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Abstract

We analyze the properties of non- and semiparametric estimation procedures involv-

ing nonparametric regression with generated covariates. Such estimators appear in numer-

ous econometric applications, including nonparametric estimation of simultaneous equation

models, sample selection models, treatment effect models, and censored regression models,

but so far there seems to be no unified theory to establish their statistical properties. Our

paper provides such results, allowing to establish asymptotic properties like rates of consis-

tency or asymptotic normality for a wide range of semi- and nonparametric estimators. We

also show how to account for the presence of nonparametrically generated regressors when

computing standard errors.
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1 Introduction

A wide range of econometric applications requires nonparametric estimation of a regression

function when some of the covariates are not directly observed, but have themselves only been

estimated nonparametrically in a preliminary step. A prominent example is the estimation

of structural functions in triangular simultaneous equation models (e.g. Newey, Powell, and

Vella, 1999; Blundell and Powell, 2004; Imbens and Newey, 2009), which requires conditioning

on an estimate of a control variable to account for endogeneity. Other applications involving

“nonparametrically generated regressors” include sample selection models (Das, Newey, and

Vella, 2003), treatment effect models (Heckman, Ichimura, and Todd, 1998), and censored

regression models (Linton and Lewbel, 2002), amongst many others. In contrast to parametric

regression problems with generated regressors, where general results are nowadays included in

most graduate textbooks (e.g. Wooldridge, 2002, Chapter 6.1), the statistical properties of their

nonparametric counterparts are not well understood, with results typically only being derived

in the specific context determined by the respective application.

This paper provides a unified theory to analyze a wide class of estimators in models involving

nonparametric regression with nonparametrically generated covariates. Our main result is that

the presence of pre-estimated covariates affects the first-order asymptotic properties of the

estimated regression function only through a smoothed version of the first-stage estimation

error, reducing the “curse of dimensionality” to a secondary concern in this context. Based

on this new insight, we derive simple and explicit stochastic expansions that can not only be

used to establish asymptotic normality or the rate of consistency of the estimated regression

function itself, but also to study the properties of more complex estimators, in which estimation

of a regression function merely constitutes an intermediate step. Examples for the latter case

include structured nonparametric models imposing e.g. additive separability (Stone, 1985), and

semiparametric M-estimators involving infinite dimensional nuissance parameters (e.g. Andrews,

1994; Newey, 1994b; Chen, Linton, and Van Keilegom, 2003). Our results thus cover a wide

range of econometric models, and should therefore be of general interest.

Our paper considers nonparametric estimation of a regression functionm0(x) = E(Y |r0(S) =

x) when the function r0 is unknown, but can be estimated from the data. In particular, we study

the properties of the estimator m̂LL obtained through local linear regression (Fan and Gijbels,

1996) of the dependent variable Y on the generated covariates R̂ = r̂(S), where r̂ is some

nonparametric estimate of r0 from a first stage. Using results from empirical process theory,
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we show that the presence of generated covariates affects the first-order asymptotic properties

of m̂LL only through a smoothed version of the estimation error r̂(s) − r0(s). This additional

smoothing typically improves the rate of convergence. In order to achieve a certain rate of

convergence of the estimator m̂LL it is thus not necessary that the estimator r̂ converges with

the same rate or a faster one. This result, which apparently has not been noted before in the

literature, constitutes the main contribution of this paper. It has the important implication that

the curse of dimensionality is only a secondary concern when working with nonparametrically

generated covariates.

Our main result can e.g. directly be used to establish asymptotic normality or uniform rates

of consistency of the estimate of m0. Furthermore, we can derive a formula for the asymptotic

variance that accounts for the presence of generated covariates. This is demonstrated in the

present paper for the important special case that r0 is the conditional mean function in an

auxiliary nonparametric regression. Extensions to other settings are immediate. Our result also

provides a convenient way to analyze the properties of more complex estimation procedures,

in which estimation of m0 constitutes an intermediate step. In this paper, we consider three

substantial econometric applications exhibiting such a structure in greater detail: nonparametric

estimation of a simultaneous equation model, nonparametric estimation of a censored regression

model, and estimation of average treatment effects via regression on the nonparametrically

estimated propensity score. The types of technical difficulties encountered in these examples

are representative for those in a wide range of econometric applications.

It should be stressed that our main result does neither require the generated regressors

to emerge from a specific type of model, nor do we require a specific procedure to estimate

them. In particular, our main result holds irrespective of whether the function r0 is a regres-

sion function or a density, or whether it is estimated by kernel methods, orthogonal series or

sieves. Moreover, our results also applies in settings where r0 is estimated using parametric

or semiparametric restrictions. Our analysis only requires two fairly weak general conditions

ensuring uniform consistency of the estimator r̂, and that the function r0 is not too complex.

Both are straightforward to verify in practice. Our main result, however, is specific to using a

local linear smoother for obtaining the final estimate of m0. In particular, our proofs make use

of certain technical properties of this estimator that are not shared by other common methods.

While it might be possible to derive a result similar to our main finding for other methods such

as orthogonal series or sieves by e.g. extending results in Song (2008), we conjecture that this
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would require a substantially more involved technical argument.1

As noted above, parametric estimation of models with generated regressors has a long tra-

dition in econometrics. We refer to Pagan (1984) or Oxley and McAleer (1993) for extensive

surveys of the literature. More recently, a number of papers have studied models with non-

parametrically generated regressors. Imbens and Newey (2009) use nonparametric estimates

of control variables to correct for endogeneity in triangular structural equation models with

nonseparable disturbances. Similar techniques are used by Newey, Powell, and Vella (1999)

for simultaneous equation models with additive disturbances, Blundell and Powell (2004) and

Rothe (2009) for single-index binary choice models with endogenous regressors, and Ahn and

Powell (1993) and Das, Newey, and Vella (2003) for the estimation of sample selection models

with a nonparametrically specified selection mechanism. Linton and Lewbel (2002) face non-

parametrically generated covariates when estimating a regression function under fixed censoring

of the dependent variable. Lewbel and Linton (2007) consider estimation of a homothetically

separable functions. Rilstone (1996) uses generated regressors to reduce the dimensionality of

certain nonparametric regression problems. In the literature on program evaluation, Heckman,

Ichimura, and Todd (1998) consider estimating the average treatment effect on the treated

through regression on the estimated propensity score. Conditioning on an estimate of a propen-

sity score is also required for computing the Marginal Treatment Effect discussed in Heckman

and Vytlacil (2005, 2007) and Carneiro, Heckman, and Vytlacil (2009, 2010). Similar issues

also appear for the estimation of a generalized Roy model in d’Haultfoeuille and Maurel (2009).

There are also several applications in financial econometrics. Kanaya and Kristensen (2009)

consider fitting a stochastic volatility model using the nonparametric estimate of the instan-

taneous volatility process in Kristensen (2009). Conrad and Mammen (2009) consider non-

and semiparametric specifications of GARCH-in-Mean models where generated covariates are

iteratively plugged into a nonparametric mean equation. They make use of empirical process
1Song (2008) considers series estimation of the functional g(x, r) = E(Y |r(X) = x) indexed by x ∈ X ⊂ R

and r ∈ Λ, where Λ is a function space with finite integral bracketing entropy, and derives a rate of consistency

uniformly over (x, r) ∈ X × Λ. He thus considers a related but different estimand (he considers the functional

(x, r) 7→ g(x, r) whereas we consider the function x 7→ g(x, r0) for some fixed function r0). For our setting, in

a first step one needs a result on the rates for the difference between estimates of g(x, r) and g(x, r0) uniformly

over x ∈ X and r taking values in a shrinking neighborhood of a fixed function r0. The rates are different from

the case where r only takes values in a fixed neighborhood. Furthermore, qualitatively different mathematical

techniques are required, in particular if one needs stochastic expansions of the difference and not only rates. This

will be demonstrated in this paper in the case of local linear smoothing for the estimation of g(x,r).
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methods that are related to the approach of this paper. The aforementioned papers typically

rely on restrictions implied by the respective application for their asymptotic analysis. More-

over, in some cases only limited results such as upper bounds on the rate of convergence are

derived. In contrast, the results in our paper are not tied to a specific model, and are thus easy

to use when developing new applications. They can also be used to derive new and improved

results concerning the asymptotic properties of many existing estimators for which so far only

a limited analysis has been available.

To the best of our knowledge, there are only few papers on nonparametric regression with

generated covariates not tailored to a specific application. Andrews (1995) shows that it is easy

to establish properties of kernel-based estimators in the presence of parametrically (i.e.
√
n-

consistent) generated covariates, but such arguments do not carry over to the nonparametric

case. Sperlich (2009) provides some bias and variance calculations for kernel estimators using

predicted variables. To derive his results, he assumes a particular stochastic expansion for the

generated covariates. This expansion includes a remainder term satisfying certain moment and

inequality conditions that are not fulfilled by standard smoothing estimators. His assumptions

also lead to asymptotic results that are different from the ones obtained in the present paper.

Finally, in a recent contribution Hahn and Ridder (2010) consider the asymptotic variance

of semiparametric M-estimators based on nonparametrically generated covariates, generalizing

classic results by Newey (1994b). Their approach is to derive the influence function of the

estimator of the finite dimensional parameter vector heuristically, i.e. without giving explicit

regularity conditions on the estimators involved. In contrast, our paper provides a complete

asymptotic theory for nonparametric regression with generated covariates, that would be needed

to implement the results in Hahn and Ridder (2010) for a specific estimator. Furthermore,

whereas Hahn and Ridder (2010) focus on the estimation of finite dimensional parameters in

certain semiparametric settings, our paper deals with the properties of nonparametric regression

with generated covariates in general.

The outline of this paper is as follows. In the next section, we describe our setup in detail

and give some motivating examples. Section 3 establishes the asymptotic theory and states

the main results. Section 4 provides a number of useful extensions. In Section 5, we apply

our results to the examples given in Section 2, thus illustrating their application in practice.

Finally, Section 6 concludes. All proofs are collected in the Appendix.
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2 Nonparametric Regression with Generated Covariates

2.1 Model and Estimation Procedure

The nonparametric regression model with generated regressors can be written as

Y = m0(r0(S)) + ε with E(ε|S) = 0, (2.1)

where Y is the dependent variable, S is a p-dimensional vector of covariates, m0 : Rd → R and

r0 : Rp → Rd is an unknown function and ε is an error term that has mean zero conditional

on the observed covariates. We assume that there is additional information available outside of

the basic model (2.1) such that the function r0 is identified. For example, r0 could be (some

known transformation of) the mean function in an auxiliary nonparametric regression, which

may involve another random vector T in addition to Y and S.

Our aim is to estimate the function m0(r) = E(Y |r0(S) = r). Since r0 is unobserved,

obtaining a direct estimator based on a nonparametric regression of Y on R = r0(S) is clearly

not feasible. We therefore consider the following two-stage procedure. In the first stage, an

estimate r̂ of r0 is obtained. We do not prescribe a specific estimator for this step. Instead, we

only impose the high-level restrictions that the estimator r̂ is uniformly consistent, converging at

a rate specified below, and takes on values in a function class that is not too complex. Depending

on the nature of the function r0, these kind of regularity conditions are typically satisfied by

various common nonparametric estimators, such as kernel-based procedures or series estimators,

under suitable smoothness restrictions. In the second step, we then obtain our estimate m̂LL of

m0 through a nonparametric regression of Y on the generated covariates R̂ = r̂(S), using local

linear smoothing. That is, our estimator is given by m̂LL(x) = α̂, where

(α̂, β̂) = argmin
α,β

n∑
i=1

(Yi − α− βT (R̂i − x))2Kh(R̂i − x),

with Kh(u) =
∏d
j=1K(uj/hj)/hj a d-dimensional product kernel built from the univariate kernel

function K, and h = (h1, ..., hd) a vector of bandwidths that tend to zero as the sample size n

tends to infinity.

For the later asymptotic analysis, it will be useful to compare m̂LL to an infeasible estimator

m̃LL that uses the true function r0 instead of an estimate r̂. Such an estimator can be obtained

by local linear smoothing of Y versus R = r0(S), i.e. it is given by m̃LL(x) = α̃, where

(α̃, β̃) = argmin
α,β

n∑
i=1

(Yi − α− βT (Ri − x))2Kh(Ri − x).
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In order to distinguish these two estimators, we refer to m̂LL in the following as the real

estimator, and to m̃LL as the oracle estimator.

Our use of local linear estimators in this paper is based on the following considerations. First,

in a classical setting with fully observed covariates, estimators based on local linear regression

are known to have attractive properties with regard to boundary bias and design adaptivity

(see Fan and Gijbels (1996) for an extensive discussion) and they allow a complete asymptotic

description of their distributional properties. In the present setting with generated covariates,

these properties simplify the asymptotic treatment. The design adaptivity leads to a discussion

of bias terms that do not require regular densities for the randomly perturbed covariates, and

the complete asymptotic theory allows a clear description how the final estimator is affected

by the estimation of the covariates. On the other hand, our assumptions on the estimation of

the covariates are rather general and can be verified for a broad class of smoothing methods

including sieves and orthogonal series estimators.

2.2 Motivating Examples

There are many econometric applications which involve nonparametric estimation of a regression

function using nonparametrically generated covariates. Here we focus on three motivating

examples. In this section we state their setup and explain how they fit into our framework. In

Section 5, we show how our general high-level results given in the following section can be used

to study their asymptotic properties in detail.

2.2.1 Regression on the Propensity Score

Propensity score methods are widely used in the program evaluation literature (see e.g. Imbens

(2004) for an extensive review). Their popularity is due to the famous result by Rosenbaum

and Rubin (1983) that when all confounders are observable, biases due to nonrandom selection

into the program can be removed by conditioning on the propensity score, which is defined as

the probability of selection into the program given the confounders. To be specific, let Y1, Y0

be the potential outcomes with and without program participation, respectively, D ∈ {0, 1} an

indicator of program participation, Y = Y1D+ Y0(1−D) be the observed outcome, X a vector

of confounders, i.e. exogenous covariates, and let Π(x) = Pr(D = 1|X = x) be the propensity

score. A typical object of interest in this context is the average treatment effect (ATE), defined

as

γATE = E(Y1 − Y0).
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When the assignment of the participation status is unconfounded, i.e. Y1, Y0⊥D|X, the ATE

can be estimated by various procedures, which may or may not make use of the propensity score.

Examples include matching estimators and propensity score reweighting estimators (see Imbens

(2004) for references and further examples). A method that has so far not been analyzed in detail

uses nonparametric regression on the estimated propensity score. As shown by Rosenbaum and

Rubin (1983), unconfounded assignment implies that Y1, Y0⊥D|Π(X), and thus we have that

νd(π) = E(Y |D = d,Π(X) = π). The ATE is therefore identified through the relationship

γATE = E(ν1(Π(X))− ν0(Π(X))). (2.2)

Similar arguments can be made for other measures of program effectiveness (e.g. Heckman,

Ichimura, and Todd, 1998). Estimating the ATE by a sample analogue of (2.2) requires non-

parametric estimation of ν1(π) and ν0(π). We can cover this in our framework (2.1) with

(Y, S) = (Y, (D,X)) and r0(S) = (D,Π(X)).

2.2.2 Nonparametric Simultaneous Equation Models

Another field of application for our results is the analysis of nonparametric estimators that use

control variable techniques to account for endogeneity. The key idea of this approach is to intro-

duce additional conditioning variables which fully capture the dependence between covariates

and the unobserved heterogeneity. Such control variables appear naturally in many settings,

but are often not directly observable and have to be estimated from the data. Consider for

example the estimation of nonparametric simultaneous equation models with additive distur-

bances discussed in Newey, Powell, and Vella (1999). These authors study a triangular system

of equations of the form

Y = µ1(X1, Z1) + U (2.3)

X1 = µ2(Z1, Z2) + V, (2.4)

imposing the restrictions that E(V |Z1, Z2) = 0, E(U) = 0 and E(U |Z1, Z2, V ) = E(U |V ). The

last conditions follows e.g. if the instruments Z = (Z1, Z2) are jointly independent of the

disturbances (U, V ) and if the disturbances have mean zero. Now let m(x1, z1, v) = E(Y |X1 =

x1, Z1 = z1, V = v). An implication of this model is that

m(x1, z1, v) = µ1(x1, z1) + λ(v),

where λ(v) = E(U |V = v). Newey, Powell, and Vella (1999) proposed a series estimator of

the structural function µ1 that exploits this additive separability. An alternative approach to
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estimating µ1, which we pursue in this paper, is to use the method of marginal integration

(Newey, 1994a; Linton and Nielsen, 1995). This method relies on the fact that∫
m(x1, z1, v)fV (v)dv = µ1(x1, z1), (2.5)

where fV is the probability density function of V . An estimate of µ1 can thus be obtained from

a sample version of (2.5). Since the residuals V are not directly observed but have themselves

to be estimated by some nonparametric method, estimation of the function m fits into our

framework with (Y, S) = (Y, (X1, Z1, Z2), X1) and r0(S) = (X1, Z1, X1 − µ2(Z1, Z2)).

Remark 1. Imbens and Newey (2009) consider a generalized version of the above simultaneous

equation model where the disturbances may not enter the equations additively. This model fits

into the framework of this paper but requires a careful analysis of additional boundary problems

that go beyond the scope of this paper. We will therefore study this model in a separate paper.

Remark 2. An alternative to marginal integration would be an approach based on smooth

backfitting (Mammen, Linton, and Nielsen, 1999). Smooth backfitting estimators avoid several

problems encountered by marginal integration in case of covariates with moderate or high

dimension, but involves a more involved statistical analysis which is beyond the scope of the

present paper. Results on smooth backfitting with nonparametrically generated covariates will

be presented in a separate paper.

2.2.3 Nonparametric Censored Regression

As a final example, consider the nonparametric estimator of a regression function in the presence

of fixed censoring proposed by Linton and Lewbel (2002). Consider the model

Y = max(0, µ0(X)− U), (2.6)

where U is an unobserved mean zero error term that is assumed to be independent of the

covariates X. Fixed censoring is a common phenomenon in many economic applications, e.g.

the analysis of wage data. Note that the censoring threshold could be different from zero, as

long as it is known. Linton and Lewbel (2002) establish identification of the function µ0 under

the tail condition limu→−∞ uFU (u) = 0 on the distribution function FU of U . In particular,

they show that the function µ0 can be written as

µ0(x) = λ0 −
∫ λ0

r0(x)

1
q0(r)

dr, (2.7)
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where r0(x) = E(Y |X = x), q0(r) = E(I{Y > 0}|r0(X) = r), and λ0 is some suitably chosen

constant. An estimate of the function µ0 can then be obtained from a sample analogue of (2.7),

i.e. through numerical integration of a nonparametric estimate of the function q0(r)−1. Non-

parametric estimation of q0 involves nonparametrically generated regressors, and thus fits into

our framework with (Y, S) = (I{Y > 0}, X) and r0(S) = r0(X).

3 Asymptotic Properties

It is straightforward to show that m̂LL consistently estimates the function m0 under standard

conditions. Obtaining refined asymptotic properties, however, requires more involved argu-

ments. Our main result, derived in this section, is a stochastic expansion of the difference

between the real and the oracle estimator, in which the leading term turns out to be a kernel-

weighted average of the first stage estimation error. This important finding can e.g. be used to

obtain uniform rates of consistency for the real estimator, or to prove its asymptotic normality.

This is demonstrated explicitly for the case that r̂ results from a local polynomial conditional

mean regression.

Throughout this section, we use the notation that for any vector a ∈ Rd the value amin =

min1≤j≤d aj denotes the smallest of its elements, a+ =
∑d

j=1 aj denotes the sum of its elements,

a−k = (a1, . . . , ak−1, ak+1, . . . , ad) denotes the d − 1-dimensional subvector of a with the kth

element removed, and ab = (ab11 , . . . , a
bd
d ) for any vector b ∈ Rd.

3.1 Assumptions

In order to analyse the asymptotic properties of the local linear estimator with nonparametri-

cally generated regressors, we make the following assumptions.2

Assumption 1 (Regularity Conditions). We assume the following properties for the data dis-

tribution, the bandwidth, and kernel function K.

(i) The sample observations (Yi, Si), i = 1, . . . , n are independent and identically distributed.

(ii) The random vector R = r0(S) is continuously distributed with compact support IR =

IR,1 × ... × IR,d. Its density function fR is twice continuously differentiable and bounded

away from zero on IR.
2At various points in this section, we will impose assumptions on the rates at which certain quantities tend

to zero. We prefer to formulate these assumption without including (various powers of) logarithmic terms. This

simplifies the notation for the theorems and proofs at the cost of only a minor loss in generality.
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(iii) The function m0 is twice continuously differentiable on IR.

(iv) E[exp(ρ|ε|)|S] ≤ C almost surely for a constant C > 0 and ρ > 0 small enough.

(v) The kernel function K is a twice continuously differentiable, symmetric density function

with compact support, say [−1, 1].

(vi) The bandwidths h = (h1, . . . , hd) satisfies hj ∼ n−ηj for j = 1, . . . , d and η+ < 1.

Assumption 1 contains mostly standard conditions from the literature on kernel-based non-

parametric regression, with the exception of Assumption 1 (iv). This assumption restricts the

distribution of the error term ε to have subexponential tails conditional on S. This is a techni-

cal condition that will be needed to apply certain results from empirical process theory in our

proofs.

Assumption 2 (Accuracy). The components r̂j and r0,j of r̂ and r0, respectively, satisfy

sup
s
|r̂j(s)− r0,j(s)| = oP (n−δj )

for some δj > ηj and all j = 1, . . . , d.

Assumption 2 is a ”high-level” restriction on the accuracy of the estimator r̂. It requires

each component of the estimate of the function r0 to be uniformly consistent, converging at rate

at least as fast as the corresponding bandwidth in the second stage of the estimation procedure.

Such results are widely available for all common nonparametric estimators. See e.g. Masry

(1996) for results on the Nadaraya-Watson, local linear and local polynomial estimators, or

Newey (1997) for series estimators.

Assumption 3 (Complexity). There exist sequences of sets Mn,j such that

(i) Pr(r̂j ∈Mn,j)→ 1 as n→∞ for all j = 1, . . . , d.

(ii) For a constant CM > 0 and a function rn,j with ‖rn,j − r0,j‖∞ = o(n−δj ), the set Mn,j =

Mn,j ∩ {rj : ‖rj − rn,j‖∞ ≤ n−δj} can be covered by at most CM exp(λ−αjnξj ) balls with

‖·‖∞-radius λ for all λ ≤ n−δj , where 0 < αj ≤ 2, ξj ∈ R and ‖·‖∞ denotes the supremum

norm.

Assumption 3 requires the first-stage estimator r̂ to take values in a function space Mn,j

that is not too complex, with probability approaching 1. Here the complexity of the function

space is measured by the cardinality of the covering sets. This is a typical requirement for many
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results from empirical process theory. See Van der Vaart and Wellner (1996) for details. The

second part of Assumption 3 is typically fulfilled under suitable smoothness restrictions. For

example, suppose thatMn,j is the set of functions defined on some compact set IS ⊂ Rp whose

partial derivatives up to order k exist and are uniformly bounded by some multiple of nξ
∗
j for

some ξ∗j ≥ 0. Then Assumption 3(ii) holds with αj = p/k and ξj = ξ∗jαj (Van der Vaart and

Wellner, 1996, Corollary 2.7.2). For kernel-based estimators of r0, one can then verify part (i)

of Assumption 3 by explicitly calculating the derivatives. Consider e.g. the one-dimensional

Nadaraya-Watson estimator r̂n,j with bandwidth of order n−1/5. Choose rn,j equal to r0,j plus

asymptotic bias term. Then one can check that the second derivative of r̂n,j − rn,j is absolutely

bounded by OP (
√

log n) = oP (nξ
∗
j ) for all ξ∗j > 0. For sieve and orthogonal series estimators,

Assumption 3(i) immediately holds when the set Mn,j is chosen as the sieve set or as a subset

of the linear span of an increasing number of basis functions, respectively.

3.2 The Key Stochastic Expansion

With the assumptions described in the previous section, we are now ready to state our main

result, a stochastic expansion of our real estimator m̂LL(x) around the oracle estimator m̃LL(x).

The results explicitly characterizes the influence of the presence of nonparametrically generated

regressors on the final estimator of the regression function m0. To state the theorem, let

∆̂(x) = α, where

(α, β) = argmin
α,β

n∑
i=1

((r̂(Si)− r0(Si))− α− βT (r0(Si)− x))2Kh(r0(Si)− x),

and define the set I−R,n = {x ∈ IR : the support of Kh(· − x) is a subset of IR}.

Theorem 1. Suppose Assumptions 1–3 hold. Then

sup
x∈IR

∣∣∣m̂LL(x)− m̃LL(x) +m′0(x)T ∆̂(x)
∣∣∣ = OP (n−κ)

where κ = min{κ1, ..., κ3} with

κ1 <
1
2

(1− η+) + (δ − η)min −
1
2

max
1≤j≤d

(δjαj + ξj), κ2 < 2ηmin + (δ − η)min,

κ3 < δmin + (δ − η)min.

Uniformly over x ∈ I−R,n we have that

∆̂(x) =
1
n

∑n
i=1Kh(r0(Si)− x)(r̂(Si)− r0(Si))

1
n

∑n
i=1Kh(r0(Si)− x)

+OP (n−κ). (3.1)
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The leading term in the above expansion of the real estimator m̂LL(x) around the oracle

estimator m̃LL(x) is given by the product of the derivative of m0 and a smoothed version of the

first-stage estimation error r̂(s)−r0(s). In order to achieve a certain rate of convergence for the

real estimator it is thus not necessary to have an estimator of r0 that converges with the same

rate or a faster one, since the asymptotic properties of the estimator using nonparametrically

generated regressors only depend on a smoothed version of the first-stage estimation error.

While smoothing does not affect the order of the deterministic bias part, it typically reduces

the variance and thus allows for less precise first-stage estimators. Another implication of the

theorem is that using generated regressors has asymptotically negligible consequences in regions

where the regression function is flat, since m′0(x) = 0 in this case.

Remark 3. In Theorem 1 no assumptions are made about the process generating the data

for estimation of r0. In particular, nothing is assumed about dependencies between the errors

in the pilot estimation and the regression errors εi. We conjecture that better rates than n−κ

can be proven under such additional assumptions, but the results would only be specific to the

respective full model under consideration. One way to extend our approach to such a setting

would be to use our empirical process methods to bound the remainder term of higher order

differences between m̂ and m̃, and to treat the leading terms of the resulting higher order

expansion by other more direct methods.

Remark 4. One could also derive an explicit representation of the term ∆̂(x) for values of x

near the boundary of the support of R. This would be similar to the one given in (3.1), but

involve weighting by more complicated kernel functions.

3.3 Two-Stage Nonparametric Regression

Theorem 1 can be used to derive asymptotic properties of the real estimator m̂LL, such as uni-

form rates of consistency or pointwise asymptotic normality in various econometric models. In

this subsection, we demonstrate how explicit forms of the results in Theorem 1 can be obtained

in the specific case that r0 is the conditional expectation function in an auxiliary nonparametric

regression. Then we show how these can be employed to derive desired asymptotic properties.

The chosen setting is arguably the most common way nonparametrically generated covariates

appear in practice, and all the applications we consider in detail in this paper are either of this

or a very closely related form.

13



We consider a “two-stage” nonparametric regression model given by

Y = m0(r0(S)) + ε,

T = r0(S) + ζ,

where ζ is an unobserved error term that satisfies E[ζ|S] = E[ε|S] = 0. For simplicity, we

focus on the case that R = r0(S) is a one-dimensional covariate, but generalizations to multiple

generated covariates or the presence of additional observed covariates are immediate.

Our strategy for deriving asymptotic properties of m̂LL in this framework is as follows: We

first derive an explicit representation for the adjustment term ∆̂(x) from Theorem 1, which can

then be combined with standard results about the oracle estimator m̃LL. In order to obtain such

a result, it is convenient to use a kernel-based smoother in the first stage to estimate r0. Since

the bias of ∆̂(x) is of the same order as of this first-stage estimator, we propose to estimate the

function r0 via q-th order local polynomial smoothing, which includes the local linear estimator

as the special case q = 1. Formally, the estimator is given by r̂(s) = α̂, where

(α̂, β̂) = argmin
α,β

n∑
i=1

Ti − α− ∑
1≤u+≤q

βTr (Si − s)u
2

Lg(Si − s) (3.2)

and Lg(s) =
∏p
j=1 L(sj/g)/g is a p-dimensional product kernel built from the univariate kernel

L, g is a bandwidth, which for simplicity is assumed to be the same for all components, and∑
1≤u+≤q denotes the summation over all u = (u1, . . . , up) with 1 ≤ u+ ≤ q. When r0 is

sufficiently smooth, the asymptotic bias of local polynomial estimators of order q is well-known

to be of order O(gq+1) uniformly over x ∈ IR (if q is uneven), and can thus be controlled.

A further technical advantage of using local polynomials is that the corresponding estimator

admits a certain stochastic expansion under general conditions, which is useful for our proofs.

We make the following assumption, which is essentially analogous to Assumption 1 except for

Assumption 4(iii). This additional assumption requires higher order smoothness of the kernel,

necessary to bound the k-th derivative of the estimator r̂. This allows to verify the Complexity

Assumption 3 for r̂.

Assumption 4. We assume the following properties for the data distribution, the bandwidth,

and kernel function L.

(i) The observations (Si, Yi, Ti) are i.i.d. and the random vector S is continuously distributed

with compact support IS = IS,1× ...× IS,p. Its density function fS is bounded and bounded

away from zero on IS. It is also differentiable with a bounded derivative.
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(ii) The function r0 is q + 1 times continuously differentiable on IS.

(iii) The kernel function L is a k-times continuously differentiable, symmetric density function

with compact support, say [−1, 1], for some natural number k ≥ max{2, p/2}.

(iv) The bandwidth satisfies g ∼ n−θ for some 0 < θ < 1/p.

To simplify the presentation, we also assume that the function r0(s) is strictly monotone in

at least one of its arguments, which can be taken to be the last one without loss of generality.

This Assumption could be easily removed at the cost of a substantially more involved notation

in the following results.

Assumption 5. The function r0(s−p, u) is strictly monotone in u, and r0(s−p, ϕ(s−p, x)) = x

for some twice continuously differentiable function ϕ.

The following Lemma shows that in the present context, the function ∆̂(x) can be written

as the sum of a smoothed version of the first stage estimator’s bias function, a kernel-weighted

average of the first-stage residuals ζ1, . . . , ζn, and some higher order remainder terms. For a

concise presentation of the result we introduce some particular kernel functions. Let L∗ denote

the p-dimensional equivalent kernel of the local polynomial regression estimator, given in (A.22)

in the Appendix, and define the one-dimensional kernel functions

Hg(x, s) =
∫

1
g
L∗
(
u1,

ϕ(s−p, x)− sp
g

− ∂1ϕ(s−p, x)u1

)
du1, (3.3)

Mh(x, s) =
∫
Kh

(
r0(s)− x− r′0(s)uh

)
L∗(u)du. (3.4)

Then, with this notation, we obtain the following Lemma.

Lemma 1. Suppose that Assumptions 1, 4 and 5 hold. Then we have that, uniformly over

x ∈ IR,

∆̂(x) = ∆̂A(x) + ∆̂B(x) +Op

(
log(n)
ngp

)
+Op

(
log(n)

(ngp)1/2(nh)1/2

)
,

where ∆̂B(x) = Op(gq+1) and ∆̂A(x) = Op((log(n)/(nmax{g, h}))1/2). Moreover, uniformly

over x ∈ I−R,n, it is ∆̂B(x) = gq+1E[b(S)|r0(S) = x]+op(gq+1) with a bounded function b(s) given

in (A.21) in the Appendix, and the term ∆̂A(x) allows for the following expansions uniformly

over x ∈ I−R,n, depending on the limit of g/h:

a) If g/h→ 0 then

∆̂A(x) =
1

nfR(x)

n∑
i=1

Kh(r0(Si)− x)ζi +Op

((g
h

)2
(

log(n)
nh

)1/2
)
.
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b) If h = g then

∆̂A(x) =
1

nfR(x)

n∑
i=1

Mh(x, Si)ζi + op(n−1/2).

c) If g/h→∞ then

∆̂A(x) =
1

nfR(x)

n∑
i=1

Hg(x, Si)∂xϕ(S−p,i, x)ζi +Op

((
h

g

)2( log(n)
ng

)1/2
)
.

It should be emphasized that in all three cases of the Lemma the leading term in the

expression for ∆̂A(x) is equal to an average of the error terms ζi weighted by a one-dimensional

kernel function, irrespective of p = dim(S). The dimension of the covariates thus affects the

properties of ∆̂(x) only through higher-order terms. Furthermore, it should be noted that one

can also derive expressions of ∆̂(x) similar to the ones above for values of x close to the boundary

of the support. Likewise these take the form of a one-dimensional kernel weighted average of

the error terms ζi plus a higher-order term. The corresponding kernel function, however, has a

more complicated closed form varying with the point of evaluation.

Remark 5. The previous lemma can easily be modified in two directions. First, if the second-

order kernel function K is replaced with a kernel function of order k, the order of the remainder

term in the representation of ∆̂A(x) can be strengthened to Op((g/h)k(nh/ log(n))−1/2) in case

a) of the Lemma, and to Op((h/g)k(nh/ log(n))−1/2) for case c), under appropriate smoothness

conditions. The expansions in Lemma 1 also continue to hold if the local polynomial estimator

of r0 is replaced by a Nadaraya-Watson estimator with a higher order kernel function whose

moments up to order q equal zero.

Combining Theorem 1 and Lemma 1 with well-known results about the oracle estimator

m̃LL, various asymptotic properties of the real estimator m̂LL can be derived. In the following

theorems we present results in the most relevant scenarios, addressing uniform rates of con-

sistency, stochastic expansions of order oP (n−2/5) for proving pointwise asymptotic normality,

and a more refined expansion of order oP (n−1/2) that is useful when m0 is estimated as an

intermediate step in a semiparametric problem.

Starting with considering uniform rate of consistency, it is well-known (Masry, 1996) that

under Assumption 1 the oracle estimator satisfies

sup
x∈IR

|m̃LL(x)−m(x)| = Op((log(n)/nh)1/2 + h2) .

This implies the following result.
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Theorem 2. Suppose that Assumptions 1, 4 and 5 hold. Then

sup
x∈IR

|m̂LL(x)−m(x)| = Op

(
log(n)1/2

(nh)1/2
+ h2 +

log(n)
ngp

+
log(n)

(ngp)1/2(nh)1/2
+ gq+1 + n−κ

)
.

Straightforward calculations show that the term of order OP (n−κ) is dominated by the other

remainder terms if θ < max{(1/2− η)/p, (1− 7η/2)/p, (1− 3η/2)/(p+ q+ 1)}. Similarly, under

appropriate smoothness restrictions, all of the last four terms on the right-hand side of the last

equation can be made strictly smaller than the first two ones given an appropriate choice of

η and θ. One can thus recover the oracle rate for the real estimator, even if the first-stage

estimator converges at a strictly slower rate.

Next, we derive stochastic expansions of m̂LL of order oP (n−2/5) for the case that η =

1/5. Such expansions immediately imply results on pointwise asymptotic normality of the real

estimator. It turns out that applying Theorem 1 requires pθ < 3/10 in this case. Therefore,

in order to use expansions a) and b) of Lemma 1, only p = 1 is admissible, i.e. S must be

one-dimensional in order for choices of θ with θ ≥ η to be feasible. We will consider this case

in the next theorem. The case of oversmoothed pilot estimation with θ < η will be discussed in

Theorem 4.

Theorem 3. Suppose that Assumptions 1, 4 and 5 hold with η = 1/5 and p = q = 1 Then the

following expansions hold uniformly over x ∈ I−R,n:

a) If 1/5 < θ < 3/10 then

m̂LL(x)−m0(x) =
1

nfR(x)

n∑
i=1

Kh(r0(Si)− x)(εi −m′0(x)ζi)

+
1
2
h2

∫
u2K(u)du m′′0(x) + op

(
n−2/5

)
.

In particular, we have

(nh)1/2(m̂LL(x)−m0(x)− 1
2
h2

∫
u2K(u)du m′′0(x)) d→ N(0, σ2

m(x))

where σ2
m(x) = Var(ε−m′0(R)ζ|R = x)

∫
K(t)2dt/fR(x) is the asymptotic variance.

b) If θ = 1/5 then

m̂LL(x)−m0(x) =
1

nfR(x)

n∑
i=1

Kh(r0(Si)− x)εi −Kx
h(r0(Si)− x)ζi +

1
2
β(x)h2 + op

(
n−2/5

)
,

where Kx(v) =
∫
K(v − r′(r−1(x))u)L∗(u)du is a kernel that depends on x and the bias is

given by β(x) =
∫
u2K(u)du m′′0(x)−

∫
u2L(u)du r′′0(r−1

0 (x))m′0(x). In particular, we have

(nh)1/2(m̂LL(x)−m0(x)− β(x)h2) d→ N(0, σ2
m(x))
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where now σ2
m(x) = [Var(ε|R = x)

∫
K(t)2dt−2m′0(x)E(εζ|R = x)

∫
K(t)Kx(t)dt+m′0(x)2×

Var(ζ|R = x)
∫
Kx(t)2dt]/fR(x) is the asymptotic variance.

We can see that under the conditions of the theorem the limiting distribution of m̂LL(x) is

affected by the pilot estimation step. In particular, if θ > η the estimator m̂LL(x) has the same

limiting distribution as the local linear estimator in the hypothetical regression model

Y = m0(r0(S)) + ε∗,

where ε∗ = ε−m′0(r0(S))ζ. Depending on the curvature of m0 and the covariance of ε and ζ,

the asymptotic variance of the estimator using generated regressors can be bigger or smaller

than that of the oracle estimator m̃LL.

The next theorem discusses the case when θ < η. For such a choice of bandwidth, the

limit distribution of m̂LL is the same as for the oracle estimator m̃LL. The effect exerted

by the presence of nonparametrically generated regressors is thus asymptotically negligible for

conducting inference on m0 in this case.

Theorem 4. Suppose that Assumptions 1, 4 and 5 hold with θ < η = 1/5. Then the following

expansion holds uniformly over x ∈ I−R,n if 2
5(q + 1)−1 < θ < 3

10p
−1:

m̂LL(x) = m̃LL(x) + op

(
n−2/5

)
= m0(x) +

1
nfR(x)

n∑
i=1

Kh(r0(Si)− x)εi +
1
2
h2

∫
u2K(u)du m′′0(x) + op

(
n−2/5

)
.

In particular, we have

(nh)1/2(m̂LL(x)−m0(x)− 1
2
h2

∫
u2K(u)du m′′0(x)) d→ N(0, σ2

m(x))

where σ2
m(x) = Var(ε|R = x)

∫
K(t)2dt/fR(x) is the asymptotic variance.

When the bandwidth parameters are chosen such that θ < η, i.e we have that g/h→∞, we

can also derive stochastic expansions of m̂LL of order oP (n−1/2) for choices of η > 1/4. This

type of expansion is often needed for the analysis of semiparametric problems in which m0 plays

the role of an infinite dimensional nuisance parameter. Examples include estimation of weighted

averages or weighted average derivatives of m0, or more generally the class of semiparametric

M-estimators (e.g. Newey (1994b), Andrews (1994) or Chen, Linton, and Van Keilegom (2003)).

Compared to the expansion of order oP (n−2/5) in the previous Theorem, expansions of order

oP (n−1/2) contain an additional higher order term that accounts for estimation errors in the

pilot estimation step.

18



Theorem 5. Suppose that Assumptions 1, 4 and 5 hold with η > θ. Under these conditions, the

following expansions hold uniformly over x ∈ I−R,n if η > 1/4 and 1
2(q+1)−1 < θ < 1

2(1−3η)p−1:

m̂LL(x)−m0(x) =
1

nfR(x)

n∑
i=1

Kh(r0(Si)− x)εi

−m′0(x)
1

nfR(x)

n∑
i=1

Hg(x, Si)∂xϕ(S−p,i, x)ζi + op

(
n−1/2

)
.

Note that the conditions of the last two theorems impose restrictions on the smoothness

of the function r0. To obtain the expansion of order oP (n−2/5) in Theorem 4 we need that

q + 1 > 10
3

2
5p = 4

3p. For the expansion of order oP (n−1/2) in Theorem 5 it is necessary that

q + 1 > (1 − 3η)−1p > 4p. Thus, in both cases the required number of derivatives q has to

increase linearly with the dimension of the respective covariates p. In Section 4.3, we discuss a

modified version of the real estimators that requires weaker smoothness conditions.

4 Extensions

4.1 Estimation of Derivatives

In certain applications, it is necessary to estimate the derivatives of the regression function

m0, instead of the function itself. One example from the literature on program evaluation is

the estimation of the Marginal Treatment Effects (MTE), which is defined as the derivative of

the conditional expectation of an outcome variable given the (usually unobserved) propensity

score. See e.g. Heckman and Vytlacil (2005, 2007) or Carneiro, Heckman, and Vytlacil (2009,

2010) for details. In this section, we discuss extensions of the results in the last section to the

estimation of derivatives of m0. We consider an estimator based on local quadratic fits. The

theory of the last section could also be extended to higher order derivatives (by using higher

order local polynomials), but we restrict our analysis to first order derivatives because of their

importance in econometrics. We define the real estimator of the derivative as m̂∗LQ(x) = β̂,

where with R̂i = r̂(Si)

(α̂, β̂, γ̂) = argmin
α,β,γ

n∑
i=1

(
Yi − α− βT (R̂i − x)− (R̂i − x)Tγ(R̂i − x)

)2
Kh(R̂i − x).

Furthermore, the oracle estimator is defined as m̃∗LQ(x) = β̃ with

(α̃, β̃, γ̃) = argmin
α,β,γ

n∑
i=1

(
Yi − α− βT (Ri − x)− (Ri − x)Tγ(Ri − x)

)2
Kh(Ri − x),
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where Ri = r0(Si). We also define ∆̂∗(x) = β by

(α, β, γ) = argmin
α,β,γ

n∑
i=1

(−m′0(Ri)T (R̂i−Ri)−α−βT (Ri−x)− (Ri−x)Tγ(Ri−x))2Kh(Ri−x).

With this notation, we can state a result analogous to Theorem 1.

Theorem 6. Suppose Assumptions 1–3 hold and assume additionally that the function m0

is three-times continuously differentiable on IR. Then it holds for 1 ≤ j ≤ d with κ∗,j =

min(κ∗,j1 , κ∗,j2 , κ∗,j3 ), κ∗,j1 = ηj + κ1, κ∗,j2 = ηj − ηmin + κ2, κ∗,j3 < ηj − 2δmin and κ1, κ2 as in

Theorem 1 that

sup
x∈IR

∣∣∣m̂∗LQ,j(x) + m̃∗LQ,j(x)− ∆̂∗(x)
∣∣∣ = OP (n−κ

∗,j
). (4.1)

Furthermore, uniformly over x ∈ I−R,n we have with κ∗∗,j = min(κ∗,j , ηj + κ3) and κ3 as in

Theorem 1, that

∆̂∗(x) =

[
1
n

n∑
i=1

Kh(r0(Si)− x)(r0(Si)− x)(r0(Si)− x)T
]−1

1
n

n∑
i=1

Kh(r0(Si)− x)(r0(Si)− x)m′0(x)T (r̂(Si)− r0(Si)) +OP (n−κ
∗∗,j

). (4.2)

For the important special case that r0 is a conditional expectation function estimated by

local polynomials, one can derive results analogous to those obtained in Section 3.3 by using

the same type of arguments. These are omitted here for the sake of brevity.

4.2 Design Densities with Unbounded Support

One of the assumptions used to derive the stochastic expansion in Theorem 1 is that the

covariates R = r0(S) have bounded support. In this subsection, we relax this condition, allowing

R to be supported on an arbitrary subset of Rp. This result might be helpful in settings involving

unbounded covariates, or more generally covariates whose density tends zero in certain areas.

We make the following assumption.

Assumption 6. The variable R = r0(S) is continuously distributed with support IR ⊂ Rq. Its

density has a bounded continuous derivative.

Generalizing Theorem 1, we bobtain a stochastic expansion that holds uniformly over an

increasing sequence of subsets of the support IR where the density fR is sufficiently large. Note

that when the support is unbounded the density can not be strictly positive everywhere.
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Theorem 7. Suppose Assumptions 1(i),(iii)-(vi),2,3 and 6 hold. Then for CS > 0 large enough

it holds that

sup
x∈I∗R,n

γn(x)−1
∣∣∣m̂LL(x)− m̃LL(x) +m′0(x)∆̂(x)

∣∣∣ = OP (n−κ) (4.3)

where κ is defined as in Theorem 1 and γn(x) = (infu∈Sh(x) fR(u))1/2(supu∈Sh(x) fR(u))−1, where

Sh(x) is the support of Kh(x− ·) and where

∆̂(x) =
1
n

∑n
i=1Kh(r0(Si)− x)(r̂(Si)− r0(Si))

1
n

∑n
i=1Kh(r0(Si)− x)

+OP (n−κ). (4.4)

The supremum in (4.3) runs over the set I∗R,n = {x ∈ IR : infu∈Sh(x) fR(u) > CS(nh)−1 log n}

for a constant CS that is large enough.

4.3 Avoiding Entropy Conditions via Crossvalidation

In this subsection, we consider a slightly modified version of our estimator of m0, obtained

through L-fold crossvalidation. We show that using such an estimator can improve the result

of Theorem 1 in two directions. First, an analogous result can be established without imposing

an entropy condition such as Assumption 3, and second, one can obtain a faster rate for the

remainder term. The improvements are asymptotic. For finite samples, cross validation may be

affected by using smaller subsamples in the estimation steps. This may cause instabilities that

are not reflected in a first order asymptotic analysis.

Our following theoretical treatment contains crossvalidation as a leading example, but the

framework is slightly more general. Nevertheless, we call the resulting estimator crossvalidation

estimator and denote it by m̂CV
LL . The estimator works as follows. Let Nl, l = 1, . . . , L be

a partition of N = {1, ..., n}, and denote the number of elements in the l-th set by #Nl.

Assume that for every l ∈ {1, . . . , L} there exists an estimator r̂[l] of r0 that is independent of

(Yi, Si) : i ∈ Nl. In the two-stage regression model discussed in Section 3.3, a possible approach

would be to compute r̂[l] in the same way as r̂ before, but only using the data points (Yi, Si, Ti)

with i 6∈ Nl. For each l ∈ {1, . . . , L} we then define the estimators m̂[l]
LL where m̂[l]

LL(x) = α̂[l],

and

(α̂[l], β̂[l]) = argmin
α,β

∑
i∈Nl

(Yi − α− βT (r̂[l](Si)− x))2Kh(r̂[l](Si)− x).

Finally, we define the crossvalidation estimator m̂CV
LL of the function m0 as a weighted average

of the m̂[l]
LL, with weights given by the proportion of data points used in the second stage. That

is, we put m̂CV
LL (x) =

∑L
l=1 ωlm̂

[l]
LL(x) with ωl = #Nl/n. For this estimator, a result similar to

Theorem 1 can be established under the following assumption.
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Assumption 7. We impose the following restriction about the accuracy of the first stage esti-

mators and the number of partitions L.

(i) For 1 ≤ l ≤ L there exist estimators r̂l of the functions rl, that are independent of

{(Si, Yi) : i ∈ Nl}. The components r̂[l]j and r0,j of r̂[l] and r0, respectively, satisfy

sup
s

max
1≤l≤L

|r̂[l]j (s)− r0,j(s)| = OP (n−δj )

for some δj > ηj and all j = 1, . . . , p.

(ii) It holds that cnβ ≤ #Nl ≤ Cnβ, for some constants 0 < c < C and 0 < β ≤ 1.

This first part of this assumption is a slight modification of Assumption 2, requiring a

certain uniform rate of consistency for the first-stage estimators calculated from the different

subsamples. Again, such results are straightforward to verify for many common nonparametric

estimation procedures. The second part imposes a restriction on the size of the crossvalidation

sets.

Theorem 8. Suppose that Assumptions 1 and 7 hold. Then

sup
x∈IR

∣∣∣m̂CV
LL (x)− m̃LL(x) +m′(x)∆̂CV (x)

∣∣∣ = OP (n−κCV ).

Here κCV = min{κCV,1, ..., κCV,3} with

κCV,1 <
1
2

(β − η+) + (δ − η)min, κCV,2 < 2ηmin + (δ − η)min,

κCV,3 < δmin + (δ − η)min.

Furthermore,

∆̂CV (x) =
L∑
l=1

ωl∆̂
[l]
CV (x)

with ∆̂[l]
CV (x)[l]LL(x) = α̂[l], where

(α̂[l], β̂[l]) = argmin
α,β

∑
i∈Nl

((r̂[l](Si)− r0(Si))− α− βT (r̂[l](Si)− x))2Kh(r̂[l](Si)− x).

For x ∈ I−R,n we have that

∆̂CV (x) =
L∑
l=1

ωl
n−1

∑
i∈Nl

Kh(r0(Si)− x)(r̂[l](Si)− r0(Si))
n−1

∑
i∈Nl

Kh(r0(Si)− x)
+OP (n−κCV ).
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The result in Theorem 8 provides an improvement over Theorem 1 because it holds without

imposing a restriction on the complexity of the function r0, such as the entropy condition in

Assumption 3. Of course, some kind of smoothness restrictions are still usually needed to verify

Assumption 7 for a specific estimator. A further refinement compared to Theorem 1 is that the

stochastic expansion is typically more precise, in the sense that the rate at which the remainder

term converges to zero is weakly faster, i.e. we have that κCV ≥ κ because κCV,1 > κ1.

4.3.1 Crossvalidation for Estimating Averages of the Regression Function

We now discuss a cross validation approach for the estimation of a weighted average ϑ =∫
m0(x)w(x)dx of the regression function m0. The advantage of this method is that it re-

quires somewhat weaker regularity conditions than direct approaches based on Theorem 1. The

framework is as above. Again we divide the sample into L subsets N1, ..., NL ⊂ {1, ..., n},⋃L
l=1Nl = {1, ..., n} but now we assume that L is fixed. We rewrite ϑ as ϑ =

∫
m∗(x)w∗(x)dx

with m∗(x) = m(x)fR(x) and w∗(x) = w(x)/fR(x). Now, we assume that there exist estimators

ŵ∗l and r̂l of the functions w∗ and rl, that are independent of {(Si, Yi) : i ∈ Nl} and we consider

the following estimator of ϑ:

ϑ̂ =
L∑
l=1

nl
n

∫
m̂∗l (x)ŵ∗l (x)dx,

where

m̂∗l (x) =
1
nl

∑
i∈Nl

Kh(r̂l(Si)− x)Yi.

Our next theorem states that this estimator is n1/2-consistent. For the theorem we make the

following assumptions.

Assumption 8. (i) The observations (Si, Yi), i = 1, ..., n are i.i.d. and it holds that Yi =

m(r(Si)) + εi with E[εi|Si] = 0 and E[ε2i |Si] < Cε, almost surely, for a constant Cε <∞.

(ii) The function m0 is bounded. It holds
∫
w∗(r(s))2fS(s)ds <∞ and c ≤ nl/n ≤ C for some

constants 0 < c < C.

(iii) For 1 ≤ l ≤ L there exist estimators ŵ∗l and r̂l of the functions w∗ and rl, that are

independent of {(Si, Yi) : i ∈ Nl} with the properties:∫
[ŵ∗l,h(r̂l(s))− w∗(r(s))]2fS(s)ds = oP (1),∫

ŵ∗l,h(r̂l(s))m(r(s))fS(s)ds−
∫
w∗(r(s))m(r(s))fS(s)ds = OP (n−1/2), (4.5)

where ŵ∗l,h(u) =
∫
Kh(u− x)ŵ∗l (x)dx.
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Theorem 9. Suppose that Assumption 8 holds. Then we have that ϑ̂ = ϑ+OP (n−1/2).

For a derivation of the asymptotic distribution of ϑ̂ − ϑ one would need more information

about the construction of the estimators ŵ∗l and r̂l. In particular one would need a linear

expansion of the left hand side of (4.5).

5 Applications

5.1 Regression on the Propensity Score

As our first application, consider estimation of the Average Treatment Effect (ATE) via re-

gression on the (estimated) propensity score. Recall that the parameter of interest is given

by

γATE = E(Y1)− E(Y0) = E(ν1(Π(X)))− E(ν0(Π(X))), (5.1)

where Π(x) = E(D|X = x) is the propensity score and νd(π) = E(Y |D = d,Π(X) = π) for

d = 0, 1. A natural estimate of the ATE is thus the following sample version of (5.1):

γ̂ =
1
n

n∑
i=1

(ν̂1(Π̂(Xi))− ν̂0(Π̂(Xi))),

where Π̂(x) is the q-th order local polynomial estimator of Π(x), and ν̂d(π) is the local linear

estimator of νd(π), computed using the first-stage estimates of the propensity score. Here the

binary covariate D is accommodated via the usual frequency method, i.e. the estimate ν̂d is

computed by local linear regression of Yi on Π̂(Xi) using the nd =
∑n

i=1 I{Di = d} observations

with D = d only. To the best of our knowledge the asymptotic properties of γ̂ have not been

derived before in the literature.3

Proposition 1. Assume that Assumption 1 holds with (Y, S, T ) = (Y, (D,X), D), r0(S) =

(D,Π(X)), m0(d, π) = νd(π), and the obvious modifications to accommodate the binary covari-

ate D, and that Assumption 4 holds with r0(S) = Π(X). Also suppose that η ∈ (1/4, 1/3) and

(1/2)(q + 1)−1 < θ < (1− 3η)p−1. Under these conditions, we have that

√
n(γ̂ − γATE) d→ N(0,E(ψ(Y,D,X)2))

3Heckman, Ichimura, and Todd (1998) consider estimating a closely related parameter, average treatment

effect on the treated, by conditioning on the estimated propensity score.
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where

ψ(Y,D,X) = µ1(X)− µ0(X) +
D(Y − µ1(X))

Π(X)
− (1−D)(Y − µ0(X))

1−Π(X)
− γATE ,

is the influence function, and µd(x) = E(Y |D = d,X = x) for d = 0, 1.

It turns out that under the conditions of the proposition the asymptotic variance of γ̂

equals the corresponding semiparametric efficiency as bound obtained by Hahn (1998). The

estimator obtained via regression on the estimated propensity score thus has the same limit

properties as other popular efficient estimators of the ATE under unconfoundedness, such as

e.g. the propensity score reweighting estimator of Hirano, Imbens, and Ridder (2003). Note

that in order to prove this result, we use that our assumption on the regression residuals in

(2.1) implies that µd(x) = νd(Π(x)), which is certainly restrictive in the present context. In a

recent paper, Hahn and Ridder (2010) argue that this restriction should not be necessary to

obtain the conclusion of Proposition 1, using the approach in Newey (1994b) to compute the

asymptotic variance of semiparametric estimators. To implement their result, one would have

to derive an stochastic expansion similar to that in Theorem 1 for a more general version of

the model (2.1) with E(ε|r0(S)) = 0. Such an extension is not trivial, and is currently under

investigation.

We also remark that the conditions of the proposition imply that both p̂ and ν̂d are uniformly

consistent for their respective population counterparts at a rate faster than the well-known mini-

mal convergence rate of n−1/4 given by Newey (1994b) for semiparametric two-stage procedures.

5.2 Nonparametric Simultaneous Equation Models

We now consider nonparametric estimation of the structural function µ1 in the triangular simul-

taneous equation model (2.3)–(2.4) using the method of marginal integration. In order to keep

the notation simple, we restrict our attention to the arguably most relevant case with a single

endogenous regressor, but allow for an arbitrary number of exogenous regressors and instru-

ments. Let µ̂2(z) be the qth order local polynomial estimator of µ2(z) = E(X1|Z = z), and let

m̂(x1, z1, v) be the local linear estimator of m(x1, z1, v) = E(Y |X1 = x1, Z1 = z1, V = v). The

latter is computed using the generated covariates V̂i = X1i− µ̂2(Zi) instead of the true residuals

Vi from equation (2.4). For simplicity, we use the same bandwidth for all components of m̂, i.e

we put ηj ≡ η for all j = 1, . . . , (2 + d1). The marginal integration estimator of µ1(x1, z1) is
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then given by the following sample version of (2.5):

µ̂1(x1, z1) =
1
n

n∑
i=1

m̂(x1, z1, V̂i). (5.2)

Using similar arguments as in the proof of Theorem 3, the following proposition establishes the

estimator’s asymptotic normality.

Proposition 2. Suppose that Assumptions 1 holds with (Y, S, T ) = (Y, (X1, Z1, Z2), X1) and

R = r0(S) = (X1, Z1, X1 − µ2(Z1, Z2)), and that Assumption 4 holds with r0(S) = µ2(Z1, Z2).

Furthermore, suppose that η ∈ (max{1/(5 + d1), 1/(2p + 3)}, 1/(1 + d1)), and that θ ∈ (θ, θ̄),

where θ and θ̄ are constants depending on η, q and dj = dim(Zj) as follows:

θ̄ =
1− 3η

2p
and θ =

1− η(d1 + 1)
2(q + 1)

,

where p = d1 + d2. Under these conditions, we have that

√
nh1+d1(µ̂1(x1, z1)− µ1(x1, z1)) d→ N

(
0,E

(
σ2
ε(x1, z1, V )

fXZ|V (x1, z1, V )

)∫
K̃(t)2dt

)
where K̃(t) =

∏1+d1
i=1 K(ti) is a (1+d1)-dimensional product kernel, and σ2

ε(x1, z1, v) = Var(Y −

m(R)|R = (x1, z1, v)).

Under the conditions of the proposition, the asymptotic variance of µ̂1(x1, z1) is not influ-

enced by the presence of generated regressors: If m̂ was replaced in (5.2) with an oracle estima-

tor m̃ using the actual disturbances Vi instead of the reconstructed ones, the result would not

change. The intuition for this result is analogous for the one given after Proposition 1.

5.3 Nonparametric Censored Regression

We now consider estimation of the censored regression model given in (2.6). Let r̂(x) be the

qth order local polynomial estimator of the conditional mean r0(x) = E(Y |X = x), and let q̂(r)

be the local linear estimator of q0(r) using the generated covariates r̂(Xi). Then the estimate

µ0 is given by

µ̂(x) = λ+
∫ λ

r̂(x)

1
q̂(u)

du, (5.3)

where the constant λ is chosen large enough to satisfy λ > maxi=1,...,n r̂(Xi) with probability

tending to one. Generalizing Linton and Lewbel (2002), we consider the use of higher-order local

polynomials for the first stage estimator, and allow the bandwidth used for the computation

of r̂ and q̂ to be different. For presenting the asymptotic properties of µ̂, let s0(x) = E(I{Y >

0}|X = x) be the proportion of uncensored observations conditional on X = x, and assume
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that this function is continuously differentiable and bounded away from zero on the support of

X. We then obtain the following proposition.

Proposition 3. Suppose that Assumptions 1 and 4 hold with (Y, S, T ) = (I{Y > 0}, X, Y ) and

R = r0(S) = r0(X). Furthermore, suppose that θ ∈ (θ, θ̄) where θ and θ̄ are constants depending

on η,q and p as follows:

θ̄ =
1− 3η
p

and θ = max
{

1− 4η
p

,
1

2(q + 1) + p

}
.

Under these conditions, we have that

√
ngp(µ̂(x)− µ0(x)) d→ N

(
0,

σ2
r (x)

fS(x)s20(x)

∫
L(t)2dt

)
,

where σ2
r (x) = Var(Y |X = x).

The proposition is analogous to Theorem 5 in Linton and Lewbel (2002). However, using

our results substantially simplifies the proof and provides insights on admissible choices of

bandwidths. Note that the lower bound θ is chosen such that both the bias of r̂ and q̂ tends

to zero at a rate faster than (ngp)−1/2. Due to this undersmoothing the limiting distribution of

µ̂− µ is centered at zero. In contrast to the other examples, here the final estimator converges

at the same rate as the generated regressors. This is due to the fact that the function r̂ is

not only used to compute q̂, but also determines the limits of integration in (5.3). The direct

influence of the generated regressors in the estimation of q is again asymptotically negligible.

6 Conclusions

In this paper, we analyze the properties of nonparametric estimators of a regression function,

when some the covariates are not directly observable, but have been estimated by a nonpara-

metric first-stage procedure. We derive a stochastic expansion showing that the presence of

generated regressors affects the limit behavior of the estimator only through a smoothed ver-

sion of the first-stage estimation error. We apply our results to a number of practically relevant

econometric applications.

A Mathematical Appendix

Throughout the Appendix, C and c denote generic constants chosen sufficiently large or sufficiently

small, respectively, which may have different values at each appearance. Furthermore, define M̄n =

M̄n,1 × . . .× M̄n,d.
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A.1 Proof of Theorem 1

In order to prove the statement of the theorem, we have to introduce some notation. First, it follows

from standard calculations that the real estimator m̂LL can be written as

m̂LL(x) = m0(x) + m̂LL,A(x) + m̂LL,B(x) + m̂LL,C(x) + m̂LL,D(x),

where m̂LL,j(x) = α̂j for j ∈ {A,B,C,D}, and

(α̂A, β̂A) = argmin
α,β

n∑
i=1

(εi − α− βT (r̂(Si)− x))2Kh(r̂(Si)− x),

(α̂B , β̂B) = argmin
α,β

n∑
i=1

(m0(r0(Si))−m0(x)−m′0(x)T (r0(Si)− x)− α− βT (r̂(Si)− x))2Kh(r̂(Si)− x),

(α̂C , β̂C) = argmin
α,β

n∑
i=1

(−m′0(x)T (r̂(Si)− r0(Si))− α− βT (r̂(Si)− x))2Kh(r̂(Si)− x),

(α̂D, β̂D) = argmin
α,β

n∑
i=1

(m′0(x)T (r̂(Si)− x)− α− βT (r̂(Si)− x))2Kh(r̂(Si)− x).

Similarly, the oracle estimator m̃LL can be represented as

m̃LL(x) = m0(x) + m̃LL,A(x) + m̃LL,B(x) + m̃LL,D(x),

where m̃LL,j(x) = α̃j for j ∈ {A,B,D}, and

(α̃A, β̃A) = argmin
α,β

n∑
i=1

(εi − α− βT (r0(Si)− x))2Kh(r0(Si)− x),

(α̃B , β̃B) = argmin
α,β

n∑
i=1

(m0(r0(Si))−m0(x)−m′0(x)T (r0(Si)− x)

− α− βT (r0(Si)− x))2Kh(r0(Si)− x),

(α̃D, β̃D) = argmin
α,β

n∑
i=1

(m′0(x)T (r0(Si)− x)− α− βT (r0(Si)− x))2Kh(r0(Si)− x).

Finally, we set m̃LL,C(x) = m′0(x)∆̂(x). Note that by construction

m̂LL,D(x) ≡ m̃LL,D(x) ≡ 0. (A.1)

We now argue that

sup
x∈IR

|m̂LL,A(x)− m̃LL,A(x)| = Op(n−κ1) (A.2)

For a proof of (A.2) note that m̂LL,A(x) and m̃LL,A(x) are given by the first elements of the vectors

M̂(x)−1n−1
∑n
i=1Kh(r̂(Si)− x)εiŵi(x) or M̃(x)−1n−1

∑n
i=1Kh(r0(Si)− x)εiw̃i(x), respectively, where

ŵi(x) and w̃i(x) are the vectors with elements 1, (r̂1(Si)−x1)/h1, ..., (r̂d(Si)−xd)/hd or 1, ..., (r0,d(Si)−

xd)/hd, respectively. Furthermore, we have put M̂(x) = n−1
∑n
i=1 ŵi(x)ŵi(x)T Kh(r̂(Si) − x) and

M̃(x) = n−1
∑n
i=1 w̃i(x)w̃i(x)TKh(r0(Si) − x). Using these representations of m̂LL,A(x) and m̃LL,A(x)

one sees that (A.2) follows from Lemma 2 and 3 below.
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From Lemmas 3 and 4 we get that

sup
x∈IR

|m̂LL,B(x)− m̃LL,B(x)| = Op(n−κ2), (A.3)

sup
x∈IR

|m̂LL,C(x)− m̃LL,C(x)| = Op(n−κ3). (A.4)

Taken together, the results in (A.1)–(A.4) imply the statement of the theorem.

Lemma 2. Suppose that the conditions of Theorem 1 hold. Then

sup
x∈IR,r1,r2∈M̄n

| 1
n

n∑
i=1

Kh(r1(Si)− x)εi −
1
n

n∑
i=1

Kh(r2(Si)− x)εi| = Op(n−κ1)

sup
x∈IR,r1,r2∈M̄n

| 1
n

n∑
i=1

Kh(r1(Si)− x)
r1,j(Si)− xj

hj
εi −

1
n

n∑
i=1

Kh(r2(Si)− x)
r2,j(Si)− xj

hj
εi| = Op(n−κ1).

Proof. We only prove the first statement of the lemma. The second claim can be shown using essentially

the same arguments. Without loss of generality, we also assume that

κ1 > (δ − η)min. (A.5)

If κ1 ≤ (δ− η)min the statement of the lemma follows from a direct bound. For C1, C2 > 0 large enough

(see below) we choose Cε such that

Pr(max
i
|εi| > Cε log(n)) ≤ n−C1 , (A.6)

|EεiI{|ε| ≤ Cε log(n)}| ≤ n−C2 . (A.7)

With this choice of Cε we define

∆i(r1, r2) = (Kh(r1(Si)− x)−Kh(r2(Si)− x))ε∗i

with

ε∗i = εiI{|εi| ≤ Cεi log(n)} − E(εiI{|εi| ≤ C log(n)}).

Now for s ≥ 0, let M̄∗s,n,j be a set of functions chosen such that for each r ∈ M̄n,j there exists

r∗ ∈ M̄∗s,n,j such that ‖r − r∗‖∞ ≤ 2−sn−δj . That is, the functions in M̄∗s,n,j are the midpoints of a

(2−sn−δj )-covering of M̄n,j . By Assumption 3, the set M̄∗s,n,j can be chosen such that its cardinality

#M̄∗s,n,j is at most C exp((2−sn−δj )−αjnξj ). Furthermore, define M̄∗s,n = M̄∗s,n,1 × . . .× M̄∗s,n,d.

For r1, r2 ∈ M̄n we now choose rs1, r
s
2 ∈ M̄∗s,n such that ‖rs1,j−r1,j‖∞ ≤ 2−sn−δj and ‖rs2,j−r2,j‖∞ ≤

C2−sn−δj , for all j. We then consider the chain

∆i(r1, r2) = ∆i(r0
1, r

0
2)−

Gn∑
s=1

∆i(rs−1
1 , rs1) +

Gn∑
s=1

∆i(rs−1
2 , rs2)−∆i(rGn

1 , r1) + ∆i(rGn
2 , r2)

where Gn is the smallest integer that satisfies Gn > (1+cG)(κ1− (δ−η)min) log(n)/ log(2) for a constant

cG > 0. With this choice of Gn, we obtain that for l = 1, 2

T1 = | 1
n

n∑
i=1

∆i(rGn

l , rl)| ≤ C log(n)2−Gnn−(δ−η)min ≤ Cn−κ1 . (A.8)
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Now for any a > cG define the constant ca = (
∑∞
s=1 2−as)−1. It then follows that

Pr( sup
r1∈M̄n

| 1
n

n∑
i=1

Gn∑
s=1

∆i(rs−1
1 , rs1)| > n−κ1)

≤
Gn∑
s=1

Pr( sup
r1∈M̄n

| 1
n

n∑
i=1

∆i(rs−1
1 , rs1)| > ca2−asn−κ1)

≤
Gn∑
s=1

#M̄∗s−1,n#M̄∗s,n Pr(
1
n

n∑
i=1

∆i(r
∗,s
1 , r∗∗,s1 ) > ca2−asn−κ1)

+
Gn∑
s=1

#M̄∗s−1,n#M̄∗s,n Pr(
1
n

n∑
i=1

∆i(r̃
∗,s
1 , r̃∗∗,s1 ) < ca2−asn−κ1)

= T2 + T3

where the functions r∗,s1 , r̃∗,s1 ∈ M̄∗s−1,n and r∗∗,s1 , r̃∗∗,s1 ∈ M̄∗s,n are chosen such that

Pr(
1
n

n∑
i=1

∆i(r
∗,s
1 , r∗∗,s1 ) > ca2−asn−κ1) = max

rs−1
1 ,rs

1

Pr(
1
n

n∑
i=1

∆i(rs−1
1 , rs1) > ca2−asn−κ1),

Pr(
1
n

n∑
i=1

∆i(r̃
∗,s
1 , r̃∗∗,s1 ) < ca2−asn−κ1) = max

rs−1
1 ,rs

1

Pr(
1
n

n∑
i=1

∆i(rs−1
1 , rs1) > ca2−asn−κ1).

We now show that both T2 and T3 tend to zero at an exponential rate:

T2 ≤ exp(−cnc), (A.9)

T3 ≤ exp(−cnc). (A.10)

We only show (A.9), as the statement (A.10) follows by essentially the same arguments. Using Assump-

tion 3, we obtain by application of the Markov inequality that

T2 ≤ C
Gn∑
s=1

∏
j

exp((2−sn−δj )−αjnξj )E(exp(γn,s
1
n

n∑
i=1

∆i(r
∗,s
1 , r∗∗,s1 )− γn,sca2−asn−κ1))

≤ C
Gn∑
s=1

exp(
∑
j

2sαjnδjαj+ξj − γn,sca2−asn−κ1)
n∏
i=1

E(exp(γn,s
1
n

∆i(r∗1 , r
∗∗
1 ))) (A.11)

where γn,s = cγ2(2−a)sn−κ1+1−η++2(δ−η)min with a constant cγ > 0, small enough. Now the last term on

the right hand side of (A.11) can be bounded as follows:

E(exp(γn,s
1
n

∆i(r∗1 , r
∗∗
1 ))) ≤ 1 + CE(γ2

n,sn
−2∆2

i (r
∗
1 , r
∗∗
1 ))

≤ exp(Cγ2
n,sn

−2nη+−2(δ−η)min2−2s), (A.12)

where we have used that

|γn,s
1
n

∆i(r∗1 , r
∗∗
1 )| ≤ Cγn,s

1
n

log(n)nη+n−(δ−η)min2−s

≤ C log(n)n(δ−η)min−κ12−as+s

≤ C log(n)n(cG−a)(κ1−(δ−η)min)

≤ C
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for n large enough because of (A.5). Inserting (A.12) into (A.11), we obtain, if a and cγ were chosen

sufficiently small, that

T2 ≤ C
Gn∑
s=1

exp(
∑
j

2sαjnδjαj+ξj − c22(1−a)sn1−2κ1−η++2(δ−η)min)

≤ C
Gn∑
s=1

exp(−csnc)

≤ exp(−cnc).

Finally, it follows from a simple argument that

T4 = Pr( sup
r1,r2∈M̄n

| 1
n

n∑
i=1

∆i(r0
1, r

0
2)| > n−κ1) ≤ exp(−cnc) (A.13)

because the set M̄∗0,n can always be chosen such that it contains only a single element.

From (A.8), (A.9), (A.10) and (A.13), we thus obtain that

sup
x∈IR

Pr( sup
r1,r2∈M̄n

| 1
n

n∑
i=1

Kh(r1(Si)− x)ε∗i −
1
n

n∑
i=1

Kh(r2(Si)− x)ε∗i | > Cn−κ1) ≤ exp(−cnc) (A.14)

Now for CI > 0 choose a grid IR,n of IR with O(nCI ) points, such that for each x ∈ IR there exists a

grid point x∗ = x∗(x) ∈ IR,n such that ‖x−x∗‖ ≤ n−cCI . If CI is chosen large enough, this implies that

sup
x∈IR

sup
r∈M̄n

| 1
n

n∑
i=1

Kh(r(Si)− x)εi −
1
n

n∑
i=1

Kh(r(Si)− x∗)εi| ≤ n−κ1 (A.15)

for large enough n, with probability tending to one. Furthermore, it follows from (A.14) that

sup
x∈IR,n

sup
r1,r2∈M̄n

| 1
n

n∑
i=1

Kh(r1(Si)− x)εi −
1
n

n∑
i=1

Kh(r2(Si)− x)εi| ≤ n−κ1 . (A.16)

The statement of the lemma then follows from (A.6)–(A.7) and (A.15) – (A.16), if the constants C1 and

C2 were chosen large enough.

Lemma 3. Suppose that the conditions of Theorem 1 hold. Then

sup
x∈IR,r1,r2∈M̄n

| 1
n

n∑
i=1

Kh(r1(Si)− x)(
r1,j(Si)− xj

hj
)a(

r1,l(Si)− xl
hl

)b

− 1
n

n∑
i=1

Kh(r2(Si)− x)(
r2,j(Si)− xj

hj
)a(

r2,l(Si)− xl
hl

)b| = Op(n−(δ−η)min)

for j, l = 1, . . . , q j 6= l and 0 ≤ a+ b ≤ 2, 0 ≤ a, b.

Proof. The lemma follows from

sup
x,s
|Kh(r1(s)− x)−Kh(r2(s)− x)| ≤ Cn−(δ−η)min+η+

for r1, r2 ∈ M̄n and the fact that

sup
x∈IR,r∈M̄

1
n

n∑
i=1

Kh(r(Si)− x) ≤ Cn−1+η+ sup
x∈IR

#{i : |r0,j(Si)− xj | ≤ Cn−ηj for j = 1, ..., d}

= Op(1).
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Define Ii(x) = I{‖(r̂(Si)−x)/h‖1 ≤ 1} as an indicator function that equals one if r̂(Si)−x lies in the

support of the kernel functionKh and zero otherwise, and letBK = diag(1,
∫
u2K(u)du, . . . ,

∫
u2K(u)du)

be a (d+ 1)× (d+ 1) diagonal matrix.

Lemma 4. Suppose that the assumptions of Theorem 1 hold. For a random variable Rn = Op(1) that

neither depends on x nor i it holds that

sup
x∈IR,1≤i≤n

|[m0(r0(Si))−m0(x)−m′0(x)T (r0(Si)− x)]Ii(x)| ≤ Rnn−2ηmin , (A.17)

sup
x∈IR

‖ 1
n

n∑
i=1

Kh(r̂(Si)− x)ŵi(x)ŵi(x)T − 1
n

n∑
i=1

Kh(r0(Si)− x)w̃i(x)w̃i(x)T ‖ ≤ Rnn−(δ−η)min , (A.18)

sup
x∈IR

‖ 1
n

n∑
i=1

Kh(r0(Si)− x)w̃i(x)w̃i(x)T − fR(x)BK‖ ≤ Rn(n−ηmin + n−(1−η+)/2
√

log n). (A.19)

Proof. Claim (A.17) follows by a simple calculation. Claim (A.18) is a direct consequence of Lemma 3.

And (A.19) follows from standard arguments from kernel smoothing theory. For the stochastic part one

makes use of Lemma 5.

A.2 Proof of Lemma 1

In order to prove Lemma 1, we use the fact that the local polynomial estimator satisfies a certain uniform

stochastic expansion if Assumption 4 holds. In order to present this result, we first have to introduce a

substantial amount of further notation. For simplicity we assume g1 = ... = gp and we write g for this

joint value and for the vector g = (g, ..., g).

Let Ni =
(
i+q−1
q−1

)
be the number of distinct q-tuples u with u+ = i. Arrange these q-tuples as a

sequence in a lexicographical order (with the highest priority given to the last position so that (0, . . . , 0, i)

is the first element in the sequence and (i, 0, . . . , 0) the last element). Let τi denote this one-to-one

mapping, i.e. τi(1) = (0, . . . , 0, i), . . . , τi(Ni) = (i, 0 . . . , 0). For each i = 1, . . . , q, define a Ni × 1 vector

µi(x) with its kth element given by xτi(k), and write µ(x) = (1, µ1(x)T , . . . , µq(x)T )T , which is a column

vector of length N =
∑q
i=1Ni. Let νi =

∫
L(u)uidu and define νni(x) =

∫
L(u)uifS(x + gu)du. For

0 ≤ j, k ≤ q, let Mj,k and Mn,j,k(x) be two Nj × Nk matrices with their (l,m) elements respectively

given by

[Mj,k]l,m = ντj(l)+τk(m) and [Mnj,k(x)]l,m = νn,τj(l)+τk(m)(x)

Now define the N ×N matricies Mq and Mn,q(x) by

Mq =


M0,0 M0,1 . . . M0,q

M1,0 M1,1 . . . M1,q

...
...

. . .
...

Mq,0 Mq,1 . . . Mq,q

 , Mn,q(x) =


Mn,0,0(x) Mn,0,1(x) . . . Mn,0,q(x)

Mn,1,0(x) Mn,1,1(x) . . . Mn,1,q(x)
...

...
. . .

...

Mn,q,0(x) Mn,q,1(x) . . . Mn,q,q(x)


Finally, denote the first unit q-vector by e1 = (1, 0, . . . , 0). With this notation, it can be shown along

classical lines (e.g. Masry, 1996) that the local polynomial estimator r̂ admits the following stochastic
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expansion:

r̂(s)− r0(s) =
1
n

n∑
i=1

e1M
−1
nq (s)µ((Si − s)/g)Lg(Si − s)ζi + gq+1Bn(s) +Rn(s), (A.20)

where, Bn is a bias term that satisfies

Bn(s) =
1

(q + 1)!
e1M

−1
q Aqr

(q+1)
0 (s) + op(1) ≡ b(s) + op(1), (A.21)

with Aq = [M0,q+1,M1,q+1, . . . ,Mq,q+1]T , and Rn is a remainder term which satisfies

sup
s∈IS

|Rn(s)| = Op (log(n)/ngp) .

The value of the expansion (A.20) is that this remainder term be made to be as small as op(n−1/2) by

using an appropriate bandwidth g. When the function r0 is sufficiently smooth, and a local polynomial

of appropriate order is used, the corresponding bias term is of smaller order than the remainder, and thus

asymptotically negligible. We remark that Kong, Linton, and Xia (2009) have recently shown the validity

of expansions analogous to the one presented in (A.20) for more general local polynomial M-regressions

and certain time series frameworks.

To prove the lemma, define the stochastic component and the bias term of the expansion (A.20)

as r̂A(s) = n−1
∑n
i=1 e1M

−1
nq (s)µ((Si − s)/g)Lg(Si − s)ζi and r̂B(s) = g2kBn(s), respectively. Now the

function ∆̂ can be written as

∆̂(x) =
1
n

∑n
i=1Kh(r0(Si)− x)r̂A(Si)

1
n

∑n
i=1Kh(r0(Si)− x)

+
1
n

∑n
i=1Kh(r0(Si)− x)r̂B(Si)

1
n

∑n
i=1Kh(r0(Si)− x)

+Op

(
log(n)
ngp

)
≡ ∆̂A(x) + ∆̂B(x) +Op

(
log(n)
ngp

)
,

uniformly over x ∈ I−R,n. We first analyze the term ∆̂B(x). Through the usual arguments from kernel

smoothing theory, one can show for x ∈ I−R,n that

∆̂B(x) = g2k
1
n

∑n
i=1Kh(r0(Si)− x)b(Si)

1
n

∑n
i=1Kh(r0(Si)− x)

+ op(g2k)

= g2kE(b(S)|r0(S) = x) + op(g2k)

because the function E(b(S)|r0(S) = x) is continuous with respect to x, see Assumption 4(ii).

Next, consider the term ∆̂A(x). Using standard arguments from e.g. Masry (1996), we obtain that

∆̂A(x) =
1

n2f̂R(x)

n∑
j=1

ζj

n∑
i=1

Kh(r0(Si)− x)e1M
−1
nq (Si)µ((Sj − Si)/g)Lg(Sj − Si)

=
1

nfR(x)

n∑
j=1

ψ(x, Sj)ζj +Op

(
log(n)

(n2hgp)1/2

)

with ψ(x, s) = E
(
fS(S)−1Kh(r0(S)− x)e1M

−1
q µ((Sj − S)/g)Lg(Sj − S)|Sj = s

)
for s ∈ I−S,n, where the

set I−S,n contains all s ∈ IS with the property that their k-th element sk does not lie in a gk-neighborhood

of the boundary of IS,k for k = 1, ..., p. This holds since Mn,q(s) converges to fS(s)Mq uniformly for s
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in I−S,n. For s ∈ I−S,n this can be written as ψ(x, s) =
∫
Kh(r0(u)− x)L∗g(u− s)du the modified kernel L∗

is defined by

L∗(t) = e1M
−1
q µ(t)L(t). (A.22)

Note that L∗ is the equivalent kernel of the local polynomial regression estimator (see Fan and Gijbels

(1996, Section 3.2.2)). For q = 0, 1 the equivalent kernel is in fact equal to the original one, whereas

L∗(t) is equal to L(t) times a polynomial in t of order q for q ≥ 2, with coefficients such that its moments

up to the order q are equal to zero. For s 6∈ I−S,n we get that ψ(x, s) =
∫
Kh(r0(u) − x)L∗g(u, u − s)du

with a kernel L∗(u, t) that has the same moment conditions in t but depends on u. We thus obtain that

∆̂A(x) =
1

nfR(x)

n∑
j=1

ψ(x, Sj)ζj +Op(log(n)/(n2hgp)1/2). (A.23)

We now derive explicit expressions for the leading term in equation (A.23) for the cases a)–c) of the

Lemma. Starting with case a), for which g/h → 0, it follows by substitution and Taylor expansion

arguments that for v ∈ I−S,n with K ′h(v) = h−1K ′(h−1v) and K ′′h(v) = h−1K ′′(h−1v)

ψ(x, v) =
∫
Kh(r0(s)− x)L∗g(s− v)ds

=
∫
Kh(r0(v + tg)− x)L∗(t)dt

=
∫

(Kh(r0(v)− x) +K ′h(r0(v)− x)
r0(v + tg)− r0(v)

h

+K ′′h(χ1 − x)
1
2

(
r0(v + tg)− r0(v)

h

)2

)L∗(t)dt

= Kh(r0(v)− x) +K ′h(r0(v)− x)
∫

(r′0(v)
tg

h
+ r′′0 (χ2)

t2g2

2h
)L∗(t)dt

+
∫
K ′′h(χ1 − x)

1
2

(
r′0(χ3)tg

h

)2

L∗(t)dt,

where χ1,χ2 and χ3 are intermediate values between r0(v) and r0(v+ tg), v and v+ tg, and v and v+ tg,

respectively. This gives an expansion for ψ(x, v) of order (h/g)2. For v 6∈ I−S,n one gets an expansion of

order h/g. Together with Lemma 5 in Appendix B, we thus obtain that

1
nfR(x)

n∑
j=1

ψ(x, Sj)ζj =
1

nfR(x)

n∑
j=1

Kh(r0(Sj)− x)ζj +Op((
g

h
)2

√
log(n)
nh

),

as claimed. To show statement b) of the Lemma, we rewrite the function ψ for v ∈ I−S,n as follows:

ψ(x, v) =
∫

(Kh(r0(v)− x+ r′0(v)tg) +K ′(
χ1

g
)r
′′

0 (χ2)
1
2
t2)L∗(t)dt

= Mh(x, v) + g

∫
K ′g(ζ1)r

′′

0 (χ2)
1
2
t2L∗(t)dt

where χ1 is an intermediate value between r0(v+gt) and r0(v)+r′0(v)tg, and χ2 is an intermediate value

between v and v + gt. As in the proof of part a), it follows from Lemma 5 in Appendix B that

1
nfR(x)

n∑
j=1

ψ(Sj)ζj =
1

nfR(x)

n∑
j=1

Mh(x, Sj)ζj +Op

(
g

√
log(n)
ng

)
,
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which implies the desired result. Now consider statement c) of the Lemma. In this case, where g/h→∞,

we can rewrite the function ψ(·) for v ∈ I−S,n as follows:

ψ(x, v) =
∫
Kh(r0(s)− x)L∗g(s− v)ds

=
1
g

∫
K(t)L∗ (u, (ϕ(v1 + ug, x+ th)− v2)/g) ∂xϕ(v1 + ug, x+ th)dtdu

The statement of the Lemma then follows from tedious but conceptionally simple Taylor expansion

arguments similar to the ones employed for case b), and Lemma 5.

A.3 Proofs of Theorems 2–5.

The statements of these theorems follow by direct application of Lemma 1 and Theorem 1. The statement

of Theorem 2 is immediate. For Theorem 3–5, we only have to check that the error bounds in Theorem 1

and Lemma 1 are of the desired order. We only discuss how the constants α, δ and ξ can be chosen. Note

that all these constants have no subindex because we only consider the case d = 1. We apply Theorem

1 conditionally on the values of S1,...,Sn. Then the only randomness in the pilot estimation comes from

ζ1, ..., ζn. We can decompose r̂ into r̂A + r̂B , where r̂A is the local polynomial fit to (Si, ζi) and r̂B is

the local polynomial fit to (Si, r0(Si)). Conditionally given S1,...,Sn, the value of r̂B is fixed and for

checking Assumption 3 we only have to consider entropy conditions for sets of possible outcomes of r̂A.

We will show that with α = p/k one can choose for δ and ξ any value that is larger than (1 − pθ)/2 or

−pk−1(1− pθ)/2 + pθ, respectively. Note that then α ≤ 2 because of Assumption 4(iii). It can be easily

checked that we get the desired expansions in Theorems 2 and 3 with this choices of α = p/k, δ and ξ

(with δ and ξ small enough). In particular note that we can make δα+ ξ as close to pθ as we like.

It is clear that Assumption 2 holds for this choice of δ. This follows by standard smoothing theory for

local polynomials. Compare also Lemma 5 and the proof of Lemma 1. It remains to check Assumption 3.

It suffices to check the entropy conditions for the tuple of functions (n−1
∑n
i=1 Lh(Si− s)[(Si− s)/g]πζi :

0 ≤ π+ ≤ q, πj ≥ 0 for j = 1, ..., p). This follows because we get r̂A by multiplying this tuple of functions

with a (stochastically) bounded vector. We now argue that all derivatives of order k of the functions

n−1
∑n
i=1 Lh(Si − s)[(Si − s)/g]πζi can be bounded by a variable Bn that fulfills Bn ≤ bn = nξ

∗∗
)

with probability tending to one. Here ξ∗∗ is a number with ξ∗∗ > − 1
2 (1 − pθ) + kθ. This bound holds

uniformly in s and π. Furthermore, the functions n−1
∑n
i=1 Lh(Si − s)[(Si − s)/g]πζi can be bounded

by a variable An that fulfills An ≤ an = nξ
∗
) with probability tending to one. Here ξ∗ is a number with

ξ∗ > − 1
2 (1−pθ). Again, this bound holds uniformly in s and π. We now consider the set of functions on

IS that are absolutely bounded by an and that have all partial derivatives of order k absolutely bounded

by bn. We argue that this set can be covered by C exp(λ−p/kbp/kn ) balls with ‖ · ‖∞-radius λ for λ ≤ an.

Here the constant C does not depend on an and bn. This entropy bound shows that Assumption 3 holds

with these choices of α, δ and ξ. For the proof of the entropy bound one applies an entropy bound for

the set of functions on IS that are absolutely bounded by 1 and that have all partial derivatives of order
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k absolutely bounded by 1. This set can be covered by C exp(λ−p/k) balls with ‖ · ‖∞-radius λ for λ ≤ 1.

The desired entropy bound follows by rescaling of the functions. Note that we have that b−1
n an → 0.

A.4 Proof of Theorem 6

For x ∈ IR we can decompose Yi = Yi,A+Yi,B(x)+...+Yi,G(x), where Yi,A = εi, Yi,B(x) = m′0(x)T (r̂(Si)−

x), Yi,C(x) = m0(x) + 1
2 (r̂(Si)− x)Tm′′0(x)(r̂(Si)− x), Yi,D(x) = m0(r0(Si))−m0(x)−m′0(x)T (r0(Si)−

x)− 1
2 (r0(Si)− x)Tm′′0(x)(r0(Si)− x), Yi,E(x) = −m′0(r0(Si))T (r̂(Si)− r0(Si)), Yi,F (x) = (m′0(r0(Si))−

m′0(x)−m′′0(x)(r0(Si)− x))T (r̂(Si)− r0(Si)), and Yi,G(x) = − 1
2 (r̂(Si)− r0(Si))Tm′′0(x)(r̂(Si)− r0(Si)).

The decomposition of Yi defines an additive decomposition of m̂∗LQ(x) into m̂∗LQ,A(x) + ...+ m̂∗LQ,G(x).

Similarly, by decomposing Yi = Y #
i,A+Y #

i,B(x)+ ...+Y #
i,D(x) we get m̃∗LQ(x) = m̃∗LQ,A(x)+ ...+m̃∗LQ,D(x).

In the latter decomposition we have chosen Y #
i,A = Yi,A, Y #

i,B = m′0(x)T (r0(Si)− x), Y #
i,C(x) = m0(x) +

1
2 (r0(Si)− x)Tm′′0(x)(r0(Si)− x), and Y #

i,D(x) = Yi,D(x).

Now, we compare these two additive decompositions. The difference m̂∗LQ,A(x) − m̃∗LQ,A(x) can be

treated as in the first part of the proof of Theorem 1 by application of empirical process methods. It is

helpful to multiply the j-th element of m̂∗LQ,A(x) and m̃∗LQ,A(x) by n−ηj . Then, for these new vectors the

whole analysis of the first part of Theorem 1 goes through without changing any exponential constants.

It remains to compare the other additive components. First, we have m̂∗LQ,B(x) = m̃∗LQ,B(x) = m′0(x)

and m̂∗LQ,C(x) = m̃∗LQ,C(x) = 0 by definition. Furthermore, one can easily check that Y #
i,D(x) =

Yi,D(x) is uniformly in x bounded by O(n−3ηmin). By some algebra this results in a uniform bound for

m̂∗j,LQ,D(x)− m̃∗j,LQ,D(x) of the order O(n−3ηmin+ηj−(δ−η)min). The terms m̂∗LQ,F (x) and m̂∗LQ,G(x) can

be bounded by using uniform bounds on Yi,F (x) and Yi,G(x). Making use of all these results we get that

(4.1) follows from the fact that ∆∗(x) = m̂∗LQ,E(x). Equation (4.2) follows with a classical smoothing

argument.

A.5 Proof of Theorem 7

The proof is analogous to Theorem 1 over increasing subsets. Direct calculations show that I∗R,n is

appropriately chosen.

A.6 Proof of Theorem 8

The proof is similar to the one of Theorem 1, but uses more direct arguments to show a result analogous

to Lemma 2.
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A.7 Proof of Theorem 9

We can write θ̂ = θ̂A + θ̂B with

θ̂A =
L∑
l=1

nl
n

1
nl

∑
i∈Nl

ŵ∗l (r̂l(Si))εi,

θ̂B =
L∑
l=1

nl
n

1
nl

∑
i∈Nl

ŵ∗l (r̂l(Si))m(r(Si)).

We first show that θ̂A = OP (n−1/2). This claim immediately follows from

θ̂A = n−1
n∑
i=1

w(r(Si))εi + oP (n−1/2). (A.24)

For a proof of (A.24) we consider the conditional variance of

√
nl(

1
nl

∑
i∈Nl

ŵ∗l (r̂l(Si))εi −
1
nl

∑
i∈Nl

w∗(r(Si))εi),

given the functions ŵ∗l and r̂l and the values of Si for i ∈ Nl. This conditional variance is bounded by

Cεn
−1
l

∑
i∈Nl

[ŵ∗l,h(r̂l(Si))−w∗(r(Si))]2. Because of Assumption 8(iii) this bound is of order oP (1). This

shows (A.24).

It remains to show θ̂B − θ = OP (n−1/2). This claim can be shown by calculating the conditional

variance and expectation of 1
nl

∑
i∈Nl

ŵ∗l (r̂l(Si))m(r(Si)), given the functions ŵ∗l and r̂l.

A.8 Proof of Proposition 1

Let f̂ = (ν̂1, ν̂0, Π̂) and f̄ = (ν1, ν0,Π), define the functional Sn(f) as

Sn(f) =
1
n

n∑
i=1

f1(f3(Xi))− f2(f3(Xi))− γATE ,

and let Ṡn(f)[h] = limt→0(Sn(f + th) − Sn(f))/t denote its directional derivative. One then obtains

through direct calculations that for any f = (f1,A + f1,B , f2,A + f2,B , f3) we have that

‖Sn(f)− Sn(f̄)− Ṡn(f̄)[f − f̄ ]− ((f ′1,A − f̄ ′1) + (f ′2,A − f̄ ′2))(f3 − f̄3)‖∞

= O(‖f3 − f̄3‖2∞(‖f ′′1,A‖∞ + ‖f ′′2,A‖∞)) +O(‖f3 − f̄3‖2∞) +O(‖f1,B‖∞ + ‖f2,B‖∞).

Now set f̂1,A equal to the leading terms of a stochastic expansion of ν̂1 up to order op(n−1/2) (analogous

to the one given in Theorem 5, but acommodating the presence of the indicator variable D), let f̂1,B =

f̂1− f̂1,A = op(n−1/2) be the corresponding remainder term, and define f̂2,A, f̂2,B analogously. Since the

conditions of the proposition imply that ‖f̂3 − f̄3‖∞ = op(n−1/4) and ‖f̂ ′′j,A‖∞ = Op(1) for j = 1, 2, we

have that

γ̂ATE − γATE = Sn(f̂) = Sn(f̄) + T1,n + T2,n + T3,n + T4,n + op(n−1/2),
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where

T1,n =
1
n

n∑
i=1

(ν̂1(Π(Xi))− ν1(Π(Xi))),

T2,n = − 1
n

n∑
i=1

(ν̂0(Π(Xi))− ν0(Π(Xi))),

T3,n =
1
n

n∑
i=1

(Π̂(Xi)−Π(Xi))(ν′1(Π(Xi))− ν′0(Π(Xi))),

T4,n =
1
n

n∑
i=1

((f̂ ′1,A(Π(Xi))− ν′1(Π(Xi))) + (f̂ ′2,A(Π(Xi))− ν′0(Π(Xi)))(Π̂(Xi)−Π(Xi))

To prove the asymptotic normality result, we show that

√
n(Sn(f̄) + T1,n + T2,n + T3,n + T4,n) d→ N(0,E(ψ(Y,D,X)2)).

First, note that the term Sn(f̄) is simply the sample average of i.i.d. mean zero random variables, and

thus easy to handle. Now consider the term T1,n. Using the stochastic expansion in Theorem 1, a

stochastic expansion for the estimated propensity score Π̂(x) analogous to the one used in the proof of

Lemma 1, and projection arguments for (third order) U-Statistics (Ahn and Powell, 1993, Lemma A.3),

it follows that

T1,n =
1
n

n∑
i=1

(
Di(Yi − ν1(Π(Xi)))

Π(Xi)
− ν′1(Π(Xi))(Di −Π(Xi))

)
+ op(n−1/2). (A.25)

Using the same line of reasoning, we also find that

T2,n = − 1
n

n∑
i=1

(
(1−Di)(Yi − ν0(Π(Xi))

1−Π(Xi)
− ν′0(Π(Xi))(Di −Π(Xi))

)
+ op(n−1/2). (A.26)

Now consider the term T3,n. Using again standard projection arguments for (now second order) U-

Statistics (Powell, Stock, and Stoker, 1989, Lemma 3.1) and a stochastic expansion for the estimated

propensity score Π̂(x) analogous to the one used in the proof of Lemma 1, one can show that

T3,n =
1
n

n∑
i=1

(Di −Π(Xi))(ν′1(Π(Xi))− ν′0(Π(Xi))) + op(n−1/2). (A.27)

Finally, by using again the stochastic expansions from Theorem 1 and the stochastic expansion of the

estimated propensity score Π̂(x) mentioned before, one can show that T4,n is equal to a third order

U-statistic up to terms of order oP (n−1/2). This leading U-Statistic turns out to be degenerate, and we

thus find that

T4,n = oP (n−1/2) (A.28)

by applying Lemma A.3 in Ahn and Powell (1993). Finally, it follows from (??) that we can write

Y = νd(Π(X)) + εd with E(εd|D = d,X) = 0 for d = 0, 1. This implies that µd(x) = E(Y |D = d,X =

x) = νd(Π(x)) + E(εd|D = d,X = x) = νd(Π(x)). The statement of the proposition then follows from

this identity, equations (A.25)–(A.28), and an application of the central limit theorem.
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A.9 Proof of Proposition 2

Let f̂ = (m̂, µ̂2) and f̄ = (m,µ2), define the functional Sn(f) as

Sn(f) =
1
n

n∑
i=1

f1(x1, z1, X1i − f2(Zi))− µ1(x1, z1),

and let Ṡn(f)[h] = limt→0(Sn(f + th) − Sn(f))/t denote its directional derivative. One then obtains

through direct calculations that for any f = (f1,A + f1,B , f2) with bounded second derivatives we have

that

‖Sn(f)− Sn(f̄)− Ṡn(f̄)[f − f̄ ]‖∞ ≤ O(‖f2 − f̄2‖2∞) +O(‖f2 − f̄2‖∞‖f (v)
1,A − f̄

(v)
1 ‖∞) +O(‖f1,B‖∞)

where f (v)
1,A(x1, z1, v) = df1,A(x1, z1, v)/dv. Using the same kind of arguments as in the proof of Lemma

1, under the conditions of the proposition one can derive the following uniform stochastic expansion of

m̂ up to order op((nh1+d1)−1/2):

m̂(x1, z1, v) = m(x1, z1, v) +
1

nfR(x1, z1, v)

n∑
i=1

Kh((X1i, Z1i, Vi)− (x1, z1, v))εi + op((nh1+d1)−1/2),

(A.29)

where εi = Y −m(X1i, Z1i, Vi). Let f̂1,A denote the two leading terms of this expansion, and denote the

remainder term by f̂1,B . Now it follows from e.g. Masry (1996) and the conditions on η and θ that

‖f̂2 − f̄2‖∞ = OP ((log(n)/(ngd1+d2))1/2) = op((nh1+d1)−1/4),

and it follows from the same result together with Lemma 5 in Appendix B that

‖f̂2 − f̄2‖∞‖f̂ (v)
1,A − f̄

(v)
1 ‖∞ = OP (log(n)/(n2h3+d1gd1+d2)1/2) = op((nh1+d1)−1/2).

For any fixed values (x1, z1) we thus have that

µ̂1(x1, z1)− µ1(x1, z1) = Sn(f̂) = Sn(f̄) + T1,n + T2,n + op((nh1+d1)−1/2),

where

T1,n = − 1
n

n∑
i=1

m(v)(x1, z1, Vi)(µ̂2(Zi)− µ2(Zi)),

T2,n =
1
n

n∑
i=1

(m̂(x1, z1, Vi)−m(x1, z1, Vi)).

Being a simple sample average of i.i.d. mean zero random variables, one can directly see that Sn(f0) =

Op(n−1/2) = op((nh1+d1)−1/2). Using a stochastic expansion for µ̂2 as in the proof of Lemma 1, and

applying projection arguments for U-Statistics, one also finds that T1,n = Op(n−1/2) = op((nh1+d1)−1/2).

Now consider the term T2,n. From the expansion in (A.29), it follows that for any fixed values (x1, z1)

we have that

T2,n =
1
n

n∑
j=1

1
nfR(x1, z1, Vj)

n∑
i=1

Kh((X1i, Z1i, Vi)− (x1, z1, Vj))εi + op((nh1+d1)−1/2). (A.30)
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This in turn implies that

√
nh1+d1T2,n

d→ N

(
0,E

(
σ2
ε(x1, z1, V )

fXZ1|V (x1, z1, V )

)∫
K̃(t)2dt

)
using projection arguments for U-Statistics.

A.10 Proof of Proposition 3

Our proof has the same structure as the one provided by Linton and Lewbel (2002), but making use

of Theorem 1 considerably simplifies some of their arguments. First, note that the restriction that

θ < θ < θ̄ implies that (ngp)1/2h2 → 0 and (ngp)1/2gq+1 → 0. From a second-order Taylor expansion,

we furthermore obtain that

µ̂(x)− µ0(x) =
1

q0(r0(x))
(r̂(x)− r0(x)) +

∫ λ

r0(x)

q̂(s)− q0(s)
q0(s)2

ds− q̂′(r̄(x))
2q̂(r̄(x))2

(r̂(x)− r(x))2

−
∫ λ

r(x)

(q̂(s)− q0(s))2

q̂(s)q0(s)2
ds+

(q̂(ř(x))− q0(ř(x)))2

q̂(ř(x))q0(ř(x))
(r̂(x)− r0(x))

≡ T1 + T2 + T3 + T4 + T5

where r̂(x) and ř(x) are intermediate values between r(x) and r̂(x). Now it follows from standard

arguments for local linear estimators that

√
ngpT1

d→ N

(
0,

σ2
r(x)

fS(x)s2
0(x)

∫
L2(t)dt

)
,

since s0(x) = q0(r0(x)). To prove the proposition, it thus only remains to be shown that the remaining

four terms in the above expansion are of smaller order than T1. Under the conditions of the Proposition, it

is easy to show with straightforward rough arguments that inf q(s) > 0, sup q̂′(s) = Op(1) and sup |q̂(s)−

q0(s)|2 = op((ngp)−1/2) where sup and inf are taken over s ∈ (ro(x) − ε, λ0 + ε) for some ε > 0. This

directly implies that T3 + T4 + T5 = op((ngp)−1/2). Now consider the term T2. From Theorem 1, we

obtain that

T2 =
∫ λ

r0(x)

q̃(s)− q0(s)
q0(s)2

ds−
∫ λ

r0(x)

q′0(s)w(s)
q0(s)2

ds+Op(n−κ),

where q̃(x) is the oracle estimator of the function q obtained via local linear regression of I{Y > 0} on

r0(X), and w(s) =
∑n
i=1Kh(r0(Xi)−s)(r̂(Xi)−r0(Xi))/

∑n
i=1Kh(r0(Xi)−s). Using similar arguments

as in the proof of Lemma 1 and the other propositions, and the restriction that θ < θ < θ̄, we obtain

that ∫ λ

r(x)

q̃(s)− q(s)
q2(s)

ds =
1
n

n∑
i=1

εi
fR(r0(Xi))

+Op(h2) = Op(h2) = op((ngp)−1/2),

for εi = I{Yi > 0} − q0(Xi), and that∫ λ

r(x)

q′0(s)w(s)
q0(s)2

ds =
1
n

n∑
i=1

ζi
q′0(r0(Xi))

q0(r0(Xi))2fR(r0(Xi))fX(Xi)
+Op

(
log n
ngp

)
+Op(gq+1)

= op((ngp)−1/2),
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for ζi = Yi−r0(Xi). Thus T2 = op((ngp)−1/2). Finally, straightforward calculations show that θ < θ < θ̄

also implies that Op(n−κ) = op((ngp)−1/2). This completes the proof.

B Additional Results

B.1 Uniform Rates for Generalized Kernels

The following lemma states uniform rates for averages of i.i.d. mean zero random variables weighted by

“kernel-type” expressions. It is used in the proofs of several of our results. Modifications of the lemma

are well known in the smoothing literature, see e.g. (Härdle, Jansen, and Serfling, 1988). The lemma

can be proved by standard smoothing arguments. One can proceed by using a Markov inequality as in

the proof of Lemma 2 but without making use of a chaining argument.

Lemma 5. Assume that D ⊂ Rdx is a compact set, and Wn,h is a kernel-type function that satisfies

Wn,h(u, z) = 0 for ||u − t(z)|| > bnh for some deterministic sequence 0 < b ≤ |bn| ≤ B < ∞, and t :

RdS → Rdx a continuously differentiable function, for any u ∈ D and z ∈ RdS . Furthermore, assume that

|Wn,h(u, z)−Wn,h(v, z)| ≤ l ||u−t(z)||h h−dxW̃n(v, t(z)) with supn W̃n bounded, and that E[exp (ρ|ε|)|S] < C

a.s. for a constant C > 0 and ρ > 0 small enough. Then with a deterministic sequence an with |an| ≤ A

we have that

sup
x∈D

∣∣∣∣∣ 1n
n∑
i=1

anWn,h(x, Si)εi

∣∣∣∣∣ = Op

(√
log(n)
nhdx

)
. (B.1)
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