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We study the existence and uniqueness of minimal supersolutions of backward stochastic
differential equations with generators that are jointly lower semicontinuous, bounded below
by an affine function of the control variable and satisfy a specific normalization property.
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1 Introduction

On a filtered probability space, the filtration of which is generated by a d-dimensional Brownian motion,
we want to give conditions ensuring that the setA(ξ, g), consisting of all supersolutions (Y, Z) of a back-
ward stochastic differential equation with terminal condition ξ and generator g, has a minimal element.
Recall that such a supersolution is a pair (Y,Z) such that, for 0 ≤ s ≤ t ≤ T ,

Ys −
t∫
s

gu(Yu, Zu)du+

t∫
s

ZudWu ≥ Yt and YT ≥ ξ

is satisfied. We call Y the value process and Z the control process of the supersolution (Y, Z). We start
by considering the process Eg(ξ) defined as

Egt (ξ) = ess inf
{
Yt ∈ L0(Ft) : (Y,Z) ∈ A(ξ, g)

}
, t ∈ [0, T ] ,

and show that, under suitable conditions on the generator and the terminal condition, Eg(ξ) is already
the value process of the unique minimal supersolution, that is, there is a unique control process Ẑ such
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that (Eg(ξ), Ẑ) ∈ A(ξ, g). It was recently shown in Drapeau et al. [6] that, if the generator g is jointly
lower semicontinuous in y and z, convex in z, monotone in y, and bounded below by an affine function of
z, a unique minimal supersolution exists. Their proof was based on convex combinations of a monotone
decreasing sequence of càdlàg supermartingales converging pointwise to Eg(ξ) on the rationals and made
use of compactness results for sequences of martingales given in Delbaen and Schachermayer [3]. We
follow a different approach to show the existence of a unique minimal supersolution. Starting with the
assumption that g is also jointly lower semicontinuous in y and z and positive and in addition satisfies a
certain normalization condition, we find a sequence of supersolutions converging uniformly to the càdlàg
supermartingale Eg,+(ξ), the right limit of Eg(ξ). We then use results on convergence of semimartingales
given in Barlow and Protter [1] to identify a unique process Ẑ such that (Eg,+(ξ), Ẑ) ∈ A(ξ, g). By
showing that Eg,+(ξ) always stays below Eg(ξ), we deduce Eg,+(ξ) = Eg(ξ) and thus (Eg(ξ), Ẑ) is the
unique minimal supersolution. Later on, we relax the positivity assumption to that of boundedness below
by an affine function of z. Also the normalization condition will be relaxed. Hence both, Drapeau et al.
[6] and our work, show the existence of a unique minimal supersolution of BSDEs, but under mutually
singular conditions on the generator.

Let us briefly discuss the existing literature on related problems, a broader discussion of which can be
found in Drapeau et al. [6]. Nonlinear BSDEs were first introduced in Pardoux and Peng [11]. They gave
existence and uniqueness results for the case of Lipschitz generators and square integrable terminal con-
ditions. Kobylanski [10] studies BSDEs with quadratic generators, whereas Delbaen et al. [4] consider
superquadratic BSDEs with positive generators that are convex in z and independent of y. Among the
first introducing supersolutions of BSDEs were El Karoui et al. [7, Section 2.3]. Further references can
also be found in Peng [13], who studies the existence and uniqueness of minimal supersolutions under the
assumption of a Lipschitz generator and square integrable terminal conditions. Most recently, Cheridito
and Stadje [2] have analyzed existence and stability of supersolutions of BSDEs. They consider termi-
nal conditions which are functionals of the underlying Brownian motion and generators that are convex
in z and Lipschitz in y and they work with discrete time approximations of BSDEs. Furthermore, the
concept of supersolutions is closely related to Peng’s g and G-expectations, see for instance [12, 14, 15],
since the mapping ξ 7→ Eg0 (ξ) can be seen as a nonlinear expectation. Another related field are stochastic
target problems as introduced in Soner and Touzi [20], the solutions of which are obtained by dynamic
programming methods and can be characterized as viscosity solutions of second order PDEs.

The remainder of this paper is organized as follows. Setting and notations are specified in Section 2. A
precise definition of minimal supersolutions and important structural properties of Eg(ξ), along with the
main existence theorem, can then be found in Sections 3.1 and 3.2. Finally, possible relaxations on the
assumptions imposed on the generator, as well as a generalization to the case of arbitrary continuous local
martingales, are discussed in Section 3.3.

2 Setting and Notations

We consider a filtered probability space (Ω,F , (Ft)t≥0, P ), where the filtration (Ft) is generated by a
d-dimensional Brownian motion W and is assumed to satisfy the usual conditions. For some fixed time
horizon T > 0 and for all t ∈ [0, T ], the sets of Ft-measurable random variables are denoted by L0(Ft),
where random variables are identified in the P -almost sure sense. Let furthermore denote Lp(Ft) the set
of random variables in L0(Ft) with finite p-norm, for p ∈ [1,+∞]. Inequalities and strict inequalities
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between any two random variables or processes X1, X2 are understood in the P -almost sure or in the
P ⊗ dt-almost sure sense, respectively. In particular, two càdlàg processes X1, X2 satisfying X1 = X2

are indistinguishable, compare [8, Chapter III]. We denote by T the set of stopping times with values in
[0, T ] and hereby call an increasing sequence of stopping times (τn), such that P [

⋃
n {τn = T}] = 1, a

localizing sequence of stopping times. By S := S(R) we denote the set of càdlàg progressively measur-
able processes Y with values in R. For p ∈ [1,+∞[, we further denote byHp the set of càdlàg local mar-
tingales M with finiteHp-norm on [0, T ], that is ‖M‖Hp := E[〈M,M〉p/2T ]1/p <∞. By Lp := Lp (W )

we denote the set of R1×d-valued, progressively measurable processes Z, such that
∫
ZdW ∈ Hp, that is,

‖Z‖Lp := E[(
∫ T
0
Z2
sds)

p/2]1/p is finite. For Z ∈ Lp, the stochastic integral (
∫ t
0
ZsdWs)t∈[0,T ] is well

defined, see [16], and is by means of the Burkholder-Davis-Gundy inequality [16, Theorem 48] a contin-
uous martingale. We further denote by L := L (W ) the set of R1×d-valued, progressively measurable
processes Z, such that there exists a localizing sequence of stopping times (τn) with Z1[0,τn] ∈ L1, for
all n ∈ N. For Z ∈ L, the stochastic integral

∫
ZdW is well defined and is a continuous local martingale.

Furthermore, for a process X , let X∗ denote the following expression X∗ := supt∈[0,T ] |Xt|, by which
we define the norm ‖X‖R∞ := ‖X∗‖L∞ .

We call a càdlàg semimartingale X a special semimartingale, if it can be decomposed into X = X0 +

M + A, where M is a local martingale and A a predictable process of finite variation such that M0 =

A0 = 0. Such a decomposition is then unique, compare for instance [16, Chapter III, Theorem 30], and
is called the canonical decomposition of X .

We will use normal integrands, a concept introduced in [18], as generators of BSDEs. Throughout this
paper, a normal integrand is a function g : Ω× [0, T ]× R× R1×d → ]−∞,+∞], such that

• (y, z) 7→ g (ω, t, y, z) is jointly lower semicontinuous, for all (ω, t) ∈ Ω× [0, T ] ;

• (ω, t) 7→ g (ω, t, y, z) is progressively measurable, for all (y, z) ∈ R× R1×d .

For a normal integrand g and progressively measurable processes Y,Z, the process g(Y,Z) is itself pro-
gressively measurable and the integral

∫
g(Y,Z)ds is well defined, P -almost surely, under the assumption

that +∞−∞ = +∞, see [19, Chapter 14.F]. Finally, as long as g ≥ 0, the lower semicontinuity yields
an extended Fatou’s lemma, that is,∫

lim inf
n

gs (Y ns , Z
n
s ) ds ≤ lim inf

n

∫
gs (Y ns , Z

n
s ) ds ,

for any sequence ((Y n, Zn)) of progressively measurable processes.

3 Minimal Supersolutions of BSDEs

3.1 First Definitions and Structural Properties

A pair (Y, Z) ∈ S × L is called a supersolution of a BSDE, if, for 0 ≤ s ≤ t ≤ T , it satisfies

Ys −
t∫
s

gu(Yu, Zu)du+

t∫
s

ZudWu ≥ Yt and YT ≥ ξ , (3.1)
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for a normal integrand g as generator and a terminal condition ξ ∈ L0(FT ). For a supersolution (Y, Z),
we call Y the value process and Z its corresponding control process. A control process Z is said to be
admissible, if the continuous local martingale

∫
ZdW is a supermartingale.

Throughout this paper we say that a generator g is

(POS) positive, if g(y, z) ≥ 0, for all (y, z) ∈ R× R1×d.

(NOR) normalized, if gt(y, 0) = 0, for all (t, y) ∈ [0, T ]× R.

We are now interested in the set

A(ξ, g) := {(Y, Z) ∈ S × L : Z is admissible and (3.1) holds} (3.2)

and the process

Egt (ξ) = ess inf
{
Yt ∈ L0(Ft) : (Y,Z) ∈ A(ξ, g)

}
, t ∈ [0, T ] . (3.3)

For the proof of our main existence theorem we will need some auxiliary results concerning structural
properties of Eg(ξ) and supersolutions (Y,Z) in A(ξ, g).

Lemma 3.1. Let g be a generator satisfying (POS). Assume further that A(ξ, g) 6= ∅ and ξ− ∈ L1(FT ).
Then ξ ∈ L1(FT ) and, for any (Y,Z) ∈ A(ξ, g), the control Z is unique and the value process Y is a
supermartingale such that Yt ≥ E [ξ | Ft]. Moreover, the unique canonical decomposition of Y is given
by

Y = Y0 +M −A , (3.4)

where M =
∫
ZdW and A is an increasing, predictable, càdlàg process with A0 = 0.

The proof of Lemma 3.1 can be found in [6, Lemma 3.4].

Proposition 3.2. Suppose that A(ξ, g) 6= ∅ and let ξ ∈ L0(FT ) be a terminal condition such that
ξ− ∈ L1(FT ). If g satisfies (POS), then the process Eg(ξ) is a supermartingale and

Egt (ξ) ≥ Eg,+t (ξ) := lim
s↓t
s∈Q

Egs (ξ) , for all t ∈ [0, T ) , (3.5)

and Eg,+T (ξ) := ξ. In particular, Eg,+(ξ) is a càdlàg supermartingale. Furthermore, the following two
pasting properties hold true.

1. Let (Zn) ⊂ L be admissible, σ ∈ T , and (Bn) ⊂ Fσ a partition of Ω. Then the pasted process
Z̄ = Z11[0,σ] +

∑
n≥1 Z

n1Bn
1]σ,T ] is admissible.

2. Let ((Y n, Zn)) ⊂ A(ξ, g), σ ∈ T and (Bn) ⊂ Fσ as before. If Y 1
σ−1Bn

≥ Y nσ 1Bn
holds true for

all n ∈ N, then (Ȳ , Z̄) ∈ A(ξ, g), where

Ȳ = Y 11[0,σ[ +
∑
n≥1

Y n1Bn
1[σ,T ] and Z̄ = Z11[0,σ] +

∑
n≥1

Zn1Bn
1]σ,T ] .

Proof. The proof of the part concerning the process Eg,+(ξ) can be found in [6, Proposition 3.5]. As to
the first pasting property, let Mn and M̄ denote the stochastic integrals of the Zn and Z̄, respectively.
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First, it follows from (Zn) ⊂ L and from (Bn) being a partition that Z̄ ∈ L and that
∫ t∨σ
s∨σ Z̄udWu =∑

1Bn

∫ t∨σ
s∨σ Z

n
udWu. Now observe that the admissibility of all Zn yields

E
[
M̄t − M̄s | Fs

]
= E

[
M1

(t∧σ)∨s −M
1
s | Fs

]
+E

[∑
n≥1

1Bn
E [Mn

t∨σ −Mn
s∨σ | Fs∨σ]

∣∣Fs] ≤ 0 ,

for 0 ≤ s ≤ t ≤ T . Thus, Z̄ is admissible. Finally, we can approximate σ from below by some foretelling
sequence of stopping times (ηm)1, and then show, analogously to [6, Lemma 3.1], that the pair (Ȳ , Z̄)

satisfies inequality (3.1) and is thus an element of A(ξ, g). �

Proposition 3.3. Let 0 = τ0 ≤ τ1 ≤ τ2 ≤ · · · be a sequence of stopping times converging to the finite
stopping time τ∗ = limn→∞ τn. Further, let (Y n) be a sequence of càdlàg supermartingales such that
Y nτn− ≥ Y n+1

τn , and which satisfies Y n1[τn−1,τn[ ≥ M1[τn−1,τn[, where M is a uniformly integrable
martingale. Then, for any sequence of stopping times σn ∈ [τn−1, τn[ , the limit Y∞ := limn→∞ Y nσn

exists and the process
Ȳ :=

∑
n≥1

Y n1[τn−1,τn[ + Y∞1[τ∗,∞[

is a càdlàg supermartingale. Moreover, the limit Y∞ is independent of the approximating sequence (Y nσn
)

and, if all Y n are continuous and Y nτn = Y n+1
τn , for all n ∈ N, then Ȳ is continuous.

Proof. Note that (Y nσn
) is a (Fσn

)-supermartingale. Indeed, if (η̃m) ↑ τn is a foretelling sequence of
stopping times, then, with ηm := η̃m ∨ τn−1, the family ((Y nηm)−)m∈N is uniformly integrable and we
obtain

E[Y n+1
σn+1

| Fσn
] = E[E[Y n+1

σn+1
| Fτn ] | Fσn

] ≤ E[Y n+1
τn | Fσn

] ≤ E[Y nτn− | Fσn
]

≤ lim inf
m

E[Y nηm | Fσn
] ≤ lim inf

m
Y nηm∧σn

= Y nσn
.

Moreover, ((Y nσn
)−) is uniformly integrable. Hence, the sequence (Y nσn

) converges by the supermartin-
gale convergence theorem, see [5, Theorems V.28,29], to some random variable Y∞, P -almost surely,
and thus Ȳ is well-defined. Furthermore, the limit Y∞ is independent of the approximating sequence
(Y nσn

). Indeed, for any other sequence (σ̃n) with σ̃n ∈ [τn−1, τn[, the limit limn Y
n
σ̃n

exists by the same
argumentation. Now limn Y

n
σn

= limn Y
n
σ̃n

= Y∞ holds, since the sequence (σ̂n) defined by

σ̂n :=

{
σn

2
∨ σ̃n

2
, for n even

σn+1
2
∧ σ̃n+1

2
, for n odd

satisfies σ̂n ∈ [τn−1, τn[ and limn Y
n
σ̂n

exists. Thus, all limits must coincide. Next, we show that Ȳ σn is
a supermartingale, for all n ∈ N. To this end first observe that, for all 0 ≤ s ≤ t,

E
[
Ȳ σn
t − Ȳ σn

s | Fs
]

=

n−2∑
k=0

E
[
E
[
Ȳ σn

(τk+1∨s)∧t − Ȳ
σn

(τk∨s)∧t | F(τk∨s)∧t
]
| Fs

]
+ E

[
E
[
Ȳ σn

(σn∨s)∧t − Ȳ
σn

(τn−1∨s)∧t | F(τn−1∨s)∧t
]
| Fs

]
+ E

[
E
[
Ȳ σn
t − Ȳ σn

(σn∨s)∧t | F(σn∨s)∧t
]
| Fs

]
.

1Such a sequence satisfying η̃m < σ, for all m ∈ N, always exists, since in a Brownian filtration every stopping time is
predictable, compare [17, Corollary V.3.3].
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Note further that, for each n ∈ N, the process Ȳ σn is càdlàg and can only jump downwards, that is,
Ȳ σn
t− ≥ Ȳ

σn
t , for all t ∈ R. Observe to this end that, on the one hand, Ȳ σn

τk− = Y kτk− ≥ Y
k+1
τk

= Ȳ σn
τk

, for
all 0 ≤ k ≤ n−1, by assumption, where we assumed τk−1 < τk, without loss of generality. On the other
hand, Y k can only jump downwards. Indeed, as càdlàg supermartingales, all Y k can be decomposed into
Y k = Y k0 +Mk−Ak, by the Doob-Meyer decomposition theorem [16, Chapter III, Theorem 13], where
Mk is a local martingale and Ak a predictable, increasing process with Ak0 = 0. Since in a Brownian
filtration every local martingale is continuous, the claim follows.
Thus, for all 0 ≤ k ≤ n − 2, and (η̃m) ↑ τk+1 a foretelling sequence of stopping times, it holds with
ηm := η̃m ∨ τk,

E
[
Ȳ σn

(τk+1∨s)∧t − Ȳ
σn

(τk∨s)∧t | F(τk∨s)∧t
]
≤ E

[
Ȳ σn

((τk+1−)∨s)∧t − Ȳ
σn

(τk∨s)∧t | F(τk∨s)∧t
]

= E
[

lim inf
m

Ȳ σn

(ηm∨s)∧t − Ȳ
σn

(τk∨s)∧t | F(τk∨s)∧t
]

≤ E
[

lim inf
m

Y k+1
(ηm∨s)∧t | F(τk∨s)∧t

]
− Y k+1

(τk∨s)∧t

≤ lim inf
m

E
[
Y k+1
(ηm∨s)∧t | F(τk∨s)∧t

]
− Y k+1

(τk∨s)∧t ≤ 0 .

Moreover, E[ Ȳ σn
t − Ȳ σn

(σn∨s)∧t | F(σn∨s)∧t] = 0, as well as

E
[
Ȳ σn

(σn∨s)∧t − Ȳ σn

(τn−1∨s)∧t | F(τn−1∨s)∧t
]
≤ E

[
Y n(σn∨s)∧t − Y n(τn−1∨s)∧t | F(τn−1∨s)∧t

]
≤ 0 .

Combining this we obtain that E
[
Ȳ σn
t | Fs

]
≤ Ȳ σn

s . Furthermore, limn Ȳ
σn
t = Ȳt, for all t ∈ R.

Indeed, let us write limn Ȳ
σn
t = limn Ȳ

σn
t 1{t<τ∗} + limn Ȳ

σn
t 1{t≥τ∗}. Then, limn Ȳ

σn
t 1{t≥τ∗} =

limn Y
n
σn

1{t≥τ∗} = Y∞1{t≥τ∗} = Ȳt1{t≥τ∗} and limn Ȳσn∧t1{t<τ∗} = Ȳt1{t<τ∗}. Hence, the claim
follows. As a consequence of Fatou’s lemma it now holds that

E
[
Ȳt | Fs

]
≤ lim inf

n→∞
E
[
Ȳ σn
t | Fs

]
≤ lim inf

n→∞
Ȳ σn
s = Ȳs ,

since the family ((Ȳ σn
t )−) is uniformly integrable. Hence, Ȳ is a supermartingale, which by construction

has right-continuous paths and [9, Theorem 1.3.8] then yields that Ȳ is even càdlàg. Finally, whenever all
Y n are continuous and Y nτn = Y n+1

τn holds, for all n ∈ N, the process Ȳ is continuous per construction.�

3.2 Existence and Uniqueness of Minimal Supersolutions

We are now ready to state our main existence result. Possible relaxations of the assumptions (POS) and
(NOR) imposed on the generator are discussed in Section 3.3. Note that it is not our focus to investigate
conditions assuring the crucial assumption that A(ξ, g) 6= ∅. See Drapeau et al. [6] and the references
therein for further details.

Theorem 3.4. Let g be a generator satisfying (POS) and (NOR) and ξ ∈ L0(FT ) be a terminal condition
such that ξ− ∈ L1(FT ). IfA(ξ, g) 6= ∅, then there exists a unique Ẑ ∈ L such that (Eg(ξ), Ẑ) ∈ A(ξ, g).

Proof. Step 1: Uniform Limit and Verification. Since A(ξ, g) 6= ∅, there exist (Y b, Zb) ∈ A(ξ, g). From
now on we restrict our focus to supersolutions (Ȳ , Z̄) in A(ξ, g) satisfying Ȳ0 ≤ Y b0 . Indeed, since we
are only interested in minimal supersolutions, we can paste any value process of (Y,Z) ∈ A(ξ, g) at
τ := inf{t > 0 : Y bt > Yt} ∧ T , such that Ȳ := Y b1[0,τ [ + Y 1[τ,T ] satisfies Ȳ0 ≤ Y b0 , where the
corresponding control Z̄ is obtained as in Proposition 3.2.
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Assume for the beginning that we can find a sequence ((Y n, Zn)) within A(ξ, g) such that

lim
n→∞

∥∥Y n − Eg,+(ξ)
∥∥
R∞ = 0 . (3.6)

Since all Y n are càdlàg supermartingales, they are, by the Doob-Meyer decomposition theorem, see [16,
Chapter III, Theorem 13], special semimartingales with canonical decomposition Y n = Y n0 +Mn−An as
in (3.4). The supermartingale property of all

∫
ZndW and ξ ∈ L1(FT ), compare Lemma 3.1, imply that

E [AnT ] ≤ Y b0 − E [ξ] ∈ L1(FT ). Hence, since each An is increasing, supnE[
∫ T
0
|dAns |] <∞. As (3.6)

implies in particular that limn→∞E [(Y n − Eg,+(ξ))∗] = 0, it follows from [1, Theorem 1 and Corollary
2] that Eg,+(ξ) is a special semimartingale with canonical decomposition Eg,+(ξ) = Eg,+0 (ξ) + M − A
and that

lim
n→∞

‖Mn −M‖H1 = 0 , lim
n→∞

E [(An −A)∗] = 0 .

The local martingale M is continuous and allows for a representation of the form M = M0 +
∫
ẐdW ,

where Ẑ ∈ L, compare [16, Chapter IV, Theorem 43]. Since

E


 T∫

0

(
Znu − Ẑu

)2
du

1/2
 −−−−−→

n→+∞
0 ,

we have that, up to a subsequence, (Zn) converges P ⊗ dt-almost surely to Ẑ and limn→∞
∫ t
0
ZndW =∫ t

0
ẐdW , for all t ∈ [0, T ], P -almost surely, due to the Burkholder-Davis-Gundy inequality. In particular,

limn→∞ Zn(ω) = Ẑ(ω), dt-almost surely, for almost all ω ∈ Ω.
In order to verify that (Eg,+(ξ), Ẑ) ∈ A(ξ, g), we will use the convergence obtained above. More pre-
cisely, for all 0 ≤ s ≤ t ≤ T , Fatou’s lemma together with (3.6) and the lower semicontinuity of the
generator yields

Eg,+s (ξ)−
t∫
s

gu(Eg,+u (ξ), Ẑu)du+

t∫
s

ẐudWu

≥ lim sup
n

Y ns − t∫
s

gu(Y nu , Z
n
u )du+

t∫
s

ZnudWu

 ≥ lim sup
n

Y nt = Eg,+t (ξ) .

The above, the positivity of g and Eg,+(ξ) ≥ E [ξ | F·] imply that
∫
ẐdW ≥ E [ξ | F·]−Eg,+0 (ξ). Hence,

being bounded from below by a martingale, the continuous local martingale
∫
ẐdW is a supermartingale.

Thus, Ẑ is admissible and (Eg,+(ξ), Ẑ) ∈ A(ξ, g) and therefore, by Lemma 3.1, Ẑ is unique. Since we
know by Proposition 3.2 that Eg(ξ) ≥ Eg,+(ξ), we deduce that Eg(ξ) = Eg,+(ξ) by the definition of
Eg(ξ), identifying (Eg(ξ), Ẑ) as the unique minimal supersolution.

Step 2: A preorder on A(ξ, g). As to the existence of ((Y n, Zn)) satisfying (3.6), it is sufficient to show
that, for arbitrary ε > 0, we can find a supersolution (Y ε, Zε) satisfying∥∥Y ε − Eg,+(ξ)

∥∥
R∞ ≤ ε . (3.7)

We define the following preorder2 on A(ξ, g)

(Y 1, Z1) � (Y 2, Z2) ⇔ τ1 ≤ τ2 and (Y 1, Z1)1[0,τ1[ = (Y 2, Z2)1[0,τ1[ , (3.8)

2Note that, in order to apply Zorn’s lemma, we need a partial order instead of just a preorder. To this end we consider equivalence
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where, for i = 1, 2,
τi = inf

{
t ≥ 0 : Y it > E

g,+
t (ξ) + ε

}
∧ T . (3.9)

For any totally ordered chain ((Y i, Zi))i∈I withinA(ξ, g) with corresponding stopping times τi, we want
to construct an upper bound. If we consider

τ∗ = ess sup
i∈I

τi ,

we know by the monotonicity of the stopping times that we can find a monotone subsequence (τm) of
(τi)i∈I such that τ∗ = limm→∞ τm. In particular, τ∗ is a stopping time. Furthermore, the structure of
the preorder (3.8) yields that the value processes of the supersolutions ((Y m, Zm)) corresponding to the
stopping times (τm) satisfy

Y m+1
τm ≤ Y m+1

τm− = Y mτm− , for all m ∈ N , (3.10)

where the inequality follows from the fact that all Y m are càdlàg supermartingales, see the proof of
Proposition 3.3.

Step 3: A candidate upper bound (Ȳ , Z̄) for the chain ((Y i, Zi))i∈I . We construct a candidate upper
bound (Ȳ , Z̄) for ((Y i, Zi))i∈I satisfying P [τ(Ȳ ) > τ∗ | τ∗ < T ] = 1, with τ(Ȳ ) as in (3.9).
To this end, let (σ̄n) be a decreasing sequence of stopping times taking values in the rationals and con-
verging towards τ∗ from the right3. Then the stopping times σ̂n := σ̄n ∧ T satisfy σ̂n > τ∗ and σ̂n ∈ Q,
on {τ∗ < T}, for all n big enough. Let us furthermore define the following stopping time

τ̄ := inf
{
t > τ∗ : 1{τ∗<T}

∣∣Eg,+τ∗ (ξ)− Eg,+t (ξ)
∣∣ > ε

2

}
∧ T . (3.11)

Due to the right-continuity of Eg,+(ξ) in τ∗, it follows that τ̄ > τ∗ on {τ∗ < T}. We now set

σn := σ̂n ∧ τ̄ , for all n ∈ N. (3.12)

The above stopping times still satisfy limn→∞ σn = τ∗ and σn > τ∗ on {τ∗ < T}, for all n ∈ N. We
further define the following sets

An :=
{∣∣Eg,+τ∗ (ξ)− Egσm

(ξ)
∣∣ ∨ ∣∣Eg,+τ∗ (ξ)− Eg,+σm

(ξ)
∣∣ < ε

8
, for all m ≥ n

}
. (3.13)

They satisfy An ⊂ An+1 and
⋃
nAn = Ω by definition of the sequence (σm)4. Note further that

An ∈ Fσn
holds true by construction. By Proposition 3.2 we deduce5 that, for each n ∈ N, there exist

(Ỹ n, Z̃n) ∈ A(ξ, g) such that
Ỹ nσn
≤ Egσn

(ξ) +
ε

8
. (3.14)

classes of processes. Two supersolutions (Y 1, Z1), (Y 2, Z2) ∈ A(ξ, g) are said to be equivalent, that is, (Y 1, Z1) ∼
(Y 2, Z2), if (Y 1, Z1) � (Y 2, Z2) and (Y 2, Z2) � (Y 1, Z1). This means that they are equal up to their corresponding
stopping time τ1 = τ2 as in (3.9). This induces a partial order on the set of equivalence classes and hence the use of Zorn’s
lemma is justified.

3 Compare [9, Problem 2.24].
4Since on {τ∗ < T}, τ̄ > τ∗ and limn σ̂n = τ∗ with σ̂n ∈ Q, it is ensured that there exists some n0 ∈ N, depending on ω,

such that σn takes values in the rationals for all n ≥ n0. By definition of Eg,+(ξ) as the right-hand side limit of Eg(ξ) on the
rationals and due to the right-continuity of Eg,+(ξ) in τ∗, both inequalities in the definition of An are satisfied for all n ≥ n0.

5For a detailed proof, see [6, Proposition 3.2.].
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Next we partition Ω into Bn := An\An−1, where we set A0 := ∅ and τ0 := 0, and define the candidate
upper bound as

Ȳ =
∑
m≥1

Y m1[τm−1,τm[ + 1{τ∗<T}
∑
n≥1

1Bn

[(
Eg,+τ∗ (ξ) +

ε

2

)
1[τ∗,σn[ + Ỹ n1[σn,T [

]
, ȲT = ξ ,

(3.15)

Z̄ =
∑
m≥1

Zm1]τm−1,τm] + 1{τ∗<T}
∑
n≥1

Z̃n1Bn
1]σn,T ] . (3.16)

Step 4: Verification of (Ȳ , Z̄) ∈ A(ξ, g). By verifying that the pair (Ȳ , Z̄) is an element of A(ξ, g), we
identify (Ȳ , Z̄) as an upper bound for the chain ((Y i, Zi))i∈I . Even more, P [τ(Ȳ ) > τ∗ | τ∗ < T ] = 1

holds true, since, on the set Bn, we have Ȳt = Eg,+τ∗ (ξ) + ε
2 ≤ E

g,+
t (ξ) + ε, for all t ∈ [τ∗, σn[, due to

the definition of τ̄ in (3.11).

Step 4a: The value process Ȳ is an element of S. By construction, the only thing to show is that Ȳτ∗−,
the left limit at τ∗, exists. This follows from Proposition 3.3, since, by means of ((Y m, Zm)) ⊂ A(ξ, g)

and ξ ∈ L1(FT ), all Y m are càdlàg supermartingales, see Lemma 3.1, which are bounded from below
by a uniformly integrable martingale, more precisely Y m ≥ E [ξ | F·], for all m ∈ N, and satisfy (3.10).

Step 4b: The control process Z̄ is an element of L and admissible. We proceed by defining, for each
n ∈ N, the processes Z̄n :=

∑n
m=1 Z

m1]τm−1,τm] = Z̄1[0,τn] = Zn1[0,τn] and Nn :=
∫
Z̄ndW =∫

Zn1[0,τn]dW , where the equalities follow from (3.8). Observe that Nn+11[0,τn] = Nn1[0,τn], for all
n ∈ N, and that (POS), (3.1) and the supermartingale property of

∫
ZndW imply

Nn1[τn−1,τn[ ≥ 1[τn−1,τn[(−E
[
ξ− | F·

]
− Y b0 ) . (3.17)

By means of (3.17) and since ξ− ∈ L1(FT ), with N∞ := limnN
n
τn−1

, the process

N =
∑
n≥1

Nn1[τn−1,τn[ + 1[τ∗,T ]N
∞

is a well-defined continuous supermartingale due to Proposition 3.3. Hence we may define a localizing
sequence by setting κn := inf{t ≥ 0 : |Nt| > n} ∧ T and deduce that N is a continuous local
martingale, because Nκn is a uniformly integrable martingale, for all n ∈ N. Indeed, for each n ∈ N
and m ∈ N, the process (Nm)κn , being a bounded stochastic integral, is a martingale. Moreover, the
family (Nm

κn∧t)m∈N is uniformly integrable and Nκn∧t = limmN
m
κn∧t, for all t ∈ [0, T ]. Consequently,

E[Nκn
t | Fs] = limmE[Nm

κn∧t | Fs] = limmN
m
κn∧s = Nκn

s , for all 0 ≤ s ≤ t ≤ T , and the claim
follows. Since the quadratic variation of a continuous local martingale is continuous and unique, see [9,
page 36], we obtain

τ∗∫
0

Z̄2
udu = lim

n

κn∧τ∗∫
0

Z̄2
udu = lim

n
〈N〉κn∧τ∗ = 〈N〉τ∗ <∞ .

Observe that σ :=
∑
n≥1 1Bnσn is an element of T . Indeed, {σ ≤ t} =

⋃
n≥1(Bn ∩ {σ ≤ t}) =⋃

n≥1(Bn ∩ {σn ≤ t}) ∈ Ft, for all t ∈ [0, T ], since Bn ∈ Fσn
. From Z̄1]τ∗,σ] = 0 we get that

T∫
0

Z̄2
udu = 〈N〉τ∗ + 1{τ∗<T}

∑
n≥1

1Bn

T∫
σ

(Z̃nu )2du <∞ ,
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since (Z̃n) ⊂ L. Hence we conclude that Z̄ ∈ L. As for the supermartingale property of
∫
Z̄dW ,

observe that
t∧τ∗∫
0

Z̄udWu = lim
n→∞

t∧τn∫
0

ZnudWu ≥ lim
n→∞

−E
[
ξ− | Ft∧τn

]
− Y b0 = −E

[
ξ− | Ft∧τ∗

]
− Y b0 ,

where the inequality follows from (3.1) and (POS). Being bounded from below by a martingale, we de-
duce by Fatou’s lemma that Z̄1[0,τ∗] is admissible. Since Z̄1]τ∗,σ] = 0 and all Z̃n are admissible, it
follows from Proposition 3.2 that Z̄ is indeed admissible.

Step 4c: The pair (Ȳ , Z̄) is a supersolution. Finally, showing that (Ȳ , Z̄) satisfy (3.1) identifies (Ȳ , Z̄)

as an element of A(ξ, g). Observe first that, for all 0 ≤ s ≤ t ≤ T and all m ∈ N, the expression
Ȳs −

∫ t
s
gu(Ȳu, Z̄u)du+

∫ t
s
Z̄udWu can be written as

Ȳs −
(τm∨s)∧t∫

s

gu(Ȳu, Z̄u)du+

(τm∨s)∧t∫
s

Z̄udWu

−
(τ∗∨s)∧t∫

(τm∨s)∧t

gu(Ȳu, Z̄u)du+

(τ∗∨s)∧t∫
(τm∨s)∧t

Z̄udWu −
(σ∨s)∧t∫

(τ∗∨s)∧t

gu(Ȳu, Z̄u)du

+

(σ∨s)∧t∫
(τ∗∨s)∧t

Z̄udWu −
t∫

(σ∨s)∧t

gu(Ȳu, Z̄u)du+

t∫
(σ∨s)∧t

Z̄udWu . (3.18)

Now, we have that

Ȳs −
(τm∨s)∧t∫

s

gu(Ȳu, Z̄u)du+

(τm∨s)∧t∫
s

Z̄udWu ≥ Ȳ(τm∨s)∧t , (3.19)

by Proposition 3.2, since ((Y m, Zm)) ⊂ A(ξ, g) and Y mτm− ≥ Y m+1
τm , for all m ∈ N, due to (3.10). By

letting m tend to infinity and noting that

lim
m→∞

(τ∗∨s)∧t∫
(τm∨s)∧t

Z̄udWu = 0 and lim
m→∞

(τ∗∨s)∧t∫
(τm∨s)∧t

gu(Ȳu, Z̄u)du = 0 ,

(3.18) and (3.19) yield that

Ȳs −
t∫
s

gu(Ȳu, Z̄u)du+

t∫
s

Z̄udWu

≥ Ȳ((τ∗−)∨s)∧t −
(σ∨s)∧t∫

(τ∗∨s)∧t

gu(Ȳu, Z̄u)du+

(σ∨s)∧t∫
(τ∗∨s)∧t

Z̄udWu

−
t∫

(σ∨s)∧t

gu(Ȳu, Z̄u)du+

t∫
(σ∨s)∧t

Z̄udWu . (3.20)
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We now use that Ȳ can only jump downwards at τ∗. Indeed, since Ȳ is càdlàg, in particular Ȳτ∗−, the
left limit at τ∗, exists and is unique, P -almost surely. Furthermore, limm→∞ Ȳτm− = Ȳτ∗− and thus

Ȳτ∗− = lim
m
Ȳτm− = lim

m
Y mτm− ≥ lim

m
Eg,+τm (ξ) + ε = Eg,+τ∗−(ξ) + ε ≥ Eg,+τ∗ (ξ) + ε > Ȳτ∗ .

The second inequality holds, since the càdlàg supermartingale Eg,+(ξ) can only jump downwards, see
the proof of Proposition 3.3. Hence, (3.20) can be further estimated by

Ȳs −
t∫
s

gu(Ȳu, Z̄u)du+

t∫
s

Z̄udWu ≥ Ȳ(τ∗∨s)∧t −
t∫

(σ∨s)∧t

gu(Ȳu, Z̄u)du+

t∫
(σ∨s)∧t

Z̄udWu , (3.21)

where we used that
(σ∨s)∧t∫

(τ∗∨s)∧t

gu(Ȳu, Z̄u)du =

(σ∨s)∧t∫
(τ∗∨s)∧t

Z̄udWu = 0 ,

due to (3.16), the definition of σ and (NOR). Now observe that Ȳ(τ∗∨s)∧t ≥ Ȳ(σ∨s)∧t, since Ȳ 1[τ∗,σ[ =

(Eg,+τ∗ (ξ) + ε
2 )1[τ∗,σ[ and Ȳ can only jump downwards at σ. Indeed, on the set Bn, by means of (3.15),

(3.13) and (3.14) holds

Ȳσn− = Eg,+τ∗ (ξ) +
ε

2
= Eg,+τ∗ (ξ)− Egσn

(ξ) + Egσn
(ξ) +

ε

2

≥ −ε
8

+ Egσn
(ξ) +

ε

2
≥ Ỹ nσn

− ε

8
+
ε

8
= Ỹ nσn

= Ȳσn .

Consequently,

Ȳs −
t∫
s

gu(Ȳu, Z̄u)du+

t∫
s

Z̄udWu

≥ Ȳ(σ∨s)∧t −
t∫

(σ∨s)∧t

gu(Ȳu, Z̄u)du+

t∫
(σ∨s)∧t

Z̄udWu ≥ Ȳt , (3.22)

where the second inequality in (3.22) follows from ((Ỹ n, Z̃n)) ⊂ A(ξ, g) and Proposition 3.2.

Step 5: The maximal element (YM , ZM ). By Zorn’s lemma, there exists a maximal element (YM , ZM )

in A(ξ, g) with respect to the preorder (3.8), satisfying, without loss of generality, YMT = ξ. By showing
that the corresponding stopping time satisfies τM = T , we have obtained a supersolution (YM , ZM )

satisfying ‖YM − Eg,+(ξ)‖R∞ ≤ ε, due to the definition of τM in analogy to (3.9). Thus, choosing
YM = Y ε in (3.7) would finish our proof.
But on {τM < T} we could consider the chain consisting only of (YM , ZM ) and, analogously to
(3.15) and (3.16), construct an upper bound (Ȳ , Z̄), with corresponding stopping time τ(Ȳ ) as in (3.9),
satisfying P [τ(Ȳ ) > τM | τM < T ] = 1. This yields P [τM < T ] ≤ P [τ(Ȳ ) > τM ] = 0, due to the
maximality of τM . Hence we deduce that τM = T . �

The techniques used in the proof of Theorem 3.4 show that A(ξ, g) exhibits a certain closedness under
monotone limits of decreasing supersolutions.

11



Theorem 3.5. Let g be a generator satisfying (POS) and (NOR) and ξ ∈ L0(FT ) a terminal condition
such that ξ− ∈ L1(FT ). Let furthermore ((Y n, Zn)) be a decreasing sequence within A(ξ, g) with
pointwise limit Ȳt := limn Y

n
t , for t ∈ [0, T ]. Then Ȳ is a supermartingale and it holds

Ȳt ≥ Ŷt := lim
s↓t
s∈Q

Ȳs for all t ∈ [0, T ) . (3.23)

Moreover, with ŶT := ξ, there is a sequence ((Ỹ n, Z̃n)) ⊂ A(ξ, g) such that limn ‖Ỹ n − Ŷ ‖R∞ = 0,
and a unique control Ẑ ∈ L such that (Ŷ , Ẑ) ∈ A(ξ, g).

Proof. First, Ȳ is a supermartingale by monotone convergence. Inequality (3.23) is then proved analo-
gously to (3.5) as in [6, Proposition 3.5]. The rest follows by adapting all steps in the proof of Theorem
3.4 and replacing Eg,+(ξ) by Ŷ . �

In a next step, we turn our focus to the question whether it is possible to find a minimal supersolution
withinA(ξ, g), the associated control process Z of which belongs to L1 and therefore

∫
ZdW constitutes

a true martingale instead of only a supermartingale. To this end we consider the following subset of
A(ξ, g)

A1(ξ, g) :=
{

(Y,Z) ∈ A(ξ, g) : Z ∈ L1
}
. (3.24)

By imposing stronger assumptions on the terminal condition ξ, the next theorem yields the existence of a
unique minimal supersolution in A1(ξ, g).

Theorem 3.6. Assume that the generator g satisfies (POS) and (NOR) and let ξ ∈ L0(FT ) be a terminal
condition such that (E[ξ− | F·])∗ ∈ L1(FT ). If A1(ξ, g) 6= ∅, then there exists a unique Ẑ such that
(Eg(ξ), Ẑ) ∈ A1(ξ, g).

Proof. A1(ξ, g) 6= ∅ yields that A(ξ, g) 6= ∅, because A1(ξ, g) ⊆ A(ξ, g). Also, from (E [ξ− | F·])
∗
T ∈

L1(FT ) we deduce that ξ− ∈ L1(FT ). Hence, Theorem 3.4 yields the existence of an unique control Ẑ,
such that (Eg(ξ), Ẑ) ∈ A(ξ, g). Verifying that Ẑ ∈ L1 is done as in [6, Theorem 4.5]. �

3.3 Relaxations of the Conditions (NOR) and (POS)

In this section we discuss possible relaxations of the conditions (NOR) and (POS) imposed on the gener-
ator throughout Sections 3.1 and 3.2.
First, we want to replace (NOR) by the weaker assumption (NOR’). We say that a generator g satisfies

(NOR’) if, for all τ ∈ T , there exists some stopping time δ > τ such that the stochastic differential
equation

dys = gs(ys, 0)ds , yτ = Eg,+τ (ξ) +
ε

2
(3.25)

admits a solution on [τ, δ].

By this we obtain the following corollary to Theorem 3.4.

Corollary 3.7. Let g be a generator satisfying (POS) and (NOR’) and ξ ∈ L0(FT ) a terminal condition
such that ξ− ∈ L1(FT ). IfA(ξ, g) 6= ∅, then there exists a unique Ẑ ∈ L such that (Eg(ξ), Ẑ) ∈ A(ξ, g).

Proof. We will proceed along the lines of the proof of Theorem 3.4 with the focus on the required alter-
ations.
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The first difficulty lies in the pasting at the stopping time τ∗ within the definition of (Ȳ , Z̄) in (3.15)
and (3.16). Instead of extending by a constant function, we concatenate the value process at τ∗ with the
solution of the SDE (3.25), started at yτ∗ = Eg,+τ∗ (ξ) + ε

2 and denoted by y. We emphasize that the zero
control is maintained.
Furthermore, we have to introduce an additional stopping time and adjust τ̄ defined in (3.11), in order to
ensure that our constructed value process does not leave the ε-neighborhood of Eg,+(ξ). We define

κ := inf{t > τ∗ : 1{τ∗<T}

t∫
τ∗

gs(ys, 0)ds >
ε

6
} ∧ δ (3.26)

and τ̄ := inf{t > τ∗ : 1{τ∗<T}|Eg,+τ∗ (ξ)− Eg,+t (ξ)| > ε

6
} ∧ T (3.27)

and use κ̄ := κ ∧ τ̄ within the definition of the sequence (σn) in analogy to (3.12), that is, σn = σ̂n ∧ κ̄,
for all n ∈ N. As before, we set σ :=

∑
n≥1 1Bnσn.

The pasting in (3.15) and (3.16) is done analogously to the proof of Theorem 3.4, but now with the
distinction that Ȳ 1[τ∗,σ[ = yτ∗ + 1[τ∗,σ[

∫ ·
τ∗
gs(ys, 0)ds. The definition of the stopping times κ, τ̄ and

σ implies that, on the set Bn, we have Ȳt ≤ Eg,+t (ξ) + ε, for all t ∈ [τ∗, σn[. Indeed, observe that, for
t ∈ [τ∗, σn[,

Ȳt = Eg,+τ∗ (ξ) +
ε

2
+

t∫
τ∗

gs(ys, 0)ds ≤ Eg,+τ∗ (ξ) +
2ε

3

= Eg,+τ∗ (ξ)− Eg,+t (ξ) + Eg,+t (ξ) +
2ε

3
≤ Eg,+t (ξ) +

ε

6
+

2ε

3
< Eg,+t (ξ) + ε ,

by means of (3.26) and (3.27), together with the definition of σn. Furthermore, on the set Bn,

Ȳσn− = Eg,+τ∗ (ξ) +
ε

2
+

σn∫
τ∗

gs(ys, 0)ds ≥ Eg,+τ∗ (ξ) +
ε

2
≥ Ȳσn

. (3.28)

The first inequality in (3.28) follows from (POS), whereas the second is proved analogously to the proof of
Theorem 3.4, using (3.27) and the definition of σn. Hence, pasting at the stopping time σ is in accordance
with Proposition 3.2.
Finally, the downward jumps at τ∗ and at σ, together with the zero control in between, ensure that (Ȳ , Z̄)

satisfies (3.1), as was shown in Step 4c of the proof of Theorem 3.4. The rest of the proof does not need
any further alterations. �

Also the positivity assumption (POS) on the generator can be relaxed to a linear bound below, which
however has to be consistent with the assumption (NOR’). In the following we say that a generator g is

(LB-NOR’) linearly bounded from below under (NOR’), if there exist adapted measurable processes
a and b with values in R1×d and R, respectively, such that g(y, z) ≥ azT − b, for all
(y, z) ∈ R× R1×d, and

dP a

dP
= E

(∫
adW

)
T

(3.29)

defines an equivalent probability measure P a. Furthermore,
∫ t
0
bsds ∈ L1(P a) holds for

all t ∈ [0, T ], and a and b are such that the positive generator defined by

ḡ(y, z) := g

y +

·∫
0

bsds, z

− azT − b , for all (y, z) ∈ R× R1×d , (3.30)
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satisfies (NOR’).

An (LB-NOR’) setting can always be reduced to a setting with generator satisfying (POS) and (NOR’),
by using the change of measure (3.29) and ḡ defined in (3.30). Hence, Lemma 3.1 and Proposition 3.2,
which strongly rely on the property (POS), can be applied. Note that for the case b = 0, the genera-
tor ḡ even satisfies (POS) and (NOR). However, we need a slightly different definition of admissibility
than before. A control process Z is said to be a-admissible, if

∫
ZdW a is a P a-supermartingale, where

W a =
(
W 1 −

∫
a1ds, · · · ,W d −

∫
adds

)T
is a P a-Brownian motion by Girsanov’s theorem.

The set Aa(ξ, g) := {(Y, Z) ∈ S × L : Z is a-admissible and (3.1) holds}, as well as the process

Eg,at (ξ) = ess inf{Yt ∈ L0(Ft) : (Y, Z) ∈ Aa(ξ, g)} , for t ∈ [0, T ] ,

are defined analogously to (3.2) and (3.3), respectively. We are now ready to state our most general result,
which follows from Corollary 3.7 and [6, Theorem 4.16].

Theorem 3.8. Let g be a generator satisfying (LB-NOR’) and ξ ∈ L0(FT ) a terminal condition such
that ξ− ∈ L1(P a). If in addition Aa(ξ, g) 6= ∅, then there exists a unique a-admissible control Ẑ such
that (Eg,a(ξ), Ẑ) ∈ Aa(ξ, g).

3.4 Continuous Local Martingales and Controls in L1

Under stronger integrability conditions, the techniques used in the proof of Theorem 3.4 can be general-
ized to the case where the Brownian motion W appearing in the stochastic integral in (3.1) is replaced by
a d-dimensional continuous local martingale M . Let us assume that M is adapted to a filtration (Ft)t≥0,
which satisfies the usual conditions and in which all martingales are continuous and all stopping times are
predictable. We consider controls within the set L1 := L1(M), consisting of all R1×d-valued, progres-
sively measurable processes Z, such that

∫
ZdM ∈ H1. As before, for Z ∈ L1 the stochastic integral

(
∫ t
0
ZsdMs)t∈[0,T ] is well defined and is by means of the Burkholder-Davis-Gundy inequality a contin-

uous martingale. A pair (Y,Z) ∈ S × L1 is now called a supersolution of a BSDE, if it satisfies, for
0 ≤ s ≤ t ≤ T ,

Ys −
t∫
s

gu(Yu, Zu)d 〈M〉u +

t∫
s

ZudMu ≥ Yt and YT ≥ ξ , (3.31)

for a normal integrand g as generator and a terminal condition ξ ∈ L0(FT ). We will focus on the set

AM,1(ξ, g) :=
{

(Y, Z) ∈ S × L1 : (Y,Z) satisfy (3.31)
}
.

If we assumeAM,1(ξ, g) to be non-empty, Theorem 3.4 combined with compactness results for sequences
ofH1-bounded martingales given in Delbaen and Schachermayer [3] yields that

Egt (ξ) := ess inf
{
Yt ∈ L0(Ft) : (Y,Z) ∈ AM,1(ξ, g)

}
, t ∈ [0, T ] , (3.32)

is the value process of the unique minimal supersolution within AM,1(ξ, g). Note that Lemma 3.1 and
Proposition 3.2 extend to the case where W is substituted by M .

Theorem 3.9. Assume that the generator g satisfies (POS) and (NOR) and let ξ ∈ L0(FT ) be a terminal
condition such that (E[ξ− | F·])∗ ∈ L1(FT ). If AM,1(ξ, g) 6= ∅, then there exists a unique Ẑ such that
(Eg(ξ), Ẑ) ∈ AM,1(ξ, g).
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Proof. By assumption, there is some (Y b, Zb) ∈ AM,1(ξ, g) and we consider, without loss of generality,
only those pairs (Y,Z) ∈ AM,1(ξ, g) satisfying Y ≤ Y b, obtained by suitable pasting as in Proposition
3.2. Using the techniques of the proof of Theorem 3.4, we can find a sequence ((Y n, Zn)) ⊂ AM,1(ξ, g)

satisfying limn ‖Y n − Eg,+(ξ)‖R∞ = 0, in analogy to (3.6). Since (
∫
ZndM) is uniformly bounded in

H1, compare [6, Theorem 4.5], it follows from [1, Theorem 1] that Eg,+(ξ) is a special semimartingale
with canonical decomposition Eg,+(ξ) = Eg,+0 (ξ) +N −A and that

lim
n→∞

∥∥∥∥∫ ZndM −N
∥∥∥∥
H1

= 0 . (3.33)

Moreover, N ∈ H1. Now [3, Theorem 1.6] yields the existence of some Ẑ ∈ L1 such that N =∫
ẐdM . By means of (3.33), (Zn) converges, up to a subsequence, P ⊗ d 〈M〉t-almost surely to Ẑ and

limn

∫ t
0
ZndM =

∫ t
0
ẐdM , for all t ∈ [0, T ], P -almost surely, by means of the Burkholder-Davis-Gundy

inequality. In particular, limn→∞ Zn(ω) = Ẑ(ω), d 〈M〉t-almost surely, for almost all ω ∈ Ω. Verifying
that (Eg,+(ξ), Ẑ) satisfy (3.31) is now done analogously to Step 1 in the proof of Theorem 3.4, and hence
we are done. �
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