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Abstract

The paper aims at reconsidering the famous Le Cam LAN theory. The

main features of the approach which make it different from the classical

one are: (1) the study is non-asymptotic, that is, the sample size is fixed

and does not tend to infinity; (2) the parametric assumption is possibly

misspecified and the underlying data distribution can lie beyond the

given parametric family.

The main results include a large deviation bounds for the (quasi) maxi-

mum likelihood and the local quadratic majorization of the log-likelihood

process. The latter yields a number of important corollaries for statistical

inference: concentration, confidence and risk bounds, expansion of the

maximum likelihood estimate, etc. All these corollaries are stated in a

non-classical way admitting a model misspecification and finite samples.

However, the classical asymptotic results including the efficiency bounds

can be easily derived as corollaries of the obtained non-asymptotic state-

ments. The general results are illustrated for the i.i.d. set-up as well

as for generalized linear and median estimation. The results apply for

any dimension of the parameter space and provide a quantitative lower

bound on the sample size yielding the root-n accuracy.
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2 Parametric estimation. Finite sample theory

1 Introduction

One of the most popular approaches in statistics is based on the parametric assumption

(PA) that the distribution IP of the observed data Y belongs to a given parametric

family (IPθ,θ ∈ Θ ⊆ IRp) , where p states for the number of parameters. This as-

sumption allows to reduce the problem of statistical inference about IP to recovering

the parameter θ . The theory of parameter estimation and inference is nicely developed

in a quite general set-up. There is a vast literature on this issue. We only mention the

book by Ibragimov and Khas’minskij (1981), which provides a comprehensive study of

asymptotic properties of maximum likelihood and Bayesian estimators. The theory is

essentially based on two major assumptions: (1) the underlying data distribution follows

the PA; (2) the sample size or the amount of available information is large relative to the

number of parameters.

In many practical applications, both assumptions can be very restrictive and limiting

the scope of applicability for the whole approach. Indeed, the PA is usually only an

approximation of real data distribution and in the most of statistical problems it is too

restrictive to assume that the PA is exactly fulfilled. Many modern statistical problems

deal with very complex high dimensional data where a huge number of parameters are

involved. In such situations, the applicability of large sample asymptotics is questionable.

These two issues partially explain why the parametric and nonparametric theory are al-

most isolated from each other. Relaxing these restrictive assumptions can be viewed as

an important challenge of the modern statistical theory. The present paper attempts at

developing a unified approach which does not require the restrictive parametric assump-

tions but still enjoys the main benefits of the parametric theory. The main feature of the

presentation is the non-asymptotic framework. The notions like asymptotic normality,

convergence or tightness are meaningless in the non-asymptotic setup, the arguments

based on compactness of the parameter space are not really helpful. Instead some exact

exponential bounds and concentration results are systematically used. The main steps

of the approach are similar to the classical local asymptotic normality (LAN) theory; see

e.g. Chapters 1–3 in the monograph Ibragimov and Khas’minskij (1981): first we estab-

lish a kind of large deviation bound allowing to localize the problem into a neighborhood

of the target parameter. Then we use a local quadratic expansion of the log-likelihood

to solve the corresponding estimation problem.

Let Y stand for the available data. Everywhere below we assume that the observed

data Y follow the distribution IP on a metric space Y . We do not specify any particular

structure of Y . In particular, no assumption like independence or weak dependence of

individual observations is imposed. The basic parametric assumption is that IP can be
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approximated by a parametric distribution IPθ from a given parametric family (IPθ,θ ∈
Θ ⊆ IRp) . Our approach allows that the PA can be misspecified, that is, in general,

IP 6∈
(
IPθ
)

.

Let L(Y ,θ) be the log-likelihood for the considered parametric model: L(Y ,θ) =

log dIPθ
dµ0

(Y ) , where µ0 is any dominating measure for the family (IPθ) . The classical like-

lihood principle suggests to estimate θ by maximizing the corresponding log-likelihood

function L(Y ,θ) :

θ̃
def
= argmax

θ∈Θ
L(Y ,θ). (1.1)

Our ultimate goal is to study the properties of the quasi MLE θ̃ . It turns out that

such properties can be naturally described in terms of the maximum of the process L(θ)

rather then the point of maximum θ̃ . To avoid technical burdens it is assumed that the

maximum is attained leading to the identity maxθ L(θ) = L(θ̃) . However, the point of

maximum needs not to be unique. If there are many such points we take θ̃ as any of

them. Basically, the notation θ̃ is used for the identity L(θ̃) = supθ∈Θ L(θ) .

If IP 6∈
(
IPθ
)

, then the (quasi) MLE estimate θ̃ from (1.1) is still meaningful and it

appears to be an estimate of the value θ∗ defined by maximizing the expected value of

L(Y ,θ) :

θ∗
def
= argmax

θ∈Θ
IEL(Y ,θ) (1.2)

which is the true value in the parametric situation and can be viewed as the parameter

of the best parametric fit in the general case.

We focus on the properties of the process L(Y ,θ) as a function of the parameter θ .

Therefore, we suppress the argument Y there and write L(θ) instead of L(Y ,θ) . One

has to keep in mind that L(θ) is random and depends on the observed data Y . We

also define the excess or maximum log-likelihood L(θ,θ∗) = L(θ)− L(θ∗) . The results

below show that the main properties of the quasi MLE θ̃ like concentration or coverage

probability can be described in terms of the quasi maximum likelihood L(θ̃)− L(θ∗) =

maxθ∈Θ L(θ)−L(θ∗) , which is the difference between the maximum of the process L(θ)

and its value at the “true” point θ∗ .

The established results can be split into two big groups. A large deviation bound

states some concentration properties of the estimate θ̃ . For specific local sets Θ0(r)

with elliptic shape, the deviation probability IP
(
θ̃ 6∈ Θ0(r)

)
is exponentially small in

r . This concentration bound allows for restricting the parameter space to a properly

selected vicinity Θ0(r) . Our main results describe local properties of the process L(θ)

within Θ0(r) . They can be viewed as a non-asymptotic version of the Le Cam LAN
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theory.

The paper is organized as follows. Section 2 presents the list of conditions which are

systematically used in the text. The conditions only concern the properties of the quasi

likelihood process L(θ) .

Section 3 appears to be central in the whole approach and it focuses on local properties

of the process L(θ) within Θ0(r) . The idea is to sandwich the underlying (quasi) log-

likelihood process L(θ) for θ ∈ Θ0(r) between two quadratic (in parameter) expressions.

Then the maximum of L(θ) over Θ0(r) will be sandwiched as well by the maxima of the

lower and upper processes. The quadratic structure of these processes help to compute

these maxima explicitly yielding the bounds for the value of the original problem. This

approximation result is used to derive a number of corollaries including the concentration

and coverage probability, expansion of the estimate θ̃ , polynomial risk bounds, etc. In

the contrary to the classical theory, all the results are non-asymptotic and do not involve

any small values of the form o(1) , all the terms are specified explicitly. Also the results

are stated under possible model misspecification.

Section 4 accomplishes the local results with the concentration property which bounds

the probability that θ̃ deviates from the local set Θ0(r) . In the modern statistical

literature there is a number of studies considering maximum likelihood or more generally

minimum contrast estimators in a general i.i.d. situation, when the parameter set Θ is

a subset of some functional space. We mention the papers Van de Geer (1993), Birgé

and Massart (1993), Birgé and Massart (1998), Birgé (2006) and references therein. The

established results are based on deep probabilistic facts from the empirical process theory;

see e.g. Talagrand (1996, 2001, 2005), van der Vaart and Wellner (1996), Boucheron et al.

(2003). The general result presented in Section 7 follows the generic chaining idea due to

Talagrand (2005); cf. Bednorz (2006). However, we do not assume any specific structure

of the model. In particular, we do not assume independent observations and thus, cannot

apply the most developed concentration bounds from the empirical process theory.

Section 5 illustrates the applicability of the general results to the classical case of

an i.i.d. sample. The previously established general results apply under rather mild

conditions. Basically we assume some smoothness of the log-likelihood process and some

minimal number of observations pro parameter: the sample size should be at least of

order of the dimensionality p of the parameter space. We also consider the examples of

generalized linear modeling and of median regression.

It is important to mention that the non-asymptotic character of our study yields

an almost complete change of the mathematical tools: the notions of convergence and

tightness become meaningless, the arguments based on compactness of the parameter

space do not apply, etc. Instead we utilize the tools of the empirical process theory based
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on the ideas of concentration of measures and nonasymptotic entropy bounds. Section 6

presents an exponential bound for a general quadratic form which is very essential for

getting the sharp risk bounds for the quasi MLE. This bound is an important step in

the concentration results for the quasi MLE. Section 7 explains how generic chaining and

majorizing measure device by Talagrand (2005) refined in Bednorz (2006) can be used

for obtaining a general exponential bound for the log-likelihood process.

2 Conditions

Below we collect the list of conditions which are systematically used in the text. It seems

to be an advantage of the whole approach that all the results are stated in a unified

way under the same conditions which are quite general and not very much restrictive.

We do not try to formulate the conditions and the results in the most general form. In

some cases we sacrifice generality in favor of readability and ease of presentation. In

some cases we indicate possible extensions of the results under more general conditions.

It is important to stress that all the conditions only concern the properties of the quasi

likelihood process L(θ) .

The imposed conditions on the process can be classified into the following groups by

their meaning:

• smoothness conditions on L(θ) allowing the second order Taylor expansion;

• exponential moment conditions;

• identifiability and regularity conditions;

We also distinguish between local and global conditions. The global conditions concern

the global behavior of the process L(θ) while the local conditions focus on its behavior

in the vicinity of the central point θ∗ .

2.1 Global conditions

The first global condition (E) assumes some exponential moments for the quasi log-

likelihood L(θ) for each θ ∈ Θ . The second condition (ED) assumes some smoothness

of L(θ) and requires exponential moments of its gradient. The important identifiability

condition is stated later; see Section 4.2.

The formulation involves a subset M of IR+ describing all possible exponents in the

moment conditions.

(E) For each θ ∈ Θ , there exists a positive value µ ∈M such that

IE exp
{
µL(θ,θ∗)

}
<∞.
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Note that this condition is automatically fulfilled if IP = IPθ∗ and all the IPθ ’s are

absolutely continuous w.r.t. IPθ∗ with µ ≤ 1 . Indeed, L(θ,θ∗) = log
(
dIPθ/dIPθ∗

)
and log IEθ∗(dIPθ/dIPθ∗) = 0 . For µ < 1 , it holds by the Jensen inequality that

− log IEθ∗(dIPθ/dIPθ∗)
µ ≥ 0 .

Condition (E) enables us to define the function

M(µ,θ,θ∗)
def
= − log IE exp

{
µL(θ,θ∗)

}
<∞. (2.1)

This definition can be extended to all µ ∈ M by letting M(µ,θ,θ∗) = −∞ when

the exponential moment of µL(θ,θ∗) does not exists. The main observation behind

condition (E) is that

IE exp
{
µL(θ,θ∗) + M(µ,θ,θ∗)

}
= 1

provided that M(µ,θ,θ∗) is finite. Note that M(0,θ,θ∗) = 0 . The concentration results

established in Section 4 require some identification properties. A pointwise identifiability

means that one can separate the target measure IPθ∗ and the measure IPθ corresponding

to another point θ in the parameter space. This condition can be expressed in terms of

the function M(µ,θ,θ∗) from (2.1). Namely, this value has to be significantly positive

for some µ ∈M :

M∗(θ,θ∗)
def
= sup

µ∈M
M(µ,θ,θ∗) > 0.

This condition, however, only ensures a pointwise separation between θ∗ and θ . A

strict identification requires a quantitative lower bound on the value M∗(θ,θ∗) : it has

to grow at least logarithmically with the norm ‖θ− θ∗‖ . A precise formulation involves

some more notation and it is given in Corollary 4.3 below; see condition (4.9).

To bound local fluctuations of the process L(θ) , we introduce an exponential moment

condition on the stochastic component ζ(θ) :

ζ(θ)
def
= L(θ)− IEL(θ).

Suppose that the random function ζ(θ) is differentiable in θ and its gradient ∇ζ(θ) =

∂ζ(θ)/∂θ ∈ IRp fulfills the following condition:

(ED) There exist some constant ν0 , a positive symmetric matrix V 2 , and constant

g > 0 such that for all |λ| ≤ g

sup
γ∈IRp

sup
θ∈Θ

log IE exp

{
λ
γ>∇ζ(θ)

‖V γ‖

}
≤ ν20λ2/2.
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This condition effectively means that the gradient ∇ζ(θ) normalized by the matrix

V has bounded exponential moments. It can be relaxed by allowing the matrix V 2

and/or the value g to be dependent of θ in a uniformly continuous way.

2.2 Local conditions

Local conditions describe the properties of L(θ) in a vicinity of the central point θ∗

from (1.2). First we refine condition (ED) . It is fulfilled for all θ including θ = θ∗ .

However, the matrix V can be improved if the only point θ∗ is concerned.

(ED0) There exist a positive symmetric matrix V 2
0 , and constants g > 0 , ν0 ≥ 1

such that Var
{
∇ζ(θ∗)

}
≤ V 2

0 and for all |λ| ≤ g

sup
γ∈IRp

log IE exp

{
λ
γ>∇ζ(θ∗)

‖V0γ‖

}
≤ ν20λ2/2.

In typical situation, the matrix V 2
0 can be defined as the covariance matrix of the

gradient vector ∇ζ(θ∗) : V 2
0 = Var

(
∇ζ(θ∗)

)
= Var

(
∇L(θ∗)

)
. If L(θ) is the log-

likelihood for a correctly specified model, then θ∗ is the true parameter value and V 2
0

coincides with the corresponding Fisher information matrix.

The matrix V0 shown in this condition determines the local geometry in the vicinity

of θ∗ . In particular, define the local elliptic neighborhoods of θ∗ as

Θ0(r)
def
= {θ ∈ Θ : ‖V0(θ − θ∗)‖ ≤ r}. (2.2)

The further conditions are restricted to such defined neighborhoods Θ0(r) . In fact, they

quantify local smoothness properties of the log-likelihood function L(θ) .

(ED1) For some R and each r ≤ R , there exist a constant ω(r) ≤ 1/2 such that it

holds for all θ ∈ Θ0(r)

sup
γ∈Sp

log IE exp

{
λ
γ>{∇ζ(θ)−∇ζ(θ∗)}

ω(r)‖V0γ‖

}
≤ ν20λ

2/2, |λ| ≤ g.

The main majorization result also requires second order smoothness of the expected

log-likelihood IEL(θ) . By definition, L(θ∗,θ∗) ≡ 0 and ∇IEL(θ∗) = 0 because θ∗

is the extreme point of IEL(θ) . Therefore, −IEL(θ,θ∗) can be approximated by a

quadratic function of θ−θ∗ in the neighborhood of θ∗ . The local identifiability condition

qualifies this quadratic approximation from above and from below on the set Θ0(r) from

(2.2).
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(L0) There are a positive matrix D0 and for each r ≤ R and a constant δ(r) ≤ 1/2 ,

such that it holds on the set Θ0(r) = {θ : ‖V0(θ − θ∗)‖ ≤ r}∣∣∣∣ −2IEL(θ,θ∗)

‖D0(θ − θ∗)‖2
− 1

∣∣∣∣ ≤ δ(r).

Note that if L(θ,θ∗) is the log-likelihood ratio and IP = IPθ∗ then −IEL(θ,θ∗) =

IEθ∗ log
(
dIPθ∗/dIPθ

)
= K(IPθ∗ , IPθ) , the Kullback-Leibler divergence between IPθ∗ and

IPθ . Then condition (L0) with D0 = V0 follows from the usual regularity conditions on

the family (IPθ) ; cf. Ibragimov and Khas’minskij (1981).

If the log-likelihood process L(θ) is sufficiently smooth in θ , e.g. three times stochas-

tically differentiable, then the quantities ω(r) and δ(r) are proportional to the radius

%(r) of the set Θ0(r) defined as

%(r)
def
= max

θ∈Θ0(r)
‖θ − θ∗‖.

In the important special case of an i.i.d. model one can take ω(r) = ω∗r/n1/2 and

δ(r) = δ∗r/n1/2 for some constants ω∗, δ∗ ; see Section 5.1.

3 Local non-asymptotic quadraticity

The Local Asymptotic Normality (LAN) condition since introduced by L.Le Cam in

Le Cam (1960) became one of the central notions in the statistical theory. It postulates

a kind of local approximation of the log-likelihood of the original model by the log-

likelihood of a Gaussian shift experiment. The LAN property being once checked yields

a number of important corollaries for statistical inference. In words, if you can solve a

statistical problem for the Gaussian shift model, the result can be translated under the

LAN condition to the original setup. We refer to Ibragimov and Khas’minskij (1981)

for a nice presentation of the LAN theory including asymptotic efficiency of MLE and

Bayes estimators. The LAN properties was extended to mixed LAN or Local Asymptotic

Quadraticity (LAQ); see e.g. Le Cam and Yang (2000). All these notions are very

much asymptotic and very much local. The LAN theory also requires that L(θ) is the

correctly specified log-likelihood. The strict localization does not allow for considering

a growing or infinite parameter dimension and limits applications of the LAN theory to

nonparametric estimation.

Our approach tries to avoid asymptotic constructions and attempts to include a pos-

sible model misspecification and a large dimension of the parameter space. The presen-

tation below shows that such an extension of the LAN theory can be made essentially

by no price: all the major asymptotic results like Fisher and Cramér-Rao information



spokoiny, v. 9

bounds, as well as the Wilks phenomenon can be derived as corollaries of the obtained

non-asymptotic statements simply by letting the sample size to infinity. At the same

time, it applies to a high dimensional parameter space.

The LAN property states that the considered process L(θ) can be approximated by

a quadratic in θ expression in a vicinity of the central point θ∗ . This property is usually

checked using the second order Taylor expansion. The main problem arising here is that

the error of the approximation grows too fast with the local size of the neighborhood.

Section 3.1 presents the non-asymptotic version of the LAN property in which the local

quadratic approximation of L(θ) is replaced by a local quadratic majorization of this

process from above and from below by two different quadratic in θ processes. More

precisely, we apply the sandwiching idea: the difference L(θ,θ∗) = L(θ)− L(θ∗) is put

between two quadratic processes Lε(θ,θ∗) and Lε(θ,θ∗) :

Lε(θ,θ∗)−♦ε ≤ L(θ,θ∗) ≤ Lε(θ,θ∗) +♦ε, θ ∈ Θ0(r) (3.1)

where ε is a numerical parameter, ε = −ε , and ♦ε and ♦ε are stochastic errors which

only depends on the selected vicinity Θ0(r) . The upper process Lε(θ,θ∗) and the lower

process Lε(θ,θ∗) can deviate substantially from each other, however, the errors ♦ε,♦ε
remain small even if the value r describing the size of the local neighborhood Θ0(r) is

large.

The sandwiching result (3.1) naturally leads to two important notions: value of the

problem and deficiency. It turns out that the most of statements like confidence and

concentration probability rely upon the maximum of L(θ,θ∗) over θ which we call the

value of the problem. Due to (3.1) this value can be bounded from above and from below

using the similar quantities maxθ Lε(θ,θ∗) and maxθ Lε(θ,θ∗) which can be called the

values of the lower and upper problems. Note that maxθ{Lε(θ,θ∗) − Lε(θ,θ∗)} = ∞ .

However, this is not crucial. What really matters is the difference between the upper

and the lower values. The deficiency ∆ε can be defined as the width of the interval

bounding the value of the problem due to (3.1), that is, as the sum of the approximation

errors and of this difference:

∆ε
def
= ♦ε +♦ε +

{
max
θ

Lε(θ,θ∗)−max
θ

Lε(θ,θ∗)
}
.

The range of applicability of this approach can be described by the following mnemonic

rule: “The value of the upper problem is larger in order than the deficiency.” The further

sections explain in details the meaning and content of this rule. Section 3.1 presents the

key bound (3.1) and derives it from the general results on empirical processes. Section 3.2

presents some straightforward corollaries of the bound (3.1) including the coverage and

concentration probabilities, expansion of the MLE and the risk bounds. It also indicates
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how the classical results on asymptotic efficiency of the MLE follow from the obtained

non-asymptotic bounds.

3.1 Local quadratic majorization

This section presents the key result about local quadratic approximation of the quasi

log-likelihood process given by Theorem 3.1 below.

Let the radius r of the local neighborhood Θ0(r) be fixed in a way that the deviation

probability IP
(
θ̃ 6∈ Θ0(r)

)
is sufficiently small. Precise results about the choice of r

which ensures this property are postponed until Section 4.2. In this neighborhood Θ0(r)

we aim to build a quadratic majorization of the process L(θ) . The first step is the usual

decomposition of this process into deterministic and stochastic components:

L(θ) = IEL(θ) + ζ(θ),

where ζ(θ) = L(θ)− IEL(θ) . Condition (L0) allows for approximating the smooth de-

terministic function IEL(θ)−IEL(θ∗) around the point of maximum θ∗ by the quadratic

form −‖D0(θ − θ∗)‖2/2 . The smoothness properties of the stochastic component ζ(θ)

given by conditions (ED0) and (ED1) leads to linear approximation ζ(θ) − ζ(θ∗) ≈
(θ − θ∗)>∇ζ(θ∗) . Putting these two approximations together yields the following ap-

proximation of the process L(θ) on Θ0(r) :

L(θ,θ∗) ≈ L(θ,θ∗)
def
= (θ − θ∗)>∇ζ(θ∗)− ‖D0(θ − θ∗)‖2/2.

This expansion is used in the most of asymptotic statistical calculus. However, it does

not suit our purposes because the error of approximation grows quadratically with the

radius r and starts to dominate at some critical value of r . We slightly modify the

construction by introducing two different approximating processes. They only differ in

the deterministic quadratic terms which is either shrunk or stretched relative to the term

‖D0(θ − θ∗)‖2/2 in L(θ,θ∗) .

Introduce for a vector ε = (δ, %) the following notation:

Lε(θ,θ∗)
def
= (θ − θ∗)>∇L(θ∗)− ‖Dε(θ − θ∗)‖2/2

= ξ>ε Dε(θ − θ∗)− ‖Dε(θ − θ∗)‖2/2, (3.2)

where

D2
ε = D2

0(1− δ)− %V 2
0 , ξε

def
= D−1ε ∇L(θ∗).

Here we implicitly assume that with the proposed choice of the constants δ and % , the

matrix D2
ε is non-negative: D2

ε ≥ 0 . The representation (3.2) indicates that the process
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Lε(θ,θ∗) has the geometric structure of log-likelihood of a linear Gaussian model. We do

not require that the vector ξε is Gaussian and hence, it is not the Gaussian log-likelihood.

However, the geometric structure of this process appears to be more important than its

distributional properties.

One can see that if δ, % are positive, the quadratic drift component of the process

Lε(θ,θ∗) is shrunk relative to L(θ,θ∗) and stretched if δ, % are negative. Now, given

r , define δ = δ(r) , % = ω(r)/(3ν0) with the value δ(r) from condition (L0) and ω(r)

from condition (ED1) . Finally set ε = −ε , so that

D2
ε = D2

0(1 + δ) + %V 2
0 .

Theorem 3.1. Assume (ED1) and (L0) . Let for some r , the values % ≥ 3ν0 ω(r) and

δ ≥ δ(r) be such that D2
0(1− δ)− %V 2

0 ≥ 0 . Set ε = (δ, %) , ε = −ε = (−δ,−%) . Then

Lε(θ,θ∗)−♦ε(r) ≤ L(θ,θ∗) ≤ Lε(θ,θ∗) +♦ε(r), θ ∈ Θ0(r), (3.3)

with Lε(θ,θ∗),Lε(θ,θ∗) defined by (3.2). Moreover, the random variable ♦ε(r) fulfills

IP
{
%−1♦ε(r) ≥ z0(x, p)

}
≤ exp

(
−x
)

(3.4)

with z0(x, p) given for g0 = gν0 ≥ 3 by

z0(x, p)
def
=


(
1 +
√
x + c1p

)2
if 1 +

√
x + c1p ≤ g0,

1 + (1 + 2g−10 )2
(
g−10 (x + c1p) + g0/2

)2
otherwise.

where c1 = 2 for p ≥ 2 and c1 = 2.4 for p = 1 . Similarly for ♦ε(r) .

Proof. Consider for fixed r and ε = (δ, %) a quantity

♦ε(r)
def
= sup

θ∈Θ0(r)

{
L(θ,θ∗)− IEL(θ,θ∗)− (θ − θ∗)>∇L(θ∗)− %

2
‖V0(θ − θ∗)‖2

}
.

In view of IE∇L(θ∗) = 0 , this definition can be rewritten in the form

♦ε(r)
def
= sup

θ∈Θ0(r)

{
ζ(θ,θ∗)− (θ − θ∗)>∇ζ(θ∗)− %

2
‖V0(θ − θ∗)‖2

}
.

Similarly define

♦ε(r)
def
= sup

θ∈Θ0(r)

{
L(θ∗,θ)− IEL(θ∗,θ)− (θ∗ − θ)>∇L(θ∗)− %

2
‖V0(θ − θ∗)‖2

}
= sup

θ∈Θ0(r)

{
ζ(θ∗,θ)− (θ∗ − θ)>∇ζ(θ∗)− %

2
‖V0(θ − θ∗)‖2

}
.
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Now the claim of the theorem can be easily reduced to an exponential bound for the

quantities ♦ε(r),♦ε(r) . We apply Theorem 7.9 to the process

U(θ,θ∗) =
1

ω(r)

{
ζ(θ,θ∗)− (θ − θ∗)>∇ζ(θ∗)

}
, θ ∈ Θ0(r),

and H0 = V0 . Condition (ED) follows from (ED1) with the same ν0 and g in view

of ∇U(θ,θ∗) =
{
∇ζ(θ)−∇ζ(θ∗)

}
/ω(r) . So, the conditions of Theorem 7.9 are fulfilled

yielding (3.4) in view of % ≥ 3ν0 ω(r) .

Remark 3.1. If x is not too big, then the value z0(x, p) is close to x + c1p ; cf. (7.7).

The bound (3.4) tells us that the errors ♦ε(r) and ♦ε(r) are of order ω(r) p .

3.2 Local inference. Deficiency

This section presents a list of corollaries from the basic approximation bounds of Theo-

rem 3.1. The idea is to replace the original problem by a similar one for the approximating

upper and lower models. It is important to stress once again that all the corollaries only

rely on the majorization (3.1) and the geometric structure of the processes Lε and Lε .

The random quantity supθ Lε(θ,θ∗) can be called the value of the upper problem,

while supθ Lε(θ,θ∗) is the value of the lower problem. The quadratic (in θ ) structure

of the functions Lε(θ,θ∗) and Lε(θ,θ∗) enables us to explicitly solve the problem of

maximizing the corresponding function w.r.t. θ . The value of the original problem

which is the maximum of the original process L(θ,θ∗) over θ is sandwiched between

the similar expressions for the two approximating processes in view of the approximation

bound (3.3). This suggests to measure the quality of approximation by the difference

between values of the upper and lower approximating problems. The approximating

quality is sufficiently good if this difference is smaller in order than the value itself.

3.2.1 Upper and lower values

First consider the maximization problem for the upper approximating processes Lε(θ,θ∗) .

This is a quadratic optimization with the closed form solution ‖ξε‖2/2 . Moreover, the

Euclidean norm of the random vector ξε behaves nearly as a chi-squared random vari-

able. The results below make these statements more concise. Define for

IBε
def
=

D−1ε V 2
0 D
−1
ε

λmax

(
D−1ε V 2

0 D
−1
ε

) , pε
def
= tr

(
IBε
)
, v2ε

def
= 2 tr(IB2

ε). (3.5)
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Moreover, with the constant g from (ED0) , define also µc = g2/(pε + g2) , and

y2c
def
= g2/µ2c − pε/µc,

gc
def
= µcyc =

√
g2 − µcpε,

2xc
def
= gcyc + log det

(
IIp − µcIB2

ε

)
.

To gain some feeling of these quantities consider a special case with g2 = pε . Then

µc = 1/2 , and the inequality x+ log(1− x) ≥ x/3 for 0 ≤ x ≤ 1/2 implies

yc = 4g2 − 2pε = 2pε,

g2c = (yc/2)2 = pε/2,

2xc =
√
pε/2 · 2pε + log det

(
IIp − IBε/2

)
≥ pε/3.

Theorem 3.2. Assume (ED0) with ν0 = 1 and g2 ≥ 2pε . It holds

sup
θ∈IRp

Lε(θ,θ∗) = ‖ξε‖2/2. (3.6)

Moreover, IE‖ξε‖2 ≤ pε , and for each x > 0

IP
(
‖ξε‖2 ≥ z(x, IBε)

)
≤ 2e−x + 8.4e−xc , (3.7)

where z(x, IBε) is defined by

z(x, IBε)
def
=


pε +

√
2xvε, x ≤ vε/18,

pε + 6x vε/18 < x ≤ xc,∣∣yc + 2(x− xc)/gc
∣∣2, x > xc.

Proof. The unconstrained maximum of the quadratic form Lε(θ,θ∗) w.r.t. θ is attained

at θ̃ yielding the expression (3.6). The second moment of ξε can be bounded from

condition (ED0) . Indeed,

IE‖ξε‖2 = IE tr ξεξ
>
ε

= trD−1ε
[
IE∇L(θ∗){∇L(θ∗)}>

]
D−1ε = tr

[
D−2ε Var

{
∇L(θ∗)

}]
and (ED0) implies γ>Var

{
∇L(θ∗)

}
γ ≤ γ>V 2

0 γ and thus, IE‖ξε‖2 ≤ pε . The devia-

tion bound (3.7) is proved in Corollary 6.12.

Next result describes the lower value supθ Lε(θ,θ∗) and the difference between upper

and lower values. The proof is straightforward.
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Theorem 3.3. On the random set {‖ξε‖ ≤ r} , it holds

sup
θ∈Θ0(r)

Lε(θ,θ) = ‖ξε‖2/2.

Moreover, ‖ξε‖ ≤ ‖ξε‖ and

‖ξε‖2 − ‖ξε‖2 = ξ>ε
(
IIp −DεD−2ε Dε

)
ξε ≤ αε‖ξε‖2,

with

αε
def
= ‖IIp −DεD−2ε Dε‖∞ = λmax

(
IIp −DεD−2ε Dε

)
. (3.8)

If the value αε is small then the difference ‖ξε‖2 − ‖ξε‖2 is automatically smaller

than the upper value ‖ξε‖2 .

3.2.2 Deficiency

In view of the results of Theorems 3.2 and 3.3, the sandwiching approach (3.3) bounds

the value L(θ̃,θ∗) = supθ∈Θ L(θ,θ∗) in the interval
[
‖ξε‖2−♦ε(r), ‖ξε‖2+♦ε(r)

]
. The

width of this interval describes the accuracy of the approach. By analogy to the general

Le Cam theory of statistical experiments, this value will be called the deficiency. Define

the value ∆ε(r) by

∆ε(r)
def
= ♦ε(r) +♦ε(r) +

(
‖ξε‖2 − ‖ξε‖2

)
/2. (3.9)

This quantity is random but it can be easily evaluated under the considered conditions.

Indeed, the approximation errors ♦ε(r),♦ε(r) can be bounded by % z0(x, p) with the

probability at least 1 − 2e−x ; see (3.4). Also ‖ξε‖2 ≤ z(x, IBε) with a probability of

order 1− 2e−x ; see (3.7). This yields for the deficiency ∆ε(r) with a probability about

1− 4e−x

∆ε(r) ≤ 2% z0(x, p) + αε z(x, IBε).

3.2.3 The regular case

The bound (3.9) can be further specified in the so called regular case under the condition

V0 ≤ aD0 . (3.10)

If the parametric assumption is correct, that is, IP = IPθ∗ for a regular parametric

family, then the both matrices coincide with the total Fisher information matrix, and

the regularity condition is fulfilled automatically with a = 1 . Otherwise, the regularity
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means that the local variability of the process L(θ) measured by the matrix V0 is not

significantly larger than the local information measured by the matrix D0 .

Theorem 3.4. Suppose (3.10). Then

D2
ε ≥ (1− δ − %a2)D2

0, αε = ‖IIp −DεD−2ε Dε‖∞ ≤
2(δ + %a2)

1− δ − %a2
.

Moreover, IB2
ε = D−1ε V 2

0 D
−1
ε satisfies with aε

def
= a(1− δ − %a2) :

IB2
ε ≤ a−2ε IIp, pε ≤ a−2ε p, v2ε ≤ 2a−4ε p, λε ≤ a−2ε . (3.11)

Proof. The results follow directly from the definition of Dε and Dε and (3.5) by making

use of (3.10).

In particular, the matrices Dε and Dε are close to each other if δ and %a2 are

small. So, all we need in the regular case, is a large deviation bound for the probability

IP
(
θ̃ 6∈ Θ0(r)

)
and that the quantities ω(r) and δ(r) are small.

3.2.4 Local coverage probability

Now we state some immediate corollaries of the exponential bound from Theorem 3.1.

First we study the probability of covering θ∗ by the random set E(z) = {θ : 2L(θ̃,θ) ≤
z} .

Theorem 3.5. Suppose (ED0) , (ED1) , and (L0) on Θ0(r) , and let % ≥ 3ν0 ω(r) ,

δ ≥ δ(r) , and D2
0(1− δ)− %V 2

0 ≥ 0 . Then for any z > 0 , it holds

IP
{
E(z) 63 θ∗, θ̃ ∈ Θ0(r)

}
= IP

{
2L(θ̃,θ∗) > z, θ̃ ∈ Θ0(r)

}
≤ IP

{
‖ξε‖2 ≥ z−♦ε(r)

}
. (3.12)

Proof. The bound (3.12) follows from the upper bound of Theorem 3.1 and the statement

(3.6) of Lemma 3.2.

The exponential bound (3.7) helps to answer a very important question about a proper

choice of the critical value z providing the prescribed covering probability. Namely, this

probability starts to decrease gradually when z grows over z(x, IBε) .

3.2.5 Local concentration

Now we describe local concentration properties of θ̃ assuming that θ̃ is restricted to

Θ0(r) . More precisely, we bound the probability that θ̃ does not belong to the set
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Aε(z) of the form

Aε(z) =
{
θ : ‖Dε(θ − θ∗)‖ ≤ z

}
.

It is obvious that {
θ̃ 6∈ Aε(z)

}
=
{
‖Dε(θ̃ − θ∗)‖ > z

}
.

Theorem 3.6. Assume (ED0) , (ED1) , and (L0) on Θ0(r) , and let % ≥ 3ν0 ω(r) ,

δ ≥ δ(r) , and D2
0(1− δ)− %V 2

0 ≥ 0 . Then for any z > 0 , it holds with αε from (3.8)

IP
{
‖Dε(θ̃ − θ∗)‖ > z, θ̃ ∈ Θ0(r)

}
≤ IP

{
‖ξε‖ > z −

√
2∆ε(r)

}
(3.13)

≤ IP
{(

1−
√
αε
)
‖ξε‖ > z −

√
2♦ε(r) + 2♦ε(r)

}
. (3.14)

Proof. It obviously holds on the set {θ̃ ∈ Θ0(r)}

{θ̃ 6∈ Aε(z)} =
{

sup
θ 6∈Aε(z)

L(θ,θ∗) = sup
θ
L(θ,θ∗)

}
⊆
{

sup
θ 6∈Aε(z)

Lε(θ,θ∗) +♦ε(r) ≥ sup
θ

Lε(θ,θ∗)−♦ε(r)
}
.

As Lε(θ,θ∗) is a quadratic function of Dε(θ − θ∗) ; cf. (3.2), its maximum on the

complement Ac
ε(z) of the set Aε(z) is attained at the point θ satisfying Dε(θ − θ∗) =

γξε with γ = z/‖ξε‖ . This implies for all θ 6∈ Aε(z)

Lε(θ,θ∗) ≤ γ‖ξε‖2 − γ2‖ξε‖2/2 = z‖ξε‖ − z2/2.

By Lemma 3.2 supθ Lε(θ,θ∗) = ‖ξε‖2/2 . Therefore,

{θ̃ 6∈ Aε(z)} ⊆
{
z‖ξε‖ − z2/2 ≥ ‖ξε‖2/2−♦ε(r)−♦ε(r)

}
=
{
z2/2− z‖ξε‖+ ‖ξε‖2/2 ≤ ∆ε(r)

}
and (3.13) follows. Further, the bound ‖ξε‖2 − ‖ξε‖2 ≤ αε‖ξε‖2 implies

√
2∆ε(r) ≤

√
2♦ε(r) + 2♦ε(r) +

√
αε‖ξε‖

which yields (3.14).

An interesting and important question is for which z the probability of the event

{‖Dε(θ̃ − θ∗)‖ > z} becomes small. We use that max
{
♦ε(r),♦ε(r)

}
≤ % z0(x, p) and

on a set of probability at least 1− 2e−x . This and the bound (3.14) imply√
2∆ε(r) ≤ 2

√
% z0(x, p) +

√
αε‖ξε‖.
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Now it follows from the local concentration result of Theorem 3.6:

IP
{
‖Dε(θ̃ − θ∗)‖ > z, θ̃ ∈ Θ0(r)

}
≤ IP

{(
1−
√
αε
)
‖ξε‖ > z − 2

√
% z0(x, p)

}
+ 2e−x.

The probability IP
(
‖ξε‖ > z

)
starts to vanish when z2 significantly exceeds pε =

IE‖ξε‖2 . Under the regularity conditions, the value pε is of order p . Moreover, z0(x, p)

is also of order p for moderate x . If % and αε are small then the latter deviation

probability can be bounded by IP
(
‖ξε‖ > z′

)
with z/z′ ≈ 1 which can be evaluated by

(3.7).

3.2.6 Local expansions

Now we show how the bound (3.3) can be used for obtaining a local expansion of the

quasi MLE θ̃ . The basic idea is to plug θ̃ in place of θ in the definition of ♦ε(r) .

Theorem 3.7. Assume (ED0) , (ED1) , and (L0) on Θ0(r) and let % ≥ 3ν0 ω(r) ,

δ ≥ δ(r) , and D2
0(1 − δ) − %V 2

0 ≥ 0 . Then the following approximation holds on the

random set Cε(r) = {θ̃ ∈ Θ0(r), ‖ξε‖ ≤ r} :

‖ξε‖2/2−♦ε(r) ≤ L(θ̃,θ∗) ≤ ‖ξε‖2/2 +♦ε(r). (3.15)

Moreover, it holds on the same random set Cε(r)

∥∥Dε(θ̃ − θ∗)− ξε∥∥2 ≤ 2∆ε(r). (3.16)

Proof. The bound (3.3) together with Lemma 3.2 yield on Cε(r)

L(θ̃,θ∗) = sup
θ∈Θ0(r)

L(θ,θ∗)

≥ sup
θ∈Θ0(r)

Lε(θ,θ∗)−♦ε(r) = ‖ξε‖2/2−♦ε(r). (3.17)

Similarly

L(θ̃,θ∗) ≤ sup
θ∈Θ0(r)

Lε(θ,θ∗) +♦ε(r) ≤ ‖ξε‖2/2 +♦ε(r) (3.18)

yielding (3.15). For getting (3.16), we again apply the inequality L(θ,θ∗) ≤ Lε(θ,θ∗) +

♦ε(r) from Theorem 3.1 for θ equal to θ̃ . With ξε = D−1ε ∇L(θ∗) and uε
def
= Dε(θ̃ −

θ∗) , this gives

L(θ̃,θ∗)− ξ>ε uε + ‖uε‖2/2 ≤ ♦ε(r).
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Therefore, by (3.17)

‖ξε‖2/2−♦ε(r)− ξ>ε uε + ‖uε‖2/2 ≤ ♦ε(r)

or, equivalently

‖ξε‖2/2− ξ>ε uε + ‖uε‖2/2 ≤ ♦ε(r) +♦ε(r) +
(
‖ξε‖2 − ‖ξε‖2

)
/2

and the definition of ∆ε(r) implies
∥∥uε − ξε∥∥2 ≤ 2∆ε(r) .

3.2.7 A local risk bound

Below we also bound the moments of the excess L(θ̃,θ∗) when θ̃ is restricted to the

local vicinity Θ0(r) of θ∗ .

Theorem 3.8. Assume (ED0) , (ED1) , and (L0) on Θ0(r) and let % ≥ 3ν0 ω(r) ,

δ ≥ δ(r) , and D2
0(1− δ)− %V 2

0 ≥ 0 . Then for u > 0

IELu(θ̃,θ∗) 1I(θ̃ ∈ Θ0(r)) ≤ IE
[
‖ξε‖2/2 +♦ε(r)

]u
. (3.19)

Moreover, for Cε(r) = {θ̃ ∈ Θ0(r), ‖ξε‖ ≤ r} , it holds

IE‖Dε(θ̃ − θ∗)‖u 1I(Cε(r)) ≤ IE
{
‖ξε‖+

√
2∆ε(r)

}u
. (3.20)

Proof. The bound (3.19) follows from (3.18). Next, the expansion (3.16) yields on Cε(r)

‖Dε(θ̃ − θ∗)‖ ≤ ‖ξε‖+
√

2∆ε(r)

and (3.20) follows.

3.2.8 Range of applicability

The whole proposed approach relies implicitly on the two groups of assumptions: global

and local. These assumptions are linked to each other by the value r . From one side,

the global assumptions listed in Theorem 4.1 and its corollaries should ensure a sensitive

bound for the deviation probability IP
{
θ̃ 6∈ Θ0(r)

}
. This particularly requires that r is

sufficiently large. In the contrary, the local conditions are based on the assumption that

the local set Θ0(r) is sufficiently small to guarantee that errors of approximation ♦ε(r)

and ♦ε(r) and the deficiency ∆ε(r) from (3.9) are small as well in a probabilistic sense.

More precisely, the obtained results are sharp and meaningful if the deficiency ∆ε(r)

is smaller in order than the value of the upper problem ‖ξε‖2 . The general results

of Section 6 state that ‖ξε‖2 concentrates around its expected value pε
def
= IE‖ξε‖2 .

Therefore, the latter condition about the deficiency can be decomposed into two others:
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• the values ♦ε(r),♦ε(r) are smaller in order than pε ;

• the difference ‖ξε‖2 − ‖ξε‖2 is smaller in order than pε ;

Due to the result of Theorem 3.1, the random quantity ♦ε(r) can be bounded with

a probability larger than 1 − e−x by % z0(x, p) , where z0(x, p) ≈ p + x if x is not too

large. So, the first conditions requires that % p is smaller in order than pε . If pε is of

order p (see the regular case in the next section) then the condition “♦ε(r) is small”

only requires that % , or equivalently, ω(r) is small. The same holds for ♦ε(r) .

Summarizing the above discussion yields that the local results apply if, for a fixed r :

• ω(r)p/pε is small;

• αε is small.

In the regular case studied in Section 3.2.3, these two conditions simplify to “ω(r), δ(r)

are small”.

3.2.9 Non-asymptotic efficiency

This section discusses the efficiency issues. The famous Cramér-Rao result describes

the lower bound for the estimation risk of an unbiased estimate. For linear models this

result implies that the true MLE is efficient while a quasi MLE for a misspecified noise

covariance is not. The Le Cam LAN theory transfers this result on the general statistical

model under the LAN condition; see e.g. Chapter 3 in Ibragimov and Khas’minskij

(1981). The results obtained in the previous sections provide a non-asymptotic version

of the LAN approach. As already mentioned in Section 2.2, if L(θ) is the true log-

likelihood function of a regular parametric family and IP = IPθ∗ , then both matrices

D2
0 and V 2

0 are equal to the Fisher information matrix of this family. This implies

the regularity condition with a = 1 ; see (3.10). Suppose in addition that the values

ω(r), δ(r) are small, so that

aε = 1− δ − % = 1− δ(r)− 3ν0ω(r)

is close to one. By (3.11) this implies that Dε ≈ D0 , the matrix IBε is close to the

identity matrix IIp and pε ≈ p , v2ε ≈ 2p , λε ≈ 1 . This in turn implies that the twice

upper value ‖ξε‖2 behaves as a χ2
p random variable and the deficiency ∆ε(r) is small

in probability. In particular, all the corollaries about confidence and coverage probability

for θ̃ reproduce the similar statements for the correct linear Gaussian model. Moreover,

the decomposition (3.16) can be rewritten as

D0

(
θ̃ − θ∗

)
≈ D−10 ∇L(θ∗)
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and this is the famous expansion of the MLE in the LAN situation yielding the asymptotic

normality and all other asymptotic properties of θ̃ including its asymptotic efficiency.

We present a precise statement in Section 5.1 when studying the i.i.d. case.

4 Deviation bounds and concentration of the qMLE

A very important step in the analysis of the qMLE θ̃ is localization. This property means

that θ̃ concentrates in a small vicinity of the central point θ∗ . This section states such

a concentration bound under the global conditions of Section 2.

Given a local vicinity Θ0 of Θ , the concentration result describes the deviation

probability IP
(
θ̃ 6∈ Θ0

)
. The key step in this large deviation bound is made in terms of

a multiscale upper function for the process L(θ,θ∗)
def
= L(θ)− L(θ∗) . Namely, we build

a deterministic function C(µ,θ,θ∗) such that the probability

IP
(

sup
θ 6∈Θ0

sup
µ∈M

[
µL(θ,θ∗) + C(µ,θ,θ∗)

]
≥ x
)

(4.1)

is exponentially small in x . Here µ is a positive scale parameter and M is the discrete

set of considered scale values. Concentration sets for θ̃ can be naturally defined via level

sets of the function C∗(θ,θ∗) = maxµ∈M C(µ,θ,θ∗) . The bound (4.1) is established by

some rather crude methods of the theory of empirical processes; see Section 7. Once

established, the concentration properties of θ̃ can be refined in the local vicinity Θ0

using local majorization technique; see Section 3.2.

The other important result describes an upper function b(θ, α) for the non-scaled

process L(θ,θ∗) providing that the probability

IP
(

sup
θ 6∈Θ0

{
L(θ,θ∗) + b(θ, x)

}
> 0
)

is exponentially small in x . Such bounds are usually called for in the analysis of the

posterior measure in the Bayes approach.

4.1 A multiscale upper function for the log-likelihood

This section presents a construction of the multiscale upper function C(µ,θ,θ∗) . Then

it will be used for controlling the deviation probability of the estimate θ̃ . Below we

suppose that the scaling factor µ runs over some discrete set M and consider the process

µL(θ,θ∗) for θ ∈ Θ and µ ∈ M . Assume that for each θ , there is some µ ∈ M such

that the exponential moment of µL(θ,θ∗) is finite. This enables us to define for each θ

the function M(µ,θ,θ∗) ensuring the identity

IE exp
{
µL(θ,θ∗) + M(µ,θ,θ∗)

}
= 1.
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This means that the process µL(θ,θ∗)+M(µ,θ,θ∗) is pointwise stochastically bounded

in a rather strict sense. For each µ > 0 and z ≥ 0 by the Markov inequality

IP
(
L(θ,θ∗) ≥ z

)
≤ exp

{
−µz

}
IE exp

{
µL(θ,θ∗)

}
= exp

{
−µz−M(µ,θ,θ∗)

}
. (4.2)

In particular, with z = 0 ,

IP
(
L(θ,θ∗) ≥ 0

)
≤ exp

{
−max

µ∈M
M(µ,θ,θ∗)

}
.

So, a reasonable choice of µ can be made via maximization of M(µ,θ,θ∗) w.r.t. µ .

The famous Chernoff result describes the asymptotic separation rate between these two

measures IPθ∗ and IPθ in terms of the value M∗(θ,θ∗) with

M∗(θ,θ∗) = sup
µ∈M

M(µ,θ,θ∗). (4.3)

The larger M∗(θ,θ∗) is, the stronger is the pointwise identification.

If Θ◦ is a subset of Θ not containing θ∗ , then the event θ̃ ∈ Θ◦ is only possible

if supθ∈Θ◦ L(θ,θ∗) ≥ 0 , because L(θ∗,θ∗) ≡ 0 . It is intuitively clear that the uniform

identification over Θ◦ requires that the rate function M∗(θ,θ∗) is bounded away from

zero on Θ◦ . The result of Theorem 4.1 below quantifies this condition.

We present a result for the smooth case which assumes the conditions (E) , (ED) ,

and (ED0) to be fulfilled with the corresponding matrices V and V0 . The set Θ◦ is

taken as the complement of the local set Θ0(r) with a sufficiently large r . The result

also involves a value r1 entering into the pilling device; see Section 7.3 for details. The

choice of r1 is done by the equality det(r−11 V ) = det(V0) relating two matrices V0 and

V to each others.

For stating the results, some further notations have to be introduced. Define ζ(θ,θ∗) =

ζ(θ)− ζ(θ∗) and

N(µ,θ,θ∗)
def
= log IE exp

{
µζ(θ,θ∗)

}
.

Then it holds for the function M(µ,θ,θ∗) :

M(µ,θ,θ∗) = − log IE exp
{
µL(θ,θ∗)

}
= −µIEL(θ,θ∗)−N(µ,θ,θ∗).

Further, consider for each θ◦ ∈ Θ a local ball Bµ(θ◦)
def
=
{
θ ∈ Θ : ‖V (θ−θ∗)‖ ≤ r1/µ

}
.

Next, for the Lebesgue measure π on IRp , define the smoothing operator Sµ by

Sµf(θ◦)
def
=

1

πµ(θ◦)

∫
Bµ(θ

◦)
f(θ)π(dθ).
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Let ν0 and g be the constants from (ED) . Define c1 by c1 = 2 for p ≥ 2 and c1 = 2.4

for p = 1 . Let a constant s be selected under the condition 3ν0r1/s ≤ g ∧
√

2c1p . The

value s = 1 is a proper candidate in typical situations.

For shortening the notation assume that the discrete set M is fixed under the condi-

tion M ≡
∑

µ∈M µ
p+2 ≤ e/2 .

Theorem 4.1. Suppose that (E) , (ED) , and (ED0) hold with some g, ν0 and with

matrices V and V0 . Let r1 be such that det(r−11 V ) ≤ det(V0) , and s be such that

3ν0r1/s ≤ g ∧
√

2c1p . For r ≥
√
p/2 and x > 0 , it holds

IP
{

sup
θ 6∈Θ0(r)

sup
µ∈M

[
µL(θ,θ∗) + C(µ,θ,θ∗)

]
> z1(x)

}
≤ e−x+1, (4.4)

with z1(x)
def
= 2sc1p+ (1 + s)x and

C(µ,θ,θ∗)
def
= −µIEL(θ,θ∗)− SµN(µ,θ,θ∗)− (1 + s)t(θ) (4.5)

t(θ)
def
= (p+ 2) log

(
‖V0(θ − θ∗)‖

)
.

Proof. First fix µ ∈ M and apply the general results of Theorem 7.10 to the process

U(θ) = ζ(θ,θ∗) = L(θ,θ∗)− IEL(θ,θ∗) , M(θ) = −IEL(θ,θ∗) , and H0 = V0 on Υ ◦ =

Θc0(r) . The condition (E) is fulfilled, condition (ED) implies (ED) with H(θ) = V ,

and Theorem 7.10 yields (4.4) in view of ‖r−11 V (θ − θ∗)‖ ≤ ‖V0(θ − θ∗)‖ .

Remark 4.1. The construction of the multiscale upper function C(µ,θ,θ∗) in (4.5) de-

serves some discussion. More precisely, it is interesting to compare this construction with

the pointwise upper function M(µ,θ,θ∗) = −µIEL(θ,θ∗)−N(µ,θ,θ∗) . The smoothing

operator in the term SµN(µ,θ,θ∗) from (4.5) is only used for technical reasons and it

can be handled by simple rescaling arguments. The other term (1 + s)t(θ) in (4.5) is

really important and it can be viewed as the price for uniform concentration. Simple

white noise examples show that this penalty term is nearly sharp if s is taken small and

p large. However, our aim is only to obtain a rough exponential bound because really

sharp results are stated by mean of local quadratic approximation; see Section 3.2.5.

4.2 Concentration sets and deviation probability

This section describes so called concentration sets for the estimate θ̃ . Any such set

is deterministic ensuring that θ̃ deviates from this set with a small probability. Such

concentration sets are usually used in theoretical studies and their construction typically

depends on the unknown quantities the moment generation function M(µ,θ,θ∗) . Let
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C(µ,θ,θ∗) be the upper multiscale function from (4.5). Define

µ(θ,θ∗)
def
= argmax

µ∈M
C(µ,θ,θ∗), (4.6)

C∗(θ,θ∗)
def
= max

µ∈M
C(µ,θ,θ∗) = C(µ(θ,θ∗),θ,θ∗). (4.7)

For simplicity we assume that the maximum in (4.7) is attained and µ(θ,θ∗) is well

defined. In the considered case of a discrete set M this is always fulfilled. The value

C∗(θ,θ∗) shown in (4.7) replaces M∗(θ,θ∗) from (4.3) if one is concerned with uniform

non-asymptotic bounds. For any fixed subset A ⊂ Θ define the value g(A) by

g(A)
def
= inf

θ 6∈A
C∗(θ,θ∗). (4.8)

A particular choice of the set A is given by the level set of C∗(θ,θ∗) : for every x > 0 ,

define A(x,θ∗) with

A(x,θ∗) = {θ : C∗(θ,θ∗) ≤ z1(x)} =
{
θ : sup

µ∈M
C(µ,θ,θ∗) ≤ z1(x)

}
,

where z1(x) = 2sc1p+ (1 + s)x . Obviously g
(
A(x,θ∗)

)
≥ z1(x) .

Below we show that the bound (4.4) yields some concentration properties of the

estimate θ̃ in terms of the function g(·) from (4.8).

Corollary 4.2. Under (4.4), it holds for any set A with g(A) ≥ z1(x)

IP
(
θ̃ 6∈ A

)
≤ e−x+1.

In particular,

log IP
(
θ̃ 6∈ A(x,θ∗)

)
≤ −x + 1.

Proof. Denote µ̃ = µ(θ̃,θ∗) with µ(θ,θ∗) from (4.6). Then in view of L(θ̃,θ∗) ≥ 0

and C
(
µ̃,θ,θ∗

)
≥ g(A) for θ̃ 6∈ A

{
θ̃ 6∈ A

}
⊆
{
C
(
µ̃, θ̃,θ∗

)
≥ g(A)

}
⊆
{
µ̃L(θ̃,θ∗) + C

(
µ̃, θ̃,θ∗

)
> g(A)

}
,

and the result follows from (4.4).

Corollary 4.2 presents an upper bound for the probability that θ̃ deviates from a set

A defined via the function C(µ,θ,θ∗) . The local approach of Section 3.1 requires also

to bound the deviation probability for a local set Θ0(r)
def
= {θ : ‖V0(θ̃ − θ∗)‖ > r} for
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r sufficiently large. It suffices to evaluate the quantity g(A) for A = Θ0(r) . This in

turns requires to bound from below the value C∗(θ,θ∗) for θ 6∈ A .

The next result presents sufficient conditions ensuring a sensible large deviation prob-

ability bound in terms of the rate function M∗(θ,θ∗) = maxµ
{
− log IE expµL(θ,θ∗)

}
.

Define

δµ(θ)
def
=
∣∣N(µ,θ,θ∗)− SµN(µ,θ,θ∗)

∣∣.
Corollary 4.3. Suppose the conditions of Theorem 4.1. Let, given x > 0 , there be a

value r = r(x) , such that it holds

M∗(θ,θ∗) ≥ (1 + s)t(θ) + δµ(θ) + z1(x), θ 6∈ Θ0(r), (4.9)

with t(θ) = (p+ 2) log
(
‖V0(θ − θ∗)‖

)
and z1(x)

def
= 2sc1p+ (1 + s)x . Then

IP
(
‖V0(θ̃ − θ∗)‖ > r(x)

)
≤ e−x+1.

Proof. The result follows from Corollary 4.2 by making use of the inequality

−µIEL(θ,θ∗)− SµN(µ,θ,θ∗) ≥M(µ,θ,θ∗)− δµ(θ)

for any µ ∈M .

Remark 4.2. Due to this result, a logarithmic growth of M∗(θ,θ∗) as function of the

distance ‖θ − θ∗‖ ensures a sensitive large deviation bound for the process L(θ) .

4.3 Probability bounds for the quasi log-likelihood

This section presents a uniform upper bound for process L(θ,θ∗) without scaling. Our

starting point is again a pointwise bound on L(θ,θ∗) for a fixed θ 6= θ∗ . Namely, given

x , we first try to find b(θ, x) providing

IP
(
L(θ,θ∗) + b(θ, x) ≥ 0

)
≤ e−x. (4.10)

Define

b(θ, x)
def
= max

µ∈M
µ−1

{
−x + M(µ,θ,θ∗)

}
.

Then applying (4.2) with the corresponding value µ yields (4.10). Now we aim to

establish an extension of this pointwise bound to a uniform bound on a subset Θ◦ of Θ ,

that is, to build a function b(θ, x) such that

IP
(

sup
θ∈Θ◦

{
L(θ,θ∗) + b(θ, x)

}
> 0
)
≤ e−x+1. (4.11)
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Such bounds are naturally called for in the analysis of the posterior measure in the Bayes

approach. The function b(θ, x) can be described via the multiscale upper function

C(µ,θ,θ∗) . Namely, for each θ and x > 0 define

b(θ, x)
def
= max

µ∈M

{
−µ−1z1(x) + µ−1C(µ,θ,θ∗)

}
. (4.12)

Corollary 4.4. Assume the bound (4.4) for a function C(µ,θ,θ∗) . Then (4.11) holds

with b(θ, x) from (4.12).

Proof. The bound (4.4) implies

IP
(

sup
θ∈Θ◦

min
µ∈M

{
µL(θ,θ∗) + C(µ,θ,θ∗)

}
> z1(x)

)
≤ e−x+1.

This yields that there exists a random set Ω(x) with IP
(
Ω(x)

)
≥ 1 − e−x+1 such that

for any µ ∈ M and any θ ∈ Θ◦ , it holds µL(θ,θ∗) + C(µ,θ,θ∗) ≤ z1(x) on Ω(x) . Let

µ(θ, x) fulfill

µ(θ, x)
def
= argmax

µ∈M

{
−µ−1z1(x) + µ−1C(µ,θ,θ∗)

}
.

Then particular choice µ = µ(θ, x) yields on Ω(x)

L(θ,θ∗) +
1

µ(θ, x)

{
C(µ(θ, x),θ,θ∗)− z1(x)

}
≤ 0

or equivalently L(θ,θ∗) + b(θ, x) ≤ 0 .

5 Examples

The model with independent identically distributed (i.i.d.) observations is one of the

most popular setups in statistical literature and in statistical applications. The essential

and the most developed part of the statistical theory is designed for the i.i.d. model-

ing. Especially, the classical asymptotic parametric theory is almost complete including

asymptotic root-n normality and efficiency of the MLE and Bayes estimators under rather

mild assumptions; see e.g. Chapter 2 and 3 in Ibragimov and Khas’minskij (1981). So,

the i.i.d. model can naturally serve as a benchmark for any extension of the statistical

theory: being applied to the i.i.d. setup, the new approach should lead to essentially the

same conclusions as in the classical theory. Similar reasons apply to the regression model

and its extensions. Below we try demonstrate that the proposed non-asymptotic view-

point is able to reproduce the existing brilliant and well established results of the classical

parametric theory. With some surprise, the majority of classical efficiency results can be

easily derived from the obtained general non-asymptotic bounds.
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The next question is whether there is any added value or benefits of the new approach

being restricted to the i.i.d. situation relative to the classical one. Two important issues

have been already mentioned: the new approach applies to the situation with finite

samples and survives under model misspecification. One more important question is

whether the obtained results remain applicable and informative if the dimension of the

parameter space is high – this is one of the main challenge in the modern statistics. We

show that the dimensionality p naturally appears in the risk bounds and the results

apply as long as the sample size exceeds in order this value p . All these questions are

addressed in Section 5.1 for the i.i.d. setup, Section 5.2 focuses on generalized linear

modeling, while Section 5.3 discusses linear median regression.

5.1 Quasi MLE in an i.i.d. model

The basic i.i.d. parametric model means that the observations Y = (Y1, . . . , Yn) are

independent identically distributed from a distribution P from a given parametric family

(Pθ,θ ∈ Θ) on the observation space Y1 . Each θ ∈ Θ clearly yields the product data

distribution IPθ = P⊗nθ on the product space Y = Yn1 . This section illustrates how the

obtained general results can be applied to this type of modeling under possible model

misspecification. Different types of misspecification can be considered. Each of the

assumptions, namely, data independence, identical distribution, parametric form of the

marginal distribution can be violated. To be specific, we assume the observations Yi

independent and identically distributed. However, we admit that the distribution of each

Yi does not necessarily belong to the parametric family (Pθ) . The case of non-identically

distributed observations can be done similarly at cost of more complicated notation.

In what follows the parametric family (Pθ) is supposed to be dominated by a measure

µ0 , and each density p(y,θ) = dPθ/dµ0(y) is two times continuously differentiable in

θ for all y . Denote `(y,θ) = log p(y,θ) . The parametric assumption Yi ∼ Pθ∗ ∈ (Pθ)

leads to the log-likelihood

L(θ) =
∑

`(Yi,θ),

where the summation is taken over i = 1, . . . , n . The quasi MLE θ̃ maximizes this sum

over θ ∈ Θ :

θ̃
def
= argmax

θ∈Θ
L(θ) = argmax

θ∈Θ

∑
`(Yi,θ).

The target of estimation θ∗ maximizes the expectation of L(θ) :

θ∗
def
= argmax

θ∈Θ
IEL(θ) = argmax

θ∈Θ

∑
IE`(Yi,θ).
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Let ζi(θ)
def
= `(Yi,θ) − IE`(Yi,θ) . Then ζ(θ) =

∑
ζi(θ) . The equation IE∇L(θ∗) = 0

implies

∇ζ(θ∗) =
∑
∇ζi(θ∗) =

∑
∇`i(θ∗). (5.1)

I.i.d. structure of the Yi ’s allows for rewriting the conditions (E) , (ED) , (ED0) ,

(ED1) , and (L0) in terms of the marginal distribution. In the following conditions the

index i runs from 1 to n .

(e) For each θ ∈ Θ , there exists a positive value µ ∈M such that

m(µ,θ,θ∗)
def
= − log IE exp

{
µ
[
`(Yi,θ)− `(Yi,θ∗)

]}
is finite.

(ed) There exist some constants ν0 , and g1 > 0 , and a positive symmetric p × p
matrix v , such that for all |λ| ≤ g1

sup
γ∈Sp

sup
θ∈Θ

log IE exp

{
λ
γ>∇ζi(θ)

‖vγ‖

}
≤ ν20λ2/2.

(ed0) There exists a positive symmetric matrix v0 , such that for all |λ| ≤ g1

sup
γ∈Sp

log IE exp

{
λ
γ>∇ζi(θ∗)
‖v0γ‖

}
≤ ν20λ2/2.

A natural candidate on v2
0 is given by the variance of the gradient ∇`(Y1,θ∗) , that is,

v2
0 = Var∇`(Y1,θ) = Var∇ζ1(θ) .

Next consider the local sets

Θ0(r) = {θ : ‖v0(θ − θ∗)‖ ≤ r/n1/2}.

The local smoothness conditions (ED1) and (L0) require to specify the functions δ(r)

and %(r) . If the log-likelihood function `(y,θ) is sufficiently smooth in θ , these func-

tions can be selected proportional to r .

(ed1) For each r ≤ R , there exists a constant ω∗ such that for all i = 1, . . . , n and

|λ| ≤ g1

sup
γ∈Sp

sup
θ∈Θ0(r)

log IE exp

{
λ
γ>
[
∇ζi(θ)−∇ζi(θ∗)

]
ω∗ r ‖v0γ‖

}
≤ ν20λ2/2.

Further we restate the local identifiability condition (L0) in terms of the expected

value `(θ)
def
= IE`(Yi,θ) of each `(Yi,θ) . We suppose that `(θ) is two times differentiable

w.r.t. θ and define the matrix IF0 = −∇2`(θ∗) .
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(`0) For each r ≤ R , there is a constant δ∗ , such that it holds on Θ0(r)∣∣∣∣`(θ)− `(θ∗)− (θ − θ∗)>∇`(θ∗)
(θ − θ∗)>IF0 (θ − θ∗)/2

− 1

∣∣∣∣ ≤ δ∗r.
In the regular parametric case with IP ∈ (Pθ) , the matrices v2

0 and IF0 coincide

with the Fisher information matrix IF (θ∗) of the family (Pθ) at the point θ∗ .

Lemma 5.1. Let Y1, . . . , Yn be i.i.d. Then (e) , (ed) , (ed0) , (ed)1 , and (`0) imply

(E) , (ED) , (ED0) , (ED)1 , and (L0) with M(µ,θ,θ∗) = nm(µ,θ,θ∗) , V 2 = nv2 ,

V 2
0 = nv2

0 , D2
0 = nIF0 , ω(r) = ω∗r , δ(r) = δ∗r , the same constant ν0 , and

g
def
= g1

√
n.

Proof. The identities M(µ,θ,θ∗) = nm(µ,θ,θ∗) , V 2 = nv2 , V 2
0 = nv2

0 , D2
0 = nIF0

follow from the i.i.d. structure of the observations Yi . We briefly comment on condition

(ED) . The use once again the i.i.d. structure yields by (5.1) in view of V 2 = nv2

log IE exp
{
λ
γ>∇ζ(θ)

‖V γ‖

}
= nIE exp

{ λ

n1/2
γ>∇ζ1(θ)

‖vγ‖

}
≤ ν20λ2/2

as long as λ ≤ n1/2g1 ≤ g . Similarly one can check (ED0) and (ED1) .

Below we specify the general results of Sections 3 and 4 to the i.i.d. setup.

5.1.1 A large deviation bound

First we describe the large deviation probability for the event {θ̃ 6∈ Θ0(r)} for a fixed

r . Corollary 4.3 provides a sufficient condition for such a bound: the rate function

M∗(θ,θ∗) should grow at least logarithmic with the distance ‖V (θ − θ∗)‖ . Define

m∗(θ,θ∗) = max
µ

m(µ,θ,θ∗).

(ld1) There exist constants b > 0 , such that it holds on the set Θc0(r)

m∗(θ,θ∗) ≥ b log
(
1 + ‖v0(θ − θ∗)‖2

)
.

This condition implies by M∗(θ,θ∗) = nm∗(θ,θ∗)

M∗(θ,θ∗) ≥ nb log
(
1 + ‖v0(θ − θ∗)‖2

)
, θ 6∈ Θ0(r).

For the next result we assume that the value r1 ≥ 1 is fixed by det(r−11 v) ≤ det(v0) .

Further, the constant s has to be fixed such that 3ν0r1/s ≤ g ∧
√

2c1p .
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Theorem 5.2. Suppose (e) , (ed) , (ld1) . For each x and r = r(x) such that

(2/3)br2 ≥ (1 + s)(p/2 + 1) log(1 + r2) + z1(x), (5.2)

it holds for n ≥ r2

IP
(√
n‖v0(θ̃ − θ∗)‖ ≥ r

)
≤ e−x+1.

Proof. Given r and x , (5.2) implies for all u ≥ r

nb log(1 + u2/n) ≥ (1 + s)(p/2 + 1) log(1 + u2) + z1(x).

because n log(1+r2/n) ≥ 2r2/3 for r2 ≤ n . Now it follows from (ld1) for any θ 6∈ Θ0(r)

that

M∗(θ,θ∗) ≥ nb log(1 + ‖v0(θ − θ∗)‖2)

≥ (1 + s)(p/2 + 1) log
(
1 + ‖V0(θ − θ∗)‖2

)
+ z1(x).

Now the result follows from Corollary 4.3.

(to be done) treatment of δµ .

Remark 5.1. The presented result helps to quantify two important values r and n

providing a sensitive deviation probability bound: the radius r of the local neighborhood

should be large enough to ensure (5.2), while the sample size n should be larger than

r2 . It is straightforward to see that (5.2) starts to hold for r2 ≥ Const. p log p for some

fixed constant Const. Therefore, for any r exceeding this value, a deviation probability

IP
(
θ̃ 6∈ Θ0(r)

)
is negligible when n ≥ r2 ≥ Const. p log p .

5.1.2 Local inference

Now we restate the general local bounds of Section 3 for the i.i.d. case. First we describe

the approximating linear models. The matrices v2
0 and IF0 from conditions (ed0) ,

(ed1) , and (`0) determine their drift and variance components. Define

IFε
def
= IF0(1− δ)− %v2

0.

Then D2
ε = nIFε and

ξε
def
= D−1ε ∇ζ(θ∗) =

(
nIFε

)−1/2∑∇`(Yi,θ∗). (5.3)

The upper approximating process reads as

Lε(θ,θ∗) = (θ − θ∗)>Dεξε − ‖Dε(θ − θ∗)‖2/2.
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This expression appears as log-likelihood for the linear model ξε = Dεθ+ε for a standard

normal error ε . The (quasi) MLE θ̃ε for this model is of the form θ̃ε = D−1ε ξε .

Theorem 5.3. Suppose (ed0) . Given r , assume (ed1) , and (`0) on Θ0(r) , and let

% = 3ν0 ω
∗r/n1/2 , δ = δ(r) = δ∗r/n1/2 , and IFε

def
= IF0(1 − δ) − %v2

0 ≥ 0 . Then the

results of Theorem 3.1 through 3.8 apply to the case of i.i.d. modeling. In particular, for

any z > 0 , it holds

IP
{∥∥√nIFε(θ̃ − θ∗)∥∥ > z, θ̃ ∈ Θ0(r)

}
≤ IP

{(
1−
√
αε
)
‖ξε‖ > z −

√
2♦ε(r) + 2♦ε(r)

}
,

where ♦ε(r),♦ε(r) follow the bound (3.4) and αε is defined by

αε
def
= ‖IIp − IF 1/2

ε IF−1ε IF
1/2
ε ‖∞ = λmax

(
IIp − IF 1/2

ε IF−1ε IF
1/2
ε

)
.

Moreover, on the random set Cε(r) =
{
θ̃ ∈ Θ0(r), ‖ξε‖ ≤ r

}
, it holds∥∥√nIFε(θ̃ − θ∗)− ξε∥∥2 ≤ 2∆ε(r).

The presented results are stated via the probability bound for the squared norm of

the vector ξε from (5.3). One can apply the general results of Section 6.4. For ease of

notation we consider the vector ξ instead of ξε :

ξ
def
= (nIF0)

−1/2∇ζ(θ∗) =
(
nIF0

)−1/2∑∇`(Yi,θ∗). (5.4)

The necessary condition (6.18) coincides with (ED0) . Now Corollary 6.13 implies that

the probability IP
(
‖ξ‖2 > z(x, IB)

)
is of order 2e−x for all moderate x and IB =

IF
−1/2
0 v2

0IF
−1/2
0 . In particular, this probability starts to degenerate when z significantly

exceeds the value p = tr(IB) .

5.1.3 The regular parametric case and asymptotic efficiency

The conditions and the results become even more transparent in the regular situation

when IF0 ≥ a2v2
0 . An important special case corresponds to the correct parametric

specification with a = 1 and IF0 = v2
0 . Under regularity one can use IFε = (1 − δ −

%a2)IF0 . Here we briefly discuss the corollaries of Theorem 5.3 for the classical asymptotic

setup when n tends to infinity.

Under the imposed conditions, the quantities δ and % can be taken of order r/n1/2 ,

where r2 � p log(p) . If n grows then δ and % decreases to zero, and the matrix IFε is

close to IF0 . The value ∆ε(r) is close to zero in probability. Moreover, the random vector

ξ from (5.4) fulfills Var(ξ) ≤ IF−1/20 v2
0IF
−1/2
0

def
= IB2 and by the central limit theorem ξ
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is asymptotically normal N(0, IB2) . This yields by Theorem 5.3 that
√
nIF0

(
θ̃ − θ∗

)
is

asymptotically normal N(0, IB2) as well. The correct model specification implies IB ≡ IIp
and hence θ̃ is asymptotically efficient; see Ibragimov and Khas’minskij (1981). Also

2L(θ̃,θ∗) ≈ ‖ξ‖2 which is nearly χ2 r.v. with p degrees of freedom. This result is

known as asymptotic Wilks theorem.

5.2 Generalized linear modeling

Now we consider a generalized linear modeling (GLM) which is often used for describ-

ing some categorical data. Let P = (Pw, w ∈ Υ ) be an exponential family with a

canonical parametrization; see e.g. McCullagh and Nelder (1989). The corresponding

log-density can be represented as `(y, w) = yw − d(w) for a convex function d(w) .

The popular examples are given by the binomial (binary response, logistic) model with

d(w) = log
(
ew + 1

)
, the Poisson model with d(w) = ew , the exponential model

with d(w) = − log(w) . Note that linear Gaussian regression is a special case with

d(w) = w2/2 .

A GLM specification means that every observation Yi has a distribution from the

family P with the parameter wi which linearly depends on the regressor Ψi ∈ IRp :

Yi ∼ PΨ>i θ∗ . (5.5)

The corresponding log-density of a GLM reads as

L(θ) =
∑{

YiΨ
>
i θ − d(Ψ>i θ)

}
.

First we specify the data distribution allowing that the parametric model (5.5) is mis-

specified. Misspecification of the first kind means that the vector f
def
= IEY cannot be

represented in the form Ψ>θ whatever θ is. In this situation, the target of estimation

θ∗ is defined by

θ∗
def
= argmax

θ
IEL(θ).

The other sort of misspecification concerns the data distribution. The model (5.5) as-

sumes that the Yi ’s are independent and the marginal distribution belongs to the given

parametric family P . In what follows, we only assume independent data having certain

exponential moments. The quasi MLE θ̃ is defined by maximization of L(θ) :

θ̃ = argmax
θ

L(θ) = argmax
θ

∑{
YiΨ

>
i θ − d(Ψ>i θ)

}
.

Convexity of d(·) implies that L(θ) is a concave function of θ , so that the optimization

problem has a unique solution and can be effectively solved. However, a closed form



32 Parametric estimation. Finite sample theory

solution is only available for the constant regression or for the linear Gaussian regression.

The corresponding target θ∗ is the maximizer of the expected log-likelihood:

θ∗ = argmax
θ

IEL(θ) = argmax
θ

∑{
fiΨ
>
i θ − d(Ψ>i θ)

}
with fi = IEYi . The function IEL(θ) is concave as well and the vector θ∗ is also well

defined.

Define the individual errors (residuals) εi = Yi − IEYi . Below we assume that these

errors fulfill some exponential moment conditions.

(e1) There exist some constants ν0 and g1 > 0 , and for every i a constant ni such

that IE
(
εi/ni

)2 ≤ 1 and for all |λ| ≤ g1

log IE exp
(
λεi/ni

)
≤ ν20λ2/2, |λ| ≤ g1. (5.6)

A natural candidate for ni is σi where σ2i = IEε2i is the variance of εi ; see

Lemma 7.12. Under (5.6), introduce a p× p matrix V0 defined by

V 2
0

def
=
∑

n2iΨiΨ
>
i . (5.7)

Condition (e1) effectively means that each error term εi = Yi− IEYi has some bounded

exponential moments: for λ = g1 , it holds f(λ)
def
= log IE exp

(
λεi/ni

)
< ∞ . This

implies the quadratic upper bound for the function f(λ) for |λ| ≤ g1 ; see Lemma 7.12.

In words, condition (e1) requires light (exponentially decreasing) tail for the marginal

distribution of each εi .

Define also

N−1/2
def
= max

i
sup
γ∈IRp

ni|Ψ>i γ|
‖V0γ‖

. (5.8)

Lemma 5.4. Assume (e1) and let V0 be defined by (5.7) and N by (5.8). Then con-

ditions (ED0) and (ED) follow with V = V0 , g = g1N
1/2 , and with the constant ν0

from (e1) . Moreover, the stochastic component ζ(θ) is linear in θ and the condition

(ED1) is fulfilled with ω(r) ≡ 0 .

Proof. The gradient of the stochastic component ζ(θ) of L(θ) does not depend on θ :

∇ζ(θ) =
∑

Ψiεi

with εi = Yi − IEYi . Now, for any unit vector γ ∈ IRp and λ ≤ g , independence of the

εi ’s implies that

log IE exp
{ λ

‖V0γ‖
γ>
∑

Ψiεi

}
=
∑

log IE exp
{λniΨ>i γ
‖V0γ‖

εi/ni

}
. (5.9)
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By definition ni|Ψ>i γ|/‖V0γ‖ ≤ N−1/2 and therefore, λni|Ψ>i γ|/‖V0γ‖ ≤ g1 . Hence,

(5.6) implies

log IE exp
{ λ

‖V0γ‖
γ>
∑

Ψiεi

}
≤ ν20λ

2

2‖V0γ‖2
∑

n2i |Ψ>i γ|2 =
ν20λ

2

2
, (5.10)

and (ED0) follows.

It remains only to bound the quality of quadratic approximation for the mean of the

process L(θ,θ∗) in a vicinity of θ∗ . An interesting feature of the GLM is that the effect

of model misspecification disappears in the expectation of L(θ,θ∗) .

Lemma 5.5. It holds

−IEL(θ,θ∗) =
∑{

d(Ψ>i θ)− d(Ψ>i θ
∗)− d′(Ψ>i θ∗)Ψ>i (θ − θ∗)

}
= K

(
IPθ∗ , IPθ

)
, (5.11)

where K
(
IPθ∗ , IPθ

)
is the Kullback-Leibler divergence between measures IPθ∗ and IPθ .

Moreover,

−IEL(θ,θ∗) =
1

2
‖Dθ◦(θ − θ∗)‖2, (5.12)

where θ◦ ∈ [θ∗,θ] and

D2(θ◦) =
∑

d′′(Ψ>i θ
◦)ΨiΨ

>
i .

Proof. The definition implies

IEL(θ,θ∗) =
∑{

fiΨ
>
i (θ − θ∗)− d(Ψ>i θ) + d(Ψ>i θ

∗)
}
.

As θ∗ is the extreme point of IEL(θ) , it holds ∇IEL(θ∗) =
∑[

fi−d′(Ψ>i θ
∗)
]
Ψi = 0 and

(5.11) follows. The Taylor expansion of the second order around θ∗ yields the expansion

(5.12).

Define now the matrix D0 by

D2
0

def
= D2(θ∗) =

∑
d′′(Ψ>i θ

∗)ΨiΨ
>
i .

Let also V0 be defined by (5.7). Note that the matrices D0 and V0 coincide if the model

Yi ∼ PΨ>i θ
∗ is correctly specified and n2i = d′′(Ψ>i θ

∗) . The matrix V0 describes a local

elliptic neighborhood of the central point θ∗ in the form Θ0(r) = {θ : ‖V0(θ − θ∗)‖ ≤
r} . If the matrix function D2(θ) is continuous in this vicinity Θ0(r) then the value

δ(r) measuring the approximation quality of −IEL(θ,θ∗) by the quadratic function

‖D0(θ − θ∗)‖2/2 is small and the identifiability condition (L0) is fulfilled on Θ0(r) .
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Lemma 5.6. Suppose that

‖IIp −D−10 D2(θ)D−10 ‖∞ ≤ δ(r), θ ∈ Θ0(r). (5.13)

Then (L0) holds with this δ(r) . Moreover, as the quantities ω(r),♦ε(r),♦ε(r) vanish,

one can take % = 0 leading to the following representation for Dε and ξε :

D2
ε = (1− δ)D2

0, ξε = (1 + δ)1/2ξ

D2
ε = (1 + δ)D2

0, ξε = (1− δ)1/2ξ

with

ξ
def
= D−10 ∇ζ = D−10

∑
Ψi(Yi − IEYi).

Now we are prepared to state the local results for the GLM estimation.

Theorem 5.7. Let (e1) hold. Then for ε = (δ, 0) with δ ≥ δ(r) and any θ ∈ Θ0(r)

Lε(θ,θ∗) ≤ L(θ,θ∗) ≤ Lε(θ,θ∗). (5.14)

Moreover, for any z > 0 and z > 0 , it holds

IP
(
‖D0

(
θ̃ − θ∗

)
‖ > z, ‖V0

(
θ̃ − θ∗

)
‖ ≤ r

)
≤ IP

{
‖ξ‖2 > z2[1− δ(r)]

}
IP
(
L(θ̃,θ∗) > z, ‖V0

(
θ̃ − θ∗

)
‖ ≤ r

)
≤ IP

{
‖ξ‖2/2 > z[1− δ(r)]

}
.

Linearity of the stochastic component ζ(θ) in the considered GLM implies important

fact that the quantities ♦ε(r),♦ε(r) in the majorization bound (5.14) vanish for any r .

However, the deterministic component is not quadratic in θ unless the function d(w) is

quadratic. Therefore, the presented bounds are local and have to be accomplished with

the large deviation bounds.

An interesting question, similarly to the i.i.d. case, is the minimal radius r of the local

vicinity Θ0(r) ensuring the desirable concentration property. We apply the sufficient

condition (4.9) of Corollary 4.3 ensuring the concentration property. By Lemma 5.5, the

function M(µ,θ,θ∗) can be decomposed as

M(µ,θ,θ∗) = µK
(
IPθ∗ , IPθ

)
−N

(
µ,θ,θ∗

)
.

Let µ = µ(θ) be selected such that µ|Ψ>i (θ−θ∗)|ni ≤ g1 for all i . Then the arguments

from (5.9) and (5.10) yield

N
(
µ,θ,θ∗

)
≤
∑

log IE exp
{
µniΨ

>
i (θ − θ∗)εi/ni

}
≤ ν20µ

2

2

∑∣∣niΨ>i (θ − θ∗)
∣∣2 =

ν20µ
2

2
‖V0(θ − θ∗)‖2.
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Therefore,

M(µ,θ,θ∗) ≥ µK
(
IPθ∗ , IPθ

)
− ν20µ

2

2
‖V0(θ − θ∗)‖2

and a reasonable choice of µ = µ(θ) is given by µ(θ) = ν−20 K
(
IPθ∗ , IPθ

)
/‖V0(θ − θ∗)‖2

leading to

M∗(θ,θ∗) ≥
ν−20 K2

(
IPθ∗ , IPθ

)
2‖V0(θ − θ∗)‖2

.

So, the Kullback-Leibler divergence K
(
IPθ∗ , IPθ

)
should of order at least

‖V0(θ − θ∗)‖
√
‖p log

(
V0(θ − θ∗)‖

)
.

One can check that this condition is fulfilled if the convex function d(·) satisfies d′(t) ≥
Const. /t for some Const > 0 and if the effective sample size N from (5.8) is sufficiently

large.

5.3 Linear median estimation

This section illustrates how the proposed approach applies to robust estimation in linear

models. The target of analysis is the linear dependence of the observed data Y =

(Y1, . . . , Yn) on the set of features Ψi ∈ IRp :

Yi = Ψ>i θ + εi (5.15)

where εi denotes the i th individual error.

The study of the qMLE in the GLM (5.5) heavily relies on the assumption (e1) .

If this assumption is not verified, then the proposed approach would not apply. An

explicit structure of the qMLE, especially in the linear regression case, allows for direct

study of the properties of θ̃ under weaker moment assumptions than (e1) . However,

we aim at establishing some exponential bounds and therefore, the condition of bounded

exponential moments for each observation is really necessary within the least squares

or generalized linear approach. In the case of heavily tailed data with only polynomial

moments, one can obtain some convergence results for the LSE θ̃ , however an exponential

bound is not available. In such cases, it is natural to use a robustified version of the

contrast, e.g. the least absolute deviation (LAD) method. We consider the linear model

(5.15) and suppose for a moment that the errors εi are i.i.d. and follow the double

exponential (Laplace) distribution with the density (1/2)e−|y| . Then the model (5.15)

yields the log-likelihood

L(θ) = −1

2

∑
|Yi − Ψ>i θ|
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and θ̃
def
= argmaxθ L(θ) is called the least absolute deviation (LAD) estimate. In the

context of linear regression, it is also called the linear median estimate. The target of

estimation θ∗ is defined as usually by the equation θ∗ = argmaxθ IEL(θ) .

It is useful to define the residuals ε̃i = Yi − Ψ>i θ
∗ and their distributions

Pi(A) = IP
(
ε̃i ∈ A

)
= IP

(
Yi − Ψ>i θ∗ ∈ A

)
for any Borel set A on the real line. If Yi = Ψ>i θ

∗+εi is the true model then Pi coincides

with the distribution of each εi . Below we suppose that each Pi = L(Yi − Ψ>i θ
∗) has a

positive density pi(y) .

Note that the difference L(θ)−L(θ∗) is bounded by 1
2

∑
|Ψ>i (θ−θ∗)| and condition

(E) is fulfilled automatically. Next we check conditions (ED0) and (ED1) . Denote

ξi(θ) = 1I(Yi − Ψ>i θ ≤ 0) − qi(θ) for qi(θ) = IP (Yi − Ψ>i θ ≤ 0) . This is a centered

Bernoulli random variable, and it is easy to check that

∇ζ(θ) =
∑

ξi(θ)Ψi. (5.16)

This expression differs from the similar ones from the linear and generalized linear regres-

sion because the error terms ξi now depends on θ . First we check the global condition

(ED) . Fix any g1 < 1 . Then it holds for a Bernoulli r.v. Z with IP (Z = 1) = q ,

ξ = Z − q , and |λ| ≤ g1

log IE exp(λξ) = log
[
q exp{λ(1− q)}+ (1− q) exp(−λq)

]
≤ ν20q(1− q)λ2/2, (5.17)

where ν0 ≥ 1 depends on g1 only. Let now a vector γ ∈ IRp and ρ > 0 be such that

ρ|Ψ>i γ| ≤ g1 for all i = 1, . . . , n . Then

log IE exp{ργ>∇ζ(θ)} ≤ ν20ρ
2

2

∑
qi(θ)

{
1− qi(θ)

}
|Ψ>i γ|2

≤ ν20ρ
2‖V (θ)γ‖2/2, (5.18)

where

V 2(θ) =
∑

qi(θ)
{

1− qi(θ)
}
ΨiΨ

>
i . (5.19)

Denote also

V 2 =
1

4

∑
ΨiΨ

>
i .
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Clearly V (θ) ≤ V for all θ and condition (ED) is fulfilled globally with the matrix V

and g = g1N
1/2 for N defined by

N−1/2
def
= max

i
sup
γ∈IRp

Ψ>i γ

2‖V γ‖
; (5.20)

cf. (5.9).

5.3.1 A local central bound

Now we restrict ourselves to the elliptic vicinity Θ0(r) = {θ : ‖V0(θ − θ∗)‖ ≤ r} of the

central point θ∗ for V0 = V (θ∗) and some r > 0 . Define the matrix V0 = V (θ∗) .

Then condition (ED0) with the matrix V0 and g = N1/2g1 is fulfilled on Θ0(r) due to

(5.18). Next, for checking (ED1) suppose the following regularity condition:

V ≤ ν1V0 (5.21)

for some ν1 ≥ 1 . This condition implies the inequality |Ψ>i γ| ≤ ν1N
−1/2‖V0γ‖ for any

vector γ ∈ IRp . By (5.16)

∇ζ(θ)−∇ζ(θ∗) =
∑

Ψi
{
ξi(θ)− ξi(θ∗)

}
.

If Ψ>i θ ≥ Ψ>i θ
∗ , then

ξi(θ)− ξi(θ∗) = 1I(Ψ>i θ
∗ ≤ Yi < Ψ>i θ)− IP

(
Ψ>i θ

∗ ≤ Yi < Ψ>i θ
)
.

Similarly for Ψ>i θ < Ψ>i θ
∗

ξi(θ)− ξi(θ∗) = − 1I(Ψ>i θ ≤ Yi < Ψ>i θ
∗) + IP

(
Ψ>i θ ≤ Yi < Ψ>i θ

∗).
Define qi(θ,θ

∗)
def
=
∣∣qi(θ)− qi(θ∗)

∣∣ . Now (5.17) yields similarly to (5.18)

log IE exp
{
ργ>

{
∇ζ(θ)−∇ζ(θ∗)

}}
≤ ν20ρ

2

2

∑
qi(θ,θ

∗)|Ψ>i γ|2

≤ 2ν20ρ
2 max
i≤n

qi(θ,θ
∗) ‖V γ‖2 ≤ ω(r)ν20ρ

2‖V0γ‖2/2,

with

ω(r)
def
= 4ν1 max

i≤n
sup

θ∈Θ0(r)
qi(θ,θ

∗).

If each density function pi is uniformly bounded by a constant C then

|qi(θ)− qi(θ∗)| ≤ C
∣∣Ψ>i (θ − θ∗)

∣∣ ≤ Cν1N−1/2‖V0(θ − θ∗)‖ ≤ Cν1N−1/2r.
Next we check the identifiability condition. We use the following technical lemma.
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Lemma 5.8. It holds for any θ

∂2

∂2θ
IEL(θ) = D2(θ)

def
=
∑

pi
(
Ψ>i (θ − θ∗)

)
ΨiΨ

>
i , (5.22)

where pi(·) is the density of ε̃i = Yi − Ψ>i θ
∗ . Moreover, there is θ◦ ∈ [θ,θ∗] such that

−IEL(θ,θ∗) =
1

2

∑
|Ψ>i (θ − θ∗)|2pi(Ψ>i (θ◦ − θ∗))

= (θ − θ∗)>D2(θ◦)(θ − θ∗)/2. (5.23)

Proof. Obviously

∂IEL(θ)

∂θ
=
∑{

IP (Yi ≤ Ψ>i θ)− 1/2
}
Ψi.

The identity (5.22) is obtained by one more differentiation. By definition, θ∗ is the

extreme point of IEL(θ) . The equality ∇IEL(θ∗) = 0 yields∑{
IP (Yi ≤ Ψ>i θ∗)− 1/2

}
Ψi = 0.

Now (5.23) follows by the Taylor expansion of the second order at θ∗ .

Define

D2
0

def
=
∑
|Ψ>i (θ − θ∗)|2pi(0)

Due to this lemma, condition (L0) is fulfilled in Θ0(r) with this choice D0 for δ(r)

from (5.13); see Lemma 5.6. Now all the local conditions are fulfilled yielding the general

majorizing bound of Theorem 3.1 and all its corollaries.

Theorem 5.9. Let V0 = V (θ∗) ; see (5.19). Assume (5.21) for V 2 = (1/4)
∑
ΨiΨ

>
i .

Fix any δ ≥ δ(r) and % ≥ 3ν0ω(r) . Then Theorem 3.1 and its corollaries holds for the

linear median estimation.

This example is one more confirmation of the applicability of the the general approach:

as soon as the local conditions have been checked the main local statements follow for

free. It only remains to accomplish them by a large deviation bound, that is, to describe

the local vicinity Θ0(r) providing the prescribed concentration bound.

5.3.2 A large deviation bound

A sufficient condition for the concentration property is that the rate function M∗(θ,θ∗)

grows at least logarithmic in ‖θ∗ − θ‖ . For y > 0 , define for Ay = [y,∞]

λi(y) = −(2y)−1 log[Pi(Ay)] = −(2y)−1 log
[
IP (Yi − Ψ>i θ∗ > y)

]
.
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The case with λi(y) ≥ λ0 > 0 corresponds to light tails while λi(y) → 0 as |y| → ∞
means heavy tails of the distribution Pi . Below we focus on the most interesting case

when λi(y) is positive and monotonously decreases to zero in y > 0 . For simplicity

of presentation we also assume that λi(y) is sufficiently regular and its first derivative

λ′i(y) is uniformly continuous on IR . Define

ξi(θ,θ
∗)

def
=
{
|Yi − Ψ>i θ| − |Yi − Ψ>i θ∗|

}
/2

fi(µ)
def
= log IE exp

{
µξi(θ,θ

∗)
}
.

As |ξi(θ,θ∗)| ≤ |Ψ>i (θ − θ∗)|/2 and fi(µ) is analytic in µ , it holds for any µ ≥ 0 with

µmaxi |Ψ>i (θ − θ∗)|/2 ≤ 1

fi(µ) ≥ −µIEξi(θ,θ∗)− µ2 Var ξi(θ,θ
∗).

This implies by independence of the ξi ’s

M(µ,θ,θ∗)
def
= − log IE exp

{
µL(θ,θ∗)

}
=
∑

fi(µ) ≥ −µIEL(θ,θ∗)− µ2 VarL(θ,θ∗).

The choice µ = µ(θ) = −IEL(θ,θ∗)
/{

2 VarL(θ,θ∗)
}

yields

M∗(θ,θ∗) ≥
∣∣IEL(θ,θ∗)

∣∣2
4 VarL(θ,θ∗)

.

Note that the inequality |ξi(θ,θ∗)| ≤
∣∣Ψ>i (θ − θ∗)

∣∣/2 implies

VarL(θ,θ∗) ≤ 1

2
max
i
|Ψ>i (θ − θ∗)|

∑
IE|ξi(θ,θ∗)|.

This easily yields that the sufficient condition (4.9) of Corollary 4.3 is fulfilled in this

situation if N from (5.20) is sufficiently large.

6 Deviation probability for quadratic forms

The approximation results of the previous sections rely on the probability of the form

IP
(
‖ξ‖ > y

)
for a given random vector ξ ∈ IRp . The only condition imposed on this

vector is that

log IE exp
(
γ>ξ

)
≤ ν20‖γ‖2/2, γ ∈ IRp, ‖γ‖ ≤ g.

To simplify the presentation we rewrite this condition as

log IE exp
(
γ>ξ

)
≤ ‖γ‖2/2, γ ∈ IRp, ‖γ‖ ≤ g. (6.1)
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The general case can be reduced to ν0 = 1 by rescaling ξ and g :

log IE exp
(
γ>ξ/ν0

)
≤ ‖γ‖2/2, γ ∈ IRp, ‖γ‖ ≤ ν0g

that is, ν−10 ξ fulfills (6.1) with a slightly increased g . In typical situations like in

Section 5, the value g is large (of order root-n ) while the value ν0 is close to one.

6.1 Gaussian case

Our benchmark will be a deviation bound for ‖ξ‖2 for a standard Gaussian vector ξ .

The ultimate goal is to show that under (6.1) the norm of the vector ξ exhibits behavior

expected for a Gaussian vector, at least in the region of moderate deviations. For the

reason of comparison, we begin by stating the result for a Gaussian vector ξ .

Theorem 6.1. Let ξ be a standard normal vector in IRp . Then for any u > 0 , it holds

IP
(
‖ξ‖2 > p+ u

)
≤ exp

{
−(p/2)φ(u/p)

]}
with

φ(t)
def
= t− log(1 + t).

Let φ−1(·) stand for the inverse of φ(·) . For any x ,

IP
(
‖ξ‖2 > p+ φ−1(2x/p)

)
≤ exp(−x).

This particularly yields with κ = 6.6

IP
(
‖ξ‖2 > p+

√
κxp ∨ (κx)

)
≤ exp(−x).

Proof. The proof utilizes the following well known fact: for µ < 1

log IE exp
(
µ‖ξ‖2/2

)
= −0.5p log(1− µ).

It can be obtained by straightforward calculus. Now consider any u > 0 . By the

exponential Chebyshev inequality

IP
(
‖ξ‖2 > p+ u

)
≤ exp

{
−µ(p+ u)/2

}
IE exp

(
µ‖ξ‖2/2

)
(6.2)

= exp
{
−µ(p+ u)/2− (p/2) log(1− µ)

}
.

It is easy to see that the value µ = u/(u+ p) maximizes µ(p+ u) + p log(1− µ) w.r.t.

µ yielding

µ(p+ u)− p log(1− µ) = u− p log(1 + u/p).
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Further we use that x− log(1+x) ≥ a0x2 for x ≤ 1 and x− log(1+x) ≥ a0x for x > 1

with a0 = 1 − log(2) ≥ 0.3 . This implies with x = u/p for u =
√κxp or u = κx and

κ = 2/a0 < 6.6 that

IP
(
‖ξ‖2 ≥ p+

√
κxp ∨ (κx)

)
≤ exp(−x)

as required.

The message of this result is that the squared norm of the Gaussian vector ξ con-

centrates around the value p and the deviation over the level p+
√
xp are exponentially

small in x .

A similar bound can be obtained for a norm of the vector IBξ where IB is some

given matrix. For notational simplicity we assume that IB is symmetric. Otherwise one

should replace it with (IB>A)1/2 .

Theorem 6.2. Let ξ be standard normal in IRp . Then for every x > 0 and any

symmetric matrix IB , it holds with p = tr(IB2) , v2 = 2 tr(IB4) , and a∗ = ‖IB2‖∞

IP
(
‖IBξ‖2 > p + (2vx1/2) ∨ (6a∗x)

)
≤ exp(−x).

Proof. The matrix IB2 can be represented as U> diag(a1, . . . , ap)U for an orthogonal

matrix U . The vector ξ̃ = Uξ is also standard normal and ‖IBξ‖2 = ξ̃
>
UIB2U>ξ̃ .

This means that one can reduce the situation to the case of a diagonal matrix IB2 =

diag(a1, . . . , ap) . We can also assume without loss of generality that a1 ≥ a2 ≥ . . . ≥ ap .

The expressions for the quantities p and v2 simplifies to

p = tr(IB2) = a1 + . . .+ ap,

v2 = 2 tr(IB4) = 2(a21 + . . .+ a2p).

Moreover, rescaling the matrix IB2 by a1 reduces the situation to the case with a1 = 1 .

Lemma 6.3. It holds

IE‖IBξ‖2 = tr(IB2), Var
(
‖IBξ‖2

)
= 2 tr(IB4).

Moreover, for µ < 1

IE exp
{
µ‖IBξ‖2/2

}
= det(1− µIB2)−1/2 =

p∏
i=1

(1− µai)−1/2. (6.3)
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Proof. If IB2 is diagonal, then ‖IBξ‖2 =
∑

i aiξ
2
i and the summands aiξ

2
i are indepen-

dent. It remains to note that IE(aiξ
2
i ) = ai , Var(aiξ

2
i ) = 2a2i , and for µai < 1 ,

IE exp
{
µaiξ

2
i /2
}

= (1− µai)−1/2

yielding (6.3).

Given u , fix µ < 1 . The exponential Markov inequality yields

IP
(
‖IBξ‖2 > p + u

)
≤ exp

{
−µ(p + u)

2

}
IE exp

(µ‖IBξ‖2
2

)
≤ exp

{
−µu

2
− 1

2

p∑
i=1

[
µai + log

(
1− µai

)]}
.

We start with the case when x1/2 ≤ v/3 . Then u = 2x1/2v fulfills u ≤ 2v2/3 . Define

µ = u/v2 ≤ 2/3 and use that t+ log(1− t) ≥ −t2 for t ≤ 2/3 . This implies

IP
(
‖IBξ‖2 > p + u

)
≤ exp

{
−µu

2
+

1

2

p∑
i=1

µ2a2i

}
= exp

(
−u2/(4v2)

)
= e−x. (6.4)

Next, let x1/2 > v/3 . Set µ = 2/3 . It holds similarly to the above∑
I1

[
µai + log

(
1− µai

)]
≥ −

∑
I1

µ2a2i ≥ −2v2/9 ≥ −2x.

Now, for u = 6x and µu/2 = 2x , (6.4) implies

IP
(
‖IBξ‖2 > p + u

)
≤ exp

{
−
(
2x− x

)}
= exp(−x)

as required.

Below we establish similar bounds for a non-Gaussian vector ξ obeying (6.1).

6.2 A bound for the `2 -norm

This section presents a general exponential bound for the probability IP
(
‖ξ‖ > y

)
under

(6.1). Define the value

xc = 0.5
[
g2 − p log

(
1 + g2/p

)]
. (6.5)

Theorem 6.4. Let ξ ∈ IRp fulfill (6.1). Then it holds for each x ≤ xc

IP
(
‖ξ‖2 > p+

√
κxp ∨ (κx), ‖ξ‖2 ≤ p+ g2

)
≤ 2 exp(−x),
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where κ = 6.6 . Moreover, for y2 ≥ y2c
def
= p+ g2 , it holds with gc = g2(p+ g2)−1/2

IP
(
‖ξ‖2 > y2

)
≤ 8.4 exp

{
−gcy/2− (p/2) log(1− gc/y)

}
≤ 8.4 exp

{
−xc − gc(y− yc)/2

}
.

Proof. The main step of the proof is the following exponential bound.

Lemma 6.5. Suppose (6.1). For any µ < 1 with g2 > pµ , it holds

IE exp
(µ‖ξ‖2

2

)
1I
(
‖ξ‖2 ≤ g2

µ2
− p

µ

)
≤ 2(1− µ)−p/2. (6.6)

Proof. Let ε be a standard normal vector in IRp and u ∈ IRp . Given r > 0 , define

m(u, r) = IP
(
‖ε− u‖ ≤ r

)
. This value can be rewritten as

m(u, r) = IP
(
‖ε− u‖2 ≤ r2

)
= IP

(
‖ε‖2 − IE‖ε‖2 − 2u>ε ≤ r2 − ‖u‖2 − IE‖ε‖2

)
,

and m(u, r) ≥ 1/2 for r2 ≥ ‖u‖2 + IE‖ε‖2 = ‖u‖2 + p . Let us fix some ξ with

µ‖ξ‖2 ≤ g2/µ− p and denote by IPξ the conditional probability given ξ . It holds with

cp = (2π)−p/2

cp

∫
exp
(
γ>ξ − ‖γ‖

2

2µ

)
1I(‖γ‖ ≤ g)dγ

= cp exp
(
µ‖ξ‖2/2

) ∫
exp
(
−1

2

∥∥µ−1/2γ − µ1/2ξ∥∥2) 1I(µ−1‖γ‖2 ≤ µ−1g2)dγ

= µp/2 exp
(
µ‖ξ‖2/2

)
IPξ
(
‖ε+ µ1/2ξ‖2 ≤ µ−1g2

)
≥ 0.5µp/2 exp

(
µ‖ξ‖2/2

)
,

because ‖µ1/2ξ‖2 + p ≤ µ−1g2 . This implies in view of p < g2/µ that

exp
(
µ‖ξ‖2/2

)
1I
(
‖ξ‖2 ≤ g2/µ2 − p/µ

)
≤ 2µ−p/2cp

∫
exp
(
γ>ξ − ‖γ‖

2

2µ

)
1I(‖γ‖ ≤ g)dγ.

Further, by (6.1)

cpIE

∫
exp
(
γ>ξ − 1

2µ
‖γ‖2

)
1I(‖γ‖ ≤ g)dγ

≤ cp

∫
exp
(
−µ
−1 − 1

2
‖γ‖2

)
1I(‖γ‖ ≤ g)dγ

≤ cp

∫
exp
(
−µ
−1 − 1

2
‖γ‖2

)
dγ

≤ (µ−1 − 1)−p/2
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and (6.6) follows.

Due to this result, the scaled squared norm µ‖ξ‖2/2 after a proper truncation pos-

sesses the same exponential moments as in the Gaussian case. A straightforward impli-

cation is the probability bound IP
(
‖ξ‖2 > p+ u

)
for moderate values u . Namely, given

u > 0 , define µ = u/(u+ p) . This value optimizes the inequality (6.2) in the Gaussian

case. Now we can apply a similar bound under the constraints ‖ξ‖2 ≤ g2/µ2 − p/µ .

Therefore, the bound is only meaningful if p + u ≤ g2/µ2 − p/µ with µ = u/(u + p) .

One can check that the largest value u for which this constraint is still valid, is given by

u = g2 . Hence, (6.6) yields for u ≤ g2

IP
(
‖ξ‖2 > p+ u, ‖ξ‖2 ≤ p+ g2

)
≤ exp

{
−µ(p+ u)

2

}
IE exp

(µ‖ξ‖2
2

)
1I
(
‖ξ‖2 ≤ g2

µ2
− p

µ

)
≤ 2 exp

{
−0.5

[
µ(p+ u) + p log(1− µ)

]}
= 2 exp

{
−0.5

[
u− p log(1 + u/p)

]}
.

Similarly to the Gaussian case, this implies with κ = 6.6 that

IP
(
‖ξ‖2 ≥ p+

√
κxp ∨ (κx), ‖ξ‖2 ≤ p+ g2

)
≤ 2 exp(−x).

The Gaussian case yields (6.1) with g = ∞ and the result is done. In the non-

Gaussian case with a finite g , we have to accompany the moderate deviation bound

with a large deviation bound IP
(
‖ξ‖ > y

)
for y2 ≥ p + g2 . This is done by combining

the bound (6.6) with the standard slicing arguments.

Lemma 6.6. Let µ0 ≤ g2/p . Define y20 = g2/µ20 − p/µ0 and g20 = g2 − µ0p . It holds

for y ≥ y0

IP
(
‖ξ‖ > y

)
≤ 8.4(1− g0/y)−p/2 exp

(
−g0y/2

)
(6.7)

≤ 8.4 exp
{
−x0 − g0(y− y0)/2

}
. (6.8)

with x0 defined by

2x0 = µ0y
2
0 + p log(1− µ0) = g2/µ0 − p+ p log(1− µ0).

Proof. Consider the growing sequence yk with y1 = y and g0yk+1 = g0y + k . Define

also µk = g0/yk . In particular, µk ≤ µ1 = g0/y . Obviously

IP
(
‖ξ‖ > y

)
=

∞∑
k=1

IP
(
‖ξ‖ > yk, ‖ξ‖ ≤ yk+1

)
.
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Now we try to evaluate every slicing probability in this expression. We use that

µk+1y
2
k =

(g0y + k − 1)2

g0y + k
≥ g0y + k − 2,

and also g2/µ2k − p/µk ≥ y2k because y ≥ y0 and

g2/µ2k − p/µk − y2k = µ−2k (g2 − µkp− g20) ≥ µ−2k (g2 − g0p/y− g20) ≥ 0.

Hence by (6.6)

IP
(
‖ξ‖ > y

)
≤
∞∑
k=1

IP
(
‖ξ‖ > yk, ‖ξ‖ ≤ yk+1

)

≤
∞∑
k=1

exp
(
−
µk+1y

2
k

2

)
IE exp

(µk+1‖ξ‖2

2

)
1I
(
‖ξ‖2 ≤ y2k+1

)
≤
∞∑
k=1

2
(
1− µk+1

)−p/2
exp
(
−
µk+1y

2
k

2

)

≤ 2
(
1− µ1

)−p/2 ∞∑
k=1

exp
(
−g0y + k − 2

2

)
= 2e1/2(1− e−1/2)−1(1− µ1)−p/2 exp

(
−g0y/2

)
≤ 8.4(1− µ1)−p/2 exp

(
−g0y/2

)
and the first assertion follows. For y = y0 , it holds

g0y0 + p log(1− µ0) = µ0y
2
0 + p log(1− µ0) = 2x0

and (6.7) implies IP
(
‖ξ‖ > y0

)
≤ 8.4 exp(−x0) . Now observe that the function f(y) =

g0y/2 + (p/2) log
(
1 − g0/y

)
fulfills f(y0) = x0 and f ′(y) ≥ g0/2 yielding f(y) ≥

x0 + g0(y− y0)/2 . This implies (6.8).

The statements of the theorem are obtained by applying the lemmas with µ0 = µc =

g2/(p + g2) . This also implies y2c = p + g2 , gcyc = g2 , 1 − µc = p/(p + g2) , and xc

from (6.5).

The statements of Theorem 6.8 can be represented in the form:

Corollary 6.7. Let ξ fulfill (6.1). Then it holds for x ≤ xc = 0.5
[
g2−p log

(
1 +g2/p

)]
:

IP
(
‖ξ‖2 ≥ z(x, p)

)
≤ 2e−x + 8.4e−xc , (6.9)

z(x, p)
def
=

p+
√κxp, x ≤ p/κ,

p+ κx p/κ < x ≤ xc.
(6.10)
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For x > xc

IP
(
‖ξ‖2 ≥ zc(x, p)

)
≤ 8.4e−x, zc(x, p)

def
=
∣∣yc + 2(x− xc)/gc

∣∣2.
This result implicitly assumes that p ≤ κxc which is fulfilled if u0 = g2/p ≥ 1 :

κxc = 0.5κ
[
u0 − log(1 + u0)

]
p ≥ 3.3

[
1− log(2)

]
p > p.

In the zone x ≤ p/κ we obtain sub-Gaussian behavior of the tail of ‖ξ‖2 − p , in the

zone p/κ < x ≤ xc it becomes sub-exponential. Note that the sub-exponential zone is

empty if g2 < p .

For x ≤ xc , the function z(x, p) mimics the quantile behavior of the chi-squared

distribution χ2
p with p degrees of freedom. Moreover, increase the dimension p yields

growth of the sub-Gaussian zone.

Finally, in the large deviation zone x > xc the deviation probability decays as e−cx
1/2

for some fixed c . However, if the constant g in the condition (6.1) is sufficiently large

relative to p , then xc is large as well and the large deviation zone x > xc can be ignored

at a small price of 8.4e−xc and one can focus on the deviation bound described by (6.9)

and (6.10).

6.3 A bound for a quadratic form

Now we extend the result to more general bound for ‖IBξ‖2 = ξ>IB2ξ with a given

matrix IB and a vector ξ obeying the condition (6.1). Similarly to the Gaussian case

we assume that IB is symmetric. Define important characteristics of IB

p = tr(IB2), v2 = 2 tr(IB4), λ∗
def
= ‖IB2‖∞

def
= λmax(IB2).

For simplicity of formulation we suppose that λ∗ = 1 , otherwise one has to replace p

and v2 with p/λ∗ and v2/λ∗ .

Let g be shown in (6.1). Define similarly to the `2 -case µc = g2/(p + g2) . Further

define the values yc, gc , and xc by

y2c
def
= g2/µ2c − p/µc,

gc
def
= µcyc =

√
g2 − µcp,

2xc
def
= gcyc + log det

(
IIp − µcIB2

)
. (6.11)

Theorem 6.8. Let a random vector ξ in IRp fulfill (6.1). Then for each x < xc

IP
(
‖IBξ‖2 > p + (2vx1/2) ∨ (acx), ‖IBξ‖2 ≤ y2c

)
≤ 2 exp(−x)
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with ac
def
= 6 ∨ (4µ−1c ) . Moreover, for y ≥ yc , it holds

IP
(
‖IBξ‖2 > y2

)
≤ 8.4 exp

(
−xc − gc(y− yc)/2

)
.

Proof. The main steps of the proof are similar to the proof of Theorem 6.4.

Lemma 6.9. Suppose (6.1). For any µ < 1 with g2/µ ≥ p , it holds

IE exp
(
µ‖IBξ‖2/2

)
1I
(
‖IB2ξ‖2 ≤ g2/µ2 − p/µ

)
≤ 2det(IIp − µIB2)−1/2. (6.12)

Proof. With cp(IB) =
(
2π
)−p/2

det(IB−1)

cp(IB)

∫
exp
(
γ>ξ − 1

2µ
‖IB−1γ‖2

)
1I(‖γ‖ ≤ g)dγ

= cp(IB) exp
(µ‖IBξ‖2

2

)∫
exp
(
−1

2

∥∥µ1/2IBξ − µ−1/2IB−1γ∥∥2) 1I(‖γ‖ ≤ g)dγ

= µp/2 exp
(µ‖IBξ‖2

2

)
IPξ
(
‖IBε− µ1/2IB2ξ‖ ≤ gµ−1/2

)
,

where ε denotes a standard normal vector in IRp and IPξ means the conditional ex-

pectation given ξ . Moreover, for any u ∈ IRp and r ≥ p + ‖u‖2 , it holds in view of

IE‖IBε‖2 = p

IP
(
‖IBε− u‖ ≤ r

)
= IP

(
‖IBε‖2 − p− 2u>IBε ≤ r2 − ‖u‖2 − p

)
≥ IP

(
‖IBε‖2 − IE‖IBε‖2 − 2u>IBε ≤ 0

)
≥ 1/2.

This implies

exp
(
µ‖IBξ‖2/2

)
1I
(
‖IB2ξ‖2 ≤ g2/µ2 − p/µ

)
≤ 2µ−p/2cp(IB)

∫
exp
(
γ>ξ − 1

2µ
‖IB−1γ‖2

)
1I(‖γ‖ ≤ g)dγ.

Further, by (6.1)

cp(IB)IE

∫
exp
(
γ>ξ − 1

2µ
‖IB−1γ‖2

)
1I(‖γ‖ ≤ g)dγ

≤ cp(IB)

∫
exp
(‖γ‖2

2
− 1

2µ
‖IB−1γ‖2

)
dγ

≤ det(IB−1) det(µ−1IB−2 − IIp)−1/2 = µp/2 det(IIp − µIB2)−1/2

and (6.12) follows.

Now we evaluate the probability IP
(
‖IBξ‖ > y

)
for moderate values of y .
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Lemma 6.10. Let µ0 < 1 ∧ (g2/p) . With y20 = g2/µ20 − p/µ0 , it holds for any u > 0

IP
(
‖IBξ‖2 > p + u, ‖IB2ξ‖ ≤ y0

)
≤ 2 exp

{
−0.5µ0(p + u)− 0.5 log det(IIp − µ0IB2)

}
. (6.13)

In particular, if IB2 is diagonal, that is, IB2 = diag
(
a1, . . . , ap

)
, then

IP
(
‖IBξ‖2 > p + u, ‖IB2ξ‖ ≤ y0

)
≤ 2 exp

{
−µ0u

2
− 1

2

p∑
i=1

[
µ0ai + log

(
1− µ0ai

)]}
. (6.14)

Proof. The exponential Chebyshev inequality and (6.12) imply

IP
(
‖IBξ‖2 > p + u, ‖IB2ξ‖ ≤ y0

)
≤ exp

{
−µ0(p + u)

2

}
IE exp

(µ0‖IBξ‖2
2

)
1I
(
‖IB2ξ‖2 ≤ g2

µ20
− p

µ0

)
≤ 2 exp

{
−0.5µ0(p + u)− 0.5 log det(IIp − µ0IB2)

}
.

Moreover, the standard change-of-basis arguments allow us to reduce the problem to the

case of a diagonal matrix IB2 = diag
(
a1, . . . , ap

)
where 1 = a1 ≥ a2 ≥ . . . ≥ ap > 0 .

Note that p = a1 + . . .+ap . Then the claim (6.13) can be written in the form (6.14).

Now we evaluate a large deviation probability that ‖IBξ‖ > y for a large y . Note

that the condition ‖IB2‖∞ ≤ 1 implies ‖IB2ξ‖ ≤ ‖IBξ‖ . So, the bound (6.13) continues

to hold when ‖IB2ξ‖ ≤ y0 is replaced by ‖IBξ‖ ≤ y0 .

Lemma 6.11. Let µ0 < 1 and µ0p < g2 . Define g0 by g20 = g2 − µ0p . For any

y ≥ y0
def
= g0/µ0 , it holds

IP
(
‖IBξ‖ > y

)
≤ 8.4 det{IIp − (g0/y)IB2}−1/2 exp

(
−g0y/2

)
.

≤ 8.4 exp
(
−x0 − g0(y− y0)/2

)
, (6.15)

where x0 is defined by

2x0 = g0y0 + log det{IIp − (g0/y0)IB
2}.

Proof. The slicing arguments of Lemma 6.6 apply here in the same manner. One has

to replace ‖ξ‖ by ‖IBξ‖ and (1 − µ1)−p/2 by det{IIp − (g0/y)IB2}−1/2 . We omit the

details. In particular, with y = y0 = g0/µ , this yields

IP
(
‖IBξ‖ > y0

)
≤ 8.4 exp(−x0).
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Moreover, for the function f(y) = g0y + log det{IIp − (g0/y)IB2} , it holds f ′(y) ≥ g0

and hence, f(y) ≥ f(y0) + g0(y− y0) for y > y0 . This implies (6.15).

One important feature of the results of Lemma 6.10 and Lemma 6.11 is that the

value µ0 < 1∧ (g2/p) can be selected arbitrarily. In particular, for y ≥ yc , Lemma 6.11

with µ0 = µc yields the large deviation probability IP
(
‖IBξ‖ > y

)
. For bounding the

probability IP
(
‖IBξ‖2 > p + u, ‖IBξ‖ ≤ yc

)
, we use the inequality log(1− t) ≥ −t− t2

for t ≤ 2/3 . It implies for µ ≤ 2/3 that

− log IP
(
‖IBξ‖2 > p + u, ‖IBξ‖ ≤ yc

)
≥ µ(p + u) +

p∑
i=1

log
(
1− µai

)
≥ µ(p + u)−

p∑
i=1

(µai + µ2a2i ) ≥ µu− µ2v2/2. (6.16)

Now we distinguish between µc ≥ 2/3 and µc < 2/3 starting with µc ≥ 2/3 . The

bound (6.16) with µ0 = (u/v2) ∧ (2/3) ≤ µc and with u = (2vx1/2) ∨ (6x) yields

IP
(
‖IBξ‖2 > p + u, ‖IBξ‖ ≤ yc

)
≤ 2 exp(−x);

see the proof of Theorem 6.2 for the Gaussian case.

Now consider µc < 2/3 . For x1/2 ≤ µcv/2 , use u = 2vx1/2 and µ0 = u/v2 . It

holds µ0 = u/v2 ≤ µc and u2/(4v2) = x yielding the desired bound by (6.16). For

x1/2 > µcv/2 , we select again µ0 = µc . It holds with u = 4µ−1c x that µcu/2−µ2cv2/4 ≥
2x− x = x . This completes the proof.

Now we describe the value z(x, IB) ensuring a small value for the large deviation

probability IP
(
‖IBξ‖2 > z(x, IB)

)
. For ease of formulation, we suppose that g2 ≥ 2p

yielding µ−1c ≤ 3/2 . The other case can be easily adjusted.

Corollary 6.12. Let ξ fulfill (6.1) with g2 ≥ 2p . Then it holds for x ≤ xc with xc

from (6.11):

IP
(
‖IBξ‖2 ≥ z(x, IB)

)
≤ 2e−x + 8.4e−xc ,

z(x, IB)
def
=

p +
√

2xv, x ≤ v/18,

p + 6x v/18 < x ≤ xc.
(6.17)

For x > xc

IP
(
‖IBξ‖2 ≥ zc(x, IB)

)
≤ 8.4e−x, zc(x, IB)

def
=
∣∣yc + 2(x− xc)/gc

∣∣2.
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6.4 Rescaling and regularity condition

The result of Theorem 6.8 can be extended to a more general situation when the condition

(6.1) is fulfilled for a vector ζ rescaled by a matrix V0 . More precisely, let the random

p -vector ζ fulfills for some p× p matrix V0 the condition

sup
γ∈IRp

log IE exp

{
λ
γ>ζ

‖V0γ‖

}
≤ ν20λ2/2, |λ| ≤ g, (6.18)

with some constants g > 0 , ν0 ≥ 1 . Again, a simple change of variables reduces the case

of an arbitrary ν0 ≥ 1 to ν0 = 1 . Our aim is to bound the squared norm ‖D−10 ζ‖2 of a

vector D−10 ζ for another p×p positive symmetric matrix D2
0 . Note that condition (6.18)

implies (6.1) for the rescaled vector ξ = V −10 ζ . This leads to bounding the quadratic

form ‖D−10 V0ξ‖2 = ‖IBξ‖2 with IB2 = D−10 V 2
0 D
−1
0 . It obviously holds

p = tr(IB2) = tr(D−20 V 2
0 ).

Now we can apply the result of Corollary 6.12.

Corollary 6.13. Let ζ fulfill (6.18) with some V0 and g . Given D0 , define IB2 =

D−10 V 2
0 D
−1
0 , and let g2 ≥ 2p . Then it holds for x ≤ xc with xc from (6.11):

IP
(
‖D−10 ζ‖2 ≥ z(x, IB)

)
≤ 2e−x + 8.4e−xc ,

with z(x, IB) from (6.17). For x > xc

IP
(
‖D−10 ζ‖2 ≥ zc(x, IB)

)
≤ 8.4e−x, zc(x, IB)

def
=
∣∣yc + 2(x− xc)/gc

∣∣2.
Finally we briefly discuss the regular case with D0 ≥ aV0 for some a > 0 . This

implies ‖IB‖∞ ≤ a−1 and

v2 = 2 tr(IB4) ≤ 2a−2p.

This together with g2 ≥ 2p yields

y2c
def
= g2/µ2c − p/µc ≥ p/µ2c ,

gc
def
= µcyc ≥

√
p,

2xc
def
= gcyc + log det

(
IIp − µcIB2

)
.
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7 Some results for empirical processes

This chapter presents some general results of the theory of empirical processes. Under the

global conditions from Section 2 one can apply the well developed chaining arguments in

Orlic spaces; see e.g. van der Vaart and Wellner (1996), Chapter ???. We follow the more

recent approach inspired by the notions of generic chaining and majorizing measures due

to M. Talagrand. The chaining arguments are replaced by the pilling device; see e.g.

Talagrand (1996, 2001, 2005). The results are close to that of Bednorz (2006). We state

the results in a slightly different form and present an independent and self-containing

proof.

The first result states a bound for local fluctuations of the process U(υ) given on

a metric space Υ . Then this result will be used for bounding the maximum of the

negatively drifted process U(υ)−U(υ0)−ρd2(υ,υ0) over a vicinity Υ◦(r) of the central

point υ0 . The behavior of U(υ) outside of the local central set Υ◦(r) is described using

the upper function method. Namely, we construct a multiscale deterministic function

u(µ,υ) ensuring that with probability at least 1− e−x it holds µU(υ) + u(µ,υ) ≤ z(x)

for all υ 6∈ Υ◦(r) and µ ∈M , where z(x) grows linearly in x .

7.1 A bound for local fluctuations

An important step in the whole construction is an exponential bound on the maximum

of a random process U(υ) under the exponential moment conditions on its increments.

Let d(υ,υ′) be a semi-distance on Υ . We suppose the following condition to hold:

(Ed) There exist g > 0 , r1 > 0 , ν0 ≥ 1 , such that for any λ ≤ g and υ,υ′ ∈ Υ with

d(υ,υ′) ≤ r1

log IE exp

{
λ
U(υ)− U(υ′)

d(υ,υ′)

}
≤ ν20λ2/2.

Formulation of the result involves a sigma-finite measure π on the space Υ which

is often called the majorizing measure and used in the generic chaining device; see

Talagrand (2005). A typical example of choosing π is the Lebesgue measure on IRp .

Let Υ ◦ be a subset of Υ , a sequence rk be fixed with r0 = diam(Υ ◦) and rk = r02
−k .

Let also Bk(υ)
def
= {υ′ ∈ Υ ◦ : d(υ,υ′) ≤ rk} be the d -ball centered at υ of radius rk

and πk(υ) denote its π -measure:

πk(υ)
def
=

∫
Bk(υ)

π(dυ′) =

∫
Υ ◦

1I
(
d(υ,υ′) ≤ rk

)
π(dυ′).
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Denote also

Mk
def
= max

υ∈Υ ◦
π(Υ ◦)

πk(υ)
k ≥ 1. (7.1)

Finally set c1 = 1/3 , ck = 2−k+2/3 for k ≥ 2 , and define the value Q(Υ ◦) by

Q(Υ ◦)
def
=

∞∑
k=1

ck log(2Mk) =
1

3
log(2M1) +

4

3

∞∑
k=2

2−k log(2Mk).

Theorem 7.1. Suppose (Ed) . If Υ ◦ is a central set with the center υ◦ and the radius

r1 , i.e. d(υ,υ◦) ≤ r1 for all υ ∈ Υ ◦ , then for λ ≤ g0
def
= ν0g

log IE exp
{ λ

3ν0r1
sup
υ∈Υ ◦

∣∣U(υ)− U(υ◦)
∣∣} ≤ λ2/2 + Q(Υ ◦). (7.2)

Proof. A simple change U(·) with ν−10 U(·) and g with g0 = ν0g allows for reducing

the result to the case with ν0 = 1 which we assume below. Consider for k ≥ 1 the

smoothing operator Sk defined as

Skf(υ◦) =
1

πk(υ◦)

∫
Bk(υ◦)

f(υ)π(dυ).

Further, define

S0U(υ) ≡ U(υ◦)

so that S0U is a constant function and the same holds for SkSk−1 . . . S0U with any

k ≥ 1 . If f(·) ≤ g(·) for two non-negative functions f and g , then Skf(·) ≤ Skg(·) .

Separability of the process U implies that limk SkU(υ) = U(υ) . We conclude that for

each υ ∈ Υ ◦

∣∣U(υ)− U(υ◦)
∣∣ = lim

k→∞

∣∣SkU(υ)− Sk . . . S0U(υ)
∣∣

≤ lim
k→∞

k∑
i=1

∣∣Sk . . . Si(I − Si−1)U(υ)
∣∣ ≤ ∞∑

i=1

ξ∗k .

Here ξ∗k
def
= supυ∈Υ ◦ ξk(υ) for k ≥ 1 with

ξ1(υ) ≡ |S1U(υ)− U(υ◦)|, ξ∗k
def
= |Sk(I − Sk−1)U(υ)|, k ≥ 2

For a fixed point υ] , it holds

ξk(υ
]) ≤ 1

πk(υ])

∫
Bk(υ])

1

πk−1(υ)

∫
Bk−1(υ)

∣∣U(υ)− U(υ′)
∣∣π(dυ′)π(dυ).
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For each υ′ ∈ Bk−1(υ) , it holds d(υ,υ′) ≤ rk−1 = 2rk and

∣∣U(υ)− U(υ′)
∣∣ ≤ rk−1

∣∣U(υ)− U(υ′)
∣∣

d(υ,υ′)
.

This implies for each υ] ∈ Υ ◦ and k ≥ 2 by the Jensen inequality and (7.1)

exp
{ λ

rk−1
ξk(υ

])
}
≤
∫
Bk(υ])

(∫
Bk−1(υ)

exp
λ
∣∣U(υ)− U(υ′)

∣∣
d(υ,υ′)

π(dυ′)

πk−1(υ)

)
π(dυ)

πk(υ])

≤ Mk

∫
Υ ◦

(∫
Bk−1(υ)

exp
λ
∣∣U(υ)− U(υ′)

∣∣
d(υ,υ′)

π(dυ′)

πk−1(υ)

)
π(dυ)

π(Υ ◦)
.

As the right hand-side does not depend on υ] , this yields for ξ∗k
def
= supυ∈Υ ◦ ξk(υ) by

condition (Ed) in view of e|x| ≤ ex + e−x

IE exp
( λ

rk−1
ξ∗k

)
≤ Mk

∫
Υ ◦

(∫
Bk−1(υ)

IE exp
λ
∣∣U(υ)− U(υ′)

∣∣
d(υ,υ′)

π(dυ′)

πk−1(υ)

)
π(dυ)

π(Υ ◦)

≤ 2Mk exp(λ2/2)

∫
Υ ◦

(∫
Bk−1(υ)

π(dυ′)

πk−1(υ)

)
π(dυ)

π(Υ ◦)

= 2Mk exp(λ2/2).

Further, the use of d(υ,υ◦) ≤ r1 for all υ ∈ Υ ◦ yields by (Ed)

IE exp
{ λ
r1
|U(υ)− U(υ◦)|

}
≤ 2 exp

(
λ2/2

)
(7.3)

and thus

IE exp
{ λ
r1
|S1U(υ)− U(υ◦)|

}
≤ 1

π1(υ)

∫
B1(υ)

IE exp
{ λ
r1
|U(υ′)− U(υ◦)|

}
π(dυ′)

≤ M1

π(Υ ◦)

∫
Υ ◦
IE exp

{ λ
r1
|U(υ′)− U(υ◦)|

}
π(dυ′).

This implies by (7.3) for ξ∗1 ≡ supυ∈Υ ◦ |S1U(υ)− U(υ◦)|

IE exp
( λ
r1
ξ∗1

)
≤ 2M1 exp

(
λ2/2

)
.

Denote c1 = 1/3 and ck = rk−1/(3r1) = 2−k+2/3 for k ≥ 2 . Then
∑∞

k=1 ck = 1 and it

holds by the Hölder inequality; see Lemma 7.11 below:

log IE exp

(
λ

3r1

∞∑
k=1

ξ∗k

)
≤ c1 log IE exp

(
λ

r1
ξ∗k

)
+

∞∑
k=2

ck log IE exp

(
λ

rk−1
ξ∗k

)

≤ λ2/2 + c1 log(2M1) +

∞∑
k=2

ck log(2Mk)

< λ2/2 + Q(Υ ◦).



54 Parametric estimation. Finite sample theory

This implies the result.

7.2 A local central bound

Due to the result of Theorem 7.1, the bound for the maximum of U(υ,υ0) over υ ∈
Br(υ0) grows quadratically in r . So, its applications to situations with r2 � Q(Υ ◦)

are limited. The next result shows that introducing a negative quadratic drift helps

to state a uniform in r local probability bound. Namely, the bound for the process

U(υ,υ0) − ρd2(υ,υ0)/2 with some positive ρ over a ball Br(υ0) around the point

υ0 only depends on the drift coefficient ρ but not on r . Here the generic chaining

arguments are accomplished with the slicing technique. The idea is for a given r∗ > 1

to split the ball Br∗(υ0) into the slices Br+1(υ0) \Br(υ0) and to apply Theorem 7.1 to

each slice separately with a proper choice of the parameter λ .

Theorem 7.2. Let r∗ be such that (Ed) holds on Br∗(υ0) . Let also Q(Υ ◦) ≤ Q for

Υ ◦ = Br(υ0) with r ≤ r∗ . If ρ > 0 and z are fixed to ensure
√
ρz ≤ g0 = ν0g and

ρ(z− 1) ≥ 2 , then it holds

log IP

(
sup

υ∈Br∗ (υ0)

{
1

3ν0
U(υ,υ0)−

ρ

2
d2(υ,υ0)

}
> z

)
≤ −ρ(z− 1) + log(4z) + Q. (7.4)

Moreover, if
√
ρz > g0 , then

log IP

(
sup

υ∈Br∗ (υ0)

{
1

3ν0
U(υ,υ0)−

ρ

2
d2(υ,υ0)

}
> z

)
≤ −g0

√
ρ(z− 1) + g20/2 + log(4z) + Q. (7.5)

Remark 7.1. Formally the bound applies even with r∗ = ∞ provided that (Ed) is

fulfilled on the whole set Υ ◦ .

Proof. Denote

u(r)
def
=

1

3ν0r
sup

υ∈Br(υ0)

{
U(υ)− U(υ0)

}
.

Then we have to bound the probability

IP
(

sup
r≤r∗

{
r u(r)− ρr2/2

}
> z
)
.

For each r ≤ r∗ and λ ≤ g0 , it follows from (7.2) that

log IE exp
{
λu(r)

}
≤ λ2/2 + Q.
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The choice λ =
√
ρz is admissible in view of

√
ρz ≤ g0 . This implies by the exponential

Chebyshev inequality

log IP
(
r u(r)− ρr2/2 ≥ z

)
≤ −λ(z/r + ρr/2) + λ2/2 + Q

= −ρz(x+ x−1 − 1) + Q, (7.6)

where u =
√
ρ/(2z) r . We now apply the slicing arguments w.r.t. t = ρr2/2 = zx2 .

By definition, ru(r) increases in r . We use that for any growing function f(·) and any

t ≥ 0 , it holds

f(t)− t ≤
∫ t+1

t

{
f(s)− s+ 1

}
ds

Therefore, for any t > 0 , it holds by (7.6) in view of dt = 2zx dx

IP

(
sup
r≤r∗

{
r u(r)− ρr2/2

}
> z

)
≤
∫ t∗+1

0
IP
{
r u(r)− t ≥ z− 1

}
dt

≤ 2z

∫ t∗+1

0
exp
{
−ρ(z− 1)(x+ x−1 − 1) + Q

}
x dx

≤ 2ze−b+Q
∫ ∞
0

exp
{
−b(x+ x−1 − 2)

}
x dx

with b = ρ(z− 1) and t∗ = ρr∗2/2 . This implies for b ≥ 2

IP

(
sup
r≤r∗

{
r u(r)− ρr2/2

}
> z

)
≤ 2ze−b+Q

∫ ∞
0

exp
{
−2(x+ x−1 − 2)

}
x dx

≤ 4z exp{−ρ(z− 1) + Q}

and (7.4) follows.

If
√
ρz > g0 , then select λ = g0 . For r ≤ r∗

log IP
{
r u(r)− ρr2/2 ≥ z

}
= log IP

{
u(r) > z/r + ρr/2

}
≤ −λ(z/r + ρr/2) + λ2/2 + Q

≤ −λ
√
ρz(x+ x−1 − 2)/2− λ

√
ρz + λ2/2 + Q,

where u =
√
ρ/z r . This allows to bound in the same way as above

IP

(
sup
r≤r∗

{
r u(r)− ρr2/2

}
> z

)
≤ 4z exp

(
−λ
√
ρ(z− 1) + λ2/2 + Q

)
yielding (7.5).
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This result can be used for describing the concentration bound for the maximum of

(3ν0)
−1U(υ,υ0) − ρd2(υ,υ0)/2 . Namely, it suffices to find z ensuring the prescribed

deviation probability. We state the result for a special case with ρ = 1 and g0 ≥ 3

which simplifies the notation.

Corollary 7.3. Under the conditions of Theorem 7.2, it holds for x ≥ 0 with x+Q ≥ 4 :

IP

(
sup

υ∈Br∗ (υ0)

{ 1

3ν0
U(υ,υ0)−

1

2
d2(υ,υ0)

}
> z0(x,Q)

)
≤ exp

(
−x
)
,

where with g0 = ν0g ≥ 2

z0(x,Q)
def
=


(
1 +
√
x + Q

)2
if 1 +

√
x + Q ≤ g0,

1 +
(
1 + 2g−10

)2(
g−10 (x + Q) + g0/2

)2
otherwise.

(7.7)

Proof. In view of (7.4), it suffices to check that z =
(
1 +
√
x + Q

)2
ensures

z− 1− log(4z)−Q ≥ x.

This follows from the inequality

(1 + y)2 − 1− 2 log(2 + 2y) ≥ y2

with y =
√
x + Q ≥ 2 . Similarly z = 1 +

(
1 + 2g−10

)2
y2 for y = g−10 (x + Q) + g0/2

ensures

g0
√
z− 1− g20/2− log(4z)−Q ≥ x

in view of
√
z− 1 ≥ y(1 + 2g−10 ) , 4z ≤ (1 + 2y + 4g−10 y)2 , and

y− log(1 + 2y + 4g−10 y) ≥ 0

for y ≥ 2 and g0 ≥ 3 .

If g �
√
Q and x is not too big then z0(x,Q) is of order x + Q . So, the main

message of this result is that with a high probability the maximum of (3ν0)
−1U(υ,υ0)−

d2(υ,υ0)/2 does not significantly exceed the level Q .

7.3 A global upper function and concentration sets

The result of the previous section can be explained as a local upper function for the pro-

cess U(·) . Indeed, in a vicinity Br∗(υ0) of the central point υ0 , it holds (3ν0)
−1U(υ) ≤

d2(υ,υ0)/2 + z with a probability exponentially small in z . However, an extension of
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this result on the whole set Υ is only possible under some quite restrictive conditions.

This section presents one possible construction of an upper function for the process U(·)
on the complement of the local set Υ◦(r

∗) . For simplifying the notations assume that

U(υ0) ≡ 0 . Then U(υ,υ0) = U(υ) . We say that u(µ,υ) is a multiscale upper function

for µU(·) on a subset Υ ◦ of Υ if

IP
(

sup
µ∈M

sup
υ∈Υ ◦

{
µU(υ)− u(µ,υ)

}
≥ z(x)

)
≤ e−x,

for some fixed function z(x) . An upper function can be used for describing the concen-

tration sets of the point of maximum υ̃ = argmaxυ∈Υ ◦ U(υ) ; see Section 7.3.1 below.

For constructing such an upper function, the following condition is used which extends

condition (Ed) :

(E) For any υ ∈ Υ there exists µ ∈M such that

N(µ,υ)
def
= log IE exp

{
µU(υ)

}
<∞. (7.8)

This condition can be used for building a simple pointwise upper function for µU(υ) .

Indeed, (7.8) implies

IE exp
{
µU(υ)−N(µ,υ)

}
= 1. (7.9)

The next step is in extending this pointwise result to a uniform one. The standard

approach is based on the notion of a ε -net which is a discrete set Υ ◦ε providing that for

any point υ ∈ Υ , there exists a point υ◦ ∈ Υ ◦ε with d(υ,υ◦) ≤ ε . The upper function

is first constructed on this discrete set Υ ◦ε using (7.9) by increasing the pointwise bound

with logNε , where the covering number Nε is the cardinality of Υ ◦ε . Then it is extended

on the whole set Υ ◦ using stochastic continuity of the process U(·) .

We apply a slightly different construction usually called pilling. Let the value r1 be

fixed. Let also a measure π on Υ be fixed. By Bµ(υ) we denote the ball of radius

r1/µ at υ ∈ Υ , while πµ(υ) denotes its π -measure. In our results the value 1/πµ(υ)

replaces the covering number Nε with ε = r1/µ . Also define the constant ν1 describing

the local variability of π1(·) :

ν1
def
= sup

µ∈M
sup
υ◦∈Υ ◦

sup
υ∈Bµ(υ◦)

πµ(υ)

πµ(υ◦)
. (7.10)

For any fixed point υ◦ , the local maximum of the process µU over the ball Bµ(υ◦) can

be bounded by combining the pointwise result (7.9) and the result of Theorem 7.1 for

local fluctuations of the process µU within Bµ(υ◦) . To get a global bound over Υ ◦ ,

we introduce the so called penalty function tµ(υ) which accounts for the size of the set
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Υ ◦ . In the next result this function is allowed to be µ -dependent. However, in typical

situations, one can apply a universal function t(υ) ; cf. the smooth case in Section 7.4.

Remind the definition of the smoothing operator Sµ :

Sµf(υ◦) =
1

πµ(υ◦)

∫
Bµ(υ◦)

f(υ)π(dυ).

The next result suggests a construction of the upper function u(µ,υ) . The construction

involves a constant s which can be selected as the smallest value ensuring the bound

3ν0r1/s ≤ g ∧
√

2Q .

Theorem 7.4. Let the process U(·) fulfill (E) and (Ed) for all υ,υ′ ∈ Υ ◦ with

d(υ,υ′) ≤ r1 . If s is such that 3ν0r1/s ≤ g ∧
√

2Q , then it holds for any x > 0

IP
(

sup
µ∈M

sup
υ∈Υ ◦

{
µU(υ)− SµN(µ,υ)− (1 + s)Sµtµ(υ)

}
≥ z1(x)

)
≤ 2e−x, (7.11)

where z1(x) is a linear function in x :

z1(x)
def
= (1 + s)

{
x + log

(
ν1T
)}

+ 2sQ,

and

T
def
=
∑
µ∈M

∫
Υ ◦

exp
{
−tµ(υ)

}π(dυ)

πµ(υ)
. (7.12)

Proof. We bound µU(υ) in two steps: first we evaluate Sµ
[
µU(υ◦)−N(µ,υ◦)

]
and then

µ
[
U(υ◦)− SµU(υ◦)

]
. Convexity of the exp-function implies by the Jensen inequality

exp
{
Sµ
[
µU(υ◦)−N(µ,υ◦)− tµ(υ◦)

]}
≤ Sµ exp

{
µU(υ◦)−N(µ,υ◦)− tµ(υ◦)

}
≤
∫
Bµ(υ◦)

exp
{
µU(υ)−N(µ,υ)− tµ(υ)

} π(dυ)

πµ(υ◦)

≤ ν1

∫
Bµ(υ◦)

exp
{
µU(υ)−N(µ,υ)− tµ(υ)

}π(dυ)

πµ(υ)

≤ ν1

∫
Υ ◦

exp
{
µU(υ)−N(µ,υ)− tµ(υ)

}π(dυ)

πµ(υ)
.

As the right hand-side does not depend on υ◦ , the bound applies to the maximum of

this expression over υ◦ . This implies in view of IE exp
{
µU(υ)−N(µ,υ)

}
= 1

IE exp sup
υ∈Υ ◦

{
Sµ
[
µU(υ)−N(µ,υ)− tµ(υ)

]}
≤ ν1

∫
Υ ◦

exp
{
−tµ(υ)

}π(dυ)

πµ(υ)
.
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As the sup over µ ∈M is not larger than the sum of the exponential terms, it holds

IE exp sup
υ∈Υ ◦

sup
µ∈M

{
Sµ
[
µU(υ)−N(µ,υ)− tµ(υ)

]}
≤ ν1T.

This bound implies for each x > 0 with probability at least 1− e−x

Sµ
[
µU(υ)−N(µ,υ)− tµ(υ)

]
≤ x + log

(
ν1T
)
, υ ∈ Υ ◦. (7.13)

Now define

wµ(υ◦)
def
= sup

υ∈Bµ(υ◦)
µ
∣∣U(υ)− U(υ◦)

∣∣.
With λ

def
= (3ν0r1/s) ∧

√
2Q , it holds by Theorem 7.1 in view of λ2/2 ≤ Q

log IE exp
{
s−1wµ(υ)

}
≤ 2Q.

Then

exp
{
s−1µ

[
U(υ◦)− SµU(υ◦)

]
− Sµtµ(υ)

}
= exp

∫ {
s−1µ

[
U(υ◦)− U(υ)

]
− tµ(υ)

} π(dυ)

πµ(υ◦)

≤
∫
Bµ(υ◦)

exp
{
s−1wµ(υ)− tµ(υ)

} π(dυ)

πµ(υ◦)

≤ ν1

∫
Bµ(υ◦)

exp
{
s−1wµ(υ)− tµ(υ)

}π(dυ)

πµ(υ)

≤ ν1

∫
Υ ◦

exp
{
s−1wµ(υ)− tµ(υ)

}π(dυ)

πµ(υ)
.

As the right hand-side does not depend on υ◦ , the bound applies to the maximum of

this expression over υ◦ . This implies

IE exp sup
υ∈Υ ◦

sup
µ∈M

{
s−1µ

[
U(υ◦)− SµU(υ◦)

]
− Sµtµ(υ)

}
≤ ν1T exp(2Q).

This implies similarly to (7.13) with probability at least 1− e−x :

s−1µ
[
U(υ)− SµU(υ)

]
− Sµtµ(υ) ≤ x + 2Q + log

(
ν1T
)
, υ ∈ Υ ◦.

Combining these two bounds yields (7.11) with probability at least 1− 2e−x .

Remark 7.2. It is interesting to compare the uniform bound (7.11) of Theorem 7.4

and the pointwise bound (7.9): at which prise the pointwise result can be extended to

a global one. The proposed construction involves two additional terms. One of them is
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proportional to the local entropy Q and it comes from the local bound of Theorem 7.1

as the price for taking the local supremum. The second term is proportional to tµ(υ) +

log(T) with T from (7.12) and it is responsible for extending the local maximum into

the global one over Υ ◦ .

7.3.1 Hitting probability

Let M(υ) be a deterministic boundary function. We aim at bounding the probability

that a process U(υ) on Υ ◦ hits this boundary on the set Υ ◦ . This precisely means the

probability that supυ∈Υ ◦
{
U(υ) −M(υ)

}
≥ 0 . A particularly interesting problem is to

describe for each x > 0 the value z1(x) ensuring that

IP
(

sup
υ∈Υ ◦

{
U(υ)−M(υ)

}
≥ z1(x)

)
≤ e−x.

Let u(µ,υ) be the multiscale upper function for U(υ) :

IP
{

sup
µ∈M

sup
υ∈Υ ◦

[
µU(υ)− u(µ,υ)

]
≥ z1(x)

}
≤ 2e−x; (7.14)

cf. (7.11). Define

C(µ,υ)
def
= −u(µ,υ) + µM(υ),

µ∗(υ)
def
= argmax

µ∈M
C(µ,υ),

C∗(υ)
def
= max

µ∈M
C(µ,υ) = C(µ∗(υ),υ).

The studied hitting probability can be described via the value

g(Υ ◦)
def
= inf

υ∈Υ ◦
C∗(υ) = inf

υ∈Υ ◦
max
µ∈M

{
−u(µ,υ) + µM(υ)

}
.

The larger this value is, the smaller is the bound for the hitting probability. More

precisely, let a fixed x and the corresponding z1(x) in (7.14) be fixed. If for each

υ ∈ Υ ◦ , the inequality µM(υ) ≥ u(µ,υ) holds with a properly selected µ = µ(υ) , then

the hitting probability is bounded by 2e−x .

Theorem 7.5. Suppose (7.14). If g(Υ ◦) ≥ z1(x) , then

IP
(

sup
υ∈Υ ◦

{
U(υ)−M(υ)

}
≥ 0
)
≤ 2e−x.
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Proof. For each υ ∈ Υ ◦ , in view of C∗(υ) ≥ g(Υ ◦) , it holds

{
U(υ)−M(υ) ≥ 0

}
=
{
µ∗(υ)

[
U(υ)−M(υ)

]
≥ 0
}

⊆
{
µ∗(υ)

[
U(υ)−M(υ)

]
+ C∗(υ) ≥ g(Υ ◦)

}
=
{
µ∗(υ)U(υ)− u(µ∗(υ),υ) ≥ z1(x)

}
⊆
{

max
µ

[
µU(υ)− u(µ,υ)

]
≥ z1(x)

}
,

and the result follows from (7.14).

7.4 Finite-dimensional smooth case

Here we discuss the special case when Υ is an open subset in IRp , the stochastic pro-

cess U(υ) is absolutely continuous and its gradient ∇U(υ)
def
= dU(υ)/dυ has bounded

exponential moments.

(ED) There exist g > 0 , ν0 ≥ 1 , and for each υ ∈ Υ , a symmetric non-negative

matrix H(υ) such that for any λ ≤ g and any unit vector γ ∈ IRp , it holds

log IE exp
{
λ
γ>∇U(υ)

‖H(υ)γ‖

}
≤ ν20λ2/2.

A natural candidate for H2(υ) is the covariance matrix Var
(
∇U(υ)

)
provided that

this matrix is well posed. Then the constant ν0 can be taken close to one by reducing

the value g ; see Lemma 7.12 below.

In what follows we fix a subset Υ ◦ of Υ and establish a bound for the maximum of the

process U(υ,υ◦) = U(υ)−U(υ◦) on Υ ◦ for a fixed point υ◦ . We will assume existence

of a dominating matrix H∗ = H∗(Υ ◦) such that H(υ) � H∗ for all υ ∈ Υ ◦ . We also

assume that π is the Lebesgue measure on Υ . First we show that the differentiability

condition (ED) implies (Ed) .

Lemma 7.6. Assume that (ED) holds with some g and H(υ) � H∗ for υ ∈ Υ ◦ .

Consider any υ,υ◦ ∈ Υ ◦ . Then it holds for |λ| ≤ g

log IE exp

{
λ

U(υ,υ◦)

‖H∗(υ − υ◦)‖

}
≤ ν20λ

2

2
.

Proof. Denote δ = ‖υ − υ◦‖ , γ = (υ − υ◦)/δ . Then

U(υ,υ◦) = δγ>
∫ 1

0
∇U(υ◦ + tδγ)dt
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and ‖H∗(υ − υ◦)‖ = δ‖H∗γ‖ . Now the Hölder inequality and (ED) yield

IE exp

{
λ

U(υ,υ◦)

‖H∗(υ − υ◦)‖
− ν20λ

2

2

}
= IE exp

{∫ 1

0

[
λ
γ>∇U(υ◦ + tδγ)

‖H∗γ‖
− ν20λ

2

2

]
dt

}
≤
∫ 1

0
IE exp

{
λ
γ>∇U(υ◦ + tδγ)

‖H∗γ‖
− ν20λ

2

2

}
dt ≤ 1

as required.

The result of Lemma 7.6 enables us to define d(υ,υ′) = ‖H∗(υ − υ◦)‖ so that the

corresponding ball coincides with the ellipsoid B(r,υ◦) . Now we bound the value Q(Υ ◦)

for Υ ◦ = B(r1,υ
◦) .

Lemma 7.7. Let Υ ◦ = B(r1,υ
◦) . Under the conditions of Lemma 7.6, it holds Q(Υ ◦) ≤

c1p , where c1 = 2 for p ≥ 2 , and c1 = 2.4 for p = 1 .

Proof. The set Υ ◦ coincides with the ellipsoid B(r1,υ
◦) while the d -ball Bk(υ) coin-

cides with the ellipsoid B(rk,υ
◦) for each k ≥ 2 . By change of variables, the study can

be reduced to the case with υ◦ = 0 , H∗ ≡ IIp , r1 = 1 , so that B(r,υ) is the usual

Euclidean ball in IRp of radius r . It is obvious that the measure of the overlap of two

balls B(1, 0) and B(2−k+1,υ) for ‖υ‖ ≤ 1 is minimized when ‖υ‖ = 1 , and this value

is the same for all such υ . Define the number ak,p by

apk,p
def
=

π
(
B(1, 0)

)
π
(
B(1, 0) ∩B(2−k+1,υ)

)
for any υ with ‖υ‖ = 1 . It is easy to see that ak,1 = 2k and ak,p decreases with p .

So, Mk ≤ 2pk and

Q(Υ ◦) ≤ 1

3
log(21+p) +

4

3

∞∑
k=2

2−k log(21+kp)

=
log 2

3

[
3 + p+ 2p

∞∑
k=1

(k + 1)2−k
]

= (3 + 7p)
log 2

3
≤ c1p,

where c1 = 2 for p ≥ 2 , and c1 = 2.4 for p = 1 , and the result follows.

7.4.1 Local central bound

Here we specify the local bounds of Theorem 7.1 and the central result of Corollary 7.3

to the smooth case.
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Theorem 7.8. Suppose (Ed) . For any λ ≤ ν0g , r1 > 0 , and υ◦ ∈ Υ

log IE exp
{ λ

3ν0r1
sup

υ∈B(r1,υ◦)

∣∣U(υ)− U(υ◦)
∣∣} ≤ λ2/2 + Q,

where Q = c1p .

We consider the local sets of the elliptic form Υ◦(r)
def
= {υ : ‖H0(υ − υ0)‖ ≤ r} ,

where H0 dominates H(υ) on this set: H(υ) � H0 .

Theorem 7.9. Let (ED) hold with some g and a matrix H(υ) . Suppose that H(υ) �
H0 for all υ ∈ Υ◦(r) . Then

IP

(
sup

υ∈Υ◦(r)

{ 1

3ν0
U(υ,υ0)−

1

2
‖H0(υ − υ0)‖2

}
≥ z0(x, p)

)
≤ exp(−x), (7.15)

where z0(x, p) coincides with z0(x,Q) from (7.7) with Q = c1p .

Remark 7.3. An important feature of the established result is that the bound in the

right hand-side of (7.15) does not depend on the value r describing the radius of the

local vicinity around the central point υ0 . In the ideal case one would apply this result

with r =∞ provided that the conditions H(υ) ≤ H0 is fulfilled uniformly over Υ .

Proof. Lemma 7.7 implies (Ed) with d(υ,υ0) = ‖H0(υ − υ0)‖2/2 . Now the result

follows from Corollary 7.3.

7.4.2 A global upper function

Now we specify the general result of Theorem 7.4 to the smooth case. To make the

formulation more transparent, the matrix H(υ) from condition (ED) is assumed to be

uniformly bounded by a fixed matrix H∗ . Let r be fixed with r2 ≥ p/2 . We aim

to build un upper function for the process U(·) on the complement of the central set

Υ◦(r)
def
= {υ : ‖H0υ‖ ≤ r} . The penalty function t(υ) is taken independent of µ as a

logarithmic function of ‖H0υ‖ .

Theorem 7.10. Assume (E) and (ED) with H(υ) � H∗ for all υ ∈ Υ . Let r1 ≥ 1

be such that det(r−11 H∗) ≤ det(H0) , and s be such that 3ν0r1/s ≤ g ∧
√

2c1p . Given

r ≥
√
p/2 , define

t(υ)
def
= (p+ 2) log

(
‖H0υ‖

)
, υ ∈ Υ.

Then for any x > 0 , it holds with probability at least 1− 2Me−x for M =
∑

µ∈M µ
p

µU(υ)− SµN(µ,υ)− (1 + s)t(υ) ≤ (1 + s)x + 2sc1p, υ ∈ Υ \ Υ◦(r). (7.16)
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Proof. For the measure Lebesgue measure π on IRp , it holds for Bµ(υ◦) = B(r1/µ,υ
◦) :

1

π
(
Bµ(υ◦)

) =
det(r−11 µH∗)

ωp
≤ µp det(H0)

ωp
,

where ωp is the measure of the unit ball in IRp . In particular, this measure does not

depend on the location υ◦ and thus, ν1 = 1 ; see (7.10). The change of variables yields

T =
∑
µ∈M

∫
Υ ◦

1

π(Bµ(υ))
exp
{
−t(υ)

}
dπ(υ)

≤
∑
µ∈M

µp
∫
IRp

det(H0)

ωp
‖H0υ‖−p−2 1I

(
‖H0υ‖ ≥ r

)
dπ(υ)

=
M

ωp

∫
‖u‖≥r

‖u‖−p−2du ≤ Mp/(2r2) ≤ M.

Symmetricity arguments imply Sµ‖H0υ‖ = ‖H0υ‖ and concavity of the log-function

yields Sµt(υ) ≤ t(υ) . Now the result (7.16) follows from Theorem 7.4 in view of Q ≤
c1p .

7.5 Auxiliary facts

Lemma 7.11. For any r.v.’s ξk and λk ≥ 0 such that Λ =
∑

k λk ≤ 1

log IE exp

(∑
k

λkξk

)
≤
∑
k

λk log IEeξk .

Proof. Convexity of ex and concavity of xΛ imply

IE exp

{
Λ

Λ

∑
k

λk
(
ξk − log IEeξk

)}
≤ IEΛ exp

{
1

Λ

∑
k

λk
(
ξk − log IEeξk

)}

≤
{

1

Λ

∑
k

λkIE exp
(
ξk − log IEeξk

)}Λ
= 1.

Lemma 7.12. Let a r.v. ξ fulfill IEξ = 0 , IEξ2 = 1 and IE exp(λ1|ξ|) = κ < ∞ for

some λ1 > 0 . Then for any % < 1 there is a constant C1 depending on κ , λ1 and %

only such that for λ < %λ1

log IEeλξ ≤ C1λ
2/2.

Moreover, there is a constant λ2 > 0 such that for all λ ≤ λ2

log IEeλξ ≥ %λ2/2.
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Proof. Define h(x) = (λ− λ1)x+m log(x) for m ≥ 0 and λ < λ1 . It is easy to see by

a simple algebra that

max
x≥0

h(x) = −m+m log
m

λ1 − λ
.

Therefore for any x ≥ 0

λx+m log(x) ≤ λ1x+ log

(
m

e(λ1 − λ)

)m
.

This implies for all λ < λ1

IE|ξ|m exp(λ|ξ|) ≤
(

m

e(λ1 − λ)

)m
IE exp(λ1|ξ|).

Suppose now that for some λ1 > 0 , it holds IE exp(λ1|ξ|) = κ(λ1) < ∞ . Then the

function h0(λ) = IE exp(λξ) fulfills h0(0) = 1 , h′0(0) = IEξ = 0 , h′′0(0) = 1 and for

λ < λ1 ,

h′′0(λ) = IEξ2eλξ ≤ IEξ2eλ|ξ| ≤ 1

(λ1 − λ)2
IE exp(λ1|ξ|).

This implies by the Taylor expansion for λ < %λ1 that

h0(λ) ≤ 1 + C1λ
2/2

with C1 = κ(λ1)/
{
λ21(1− %)2

}
, and hence, log h0(λ) ≤ C1λ

2/2 .
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