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Abstract

A new heteroskedastic hedonic regression model is suggested which takes into

account time-varying volatility and is applied to a blue chips art market. A non-

parametric local likelihood estimator is proposed, and this is more precise than the

often used dummy variables method. The empirical analysis reveals that errors

are considerably non-Gaussian, and that a student distribution with time-varying

scale and degrees of freedom does well in explaining deviations of prices from their

expectation. The art price index is a smooth function of time and has a variability

that is comparable to the volatility of stock indices.
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1 Introduction

It is well documented that volatility of many commodities and stocks displays a cer-

tain degree of time variation. This feature has important consequences for economists,

policy makers, economic agents, actors in the financial and commodity markets. Since

Engle (1982)’s ARCH model, several models have been built to investigate volatility of

commodities, and a large literature is now dedicated to its time-varying structure.

Surprisingly, while considerable efforts have been devoted to assess returns in the art

market, few studies attempt to investigate the volatility structure of art as a function

of time. Yet, volatility of fine art is worth investigating, and a better understanding

of its structure may be of practical use for market participants, more particularly for

participants exposed to derivatives on art. Such derivatives include price guarantees

underwritten by auction houses (Greenleaf et al., 1993) that are similar to short positions

in put options. Volatility of fine art also plays a role when pieces of art are used as

collateral for loans (McAndrew and Thompson, 2007). Campbell and Wiehenkamp (2008)

illustrate the mechanism of another art-based option: the Art Credit Default Swap: A

bank lends money to an entity on the one hand, and buys an option (the Art Credit

Default Swap) from a third party -the seller of protection- on the other hand. This

option gives the bank the right to swap the art object against cash, would the borrower

default. Many other derivatives, sensitive to volatility, abound in the market for physical

insurance on luxury goods and art. Unlike commodities exchanged on organised platforms,

a common complication in analysing the market for art and antiques is the heterogeneity

of exchanged goods. This feature prevents the observer from directly estimating returns

and volatility of the market. As far as returns are concerned, two main methodologies

have been developed to cope with this issue: the repeat sale methodology (RSM) and

the hedonic regression. RSM is based on various goods that have been sold several times

in different periods, so as to compute an average rate of return. RSM has been used by

Baumol (1986), Goetzmann (1993), Pesando (1993), as well as Mei and Moses (2002). A

major critique against RSM is that it focuses on a small, biased sample of goods (Collins

et al., 2009) that have been resold through time.

This paper focuses on the hedonic regression methodology (HRM) that is further

detailed in Section 2. Hedonic regression has been favoured to study the art market

by Chanel et al. (1994), Hodgson and Vorkink (2004), Collins et al. (2009), Oosterlinck

(2010), Renneboog and Spaenjers (2009) and Bocart and Oosterlinck (2011). Hedonic

regression has the advantage of using all goods put for sale. The approach is to regress a
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function of the price of each good on its characteristics, including time dummy variables

whose coefficients will constitute the basis for building an index. The main disadvantage

of hedonic regression methodology is that the index depends on the explanatory variables.

Ginsburgh et al. (2006) discuss the main problems of hedonic regression applied to the art

markets, such as the choice of a functional form, the specification bias and the “revision

volatility” -that is, as new data are included in the dataset, the price index changes.

Methodology-wise, ordinary least squares are usually employed to estimate parameters.

Recent research aims at correcting methodological flaws in hedonic regression: Collins

et al. (2009) introduce the Heckman procedure to take into account a sample selection

bias linked to unsold artworks as well as a Fisher index to cope with time instability

of parameters. Jones and Zanola (2011) detail the use of a so-called smearing factor to

correct for a retransformation bias when a log scale of prices is used in the regression.

Scorcu and Zanola (2010) suggest a quantile regression to take into account the fact that

parameters depend on price levels. Hodgson and Vorkink (2004), highlight that for the

art market, non-Gaussianity is an issue that needs to be treated, since OLS estimates

are not efficient. They assume an i.i.d. error term with nonparametric density function,

and suggest Bickel’s adaptive estimation to obtain efficient estimates. While this is an

important improvement of standard OLS estimation in this framework, the assumption

of i.i.d. errors may seem too restrictive for markets which exhibit time-varying features

such as changing uncertainty concerning the evaluation of art. In particular, we show

in this paper that art markets can be heteroskedastic and exhibit time-varying skewness

and kurtosis. These characteristics are rather well known in the financial markets, see

e.g. Tsiotas (2012) for a recent account, they are however not well understood in the art

markets. Our paper contributes to improve our understanding of the statistical properties

of returns in these markets.

We recommend a local maximum likelihood procedure to obtain time-varying estimates

of higher moments, i.e., variance, skewness and kurtosis. The time-varying variance is later

used to derive what we call “volatility of predictability”. It can also be used to obtain more

efficient parameter estimates by using weighted least squares. However, our main interest

lies in volatility in itself, as it can be used further e.g. for derivative pricing. Modelling

unconditional volatility as a deterministic function of time has become popular recently

in financial markets, starting from Engle and Rangel (2008) who use a spline estimator for

unconditional volatility combined with a classical GARCH model for conditional volatility.

Our research follows the same spirit but allows moreover for time-varying skewness and
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kurtosis.

The paper is organised as follows: Section 2 introduces the data we use to build a blue-

chips art index and presents the HRM methodology and a time-dependent estimator for

variance. Section 3 illustrates our results. Concluding remarks are presented in Section

4.

2 Data and methodology

2.1 Data

We choose to restrict our analysis to two-dimensional artworks, excluding works on paper

and photographs, made by artists ranked amongst the top 100 sellers (in sales revenue

in auction houses, according to Artprice, a company specialized in publishing auction

results), both in 2008 and 2009. The rationale behind this choice is that large volumes of

sales may signal a particular interest from the market for these artists.

We believe that these artists are more likely to be seen both as consumption goods

and investment goods unlike many little traded artists whose objects are more likely to

be bought as pure consumption goods. Indeed, Frey and Eichenberger (1995) state that

“pure speculators” who consider art as an investment may avoid markets presenting too

much uncertainty (such as financial risk or attribution risk).

Furthermore, Goetzmann (1993) emphasizes that art prices are influenced by “stylistic

risk”, that is the risk of having not enough bidders when reselling the artwork. Mei and

Moses (2002) compare stylistic risk in art markets to liquidity risk in financial markets.

Unknown and relatively little traded artists are typically cursed by considerable financial

and liquidity risk, as it can be difficult to realize a sale in a market where demand is weak.

On the other hand, buyers of liquid artists – with a low stylistic risk – know ex-ante

that they will be able to re-sell artworks, which might attract speculators and investors.

In practice, art is actually traded as an investment. This is empirically confirmed by

activity from dealers, funds, foundations and private individuals who store artworks in

warehouses, bank vaults, or in Switzerland’s port-franc containers, where obviously the

aesthetic return is null.

Based on the assumption that liquid artists can be seen as an investment, we focus on

“Blue Chips Artists”: we need to select artists who stay in the top 100 of best sellers two

consecutive years, in order to avoid bias from exceptional or unusual sales. Forty artists

correspond to this description, out of which 32 stayed in the top 100 from 2005 to 2010
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in a row. We record auction data from January 2005 to June 2010. 5612 sold pieces are

recorded. An auction process is an opportunity to record information. Auction houses

announce weeks to months in advance the dates when auctions will occur. Sometimes,

a single auction is split into several days. In most cases, the sale is organized around

a certain theme (“Impressionist art” for instance). Prior to the auction, a catalogue is

published by the auction house. In this catalogue, each artwork is linked to a lot number,

a price estimate, and a description. The length of the description differs from one artwork

to another, but key variables are systematically recorded. For each sale, we gather the

following information: the price in USD, and whether it is a hammer price (that is, the

price reached at auction), or a premium price (the price including the buyer’s premium),

the sales date, the artist’s name, the width and height of the painting in inches, the year it

has been made, the painting’s title, the auction house and city where the sale occurred and

the title of the auction house’s sales theme. From this information we extract additional

variables, such as the subject of the painting (derived from the title), the theme of the

auction (modern, contemporary, impressionist, etc.), derived from the sale’s title, the

artist’s birthday, at what age he painted the piece and whether he was alive or dead at

the time of the auction. We also derive the weekday of the sale. Some factors are omitted

that may influence the final price for a painting, such as exhibition costs, transaction

costs, and transport. All variables are presented in tables 3, 4 and 6.

2.2 Hedonic Regression Methodology

Hedonic regression is a common tool to estimate consumer price indices (see e.g. Gins-

burgh et al., 2006) and has been widely used in real estate and art markets. Let pi denote

the price of sale i. The logarithm of this price is usually modelled by the following hedonic

regression model,

log pi = ν +
T∑

t=1

βtdi,t +
K∑

k=1

αkvi,k + ui, i = 1, ..., N. (1)

di,t is a dummy variable taking the value 1 if the artwork i was sold in period t, and

0 otherwise. ν is a constant term. The time index t = 1 corresponds to the very first

period of the series and is used as benchmark. In our case, it would be the first quarter

of 2005. For identification, we set β1 equal to zero. The K variables vi,k are all other

characteristics of the piece of art i (for instance: the height, surface, and dummies for the

artists, subject, etc.). The index, with base 100 in t = 1, using a bias correction factor
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based on Duan (1983) is then defined as follows, see Jones and Zanola (2011):

Indext = 100 × eβt ×
1

Nt

∑N
i=1 di,te

ûi

1
N1

∑N
i=1 di,1eûi

, (2)

where Nt =
∑N

i=1 di,t is the number of observations at time t. Regression (1) is generally

estimated using Ordinary Least Squares (OLS). OLS estimators are efficient when errors ui

are normally distributed with constant variance, i.e., ui ∼ N(0, σ2
u). Data from art sales,

however, often violate this assumption. Hodgson and Vorkink (2004) and Seckin and

Atukeren (2006) focus on the normality part and propose a semiparametric estimator of

the index based on a nonparametric error distribution, while maintaining the assumption

that ui is i.i.d. and, hence, homoskedastic.

Furthermore, indices based on the OLS methodology suffer from a sample selection

bias. Indeed, only sold paintings are taken into account, whereas unsold paintings carry

important information as well. Collins et al. (2009) suggest a two-stage estimation to

cope with the issue. Let Si denote a dummy variable taking value 1 if the painting i has

been sold and 0 otherwise. The first stage involves a probit estimation:

P (Sj = 1 | wj) = Φ

(
P∑

p=1

δpwj,p

)
, j = 1, ..., N + U, (3)

where Φ is the cumulative distribution of the standard normal, N is the number of pieces

sold and U is the number of unsold pieces. The P variables wj,p are characteristics of

the piece of art j (for instance: the height, surface, and dummies for the artists, subject,

etc.), and δ = (δ1, . . . , δP )′ is a parameter vector.

The second stage involves an OLS estimation similar to equation (1), but only for the

sold pieces (Si = 1):

log pi = ν +

T∑

t=1

βtdi,t +

K∑

k=1

αkvi,k + κζi + ui, i = 1, ..., N. (4)

The term ζi is a correcting variable, based on parameters of the probit estimation and

found using the procedure of Heckman (1979), and κ is a parameter.

We now propose to modify the time component, replacing the time dummies di,t by a

smooth unknown function of time, and allowing for heteroskedasticity of unknown form.

An important advantage of choosing a continuous function β(t) rather than time dummies
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is that one avoids gathering paintings sold at different periods in a single variable. We also

remove the normality assumption, allowing for skewness and leptokurtosis. In particular,

we assume that residuals are distributed according to a student-skewed distribution. Our

semiparametric heteroskedastic model can then be written as

log pi = ν +
K∑

k=1

αkvi,k + κζi + β(ti) + σ(ti)εi, i = 1, ..., N, (5)

or, alternatively:

log pi =
M=2+K∑

m=1

γmxi,m + ξi, i = 1, ..., N, (6)

where xi = (1, vi,1, ...vi,k, ..., vi,K , ζi), and

ξi = β(ti) + σ(ti)ǫi = β(ti) + ui, ui = σ(ti)ǫi. (7)

The function σ(t) is a smooth function of time, ti is the selling time of the i-th sale, β(t) is

the trend component of the log price at time t, and for identification we restrict its mean

to zero. The error term ε is independent, but not identically distributed, with mean zero

and variance one, given by a standardized student skewed distribution. The probability

density function of the student skewed distribution t(η, λ) with mean zero and variance

equal to one is provided by Hansen (1994):

g(ε | λ, η) = bc

(
1 +

1

η − 2
(
ε + a

1 − λ
)2

)−(η+1)
2

∀ε < −a/b, (8)

and

g(ε | λ, η) = bc

(
1 +

1

η − 2
(
ε + a

1 + λ
)2

)−(η+1)
2

∀ε ≥ −a/b, (9)

where η stands for the degrees of freedom with 2 < η < ∞, and λ is a parameter

characterizing the skewness of the distribution, with −1 < λ < 1. The constants are

given by

a = 4λc
η − 2

η − 1
, b2 = 1 + 3λ2 − a2, c =

Γ(η+1
2

)√
π(η − 2)Γ(η

2
)
. (10)

A first stage estimation of γ is a prerequisite. We suggest constructing feasible
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weighted least squares (FWLS) estimators of γ:

γ̂ = (X ′ŴX)−1X ′ŴY, (11)

where X is the N×M matrix of observed independent variables, Y is the N × 1 vector of

observed log-prices, Ŵ is an N×N diagonal matrix with wii = σ̂−2(ti). If a nonparametric

Nadaraya-Watson estimator is used for σ̂2, then the estimator (11) has been first proposed

by Rose (1978). For the case of a volatility function depending on an i.i.d. random

variable, Carroll (1982) showed that it is asymptotically equivalent to the WLS estimator

with known volatility function. We can consistently estimate the variance of the FWLS

estimator by

V̂ar(γ̂) = (X ′ŴX)−1. (12)

Because it yields more precision in parameter estimates, FWLS may lead to a better

selection of explanatory variables, as compared to the OLS methodology. This is im-

portant since “choosing the functional form and the variables that represent quality are

pervasive in hedonic indexing, and can lead to all the problems linked to mis-specification”

(Ginsburgh et al., 2006).

Conditional on this first stage estimate of γ, we use a nonparametric estimation, intro-

ducing a kernel function K and a bandwidth h. We suggest estimating the local parameter

vector θ = (β, σ, η, λ)′ by local maximum likelihood. One advantage of considering θ as

a function of continuous time is the improved stability of estimation compared to ordi-

nary least squares with time dummies. Indeed, we avoid all risks linked to the inversion

of a near singular matrix, a problem often met when few data are available in a given

period. Smoothing over several adjacent time periods allows to stabilize the estimation

of a parameter at a given time. Formally, the local likelihood estimator of θ is defined as

θ̂(τ) = argmax[l(θ | ξ, τ, h)], (13)

where

l(θ | ξ, τ, h) =

N∑

i=1

log[gs(ξi | θ)]K(
ti − τ

h
), (14)

gs(ξi | θ) =
1

σ
g

(
ξi − β

σ
| λ, η

)
, (15)

and where g(·) is the standardized skewed student t density given in (8) and (9). No
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closed form solution for (13) is available in the general case, but numerical methods can

be employed in a straightforward way to maximize the local likelihood function and thus

obtain local parameter estimates.

In order to construct pointwise confidence intervals, we proceed as in Staniswalis

(1989). Let υ denote one of the four local parameters (β, σ, η, λ) and ι, the three others.

An expression for the variance Var(υ̂) is given by

Var(υ̂) =
|| K ||2

NhI(υ)f(t)
, (16)

where

I(υ) = E

{(
∂ log[gs(υ | ι)]

∂υ

)2

| u

}
, (17)

f(t) is the density of the time of sales, and || K ||2 is the L2 norm of the kernel used in

equation (14). Based on the asymptotic normality of the estimator of θ(τ), one can then

construct pointwise confidence intervals as usual.

The special case where λ(t) = 0 and η(t) = ∞ yields the Gaussian likelihood, for which

the maximizer is available in closed form and given by the Nadaraya-Watson estimator

(Härdle, 1990). Hence, our estimator nests the Nadaraya-Watson estimator as a special

case.

Bandwidth selection can be based on a classical plug-in methodology for bandwidth

selection, following Boente et al. (1997):

h = N−1/5 || K ||2 σ2

C2
2 (K)

∫ 1

0
m′′(u)2du

, (18)

where C2(K) =
∫ +∞

−∞
x2K(x)dx = 1, m′′(u) =

∑n
i=1

1
Nh3

0
K ′′(u−ui

h0
)ui, σ2 is the empirical

variance of ξ and h0 is a pilot bandwidth. We follow this procedure in the empirical

example of the following section.

3 Results

3.1 Hedonic Regression

We first build a quarterly index using time dummies, using an OLS methodology with

Heckman correction. The variables selected in the probit equation (3) are presented in
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Figure 1: Price index resulting from equation (2), based on time dummies and estimated
by Ordinary Least Squares.

.

Table 2. Variables included in regression (4) are selected following a backward selection

methodology: they are kept in the model if significant at a level of 5% using OLS regres-

sion. Advantages and disadvantages of backward selection are discussed e.g. in Hendry

(2000). As compared to other selection methodologies such as forward selection, back-

ward selection suffers from the fact that the initial model may be inadequate. Indeed,

non-orthogonality of variables may lead to erroneously eliminate variables, or wrongly

keep colinear variables. To avoid this problem, we run different initial models, separat-

ing variables that share a high degree of colinearity. The model presenting the highest

adjusted-R2 has been kept.

Table 1 summarizes results from the regression and Figure 1 presents the resulting

OLS-based price index. The need to correct for time dependent error variance is indicated

by a Breusch-Pagan test for heteroskedasticity on OLS residuals, which delivers a p-value

of 0.02. We hence reject the null hypothesis of homoskedasticity at a level of 5%. The

quantile plot in Figure 2 highlights that normality of residuals is an unrealistic assumption.

We then proceed with our methodology: we discard time-dummy variables and select

explanatory variables with a backward selection methodology at a 5% level, this time

using FWLS regression. Table 1 compares results from OLS with those from FWLS. As

we expected, the model changes as some variables prove not significantly different from

zero at a 5% level with the FWLS estimation. These four variables are Mark Rothko and

Camille Pissarro, pieces sold in Tokyo and artworks sold at Bonhams.
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Table 1: Parameters estimates of regression 5. Variables are selected by backward selection
at a level of 5% with an OLS and a FWLS estimation, respectively.

Estimate OLS Estimate FWLS Std. Error (OLS) Std. Error (FWLS)

(Intercept) 10.85 *** 11.03 *** 0.16 0.12
AgePainted -0.004 *** -0.004 *** 0.001 0.001

Alexander.Calder -3.24 *** -3.28 *** 0.17 0.17
Alexej.Jawlensky -0.38 *** -0.34 *** 0.09 0.09

Andy.Warhol -0.75 *** -0.74 *** 0.07 0.07
Bonhams -0.42 *** - 0.19 -

Camille.Pissarro -0.18 *** - 0.11 -
Childe.Hassam -0.58 *** -0.53 *** 0.16 0.16

Christies 0.19 *** 0.24 *** 0.06 0.07
Collection 0.38 *** 0.34 *** 0.11 0.11

Contemporary -0.23 *** -0.17 *** 0.06 0.06
Damien.Hirst -0.76 *** -0.68 *** 0.10 0.11

DaySales -0.28 *** -0.2 *** 0.05 0.06
Dead 0.68 *** 0.67 *** 0.09 0.09

Donald.Judd -1.66 *** -1.53 *** 0.37 0.39
Edgar.Degas -0.82 *** -0.78 *** 0.20 0.21

Edouard.Vuillard -1.10 *** -1.11 *** 0.11 0.11
Evening 1.37 *** 1.45 *** 0.05 0.05

Georges.Braque -0.68 *** -0.68 *** 0.12 0.12
Gerhard.Richter -0.32 *** -0.29 *** 0.10 0.10

Hammer -0.20 *** -0.27 *** 0.06 0.07
Henri.de.Toulouse.Lautrec -0.71 *** -0.65 *** 0.19 0.20

Henri.Matisse 0.47 *** 0.56 *** 0.13 0.14
Henry.Moore -2.94 *** -3.07 *** 0.52 0.55

HongKong 1.13 *** 1.17 *** 0.14 0.14
Impressionist -0.11 *** -0.16 *** 0.06 0.06

Jean.Michel.Basquiat -0.61 *** -0.59 *** 0.10 0.11
Kees.van.Dongen -0.51 *** -0.54 *** 0.09 0.09
KollerAuktionen 0.54 *** 0.74 *** 0.20 0.21

London 0.93 *** 0.91 *** 0.07 0.07
Mark.Rothko 0.32 *** - 0.16 -

Maurice.de.Vlaminck -1.40 *** -1.44 *** 0.07 0.07
Max.Ernst -0.89 *** -0.85 *** 0.09 0.10

Milan 0.38 ** 0.5 ** 0.15 0.15
NY 0.87 *** 0.91 *** 0.06 0.07

Pablo.Picasso 0.36 *** 0.39 *** 0.08 0.08
Paris 0.44 *** 0.52 *** 0.07 0.07

Pierre.Auguste.Renoir -0.43 *** -0.44 *** 0.07 0.07
Raoul.Dufy -1.00 *** -1.02 *** 0.09 0.09

SaintCyr -0.51 *** -0.52 *** 0.13 0.14
Sam.Francis -2.00 *** -2.06 *** 0.07 0.07

Sothebys 0.13 *** 0.21 *** 0.06 0.06
Surface -0.00002 *** -0.00002 *** 0.000001 0.000001

ThemeWord 0.01 *** 0.009 *** 0.002 0.002
Tokyo -2.79 *** - 0.23 -

Untitled -0.44 *** -0.43 *** 0.06 0.06
VillaGrisebach 0.71 *** 0.83 *** 0.15 0.16

Width 0.02 *** 0.02 *** 0.0007 0.0007
Woman 0.19 *** 0.2 *** 0.06 0.06

Yayoi.Kusama -1.46 *** -1.47 *** 0.10 0.11
Heckman Correction 0.10 0.12 0.18 0.20

Adjusted R2 68% 65%
Maximum VIF (Variance Inflation Factor) 6.53

Median VIF (Variance Inflation Factor) 1.46
Maximum Cook’s distance 0.04

Median Cook’s distance 0.0005
Standard Deviation of Residuals 1.07
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Figure 2: QQ Plot of residuals of regression (1)

Table 2: Variables and estimators of parameters of probit equation (3) -first stage for
Heckman procedure-

Estimate Std. error

(Intercept) 0.77 *** 0.04
Contemporary 0.16 ** 0.06
Impressionist -0.15 ** 0.07
DaySales -0.25 *** 0.06
Sam.Francis -0.14 * 0.08
Kees.van.Dongen -0.26 ** 0.11
Georges.Braque -0.44 *** 0.14
Edouard.Vuillard -0.33 ** 0.13
Andy.Warhol -0.42 *** 0.08
Christies 1.04 *** 0.07
Sothebys 0.64 *** 0.06

McFadden Pseudo R2 14%

The 23 artists (out of 40 available) present in the table have a significant impact on

price, ceteris paribus, compared to the other 17 that were not included. However, one

should not try to draw a ranking from this table, as difference between artists would

not always be statistically significant. Some other results from Table 1 are in line with

existing literature: the size (width) has a positive effect on price, but the surface has a

negative one, reflecting the idea that a bigger artwork is more expensive, up to the point

that it is too big to hang. Prestigious auction houses, like Sotheby’s or Christie’s are also

statistically different from the other ones. Surprisingly, Villa Grisebach (in Germany)

stands in the same category. The negative sign linked to the age of the artist reveals

that the market prefers, on average, earlier works of the artist whereas untitled artworks

are less favoured by the public. Interestingly, mentioning a collection in the title of the
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Figure 3: Local maximum likelihood estimator of the heteroskedastic term σ(t) from
equation (5).

sale (for instance: “Important works from the collection of...”) leads to higher price. We

believe this may be linked to a signal of “good provenance”. Also, evening sales tend to

exhibit more expensive paintings than day sales.

The second stage of our methodology consists of estimating four continuous time de-

pendent parameters: β(t), that will be used to create a price index, σ(t), a heteroskedastic

term, η(t) and λ(t) are the parameters that shape the student-skewed distribution of resid-

uals of regression (5). We estimate numerically the parameters by finding the values that

maximize the local log-likelihood function in equation (14).

In order to be as precise as possible, we use the day as unit for t. For the local

likelihood estimation, we choose a Gaussian kernel and a bandwidth of h = 88 following

the plug-in method described above, where the pilot bandwidth h0 was chosen in the

range h0 = [1; 30].

Figures 3, 4 and 5 plot the estimates of σ(t), λ(t) and η(t), respectively. In order to

obtain pointwise confidence intervals, it is necessary to estimate their variance. Figure 6

illustrates the estimated function f(t) used in equation (16). Practically, this function is

estimated by a Nadaraya-Watson estimator.

When considering the parameters, one can first conclude from Figure 4 that we cannot

reject the null hypothesis that λ(t) = 0. In other words, the skewness parameter does

not prove useful for this precise example. Nevertheless, we believe one should not draw

the conclusion that asymmetry of residuals is typically an unrealistic assumption. For

instance, with the same data, we observed that λ(t) is significantly different from zero

13
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Figure 5: Local maximum likelihood estimator of the degrees of freedom parameter of
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Figure 6: Estimation of the density of transactions f(t) using a Nadaraya Watson esti-
mator

when the Heckman correction is neglected. Concerning the tail parameter η(t), it is clear

from Figure 5 that tails are fat and that a student distribution better fits data than

the Gaussian. For both parameters, however, we cannot conclude that time dependency

significantly adds value to the model as compared to a constant term.

On the other hand, it is indispensable to allow for heteroskedasticity through a time

dependent scaling function. Furthermore, the behaviour of σ(t) has an economic meaning:

σ(t) can be interpreted as the degree of deviation of the realized logged-price of a given

painting from the rest of the art market. We call it the “volatility of predictability”. In

other words, a high σ(t) means that is more difficult to predict an artwork’s price. A

low σ(t) corresponds to a more precise estimation of a painting’s value. Predictability of

prices is vital for auction houses and their clients, especially when guarantees are involved.

From Figure 4, we observe that this uncertainty steadily decreased from January 2005

to October 2008. Then, it increased again, or at least stabilized according to the lower

confidence interval. It is interesting that the trough of the volatility function occurs at the

end of 2008, at about the same time as the peak of the financial crisis with the collapse of

Lehman Brothers (September 2008). It also coincides with the drop of the art price index,

see Figure 7. This suggests that the precision of the art index has increased during the

crisis of 2008/09. An explanation could be the asymmetry of art sales: while there is no

upper bound, there is very often a lower bound through a reserve price below which sales

are not allowed. Thus, in boom periods there may be a large dispersion due to extreme

prices, while in crisis periods, dispersion is smaller since masterpieces are sold at lower
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where S is a smearing factor and β(t) originates from equation (5) and is estimated by
maximum likelihood (with local non parametric correction), as shown in equation (13).

values.

The β(t) parameters stand for the difference between the returns of a painting cleansed

of all its characteristics at a time t, and the average return of this painting through

time. This must be compared with the time dummies methodology, where the parameters

represent the returns with respect to a given period. We propose a continuous version of

Duan (1983)’s and Jones and Zanola (2011)’s smearing estimate. In this framework, a

price index whose base value at time t = 1 is equal to 100 is given by:

Price Index(t) = 100eβ(t)−β(1) ×
w−1

t

∑N
i=1 K( ti−t

h
) exp(ûi)

w−1
1

∑N
i=1 K( ti−1

h
) exp(ûi)

, (19)

where wt =
∑N

i=1 K( ti−t
h

). Note that for the degenerate case K( ti−t
h

) = di,t we obtain

Jones and Zanola (2011)’s discrete smearing factor. The price index constructed in this

way is plotted in Figure 7.

In addition to a daily resolution of time parameters and a higher precision than OLS,

we empirically observe that the semi-parametric regression is also less sensitive to lack of

data in certain time clusters: as seen in Figure 1, the OLS estimation suggests a 87% drop

in price in the summer of 2006 and another crash in the summer of 2007. Such impressive

drops in prices do not appear in the continuous index in Figure 7. More generally, there is

to our knowledge no economic rationale, nor empirical evidence to support the idea that

the general level of prices collapsed during the summers of 2006 and 2007. We believe
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this drop in price shown by the OLS estimation is due to a bias caused by the absence

of important sales during summer. Such local flaws are naturally smoothed away by the

semi-parametric regression.

3.2 Volatility of index returns

As far as the Blue Chips Index is concerned, it seems an improved methodology based on

local maximum likelihood estimation yields more robust results than the traditional OLS

methodology. Furthermore, the new regression form presented in equation (5) introduces

the concept of volatility of predictability, a measurement that proves useful to better

apprehend the discrepancy of valuation of artworks through time.

However, we are also interested in the volatility of the price of a basket of paintings.

A possible method to derive volatility of, for instance, quarterly returns when using prior

OLS estimation is to consider that the estimated β(t) in equation (1) parameters are the

“true” observed returns, and compute their volatility, as for any other good quoted in

the stock market (see for example Hodgson and Vorkink, 2004). If volatility is assumed

constant, then it could be estimated by the sample standard deviation of β̂(t), otherwise

using e.g. GARCH-type models fitted to the β̂(t) process.

Note, however, that the underlying object, β(t), is not a stochastic process but rather

a deterministic function. It is the expectation of the log-price of a “neutral” painting

at time t, and as such does not have a variance. Any attempt to fit time series models

designed for stochastic processes to the estimates of β(t) is theoretically flawed. What

we can do, however, is to assess a degree of variability of this function. Rescaling time

as τ = t/T to map the sample space into the interval [0, 1], the total variation of β(t),

assuming that β(t) is differentiable, is given by

TV (β) =

∫ 1

0

|β ′(τ)|dτ,

where β ′(τ) = dβ(τ)/dτ . TV (β) is a measure of the overall variability of a function

on an interval. On a discretized scale, it could be calculated as the sum of absolute

returns, recalling from (19) that log returns over the interval [t, t+1] can be expressed as

β(t + 1) − β(t).

Since TV (β) is linear in time, it can be further decomposed to obtain, for example,

total variations for each year. In our case, we obtain 12.67 % for 2005, 27.90% for 2006,

10.75% for 2007, 59.05% for 2008, and 18.63% for 2009. One can also define |β ′(t)| as the
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instantaneous variability of β(t), and regard this instantaneous variability as the volatility

of the art index, which is time-varying.

Figure 8 plots the estimated instananeous volatility of art along with the VIX index

(an index of implied volatility of the S&P 500). Both indices are annualized such that the

scales are comparable. The overall level of art and VIX volatilities is about the same, but

the art index volatility shows larger swings at the beginning of the sample. One directly

observes that, in addition to the change in regime of volatility of predictability as seen

previously, the art market suffered from a shock in volatility of prices, linked to a severe

drop in returns. This period coincides with the financial crisis in 2008 and the peak in the

VIX index. Although the two indices are not directly comparable as the VIX concerns

implied volatility whereas our index concerns instantaneous variability of the index, it

seems that the VIX index also suffered from a shock end of 2008, a timing corresponding

to Lehman Brothers’ bankruptcy.

On the other hand, the apparent high variability of art returns in 2006-2007 is not

accompanied by high levels of the VIX. It is our understanding that this variability appar-

ently independent from the stock market was triggered by booming prices of post-war and

contemporary art at the time. We believe that the biggest increase in historical volatility

of art prices may be linked to the financial crisis, end of 2008. The surge in volatility

had serious impact on market participants: in its 2008 third quarter release, Sotheby’s

affirmed “These third quarter figures reflect a significant level of losses on our guaran-

tee portfolio principally for fourth quarter sale events including this week’s USD10 million
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Impressionist guarantee losses as well as our estimate of USD17 million on probable guar-

antee losses in next week’s Contemporary sales. We have reduced our guarantee position

by 52% as compared to last year and our net guarantee exposure is USD114 million. In

this period of considerable economic instability, we will dramatically reduce the guarantees

and other special concessions we grant to sellers [...]”.

Emitting guarantees is equivalent to shorting put options on art. Since the evaluation

of such options crucially depends on volatility measures as discussed in this paper, our

results may contribute to this new direction of research.

4 Conclusions and outlook

In this paper we have discussed the construction of volatility indices for the art market. In

a classical hedonic regression framework, we estimate local parameters, in particular the

scale, using a local likelihood approach, which contrasts with the typical OLS estimation

method. Our results for a data set comprising blue chip auction data show that the

scale parameter is indeed time-varying, which means that the predictability of prices is

low when the scale is large, and vice versa. We find that during the financial crisis in

2008/09, this volatility of predictability has been smaller than before, meaning that during

this period, price predictions were more precise.

Furthermore, we have considered volatility of the art price index as explained by the

variability of the estimated index. We suggest a measure for the degree of variability

of the art index and show that for our data, it has about the same magnitude as an

implied volatility index on the S&P 500. Art volatility increases similar to the stock

index volatility during the financial crisis. Thus, unlike the volatility of predictability, it

co-moves with the stock market.

Several applications of these results are possible. For example, to evaluate derivatives

on art, such as options, one would have to consider volatility of predictability if the

underlying is a single painting, or rather volatility of the art index if the underlying is a

large basket or a collection of paintings. For both cases, we have provided suggestions for

the evaluation of volatility, but a concise investigation of option pricing on the art market

is delegated to future research.
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Appendix: Description of the data

Table 3: Description of data available in the database, per artist. Variables with a “***”
are variables whose explanatory power is significant in equation (5) (see Table 1 for more
details)

Variable Description Number of observations Proportion

Alexander.Calder *** Dummy variable: the artist is Alexander Calder (1) or not (0) 41 0.7%
Alexej.Jawlensky *** id. 159 2.8%
Alfred.Sisley id. 89 1.6%
Andy.Warhol *** id. 545 9.7%
Camille.Pissarro *** id. 110 2.0%
Childe.Hassam *** id. 52 0.9%
Claude.Monet id. 143 2.5%
Damien.Hirst *** id. 328 5.8%
Donald.Judd *** id. 8 0.1%
Edgar.Degas *** id. 29 0.5%
Edouard.Vuillard *** id. 111 2.0%
Edvard.Munch id. 36 0.6%
Egon.Schiele id. 17 0.3%
Emil.Nolde id. 40 0.7%
Ernst.Ludwig.Kirchner id. 32 0.6%
Georges.Braque *** id. 90 1.6%
Gerhard.Richter *** id. 295 5.3%
Henri.de.Toulouse.Lautrec *** id. 33 0.6%
Henri.Matisse *** id. 64 1.1%
Henry.Moore *** id. 4 0.1%
Jean.Michel.Basquiat *** id. 171 3.0%
Joan.Miro id. 86 1.5%
Kees.van.Dongen *** id. 167 3.0%
Lucio.Fontana id. 172 3.1%
Marc.Chagall id. 236 4.2%
Mark.Rothko *** id. 50 0.9%
Maurice.de.Vlaminck *** id. 325 5.8%
Max.Ernst *** id. 138 2.5%
Pablo.Picasso *** id. 222 4.0%
Paul.Gauguin id. 33 0.6%
Paul.Klee id. 29 0.5%
Pierre.Auguste.Renoir *** id. 363 6.5%
Raoul.Dufy *** id. 167 3.0%
Rene.Magritte id. 61 1.1%
Richard.Prince id. 107 1.9%
Sam.Francis *** id. 482 8.6%
Wassily.Kandinsky id. 43 0.8%
Willem.de.Kooning id. 117 2.1%
Yayoi.Kusama *** id. 225 4.0%
Zao.Wou.Ki id. 192 3.4%
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Table 4: Description of the qualitative data available in the database. Variables with a
“***” are variables whose explanatory power is significant in equation (5) (see Table 1
for more details)

Variable Description Num. of obs. Proportion

Dead *** Dummy variable: the artist is dead (1) or not (0) 4,465 79.6%
DaySales *** Dummy variable: the auction is a “Day Auction” (1) or not (0) 1,115 19.9%
Morning Dummy variable: the auction is a “Morning Auction” (1) or not (0) 389 6.9%
Evening Dummy variable:the auction is an “Evening Auction” (1) or not (0) 1,353 24.1%
Christies *** Dummy variable: the auction house is Christie’s (1) or not 2,198 39.2%
Artcurial id. 121 2.2%
Bonhams *** id. 30 0.5%
Dorotheum id. 17 0.3%
KettererKunst id. 32 0.6%
KollerAuktionen id. 29 0.5%
Tokyo id. 25 0.4%
Phillips id. 171 3.0%
PierreBerge id. 9 0.2%
SaintCyr id. 86 1.5%
Sothebys *** id. 2,246 40.0%
VillaGrisebach id. 56 1.0%
Nineteenth Dummy variable: the auction’s theme is based on 19th century art (1) or not (0) 65 1.2%
Collection *** Dummy variable: the auction’s theme is based on a collection (1) or not (0) 114 2.0%
Asian Dummy variable: the auction’s theme is based on Asian art (1) or not (0) 132 2.4%
Contemporary Dummy variable: the auction’s theme is based on contemporary art (1) or not (0) 2,226 39.7%
Impressionist *** Dummy variable: the auction’s theme is based on impressionist art (1) or not (0) 2,134 38.0%
Modern Dummy variable: the auction’s theme is based on modern art (1) or not (0) 2,602 46.4%
PostWar Dummy variable: the auction’s theme is based on post-war art (1) or not (0) 581 10.4%
Surreal Dummy variable: the auction’s theme is based on surrealist art (1) or not (0) 43 0.8%
London *** Dummy variable: the city where the sales occur is London (1) or not (0) 1,945 34.7%
HongKong *** id. 111 2.0%
Milan id. 63 1.1%
NewYork *** id. 2,196 39.1%
Paris *** id. 517 9.2%
Monday Dummy variable: the day of the auction is Monday (1) or not (0) 581 10.4%
Tuesday id. 1,241 22.1%
Wednesday id. 1,765 31.5%
Thursday id. 1,166 20.8%
Friday id. 470 8.4%
Saturday id. 200 3.6%
Sunday id. 189 3.4%
Untitled *** Dummy variable: the painting’s is untitled (1) or not (0) 586 10.4%
Landscape Dummy variable: the painting’s title makes reference to a landscape (1) or not (0) 726 12.9%
Portrait Dummy variable: the painting’s title makes reference to a portrait (1) or not (0) 233 4.2%
StillLife Dummy variable: the painting’s title makes reference to a still life (1) or not (0) 217 3.9%
Animal Dummy variable: the painting’s title makes reference to an animal (1) or not 117 2.1%
Woman *** Dummy variable: the painting’s title makes reference to women (a woman) (1) or not (0) 393 7.0%
Hammer *** Dummy variable: the price is a hammer price (1), or a premium price (0) 3,223 57.4%

Table 5: Description of time dummy variables
Time dummy Description Num. of obs. Proportion

Y2005Q1 Dummy variable: the quarter of the sale is the first quarter of 2005 (1) or not (0) 150 2.7%
Y2005Q2 id. 420 7.5%
Y2005Q3 id. 42 0.7%
Y2005Q4 id. 320 5.7%
Y2006Q1 id. 175 3.1%
Y2006Q2 id. 519 9.2%
Y2006Q3 id. 25 0.4%
Y2006Q4 id. 396 7.1%
Y2007Q1 id. 234 4.2%
Y2007Q2 id. 539 9.6%
Y2007Q3 id. 38 0.7%
Y2007Q4 id. 463 8.3%
Y2008Q1 id. 248 4.4%
Y2008Q2 id. 426 7.6%
Y2008Q3 id. 229 4.1%
Y2008Q4 id. 274 4.9%
Y2009Q1 id. 141 2.5%
Y2009Q2 id. 348 6.2%
Y2009Q3 id. 35 0.6%
Y2009Q4 id. 313 5.6%
Y2010Q1 id. 151 2.7%
Y2010Q2 id. 126 2.2%
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Table 6: Description of the quantitative data available in the database. Variables with
a “***” are variables whose explanatory power is significant in equation (5) (see Table 1
for more details)

Variables Description Average Standard Deviation Min Max

Height Height of the painting, in inches 28 21.12 1 195
Width *** Width of the painting, in inches 28 25.10 1.57 421
Surface *** The surface of the painting, in inches square
Lot Lot Number of the painting 320 321.15 1 7,299
ThemeWord *** Number of letters for the auction’s theme 34 11.51 7 103
WordTitle Number of letters for the painting’s title 20 13.19 2 225
AgePainted *** The age at which the artist painted the artwork 49 15.99 13 97
AgePainting The age of the artwork the day of its sale 59 38.44 1 159
Born The artist’s year of birth 1,898 36.73 1831 1,965
Price The price of the artwork, in USD 1,222,838 3,558,190.72 258 85,000,000
YearPainted The year the painting was made 1954.77 37.40 1854 2009
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