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EVERY SYMMETRIC 3 × 3 GLOBAL GAME
OF STRATEGIC COMPLEMENTARITIES

IS NOISE INDEPENDENT

CHRISTIAN BASTECK

Technische Universität Berlin, Department of Macroeconomics

TIJMEN R. DANIËLS

De Nederlandsche Bank N.V., Financial Stability Division

Abstract. We prove that the global game selection in all 3 × 3 payoff-symmetric supermodular
games is independent of the noise structure. As far as we know, all other proofs of noise
independence of such games rely on the existence of a so-called monotone potential (MP)
maximiser. Our result is more general, since some 3 × 3 symmetric supermodular games do not
admit an MP maximiser. Moreover, a corollary is that noise independence does not imply the
existence of an MP maximiser.
Keywords: global games, noise independence.
JEL codes: C72, D82.

In this note, we use methods outlined in Basteck et al. [1] to prove that the global game selection
in two-player, three-action, supermodular games with symmetric payoffs is independent of

the noise structure when the noise vanishes (see Frankel, Morris and Pauzner (FMP) [3] for the
definition of global games used here). Games with this property are called noise independent.

Theorem. Every 3 × 3 symmetric supermodular game is noise independent.

Our interest in 3 × 3 games is piqued because they clarify the connections between the noise
independence of global games, robustness to incomplete information [5], and the existence of a
so-called monotone potential (MP) maximiser. As far as we know, all proofs so far of the noise
independence of 3× 3 symmetric supermodular games rely on the existence of an MP maximiser
and only apply to the subset of games with three Nash equilibria—see Oyama and Takahashi [8]
for the most general proof along these lines. Existence of an MP maximiser guarantees existence
of an equilibrium robust to incomplete information [6], and a fortiori, noise independence—see
Oury and Tercieux [7] or Basteck et al. [1]. However, Honda [4] has found a non-empty open set
of symmetric 3 × 3 games that have no MP maximiser.

Date December 2010. We thank Jun Honda for inspiring us to write down our proof, and Satoru Takahashi, Frank
Heinemann, and Stephen Morris for helpful suggestions. Views expressed are those of the authors and do not
necessarily reflect official positions of De Nederlandsche Bank. Support from Deutsche Forschungsgemeinschaft
through SFB 649 is gratefully acknowledged. For correspondence: christian.basteck@tu-berlin.de.
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Our proof does not rely on the existence of an MP maximiser. Since it applies to all 3 × 3 games
with symmetric payoffs, it is necessarily more general. In particular, combined with the result of
Honda, it shows that noise independence is not equivalent to the existence of an MP maximiser.1

Incidentally, many authors are under the impression that the noise independence of supermodular
3×3 games with symmetric payoffs was completely settled by FMP. The cases that FMP consider
formally rely on the existence of an MP maximiser. But they also give a heuristic argument
for the noise independence of 3 × 3 games with symmetric payoffs when, in addition, the noise
distributions of agents’ signals are symmetric in the mean. Unfortunately, it is not true2 that if
the global game selection is independent of the noise structure for all mean-symmetric noise
distributions, the game is noise independent in general, as we show below per counter example.

1. Preliminaries

Consider a symmetric 3 × 3 game with players i ∈ {1, 2}, both endowed with ordered action
set A = {a, b, c}, a < b < c and payoff function g : A × A → R, where g(ai, a−i) is i’s payoff if
she chooses ai and her opponent a−i. We may identify the game with its payoff function g. Since
g is a symmetric game, we will typically denote an action profile (a∗, a∗) ∈ A × A also by a∗,
economising slightly on notation.

Let ∆
yi
xi(x−i) := g(yi, x−i) − g(xi, x−i), the payoff difference of playing yi instead of xi against

opposing profile x−i and recall that g is called (weakly) supermodular if3

(1) (xi < yi and x−i < y−i) =⇒ ∆yi
xi

(x−i) ≤ ∆yi
xi

(y−i),

in other words ∆
yi
xi(x−i) is a monotonic function for all xi < yi. A game g is called strictly

supermodular if (1) still holds when the weak inequality is replaced by a strict one. The dual
game of g, denoted g∂, is given by reversing the ordering on the action set of g. Note that g is
supermodular iff g∂ is supermodular.

Let f = ( f1, f2) be a pair of probability densities, whose supports are subsets of [−1
2 ,

1
2]. A

lower- f -elaboration, e(g, f ), of g, is defined as the following incomplete information game. A
state parameter θ is uniformly distributed over an interval [−1

2 ,R], with R ≥ 6. Each player
receives a noisy signal xi = θ + ηi about the true state, with ηi drawn according to the density fi.
The random variables θ, η1, η2 are independently distributed. Players’ payoffs ui are given by

ui(ai, a−i, xi) :=

ũi(ai, a−i) if xi < 0,

gi(ai, a−i) if xi ≥ 0,

with ũi being an arbitrary payoff function that makes the least action dominant, e.g. for all a−i,
ũi(0, a−i) = 1 and ũi(ai, a−i) = 0 when ai , 0.

We say a strategy profile s of a lower- f -elaboration e(g, f ) attains a∗ ∈ A × A if s(x) ≥ a∗ for
some x ∈ [−1

2 ,R]. If s is a strategy profile of the lower- f -elaboration, and β(s) the greatest best
reply to s, we can conduct upper-best reply iterations s, β(s), β(β(s)), β(β(β(s))), . . . starting at
some strategy profile s. If β(s) is weakly greater than s, the resulting sequence of strategy profiles

1Satoru Takahashi (private correspondence) has informed us that Jun Honda’s example of a symmetric 3 × 3 game
with no MP maximiser has no equilibrium robust to incomplete information either.
2Nor, we should add, do FMP claim this is true.
3FMP use the terminology “game of strategic complementarities”.
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will be monotonically increasing. As the action space is bounded, this sequence converges
pointwise to an equilibrium strategy profile.

An action profile a∗ ∈ A × A is said to be attained from below under f if in some lower- f -
elaboration of g, the greatest equilibrium strategy profile attains a∗. Let G be a global game with
noise structure f (up to the usual scaling), such that the payoff structure equals g at some payoff

parameter θ. By a theorem of Basteck et al. [1], the action profile a∗ is the greatest global game
selection at θ if and only if a∗ is attained from below under f . An action profile is the least global
game selection at θ if and and only if it is attained from below under f in g∂, and in this case it is
said to be attained from above under f .

2. Proof of Noise Independence of 3 × 3 Symmetric Supermodular Games

We begin by ruling out some cases. First, let us assume without loss of generality that no
action dominates another (that would imply that g can be reduced to a 2 × 2 game known to be
noise independent [2]). By supermodularity, both a and c must be equilibria. Second, we assume
without loss of generality that g is strictly supermodular, as the global game selection for weakly
supermodular games is pinned down by the selection in nearby strictly supermodular games.4

Third, if b is a best reply against an opponent mixing equally over a and b as well as against an
opponent mixing equally over b and c, it is the noise independent global game selection.5

In what follows, we analyse the remaining cases. Let us introduce the following terminology.
Consider an action profile that mixes over a, b, c with probabilities (“weights”) wa, wb, wc. Define
S (wc) to be the number wa that solves the equation

(2) wag(b, a) + (1−wa −wc)g(b, b) + wcg(b, c) = wag(c, a) + (1−wa −wc)g(c, b) + wcg(c, c).

Even though S (wc) is not necessarily in the interval [0, 1], we can think of it intuitively as the
weight that may be put on the least action, a, to make an agent indifferent between playing
the middle action, b, and the greatest action, c, when the weight on c is wc. Existence and
uniqueness of the solution S (wc) is guaranteed by our assumptions of no dominated actions and
strict supermodularity. The function S has derivative

%S :=
∆c

b(c) − ∆c
b(b)

∆c
b(b) − ∆c

b(a)
> 0,

thus is linear and (due to supermodularity) increasing. Analogously, define N(wa) to be the
weight that needs to be put on c to make the agents indifferent between playing a and b when the
weight on a is wa. That is, N(wa) is the solution for wc to

(3) wag(a, a) + (1−wa −wc)g(a, b) + wcg(a, c)=wag(b, a) + (1−wa −wc)g(b, b) + wcg(b, c).

4We may embed a weakly supermodular game g in a global game G where the payoff structure is symmetric and
strictly supermodular for almost all θ. For example, identify a = −1, b = 0, c = 1, and consider a global game G
where payoffs depend on a state variable θ as follows:

ui(ai, a−i, θ) := g(ai, a−i) + θai(2 + sgn(θ)a−i).

One may verify that g is embedded at θ = 0. By results in Basteck et al. [1], the global game selection in g does not
depend on the embedding chosen. Since the greatest (least) global game selection is continuous in θ from the right
(left), and all strictly supermodular games are noise-independent by our proof below, so is g.
5Such a game is “decomposable” in the sense of Basteck et al. [1]. Moreover, since b is a Nash equilibrium, it has
three equilibria, thus belongs to the class that Oyama and Takahashi [8] consider.
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The function N has derivative

%N :=
∆b

a(b) − ∆b
a(a)

∆b
a(c) − ∆b

a(b)
> 0.

Lemma. If N( 1
2 ) ≤ S (1

2 ), then c is the global game selection in g.

Proof. We will show that there exists an increasing strategy profile attaining c in a lower- f -
elaboration from which an upper-best reply iteration leads upwards. In this case, c is the global
game selection, by the aforementioned theorem of Basteck et al. [1]. It is easy to check that the
statement is true whenever c is a best reply against an opponent mixing equally over a and c.
Moreover, a cannot be a best reply to this mixture, as this would imply N( 1

2 ) > 1
2 > S ( 1

2 ). Thus,
we may assume without loss of generality that b is a best reply against an opponent mixing over
a and c with equal probability.

Consider the following set of increasing strategy profiles in a lower- f -elaboration,

M := {(z1, z2, z1, z2) ∈ [0, 5]4 | zi ≤ zi, z1 − z1 ≤ 2},

where zi denotes the threshold where player i switches from a to b, and zi is defined analogously.
If c is attained by any equilibrium strategy profile, it is attained by an equilibrium profile s ∈ M
as well.

We restrict our attention to thresholds in [0, 5] because the distribution over signal differences
xi − x−i conditional on the xi received is the same for all xi ∈ [0, 5]. Let H be the cumulative
distribution function of said signal difference x1−x2 and without loss of generality, assume H(0) =
1
2 . We begin by deducing the following weights from H, which may be verified straightforwardly.
Fixing z1, at player 2’s threshold z2, player 2 assigns weight wc(z2) := 1 − H(z1 − z2) to player
1 playing c. Player 1 assigns weight wc(z1) := 1 − w2

c(z2) = H(z1 − z2) to player 2 playing c at
z1. Clearly, wc(z1) is continuous and increasing in the difference z1 − z2 and wc(z2) is continuous
and decreasing. Moreover, wc(z1) = wc(z2) = 1

2 when z1 = z2. In a similar vein, at z2, Player
2 assigns weight wa(z2) := H(z1 − z2) to player 1 playing a. At z1, player 1 assigns weight
wa(z1) := 1 − H(z1 − z2) to player 2 playing a. Also, wc(z1) = wc(z2) = 1

2 when z1 = z2.

For the moment, let us assume %S ≤ %N . We will define a function F : x 7→ y on the domain
[0, 2] as follows. First, set z1 = 2 and z1 = 2 + x. Second, choose z2 equal to the least value where
c becomes a best reply for player 2 against the opposing action distribution given by z1 = 2 and
z1 = 2 + x. Since b is a best reply when faced with an opponent mixing over a and c with equal
probability, we then have z1 ≤ z2. Also, since c is a best reply to itself, we have z2 ≤ z1 + 1, so
our strategy profile will be an element of M.

Next, choose z2 ≤ z2 as large as possible under the additional constraint

(4) (wc(z1) − wc(z2))%S ≤ (wa(z2) − wa(z1))%N .

Note that inequality (4) can always be satisfied for some z2 ≥ 0: if z2 > z1, then wc(z1)−wc(z2) ≤ 0,
and we may set z2 = z1; if z2 < z1, we can choose z2 such that

z1 − z2︸ ︷︷ ︸
≤2

= z1︸︷︷︸
=2

−z2

which implies that (4) holds:

(wc(z1) − wc(z2))%S = (2H(z1 − z2) − 1)%S

≤ (2H(z1 − z2) − 1)%N = (wa(z2) − wa(z1))%N .
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As we choose z2 as large as possible, one of the two constraints becomes binding. In addition,
notice that since we choose z2 such that inequality (4) is satisfied, we must have z2 ≤ z1 + 1.
After all, when z2 = z1 + 1 we have (wa(z2) − wa(z1)) = −1, and our assumption that %S ≤ %N

then entails that the reverse of inequality (4) holds.
Finally, choose z∗1 minimally, such that z∗1 ≥ z1 and c is a best reply of player 1 for signal

x1 = z∗1, given z2 and z2. We now specify F(x) by putting it to y = z∗1 − z1.

We are interested in fixpoints of F. It is easy to verify that F is continuous—as continuous
changes in x change the indifference conditions used in the construction continuously. Now,
consider F(0), that is, the construction starting from z1 = z1. Since b is a best reply to an
opponent mixing over a and c with equal probability, we know that z2 > z1 = z1. This implies
that wc(z1) −wc(z2) < 0. If (4) is binding, we must have wa(z2) −wa(z1) < 0, so z1 < z2. If on the
other hand z2 = z2, we also know know that z1 < z2 = z2. Faced with this configuration, player 1
sees an action distribution that is dominated by the distribution which mixes over a and c with
equal probability. Therefore, player 1’s best reply is weakly smaller than b at her threshold z1,
and our construction implies z∗1 > z1. Thus F(0) > 0. Next, consider F(2). Since inequality (4) is
satisfied, we know z2 ≤ z1 + 1. This means that at z1, player 1 puts zero weight one her opponent
playing a. Also, since the best reply to the distribution which mixes over b and c with equal
probability is c, we know wc(z2) ≤ 1

2 . Hence wc(z1) = 1 − wc(z2) ≥ 1
2 , and z∗1 ≤ z1.

Thus, F(x) − x ≥ 0 when x = 0, and F(x) − x ≤ 0 when x = 2, and from the intermediate
value theorem we conclude that F has a fixpoint.

Now, let us consider a fixpoint of F and the associated strategy profile. From its construction
we know that each agent prefers action c upon receiving xi = zi. It remains to show that agents
are willing to switch to b at zi. If inequality (4) is binding, then in the fixpoint the associated
weights satisfy by construction:

(5) S (wc(z1)) = S (
1
2

) + (wc(z1) −
1
2

)%S = S (
1
2

) +
1
2

(wc(z1) − wc(z2))%S

≥ N(
1
2

) +
1
2

(wa(z2) − wa(z1))%N = N(wa(z2)).

The inequality follows since N(1
2) ≤ S ( 1

2), and since (wc(z1) − wc(z2))%S = (wa(z2) − wa(z1))%N .
Similarly:

(6) S (wc(z2)) = S (
1
2

) −
1
2

(wc(z1) − wc(z2))%S ≥ N(
1
2

) −
1
2

(wa(z2) − wa(z1))%N = N(wa(z1)).

Player 1 is indifferent at the threshold z1 if she expects a to be played with weight S (wc(z1)).
Since for a fixpoint z1 is, in fact, chosen so that player 1 is indifferent, we know that she must
put weight S (wc(z1)) on a. But the weight player 1 puts on a at her threshold z1 is 1 − H(z1 − z2),
which is equal to the weight that player 2 puts on c at her threshold z2. The first inequality now
says that this is sufficient weight to make b a best reply for player 2 at z1. From the second
inequality, we similarly deduce that player 1’s best reply at z1 is b. Thus, by construction,
the thresholds constitute a strategy profile from which an upper-best reply iteration will lead
upwards.

If condition (4) does not hold with equality, then we know that z2 = z2 holds instead, so that at
x2 = z2 = z2 player 2 is indifferent between b and c and prefers both over a. The reasoning for
why player 1 prefers b at z1 is analogous to the reasoning above, using (6) and the fact that (4)
holds with inequality.
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Now, if %S ≥ %N we can apply an analogous argument. We define F : x 7→ y as follows. First,
set z1 = 3 and z1 = 3 − x. Second, choose z2 equal to the greatest value where a becomes a best
reply for player 2 against the opposing action distribution given by z1 = 3 − x and z1 = 3. Since
b is a best reply when faced with an opponent mixing over a and c with equal probability, we
must have z2 ≤ z1.

Next, choose z2 such that z2 ≤ z2 and as small as possible under the additional constraint

(7) (wc(z1) − wc(z2))%S ≥ (wa(z2) − wa(z1))%N .

Again inequality (7) can always be satisfied, and as we choose z2 as small as possible, one of the
two constraints must be binding.

To complete the specification of F, choose a new value z∗1 such that z∗1 ≥ z1 equals the greatest
value where a becomes a best reply of player 1, given z2 and z2, and put y = z∗1 − z1.

Again, one may verify F has a fixpoint. Consider a fixpoint of F. If inequality (7) is binding,
then inequalities (5) and (6) hold by construction. Player 2 is indifferent at the threshold z2 if she
expects c to be played with weight N(wa(z2)). Since in a fixpoint z2 is, in fact, chosen so that
player 2 is indifferent, we know that she must put weight N(wa(z2)) on c. But the weight player 2
puts on c at her threshold z2 is exactly equal to the weight that player 1 puts on a at her threshold
z1. The first inequality now says that this is less weight than is needed to make b a best reply for
player 1 at z1, thus player 1’s best reply at z1 is c. From the second inequality, we may similarly
deduce that player 2’s best reply at z2 is c. Therefore, by construction, the thresholds constitute a
strategy profile from which an upper-best reply iteration will lead upwards.

If (7) doesn’t hold with equality, then we still know from our construction that player 2 is
indifferent at z2 = z2 between a and b and prefers both over c. The reasoning for why player
1 prefers b at z1 is analogous to the reasoning above, using (5) and the fact that (7) holds with
inequality. �

Corollary. If N( 1
2 ) ≥ S ( 1

2 ), then a is the global game selection in g.

Proof. In the dual game of g, the ordering on A is reversed. Define N∂ and S ∂ for g∂ analogous
to N and S for g, by replacing all the occurrences of a in expressions (2) and (3) by c, and all
occurrences of c by a. We find that N∂ = S and similarly S ∂ = N, and therefore N∂( 1

2) ≤ S ∂(1
2).

By our lemma, a is the noise independent selection in g∂. Since g and g∂ differ only in their
ordering, a is the noise independent selection in g as well. �

Together, the lemma and its corollary complete our analysis of the remaining cases, proving the
theorem.

Remark. It may be verified that the payoff conditions given by FMP lead to the same prediction
of the global game selection, even when applied to games they do not formally consider (such as
games with two equilibria).

3. Mean-symmetric noise independence versus noise independence

We now consider whether noise independence against mean-symmetric noise distributions
implies noise independence. As symmetric supermodular 3 × 3 games are noise independent, we
turn to the asymmetric 3 × 3 game in figure 1. Both agents are indifferent between a and b when
facing an opponent who plays (a, b, c) with probabilities ( 1

2 ,
1
6 ,

1
3 ) and indifferent between b and c

when facing a probability distribution ( 1
3 ,

1
6 ,

1
2 ). We will see, that in any lower- f -elaboration for a

6



symmetric noise distribution f , we can find threshold values z1, z1, z2, z2 where agents switch to
b and c such that they hold the above mentioned beliefs over opponents play and are indifferent
at each switchpoint. Thus, a is attained from above under f , and c is attained from below under
f , and the example is a knife-edge case where both a and c are part of the global game solution.

This is generally no longer possible if the noise distribution is asymmetric and we will present
an example where agents can be made indifferent only at three switchpoints, while one agent
is not willing to switch at the last remaining threshold. Thus, c is not part of the global game
solution.

By perturbing the payoff table slightly, we could create a game where c is the unique global
game solution for symmetric noise, while the asymmetric noise example would still uniquely
select a, but in order to keep things simple, we will stick to the numbers above.

Symmetric noise. Without loss of generality let us assume that the conditional densities over
the opponents signal are symmetric at 0. Set z1, z2 = 0. Then both agents expect their opponent to
play a with probability 1

2 . Next, set z−i such that on receiving a signal xi = 0 an agent expects b to
be played with probability 1

6 and c with probability 1
3 . Due to symmetry, we find that z1 = z2 = t

so that an agent at xi = t holds belief (1
3 ,

1
6 ,

1
2 ) over (a, b, c) being played.

Asymmetric noise. Without loss of generality assume that agents assign probability 1
2 to the

event that their opponent receives a signal smaller that their own. Set z1 = 0. Adjust z2 such that
agent 2 is indifferent between a and b: this is the case for z2 = z1 = 0, irrespective of z1, z2. Next,
adjust z1, z2 simultaneously to a level where agents are indifferent between b and c. In general,
we will find that z1 , z2, so the probability that agent 2 assigns to her opponent playing c will
be unequal to 1

2 . But this implies that the probability she assigns to agent 1 playing a will be
unequal 1

3 . For agent 1 with signal z1 = 0 this implies that while she assigns probability 1
2 to

agent 2 playing a, she assigns a probability unequal 1
3 to agent 2 playing c. Thus, she strictly

prefers either a or b so that we are no longer in knife-edge territory and the global game solution
is either a or c, uniquely.

For a numerical example consider the following conditional density of player 1 over player
2’s signal:

π1(x2|x1) :=

 1 + x2 − x1 if x1 − 1 < x2 < x1,

x2 − x1 if x1 < x2 < x1 + 1
.

Agent 2 holds a mirrored version, namely

π2(x1|x2) :=

 x2 − x1 if x2 − 1 < x1 < x2,

1 + x2 − x1 if x2 < x1 < x2 + 1
.

By numerical methods we establish that z1 ' 0.22138, z2 ' 0.522415. Thus probability of c at z1
is approximately equal to 0.5 − 0.5(0.522415)2 = 0.3635 > 1

3 . In this case, a is uniquely selected.
The πi’s may be hard to generate using FMP’s global game information structure. However,

player 1

player 2
a b c

a 2, 1 0, 0 −3,−3
b 0,−1 0, 0 0, 0
c −3,−1 0, 0 2, 2

Figure 1. Asymmetric two-player three-action game
7



they can be approximated close enough for the numerical result to hold: assume that agent 1
receives an arbitrarily precise signal, while agent 2’s signal is distributed around θ just like x2 is
distributed around x1 according to π1.
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