between the prices under the risk-neutral measure
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Figure 8: Information premium for the HDD contract for December 2009 in London and
the mean in absolute value for all twelve London contracts

and the physical measure. Hence, it can be calculated as the difference between the
observed market prices and the theoretical prices with an MPR = 0. Figure 9 shows the
RP for the HDD contract for December 2009 with reference station London, where the
theoretical prices are calculated with and without using meteorological forecasts. The RP
stays almost constant and is equal for both filtrations for the major part of the trading
period. When approaching the measurement period, however, the RP with meteorological
forecasts differs and is fluctuating closer around zero. This means that the RP declines in
absolute value when incorporating meteorological forecasts. Similar results are obtained
when depicting the average RP for all contracts in absolute value (Figure 9). For the
major part of the trading period, there is no difference between the models. In the last
two months, however, the RP is generally lower in absolute value with meteorological
forecasts. Consequently, enlarging the filtration helps to better control the RP.

To compare the difference between the models, the RMSE between the theoretical and
the observed market prices is calculated for every model and every contract separately.
The results in Table 5 show that the error decreases for most of the contracts if a model
with meteorological forecasts is used. The mean of the RMSE decreases from 19.1 to
about 18 index points when meteorological forecasts are used. On average, the prediction
of the market prices with forecasts is much better for the winter months with the HDD
contracts. The normalized RMSE (i.e. the RMSE for the model without forecasts is set
to 1) is shown in Figure 10.

So far, the RMSE was calculated for the whole trading period of each contract. The
results of the information premium, however, show that the influence of the forecasts on
the theoretical prices is almost zero for a long time of the trading period and increases
significantly for the last two months until maturity. The RMSE restricted on the last
two months of the trading period of each contract shows that the meteorological forecasts
stronger influence the pricing in that period (see Figure 10).

Although market prices are reported by the CME for every weekday in the trading period,
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Figure 9: Risk premium for the HDD contract for December 2009 (top) and the mean
in absolute value for all twelve London contracts (bottom) without and with including
meteorological forecasts (MF13)

actual trading takes place only on a few days in the trading period (compare Table 1).
Only if the contract was actually traded on that day, however, the reported price is a
real market price and can be assumed to capture all relevant information. The RMSE
restricted on those days where the trading volume is larger than zero is also shown in
Figure 10. It shows a clear decline of up to 25% for those models, where meteorological
forecasts are included.

All graphs in Figure 10 have in common that they decrease in the beginning, but turn
upwards in the end. This means that including all forecast data into the pricing is worse
than using just forecasts a few days ahead. A possible reason could be that the market
participants are aware of the unreliability of long-term forecasts, which could also be seen
in Figure 6.

5 Conclusions

In this paper, we examine the RPs of weather derivatives. Two ways for measuring
these RPs are proposed: one is by studying the stochastic behaviour of the temperature
underlying under different risk pricing measures and the second one is by using different
filtration information sets. The latter IP approach is incorporating weather forecast into
the pricing model.

We conduct empirical data analysis for Rome and London temperature futures traded at
the CME. The goal is to determine the nature of the risk factor embedded in temperature
option and future prices. We find that the seasonal variance of temperature explains a
significant proportion of the RP variation. In both approaches, the RPs and IPs of futures
contracs are different from zero, negative or positive.
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RMSE Model
NMF MF0 MF1 MF2 MF3 MF4 MF5 MF6 MF7 MF8 MF9 MF10 MF11 MF12 MF13

Feb09 27.9 26.9 26.1 23.7 23.6 23.7 22.1 21.2 20.9 20.0 20.3 19.4 18.4 18.6 18.9
Mar09 6.7 6.1 6.2 5.8 5.5 5.1 5.5 6.3 6.5 6.5 6.9 6.7 7.7 9.0 10.7
Apr09 16.2 16.1 16.7 16.7 16.8 17.0 17.1 17.1 16.9 17.0 17.2 17.4 17.6 18.0 18.6
May09 17.3 17.4 17.1 17.1 17.2 17.2 17.1 17.0 17.0 16.8 16.9 16.7 16.9 17.0 17.0
Jun09 14.8 15.0 15.3 15.6 16.0 16.0 16.1 16.1 16.3 16.5 16.5 16.6 16.5 16.7 16.7
Jul09 14.7 15.0 15.1 15.2 15.2 15.3 15.1 15.0 15.4 15.6 15.7 15.8 16.2 16.4 16.6
Aug09 18.4 18.5 18.4 18.3 18.5 18.5 18.3 18.3 18.3 18.4 18.6 18.6 18.8 18.8 19.1
Sep09 17.1 17.0 17.1 17.3 17.0 16.8 16.6 16.4 16.3 16.2 16.1 15.7 15.5 15.5 15.6
Oct09 35.6 34.3 33.8 33.6 33.7 33.2 32.7 32.8 31.8 32.2 31.9 32.3 31.8 31.3 31.3
Nov09 28.3 28.1 27.6 27.3 27.1 26.9 26.9 26.9 26.6 26.3 26.2 26.2 26.1 25.9 25.9
Dec09 15.8 15.4 15.1 14.8 14.7 14.5 14.3 14.2 13.9 13.8 13.7 13.8 13.9 13.8 13.8
Jan10 16.2 15.9 15.7 15.5 15.3 15.3 15.4 15.4 15.6 15.7 15.8 16.0 16.1 16.1 16.0
Mean 19.1 18.8 18.7 18.4 18.4 18.3 18.1 18.1 17.9 17.9 18.0 17.9 18.0 18.1 18.3
Mean HDD 21.8 21.1 20.8 20.1 20.0 19.8 19.5 19.5 19.2 19.1 19.1 19.1 19.0 19.1 19.4
Mean CAT 16.4 16.5 16.6 16.7 16.8 16.8 16.7 16.6 16.7 16.7 16.8 16.8 16.9 17.1 17.3

Table 5: RMSE in index points for monthly contracts and different models for London
(whole trading period)
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