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Abstract

Confidence intervals and joint confidence sets are constructed for
the nonparametric calibration of exponential Lévy models based on
prices of European options. This is done by showing joint asymptotic
normality for the estimation of the volatility, the drift, the intensity
and the Lévy density at finitely many points in the spectral calibration
method. Furthermore, the asymptotic normality result leads to a test
on the value of the volatility in exponential Lévy models.
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1 Introduction

The unknown future development of financial markets faced by its partici-
pants, whether as investors, as traders or as companies, can be understood
to consist of model risk and “Knightian uncertainty” [10, 17]. The first
describes the risk for a given calibrated model and can be evaluated by
probabilistic methods, whereas the second incorporates the lack of knowl-
edge on the underlying probability measure and is typically treated by worst
case scenarios, for example, by stress testing, which amounts to taking the
supremum or infimum over a range of probability measures.

∗I thank Markus Reiß for fruitful discussions at all stages of this work and Mathias
Trabs for helpful comments on the manuscript. This research was supported by the
Deutsche Forschungsgemeinschaft through the SFB 649 “Economic Risk”. E-mail address:
soehl@math.hu-berlin.de
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By the choice of the model, there is a trade-off in the uncertainty between
the calibration error and the misspecification of the model, where larger
models reduce the latter. Since the calibration error is statistically traceable
and the misspecification is hard to track, we choose a rich model such as
a nonparametric one and then asses the calibration error by constructing
confidence sets.

More precisely, we consider the nonparametric calibration when the risk-
neutral price of a stock (St) follows an exponential Lévy model

St = Sert+Xt with a Lévy process Xt for t ≥ 0. (1.1)

A thorough discussion of this model is given in the monograph by Cont and
Tankov [7]. They introduced in [8, 9] a nonparametric calibration method for
this model based on prices of European call and put options, in which a least
squares approach is penalized by relative entropy. Belomestny and Reiß [2]
used a different approach to the same estimation problem, where they reg-
ularized by a spectral cut-off and constructed estimators that achieve the
minimax rates of convergence. We show asymptotic normality and construct
confidence sets and intervals for their estimation procedure. Methods simi-
lar to theirs were also applied by Belomestny [1] to estimate the fractional
order of regular Lévy processes of exponential type and by Trabs [21] to
estimate self-decomposable Lévy processes.

Confidence sets measure how reliable the estimation is. This is particu-
larly important if the calibrated model is to be used for pricing and hedg-
ing. For a recent review on pricing and hedging in exponential Lévy models
see [20] and the references therein. For the influence of model uncertainty
on the pricing see [6].

Nonparametric confidence intervals and sets for Lévy triplets have not
been studied with the notable exception of the work by Figueroa-López [12].
The work is more general in the sense that beyond pointwise confidence inter-
vals also confidence bands are constructed. On the other hand, the method
is based on high-frequency observations so that the statistical problem of
estimating the Lévy density reduces to the problem of density estimation.
In contrast to this direct observation scheme our method is based on option
prices and thus the calibration is a nonlinear inverse problem, which is mildly
ill-posed for volatility zero and severely ill-posed for positive volatility.

Confidence intervals and sets in nonparametric problems are a subtle is-
sue. Whether adaptive confidence intervals for the estimators of the volatil-
ity, the drift and the intensity exist is an open question. We show asymptotic
normality for the parametric estimators of the volatility, the drift and the
intensity. We also proof asymptotic normality for the pointwise estimators
of the Lévy density. The joint asymptotic distribution of these estimators
is derived in both the mildly and the severely ill-posed case. This is used
for the construction of confidence intervals and joint confidence sets as well
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as for a test on the value of the volatility. The asymptotic normality results
are based on undersmoothing and on a linearization of the stochastic errors.

The paper is organized as follows. The model and the estimation method
are given in Section 2. The main results are formulated in Section 3. They
are applied to confidence intervals and to a hypotheses test on the value of
the volatility in Section 4. We conclude in Section 5. Proofs are deferred to
Section 6 and Section 7. Uniform convergence is treated in Section 8.

2 The model and the estimators

We denote by C(K,T ) and P(K,T ) prices of European call and put options
on the underlying (St) with strike price K and maturity T . We suppose
that the risk-neutral price of the stock (St) follows the exponential Lévy
model (1.1) with respect to an equivalent martingale measure Q, where
S > 0 is the present value of the stock and r ≥ 0 is the riskless interest rate.
We fix some T and assume that the observations are given by option prices
for different maturities (Kj) corrupted by noise:

Yj = C(Kj , T ) + σjεj , j = 1, . . . , n.

The noise levels (σj) are assumed to be positive and known. The minimax
result in [2] is shown for general errors (εj) which are independent centered
random variables with E[ε2j ] = 1 and supj E[ε4j ] < ∞. We transform the
observations to a regression problem on the function

O(x) :=

{
S−1C(x, T ), x ≥ 0,
S−1P(x, T ), x < 0,

where x := log(K/S)− rT denotes the log-forward moneyness. The regres-
sion model may then be written as

Oj = O(xj) + δjεj . (2.1)

We call the volatility of a Lévy process σ, the drift γ and the inten-
sity λ. As in [2] we consider only Lévy processes (Xt) with a jump com-
ponent of finite intensity and absolutely continuous jump distribution. For
a jump density ν we denote by µ(x) := exν(x) the corresponding expo-
nentially weighted jump density. The aim is to estimate the Lévy triplet
T = (σ2, γ, µ). In the remainder of this section we present the spectral
calibration method of Belomestny and Reiß [2]. The method is based on a
pricing formula by Carr and Madan [5], which relates the Fourier transform
FO(u) :=

∫∞
−∞O(x)eiuxdx to the characteristic function ϕT (u) := E[eiuXT ].

That is why we define

ψ(u) :=
1

T
log (1 + iu(1 + iu)FO(u)) =

1

T
log(ϕT (u− i))

= −σ
2u2

2
+ i(σ2 + γ)u+ (σ2/2 + γ − λ) + Fµ(u),

(2.2)
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where the first equality is given by the above mentioned pricing formula and
the second by the Lévy-Khintchine representation. This equation links the
observation of O to the Lévy triplet that we want to estimate. Let Oε be
an approximation on the true function O. For example, Oε can be obtained
by linear interpolation of the data (2.1). We further define the empirical
counterpart of ψ by

ψε(u) :=
1

T
log≥κ(u) (1 + iu(1 + iu)FOε(u)) ,

where the trimmed logarithm log≥κ : C\{0} → C is given by

log≥κ(z) :=

{
log(z), |z| ≥ κ
log(κ z/|z|), |z| < κ

.

The logarithms are taken in such a way that ψ and ψε are continuous with
ψ(0) = ψε(0) = 0 and κ(u) ∈ (0, 1) is specified in [2]. Considering (2.2)
as a quadratic polynomial in u disturbed by Fµ motivates the following
definition of the estimators for a cut-off value U > 0:

σ̂2 :=

∫ U

−U
Re(ψε(u))wUσ (u)du, (2.3)

γ̂ := −σ̂2 +

∫ U

−U
Im(ψε(u))wUγ (u)du, (2.4)

λ̂ :=
σ̂2

2
+ γ̂ −

∫ U

−U
Re(ψε(u))wUλ (u)du, (2.5)

where the weight functions wUσ , wUγ and wUλ satisfy∫ U

−U

−u2

2
wUσ (u)du = 1,

∫ U

−U
uwUγ (u)du = 1,

∫ U

−U
wUλ (u)du = 1,∫ U

−U
wUσ (u)du = 0,

∫ U

−U
u2wUλ (u)du = 0.

(2.6)

The estimator for µ is defined by a smoothed inverse Fourier transform of
the remainder

µ̂(x) := F−1
[(
ψε(u) +

σ̂2

2
(u− i)2 − iγ̂(u− i) + λ̂

)
wUµ (u)

]
(x). (2.7)

The weight functions for all U > 0 can be obtained from w1
σ, w1

γ , w1
λ and

w1
µ by rescaling:

wUσ (u) = U−3w1
σ(u/U), wUγ (u) = U−2w1

γ(u/U),

wUλ (u) = U−1w1
λ(u/U), wUµ (u) = w1

µ(u/U).
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Since ψε(−u) = ψε(u) only the symmetric part of w1
σ, w1

λ and the anti-
symmetric part of w1

γ matter. The antisymmetric part of w1
µ contributes a

purely imaginary part to µ̂(x). Without loss of generality we will always
assume w1

σ, w1
λ, w1

µ to be symmetric and w1
γ to be antisymmetric. We fur-

ther assume that the support of w1
σ, w1

γ , w1
λ and w1

µ is contained in [−1, 1].
We define the estimation error ∆σ̂2 := σ̂2 − σ2 and likewise for the other
estimators. We will also use the notation ∆ψε := ψε − ψ. The estimation
error ∆σ̂2 can be decomposed as

∆σ̂2 : = 2U−2
∫ 1

0
Re(Fµ(Uu))w1

σ(u)du

+ 2U−2
∫ 1

0
Re(∆ψε(Uu))w1

σ(u)du.

(2.8)

The first term is the approximation error and decreases in U due to the decay
of Fµ. The second is the stochastic error and increases in U by the growth
of ∆ψε. The cut-off value U is the crucial tuning parameter in this method
and allows a trade-off between the error terms. The other estimation errors
allow similar decompositions as ∆σ̂2 in (2.8).

We shall analyze the asymptotic properties of the stochastic errors in
depth. To bound the approximation errors some smoothness assumption is
necessary. We assume that the Lévy triplet belongs to a smoothness class
Gs(R, σmax) with s ∈ N and R, σmax > 0 specified in [2, Definition 4.1]. The
assumption T ∈ Gs(R, σmax) includes a smoothness assumption of order s
on µ leading to a decay of Fµ. To profit from this decay when bounding
the approximation error, we assume the weight functions to be of order s,
this means

F(w1
σ(u)/us),F(w1

γ(u)/us),F(w1
γ(u)/us),F

(
(1− w1

µ(u))/us
)
∈ L1(R).

(2.9)

3 Asymptotic normality

3.1 The main results

The aim of this section is to establish asymptotic normality results for the
estimators. We would like to state that the appropriately scaled errors of
the estimators converge to normal random variables. The starting point
of the error analysis is the decomposition (2.8) into the approximation er-
ror and the stochastic error. The approximation error is deterministic and
only the stochastic error can be expected to converge with appropriate scal-
ing to a normal random variable. It is common practice to resolve this
problem by undersmoothing, which means that the tuning parameter is
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chosen such that the approximation error becomes asymptotically negli-
gible. Thus the cut-off value has to grow fast enough. This is ensured
by the condition εU(ε)(2s+5)/2 → ∞ in the case of volatility zero and by
εU(ε)s+1 exp(Tσ2U(ε)2/2)→∞ in the case of positive volatility.

Since the approximation errors are negligible by these conditions we
focus on the stochastic errors. To simplify the asymptotic analysis we do
not work with the regression model (2.1) but with the Gaussian white noise
model. This is an idealized observation scheme, where the terms are easier
to analyze. At the same time asymptotic results may be transferred to the
regression model. The Gaussian white noise model is given by

dOε(x) = O(x)dx+ ε δ(x)dW (x), (3.1)

where W is a two-sided Brownian motion, δ ∈ L2(R) and ε > 0. Here
the empirical counterpart Oε of O is given directly by the model and no
further approximation is necessary. Transferring asymptotic results from
the Gaussian white noise model to the regression model is formally justified
by the concept of asymptotic equivalence. Due to the asymptotic equivalence
between regression with regular errors and regression with Gaussian errors
in [14] we will consider for our asymptotic analysis only the case of Gaussian
errors. The asymptotic equivalence of regression (2.1) with Gaussian errors
and the Gaussian white noise model (3.1) is given in Brown and Low [4],
where δj = δ(xj) and ε corresponds to 1/

√
n up to a logarithmic factor.

Further assumptions for the asymptotic equivalence to hold are given in
Section 6.

The stochastic errors involve the term ∆ψε(Uu), which is a difference
between two logarithms. For z, z′ ∈ C\{0} and κ > 0 it holds log≥κ(z) −
log(z′) = log≥κ/|z′| (z/z

′). That yields

∆ψε(Uu)

=
1

T
log≥κU (u)

(
1 +

ε iUu(1 + iUu)

1 + iUu(1 + iUu)FO(Uu)

∫ ∞
−∞

eiUuxδ(x)dW (x)
)
,

where κU (u) := κ(Uu)/|1 + iUu(1 + iUu)FO(Uu)| ≤ 1/2, see [2, (6.3)]. We
define a linearization Lε,U of the logarithm and the remainder term Rε,U by

Lε,U (u) :=
ε iUu(1 + iUu)

T (1 + iUu(1 + iUu)FO(Uu))

∫ ∞
−∞

eiUuxδ(x)dW (x), (3.2)

Rε,U (u) := ∆ψε(Uu)− Lε,U (u). (3.3)

To ensure continuity of the Gaussian processX(u) =
∫∞
−∞ e

iuxδ(x)dW (x)

we assume that there is a p > 1 such that
∫∞
−∞(1+ |x|)pδ(x)2dx <∞. In [19]

it is shown that on this assumption X satisfies the Kolmogorov-Chentsov
criterion [16, p. 57] and thus has a continuous version. In the sequel we are
always working with this version.
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The remainder term Rε,U in (3.3) is small when the argument of the
logarithm is close to one, that is when Lε,U is small. Since we are integrating
over the unit interval in (2.8) we want Lε,U to be uniformly small. We shall
use the notation A(x) . B(x) as x → ∞ synonymously with the Landau
notation A(x) = O(B(x)) as x → ∞, meaning that there exist M > 0 and
x0 ∈ R such that A(x) ≤MB(x) for all x ≥ x0.

Proposition 1. For all q ≥ 1 holds

E

[
sup

u∈[−1,1]
|Lε,U (u)|q

]1/q
. εU2

√
log(U) exp(Tσ2U2/2)

as U →∞.

This proposition is proved in Section 6 by metric entropy arguments. In
the following theorems we control the supremum of Lε,U and thus the remain-
der term Rε,U by the condition εU(ε)2

√
log(U(ε)) exp(Tσ2U(ε)2/2) → 0.

Then the asymptotic distribution of the stochastic errors
∫ 1
0 ∆ψε(Uu)w(u)du

is governed by the linearized stochastic errors
∫ 1
0 Lε,U (u)w(u)du and the re-

mainder term
∫ 1
0 Rε,U (u)w(u)du is asymptotically negligible. In the case

σ = 0 the stronger condition εU(ε)5/2 → 0 is assumed, which is needed for
the stochastic errors to converge to zero.

In the results on asymptotic normality we will also include the estimator
µ̂(0) of the jump density at zero. This only makes sense by our smoothness
assumption on µ since there is no way of detecting jumps of height zero.
Unlike for points x 6= 0 it will turn out that not the weight function w1

µ

determines the asymptotic distribution but the effective weight function

w0(u) := w1
µ(u) + w1

σ(u)

∫ 1

−1
v2w1

µ(v)dv/2− w1
λ(u)

∫ 1

−1
w1
µ(v)dv.

The first theorem states the joint asymptotic normality result for the
mildly ill-posed case of volatility zero.

Theorem 1. Let σ = 0. Let δ be continuous at Tγ, x1 + Tγ, . . . , xn + Tγ
and let Fδ2 ∈ L1(R). For j = 1, . . . , n let xj ∈ R\{0} be distinct and
let V0,W0,Wx1 . . . ,Wxn be independent Brownian motions. If εU(ε)5/2 → 0
and εU(ε)(2s+5)/2 →∞ as ε→ 0, then it holds

1

ε



U(ε)+1/2 ∆σ̂2

U(ε)−1/2 ∆γ̂

U(ε)−3/2 ∆λ̂

U(ε)−5/2 ∆µ̂(0)

U(ε)−5/2 ∆µ̂(x1)
...

U(ε)−5/2 ∆µ̂(xn)


d−→



d(0)
∫ 1
0 u

2w1
σ(u)dW0(u)

d(0)
∫ 1
0 u

2w1
γ(u)dV0(u)

d(0)
∫ 1
0 u

2w1
λ(u)dW0(u)

d(0)
∫ 1
0 u

2w0(u)dW0(u)/(2π)

d(x1)
∫ 1
0 u

2w1
µ(u)dWx1(u)/(2π)

...

d(xn)
∫ 1
0 u

2w1
µ(u)dWxn(u)/(2π)


,
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as ε→ 0, where d(x) := 2
√
πδ(x+ Tγ) exp(T (λ− γ))/T .

Next we consider the case σ > 0. Let δ be in L∞(R) and ‖δ‖L2(R) > 0.
We set

d :=
√

2‖δ‖L2(R) exp(T (λ− γ − σ2/2))T−2σ−2. (3.4)

and define real-valued random variables Wε,U and Vε,U by Wε,U + iVε,U :=

2d−1
∫ 1
0 Lε,U (u)du. By Lemma 3 below

1

ε exp(Tσ2U2/2)

(
Wε,U

Vε,U

)
d−→
(
W
V

)
(3.5)

as U → ∞, where W and V are independent standard normal random
variables.

The following theorem treats the stochastic errors in the case of positive
volatility. Since the theorem contains no statement on the approximation
errors, the condition (2.9) on the order of the weight functions may be
omitted.

Theorem 2. Let σ > 0 and δ ∈ L∞(R). Assume for the cut-off value
U(ε) → ∞ and εU(ε)2

√
log(U(ε)) exp(Tσ2U(ε)2/2) → 0 as ε → 0. Let

w1
σ, w

1
γ , w

1
λ, w

1
µ : [0, 1]→ R be Riemann-integrable, in L∞([0, 1]) and contin-

uous at one. For x ∈ R it holds with the notation U := U(ε)

1

εeTσ2U2/2


2
∫ 1
0 Re(∆ψε(Uu))w1

σ(u)du− dw1
σ(1)Wε,U

2
∫ 1
0 Im(∆ψε(Uu))w1

γ(u)du− dw1
γ(1) Vε,U

2
∫ 1
0 Re(∆ψε(Uu))w1

λ(u)du− dw1
λ(1)Wε,U

F−1
[
∆ψε(Uu)w1

µ(u)
]

(Ux)− dw1
µ(1) Zε,U (x)/(2π)

 Q−→ 0,

as ε→ 0, where Zε,U (x) := cos(Ux)Wε,U + sin(Ux)Vε,U .

The assumption T ∈ Gs(R, σmax) includes σ ∈ [0, σmax]. The condi-
tion εU(ε)2

√
log(U(ε)) exp(Tσ2U(ε)2/2)→ 0 is especially fulfilled if U(ε) ≤

σ̄−1(2 log(ε−1)/T )1/2 for any σ̄ > σmax. For the estimation it suffices to know
some upper bound σmax of σ. The theorem shows that regardless whether
one undersmoothes or not the stochastic errors converge with appropriate
scaling to normal random variables. For the statement on asymptotic nor-
mality we have to undersmooth and further knowledge on the volatility is
necessary.

In many situations the volatility σ is known or can be estimated eas-
ily. It can, for example, be determined from high frequency data of the
underlying asset since the volatility is the same for equivalent measures.
In the following we will assume either that the volatility σ is known as
in Cont and Tankov [8] or that we have a sufficiently good estimator of
the volatility. To control the remainder term we choose U(ε) such that
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εU(ε)2
√

log(U(ε)) exp(Tσ2U(ε)2/2) → 0 as ε → 0. We also assume the
undersmoothing condition εU(ε)s+1 exp(Tσ2U(ε)2/2) → ∞ as ε → 0. A
smoothness parameter s ≥ 2 is implicitly assumed so that both condition
can be satisfied simultaneously. A possible choice of U(ε) is

U(ε) :=

√
2

Tσ2
log

(
ε−1

log(ε−1)α

)
, (3.6)

where α ∈ (1, (s+ 1)/2). Then it holds

εU(ε)β exp(Tσ2U(ε)2/2)→


∞ β > 2α(
2

Tσ2

)α
β = 2α

0 β < 2α

as ε → 0. Especially the term diverges for β = s + 1 and converges to zero
for β ∈ (2, 2α) so that both conditions on U(ε) are fulfilled.

Next we state the joint asymptotic normality result for the severely ill-
posed case of positive volatility.

Theorem 3. Let σ > 0 and let the cut-off value U(ε) be chosen such that
εU(ε)2

√
log(U(ε)) exp(Tσ2U(ε)2/2) → 0 and εU(ε)s+1 exp(Tσ2U(ε)2/2) →

∞ as ε→ 0. Let δ ∈ L∞(R). It holds

1

εeTσ2U(ε)2/2


U(ε)2 ∆σ̂2 − dw1

σ(1)Wε,U(ε)

U(ε) ∆γ̂ − dw1
γ(1)Vε,U(ε)

∆λ̂ − dw1
λ(1)Wε,U(ε)

U(ε)−1 ∆µ̂(0) − dw0(1)Wε,U(ε)/(2π)

U(ε)−1 ∆µ̂(x) − dw1
µ(1)Zε,U(ε)(x)/(2π)

 Q−→ 0,

as ε→ 0, where x ∈ R\{0}, Zε,U (x) := cos(Ux)Wε,U + sin(Ux)Vε,U and d is
given by (3.4).

3.2 Discussion of the results

Theorems 1 and 3 include the asymptotic distribution of σ̂2, which may be
used for testing the hypotheses H0 : σ = σ0. If σ is known, we can set
σ̂2 = σ2. Then the statements of the theorems hold with w1

σ constant to
zero. The estimation method can give negative values for σ̂2, λ̂ and ν̂(x).
By a postprocessing step the estimated values can be corrected to be non-
negative.

In Theorem 1 the noise level δ enters only locally into the asymptotic
variance whereas in Theorems 2 and 3 the asymptotic variance depends on
the L2-norm of δ through the factor d. In fact for σ = 0 it is possible to
estimate γ and λ directly from local properties of the option function O at
γT as remarked in [2]. This local dependence on the noise level resembles
some similarity to deconvolution, for instance, to the case of ordinary smooth
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error density, where the density of the observations enters locally into the
asymptotic variance [11, 22]. For the weight functions the local and global
dependence is vice versa. In Theorem 1 the weight functions w1

σ, w1
γ , w1

λ,
w1
0 and w1

µ enter globally into the asymptotic variance while in Theorems 2
and 3 only the values of the weights functions at their endpoints appear in
the asymptotic variance.

The asymptotic variance depends on the maturity. For positive volatility
this dependence is through d in (3.4). The martingale condition is equivalent
to σ2/2+γ−λ+

∫∞
−∞ e

xν(x)dx = 0, especially it holds that λ−γ−σ2/2 ≥ 0
with equality if and only if λ = 0 that is in the Black-Scholes case. In the
case of positive volatility σ the asymptotic variance grows exponentially as
T →∞ if the jump intensity λ is positive and grows quadratic as T → 0.

For w1
σ(1), w1

γ(1), w1
λ(1), w1

µ(1) ∈ R\{0} Theorem 2 describes the asymp-

totic distribution of the leading stochastic error term of σ̂2, γ̂, λ̂ and µ̂(x),
x 6= 0, i.e., the other stochastic error terms are of smaller order. The
variances in Theorems 2 and 3 converge by (3.5) and by the definition of
Zε,U (x). If one only considers the stochastic errors of σ̂2, γ̂, λ̂ and µ̂(0),
then the covariances converge, too. But for x 6= 0 the covariance of the
stochastic errors of µ̂(x) and of σ̂2 does not converge. The same holds for
the covariance of the stochastic errors of µ̂(x) and γ̂ as well as µ̂(x) and λ̂.
The phenomenon that the covariances do not convergence comes from the
fact that the stochastic error centers more and more at the cut-off frequency.
The sequence of cut-off values has a crucial influence on the covariance. For
estimators of the generalized distribution function of the Lévy density this
is likely to lead to a similar dependence on the sequence of cut-off values as
observed in [23] for deconvolution with a supersmooth error density.

4 Applications

4.1 Construction of confidence intervals and confidence sets

For σ = 0 we define confidence intervals

Iγ,ε := [γ̂ − ŝγεU1/2qα/2, γ̂ + ŝγεU
1/2qα/2],

Iλ,ε := [λ̂− ŝλεU3/2qα/2, λ̂+ ŝλεU
3/2qα/2],

Iµ(0),ε := [µ̂(0)− ŝµ(0)εU5/2qα/2, µ̂(0) + ŝµ(0)εU
5/2qα/2],

Iµ(x),ε := [µ̂(x)− ŝµ(x)εU5/2qα/2, µ̂(x) + ŝµ(x)εU
5/2qα/2],

(4.1)
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where x ∈ R\{0}, qα denotes the (1 − α)-quantile of the standard normal
distribution and


ŝγ
ŝλ
ŝµ(0)
ŝµ(x)

 :=



ŝ(0)
(∫ 1

0 u
4w1

γ(u)2du
)1/2

ŝ(0)
(∫ 1

0 u
4w1

λ(u)2du
)1/2

ŝ(0)
(∫ 1

0 u
4w0(u)2du

)1/2
/(2π)

ŝ(x)
(∫ 1

0 u
4w1

µ(u)2du
)1/2

/(2π)


with ŝ(x) := 2

√
πδ(x+T γ̂) exp(T (λ̂− γ̂))/T . We fix some arbitrarily slowly

decreasing function h with h(u)→ 0 as |u| → ∞. We denote by Hs(R, σmax)
the subset of Lévy triplets in Gs(R, σmax) that satisfy in addition

‖Fµ‖∞ ≤ R, |Fµ(u)| ≤ Rh(u), ∀u ∈ R. (4.2)

The additional conditions are used to extend the convergence in the theorems
to uniform convergence, see Theorem 4.

Corollary. Let σ = 0. On the assumptions of Theorem 1 and on the as-
sumption that δ is positive and continuous

lim
ε→0

inf
T ∈Hs(R,0)

QT (ρ ∈ Iρ,ε) = 1− α

holds for the intervals (4.1) and for all ρ ∈ {γ, λ, µ(x)|x ∈ R}.

Remark. We can take the two parameters γ and λ and define Aε := {(γ̂ +
εU1/2ŝγx, λ̂+εU3/2ŝλy)>|x2+y2 ≤ kα}, where kα denotes the (1−α)-quantile
of the chi-square distribution χ2

2 with two degrees of freedom. Then it holds

lim
ε→0

inf
T ∈Hs(R,0)

QT ((γ, λ)> ∈ Aε) = 1− α.

For σ > 0 we define confidence intervals

Iγ,ε := [γ̂ − ŝγεU−1eTσ
2U2/2qα/2, γ̂ + ŝγεU

−1eTσ
2U2/2qα/2],

Iλ,ε := [λ̂− ŝλεeTσ
2U2/2qα/2, λ̂+ ŝλεe

Tσ2U2/2qα/2],

Iµ(0),ε := [µ̂(0)− ŝµ(0)εUeTσ
2U2/2qα/2, µ̂(0) + ŝµ(0)εUe

Tσ2U2/2qα/2],

Iµ(x),ε := [µ̂(x)− ŝµεUeTσ
2U2/2qα/2, µ̂(x) + ŝµεUe

Tσ2U2/2qα/2],

(4.3)

where x ∈ R\{0},
ŝγ
ŝλ
ŝµ(0)
ŝµ

 :=

√
2‖δ‖L2(R)

exp(T (σ2/2 + γ̂ − λ̂))T 2σ2


|w1
γ(1)|
|w1
λ(1)|
|w0(1)|/(2π)
|w1
µ(1)|/(2π)


and qα denotes the (1− α)-quantile of the standard normal distribution.
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Corollary. Let σ > 0. On the assumptions of Theorem 3

lim
ε→0

inf
T

QT (ρ ∈ Iρ,ε) = 1− α

holds for the intervals (4.3) and for all ρ ∈ {γ, λ, µ(x)|x ∈ R}, where the
infimum is over all T ∈ Hs(R, σmax) with volatility σ.

For (γ, λ)> a uniform confidence set may be obtained similarly as in the
case σ = 0. Since for x ∈ R\{0} the covariance of Zε,U(ε)(x) and Vε,U(ε)

and the covariance of Zε,U(ε)(x) and Wε,U(ε) do not converge, confidence

sets for (γ, µ(x))> and (λ, µ(x))> have to be constructed differently. Let us
illustrate how to proceed in this case by constructing a confidence set for
(µ(x1), µ(x2))

>, x1, x2 ∈ R\{0}. By Theorem 3 the convergence

1

εeTσ2U(ε)2/2

(
1

U(ε)

(
∆µ̂(x1)
∆µ̂(x2)

)
−
dw1

µ(1)

2π

(
Zε,U(ε)(x1)

Zε,U(ε)(x2)

))
Q−→ 0

holds for ε→ 0. We define

MU :=

(
cos(Ux1) sin(Ux1)
cos(Ux2) sin(Ux2)

)
,

and observe that the components of M−1U are bounded for U for which the
absolute value of the determinant is bounded from below by some c > 0,
i.e., | sin(U(x2 − x1))| ≥ c. For such U(ε)

1

εeTσ2U(ε)2/2

(
M−1U(ε)

U(ε)

(
∆µ̂(x1)
∆µ̂(x2)

)
−
dw1

µ(1)

2π

(
Wε,U(ε)(x1)

Vε,U(ε)(x2)

))
Q−→ 0

holds for ε→ 0. By Slutsky’s lemma we obtain

1

ŝµεU(ε)eTσ2U(ε)2/2
M−1U(ε)

(
∆µ̂(x1)
∆µ̂(x2)

)
d−→
(
W
V

)
for ε→ 0 such that | sin(U(ε)(x2 − x1))| ≥ c. We define

Cε :=

(
µ̂(x1)
µ̂(x2)

)
+

(
cos(U(ε)x1) sin(U(ε)x1)
cos(U(ε)x2) sin(U(ε)x2)

)
Bε,

where Bε := {ŝµεU(ε)eTσ
2U(ε)2/2(x, y)>|x2 + y2 ≤ kα} and kα denotes the

(1−α)-quantile of the chi-square distribution χ2
2 with two degrees of freedom.

Then

lim
| sin(U(ε)(x2−x1))|≥c

ε→0

QT ((µ(x1), µ(x2))
> ∈ Cε) = 1− α

holds for all T ∈ Gs(R, σmax) ∩ {σ > 0}.

12



4.2 Inference on the volatility

The results on asymptotic normality allow to test for the value of the volatil-
ity. Let σ0 ∈ [0, σmax] and define the hypotheses H0 : T ∈ Hs(R, σmax) ∩
{σ = σ0} and the alternative H1 : T ∈ Hs(R, σmax) ∩ {|σ − σ0| ≥ τ} for
some τ > 0. For α ∈ (0, 1/2] there is a test, which reaches asymptotically
the level α, i.e., limε→0 supT ET [ϕσ0 ] = α, where the supremum is over all
T in the hypotheses H0. Moreover, the error of the second kind vanishes
asymptotically, i.e., limε→0 supT ET [1 − ϕσ0 ] = 0, where the supremum is
over all T in the alternative H1. This family of tests can be used to con-
struct a confidence set for σ. The precise construction of the test and of the
confidence set is given in Section 7.

4.3 A numerical example

We consider the Merton jump diffusion model [18], where the jump density
is specified by

ν(x) =
λ√
2π v

exp

(
−(x− η)2

2v2

)
, x ∈ R,

with parameters σ, λ ≥ 0, v > 0, η ∈ R and where γ ∈ R is determined by
the martingale condition. We simulate data with the parameters σ = 0.1,
λ = 5, η = −0.1, v = 0.2, which implies γ = 0.379. The interest rate
is taken to be r = 0.06. We observe prices of n = 100 European options
with maturity T = 0.25. The strike prices are obtained from sampling the
data points (xj) from a centered normal distribution with variance 1/2, so
that more strike prices are sampled at the money than in or out of the
money. The observation error is chosen to be a centered normal distribution
with variance δ2O(xj)

2, δ = 0.01. Belomestny and Reiß [3] describe the
implementation of the estimation method in detail.

We interpolate the corresponding European call prices as a function of
the strike prices linearly. The weight functions are chosen as in [3] with
smoothness parameter s = 2, there denoted by r. In the simulations the
confidence intervals based on the asymptotic distribution turn out to be to
conservative. The asymptotic confidence intervals are based on the asymp-
totic variance of the linearized stochastic errors that is the stochastic errors,
where the linearization (3.2) is used. Instead of taking the asymptotic vari-
ance of the linearized stochastic errors we derive confidence intervals from
the finite sample variance (6.17) of the linearized stochastic errors. In the
finite sample variance we substitute σ, γ and λ by their estimators. The
asymptotic variance does not depend on µ and the influence of µ one the
finite sample variance is negligibly small. So µ may be set to be constant
to zero in the variance. This yields feasible confidence intervals. We fix
the cut-off value at U = 32 and perform 1000 Monte Carlo iterations. The

13



Figure 1: True Lévy density (solid) with pointwise confidence intervals
(dashed) and 100 estimated Lévy densities (grey).

coverage probabilities of 95% confidence intervals for σ2, γ and λ are 0.96,
0.91 and 0.96, respectively. We see that the that the coverage probabilities
are close to the prescribed confidence level.

Figure 1 illustrates the true Lévy density and the pointwise 95% con-
fidence intervals based on the finite sample variance and the cut-off value
U = 32. The 100 estimated Lévy densities show that the confidence intervals
perform well in terms of coverage probabilities.

5 Conclusion

We have shown asymptotic normality in a nonparametric calibration method
for exponential Lévy models. These results were used to derive confidence
intervals and confidence sets as well as to construct a test on the value of the
volatility. We have seen in a numerical example that confidence intervals
based on finite sample variance perform well in terms of coverage probabili-
ties. The confidence intervals extend the calibration method beyond a pure
point estimate and enable an assessment of the calibration error. Although
parametric models might be fitted better, the parametric approach is always
exposed to the risk of model misspecification and the obtained confidence

14



results should be used for a goodness-of-fit test.
The estimation method and the asymptotic normality results may be

adapted to other models as long as there is an equation relating the option
function to the characteristic function and the parameters of interest appear
in the characteristic function. The constructed confidence intervals and sets
may be used to quantify the errors in pricing, hedging and risk management.

6 Proof of the asymptotic normality

First, we write ∆γ̂, ∆λ̂ and ∆µ̂(x) similarly as in (2.8) for ∆σ̂2:

∆γ̂ = −∆σ̂2 + 2U−1
∫ 1

0
Im(Fµ(Uu))w1

γ(u)du (6.1)

+ 2U−1
∫ 1

0
Im(∆ψε(Uu))w1

γ(u)du,

∆λ̂ = ∆σ̂2/2 + ∆γ̂ − 2

∫ 1

0
Re(Fµ(Uu))w1

λ(u)du (6.2)

− 2

∫ 1

0
Re(∆ψε(Uu))w1

λ(u)du,

∆µ̂(x) = UF−1
[
∆ψε(Uu)w1

µ(u)
]

(Ux) (6.3)

+
∆σ̂2

2
UF−1

[
(Uu− i)2w1

µ(u)
]

(Ux)

− i∆γ̂UF−1
[
(Uu− i)w1

µ(u)
]

(Ux)

+ ∆λ̂UF−1
[
w1
µ(u)

]
(Ux)

− UF−1
[
(1− w1

µ(u))Fµ(Uu)
]

(Ux).

In (6.1) we can substitute ∆σ̂2 using (2.8) and obtain two error terms in-
volving Fµ and two error terms involving ∆ψε. By similar substitutions in
(6.2) and (6.3) we see that all error terms either involve Fµ or ∆ψε, which
we will call approximation errors and stochastic errors, respectively.

We will now state the conditions more precisely on which the regression
model (2.1) and the Gaussian white noise model (3.1) are equivalent. We
restrict the Gaussian white noise model to a growing sequence of intervals
[αn, βn] and assume as a simplification that the observations in the regression
model are equidistant on these intervals with mesh size ∆n. We assume
that (βn − αn)∆n → 0. We suppose δ2 > 0 to be an absolutely continuous
function and ∂

∂x log δ(x) ≤ C to hold for some C < ∞. The functions O
are uniformly bounded O(x) = S−1C(x, T ) − (1 − ex)+ ≤ 1 and uniformly
Lipschitz |O′(x)| = |

∫ x
−∞O

′′(x)dx−1{x>0}+e
(γ−λ)T1{x>γT,σ=0}| ≤ 4+eRT ,

where we used Proposition 2.1 in [2] and |γ| ≤ R. These properties of O
are used to apply Corollary 4.2 in [4]. Then ε corresponds to (βn−αn)/

√
n,
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especially for logarithmically growing intervals one loses only a logarithmic
factor.

6.1 Proof of Proposition 1

First we define X(u) :=
∫∞
−∞ e

iuxδ(x)dW (x). We assumed that there is an

p > 1 such that
∫∞
−∞(1 + |x|)pδ(x)2dx < ∞. It is shown in [19] that there

exists a number c > 0 such that
√

E[|X(u)−X(v)|2] ≤ c|u − v|α for all
u, v ∈ R with α := min(p/2, 1) ∈ (1/2, 1]. Denote by Nρ(I, r) the covering
number, that is the minimum number of closed balls of radius r in the
metric ρ with centers in I that cover I. We define ρ(u, v) := c|u − v|α and
d(u, v) :=

√
E[|X(u)−X(v)|2]. A ball of radius r in the metric ρ covers an

interval of length 2(r/c)1/α. Thus, it holds

Nρ([−U,U ], r) =
⌈
U (c/r)1/α

⌉
.

The radius of the smallest ball with center in [−U,U ] that contains [−U,U ] is
cUα with respect to the metric ρ. There exists D <∞ such that d(u, v) ≤ D
for all u, v ∈ R. For U large enough such that cUα ≥ D we have the entropy
bound

J([−U,U ], d) =

∫ ∞
0

(log(Nd([−U,U ], r)))1/2 dr (6.4)

=

∫ D

0
(log(Nd([−U,U ], r)))1/2 dr

≤
∫ D

0
(log(Nρ([−U,U ], r)))1/2 dr

≤
∫ D

0

(
log
(

2U (c/r)1/α
))1/2

dr

≤
∫ D

0

(
log
(

(2αUαc/r)1/α
))1/2

dr

≤ α−1/2
∫ D

0
(log (2αUαc/r))1/2 dr,

here we substitute r = 2αUαcs,

≤ α−1/22αUαc
∫ D/(2αUαc)

0
(log (1/s))1/2 ds. (6.5)

This integral is solved by∫ x

0

√
log y−1dy =

√
π

2
−
√
π

2
Erf(

√
log x−1) + x

√
log x−1,
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where Erf(y) = 2√
π

∫ y
0 e
−t2dt. For all y > 0 the estimate 1 − Erf(y) <

exp(−y2)/(
√
πy) holds. For each α > 0 this yields c̃ > 0 such that for all

x ∈]0, 1/2α[ ∫ x

0

√
log y−1dy ≤ c̃x

√
log x−1.

Thus, (6.5) can be bounded by

(α−1/2c̃D)
√

log(2αUαc/D) .
√

log(U)

as U → ∞. Thus,
√

log(U) is an asymptotic upper bound of the entropy
integral (6.4). We apply Dudley’s theorem [15, p. 219] to the real part of
X. For all q ≥ 1 this yields a continuous version X ′ of Re(X) with

E

[
sup

u∈[−U,U ]
|X ′(u)|q

]
. (log(U))q/2 (6.6)

as U → ∞. Since X ′ and Re(X) are both continuous they are indistin-
guishable and (6.6) holds for Re(X) likewise. We obtain analogously for all
q ≥ 1

E

[
sup

u∈[−U,U ]
|Im(X(u))|q

]
. (log(U))q/2

as U →∞. We estimate from above for all q ≥ 1

E

[
sup

u∈[−1,1]
|Lε,U (u)|q

]

≤ sup
u∈[−U,U ]

∣∣∣∣ εiu(1 + iu)

T (1 + iu(1 + iu)FO(u))

∣∣∣∣q E
[

sup
u∈[−U,U ]

|X(u)|q
]

≤

(
εU
√

1 + U2

T exp(T (−σ2U2/2 + σ2/2 + γ − λ− ‖Fµ‖∞))

)q
E

[
sup

u∈[−U,U ]
|X(u)|q

]
.
(
εU2

√
log(U) exp(Tσ2U2/2)

)q
(6.7)

as U →∞.

6.2 The linearized stochastic errors

The linearized stochastic errors are of the form
∫ 1
0 fj(u)Lε,U (u)du, where

fj with j = 1, . . . , n are Riemann-integrable function in L∞([0, 1]). Next
we will show that these are jointly normal distributed. Almost surely Lε,U
is continuous. Thus, almost surely the fjLε,U are Riemann-integrable and
almost surely

1

m

m∑
k=1

fj(k/m)Lε,U (k/m)→
∫ 1

0
fj(u)Lε,U (u)du

17



as m→∞. Let C > 0 be such that ‖fj‖∞ ≤ C for all j = 1, . . . , n. For each
m the n sums are joint, centered normal random variables. For m→∞ the
covariance matrix converges by the dominated convergence theorem with
the dominating function C2 supu∈[0,1] |Lε,U (u)|2, where supu∈[0,1] |Lε,U (u)|2
is an integrable random variable by Proposition 1. Thus, the characteristic
function converges pointwise. By Lévy’s continuity theorem this shows that
the sums convergence jointly in distribution to normal random variables. So∫ 1
0 fj(u)Lε,U (u)du are jointly normal distributed.

For a fixed cut-off value U the linearized stochastic errors are jointly
normal distributed. So the natural question is whether the appropriately
scaled covariance matrix converges for U →∞.

Let wj , wk : [0, 1]→ R be Riemann-integrable functions in L∞([0, 1]). It
holds

T

∫ 1

0
wj(u)Lε,U (u)e−iUuxjdu

= εU2e−T (σ
2/2+γ−λ)

∫ 1

0
fU (u)

∫ ∞
−∞

eiUu(x−θj)+Tσ
2U2u2/2δ(x)dW (x)du,

where

fU (u) :=
wj(u)(−u2 + iu/U)

exp(TFµ(Uu))
(6.8)

and θj := xj + Tσ2 + Tγ. We define analogously

gU (u) :=
wk(u)(−u2 + iu/U)

exp(TFµ(Uu))
(6.9)

and θk := xk +Tσ2 +Tγ. We extend fU and gU by zero outside the interval
[0, 1].

Since E
[
supu∈[−1,1] |Lε,U (u)|2

]
<∞ we may apply Fubini’s theorem and

then we apply the Itô isometry to obtain

T 2e2T (σ
2/2+γ−λ)E

[∫ 1

0
wj(u)Lε,U (u)e−iUuxjdu

∫ 1

0
wk(v)Lε,U (v)e−iUvxkdv

]

= ε2U4

∫ 1

0

∫ 1

0

∫ ∞
−∞

fU (u)eiUu(x−θj)+Tσ
2U2u2/2

gU (v)eiUv(x−θk)+Tσ2U2v2/2δ(x)2dxdudv. (6.10)

To separate real and imaginary part we will also need

T 2e2T (σ
2/2+γ−λ)E

[∫ 1

0
wj(u)Lε,U (u)e−iUuxjdu

∫ 1

0
wk(v)Lε,U (v)e−iUvxkdv

]
= ε2U4

∫ 1

0

∫ 1

0

∫ ∞
−∞

fU (u)eiUu(x−θj)+Tσ
2U2u2/2

gU (v)eiUv(x−θk)+Tσ
2U2v2/2δ(x)2dxdudv. (6.11)
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Lemma 1. Let σ = 0. For j = 1, . . . , n let xj ∈ R and let wj : [0, 1]→ R be
Riemann-integrable functions in L∞([0, 1]). Let δ be continuous at x1 +Tγ,
x2 + Tγ, . . . , xn + Tγ and let Fδ2 ∈ L1(R). Let Wx1 , . . . ,Wxn , Vx1 , . . . , Vxn
be Brownian motions. If xj = xk let Wxj = Wxk and Vxj = Vxk otherwise let
the Brownian motions be distinct. Let the set {Wx1 , . . . ,Wxn , Vx1 , . . . , Vxn}
consist of independent Brownian motions. Then

1

εU3/2

∫ 1

0
wj(u)Lε,U (u)e−iUuxjdu

converge jointly in distribution to
√
πδ(xj + Tγ)

T exp(T (γ − λ))

(∫ 1

0
u2wj(u)dWxj (u) + i

∫ 1

0
u2wj(u)dVxj (u)

)
as U →∞.

Proof. We will first consider the case xj = xk. We have seen that

T 2e2T (γ−λ)E

[∫ 1

0
wj(u)Lε,U (u)e−iUuxjdu

∫ 1

0
wk(v)Lε,U (v)e−iUvxjdv

]

= ε2U4

∫ ∞
−∞
FfU (U(x− θj))FgU (U(x− θj))δ(x)2dx,

where fU and gU are defined as in (6.8) and (6.9), respectively, and θj =
xj + Tγ,

= ε2U3

∫ ∞
−∞
FfU (y)FgU (y)δ(y/U + θj)2dy.

We notice that Fδ2 ∈ L1(R) implies δ2 ∈ L∞(R) and we obtain by the
Plancherel identity

= 2πε2U3

∫ 1

0
fU (u)(gU (v) ∗ F−1(δ(y/U + θj)2)(v))(u)du, (6.12)

since the support of fU is [0, 1]. Because we are only interested in the limit
U → ∞ we may assume U ≥ 1. By the Riemann-Lebesgue lemma Fµ(u)
tends to zero as |u| → ∞. The factor fU (u) converges for each u ∈ [0, 1]
to −u2wj(u) as U → ∞ and the functions are dominated by a constant
independent of U . In order to apply dominated convergence it suffices that
the second factor is dominated by a constant independent of U and converges
stochastically with respect to the Lebesgue measure on R.

(gU (v) ∗ F−1(δ(y/U + θj)
2)(v))(u)

=

∫ ∞
−∞

gU (u− v)F−1(δ(y + θj)
2)(Uv)Udv
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By assumption Fδ2 lies in L1(R) and so does F−1(δ(y+θj)
2). A dominating

constant is
√

2‖wk‖∞ exp(T‖Fµ‖∞) ‖F−1(δ(y + θj)
2)‖L1(R). It holds∫ ∞

−∞
F−1(δ(y + θj)

2)(Uv)Udv =

∫ ∞
−∞
F−1(δ(y + θj)

2)(v)dv

= FF−1(δ(y + θj)
2)(0) = δ(θj)

2. (6.13)

δU (v) := F−1(δ(y+θj)
2)(Uv)U is the multiple of what is called approximate

identity or nascent delta function. The basic theorem on approximate iden-
tities states that h ∗ δn converges to h in L1(R) as n → ∞ for h ∈ L1(R).
Thus, (−v2wk(v)1[0,1](v))∗δU (v)(u) converges to −u2wk(u)1[0,1](u)δ(θj)

2 for
U →∞ in L1(R) [13, p. 28] and in particular stochastically. If u 6= 0, then
there is a neighborhood of u where gU (u) + u2wk(u)1[0,1](u) converges uni-
formly to zero. (gU (v) +v2wk(v)1[0,1](v))∗ δU (v)(u) converges almost surely
and in particular stochastically to zero. Therefore, gU (v)∗δU (v)(u) converges
to −u2wk(u)1[0,1](u)δ(θj)

2 stochastically with respect to the Lebesgue mea-
sure on R.

We obtain under the limit U →∞ by the dominated convergence theo-
rem

lim
U→∞

1

ε2U3
E

[∫ 1

0
wj(u)Lε,U (u)e−iUuxjdu

∫ 1

0
wk(v)Lε,U (v)e−iUvxjdv

]

=
2πδ(θj)

2

T 2 exp(2T (γ − λ))

∫ ∞
−∞

(
−u2wj(u)1[0,1](u)

) (
−u2wk(u)1[0,1](u)

)
du

=
2πδ(θj)

2

T 2 exp(2T (γ − λ))

∫ 1

0
u4wj(u)wk(u)du. (6.14)

Without taking the complex conjugate in (6.12) we obtain

T 2e2T (γ−λ)E
[∫ 1

0
wj(u)Lε,U (u)e−iUuxjdu

∫ 1

0
wk(v)Lε,U (v)e−iUvxjdv

]
= 2π

∫ ∞
−∞

fU (u)(gU (−v) ∗ F−1(δ(y/U + θj)2)(v))(u)du.

The same argumentation as before leads to

lim
U→∞

E
[∫ 1

0
wj(u)Lε,U (u)e−iUuxjdu

∫ 1

0
wk(v)Lε,U (v)e−iUvxjdv

]
=

2πδ(θj)
2

T 2 exp(2T (γ − λ))

∫ ∞
−∞

(
−u2wj(u)1[0,1](u)

) (
−u2wk(−u)1[0,1](−u)

)
du

= 0. (6.15)
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We combine (6.14) and (6.15) to obtain

lim
U→∞

1

ε2U3
E
[
Re

∫ 1

0

wj(u)Lε,U (u)

exp(iUuxj)
du Re

∫ 1

0

wk(u)Lε,U (u)

exp(iUuxj)
dv

]
= lim

U→∞

1

ε2U3
E
[
Im

∫ 1

0

wj(u)Lε,U (u)

exp(iUuxj)
du Im

∫ 1

0

wk(u)Lε,U (u)

exp(iUuxj)
dv

]
=

πδ(θj)
2

T 2 exp(2T (γ − λ))

∫ 1

0
u4wj(u)wk(u)du.

From (6.14) and (6.15) it also follows that the covariance between real and
imaginary part vanishes asymptotically.

In the case xj 6= xk we have to show that the covariance vanishes
asymptotically. Without loss of generality we assume xj < xk. We define
θ := (θj + θk)/2. Then θj < θ < θk.

T 2e2T (γ−λ)

ε2U3
E

[∫ 1

0
wj(u)Lε,U (u)e−iUuxjdu

∫ 1

0
wk(v)Lε,U (v)e−iUvxkdv

]

=

∫ ∞
−∞
FfU (U(x− θj))FgU (U(x− θk))δ(x)2Udx

=

∫ ∞
−∞
FfU (y + U(θ − θj))FgU (y + U(θ − θk))δ(y/U + θ)2dy

By the Plancherel identity and by the dominated convergence theorem

FfU → F
(
−u2wj(u)

)
and FgU → F

(
−u2wk(u)

)
in L2(R) for U → ∞ and especially the L2(R) norms converge. From the
assumption Fδ2 ∈ L1(R) follows that δ2 ∈ L∞(R). By the Cauchy-Schwarz
inequality

lim
U→∞

∣∣∣∣∫ 0

−∞
FfU (y + U(θ − θj))FgU (y + U(θ − θk))δ(y/U + θ)2dy

∣∣∣∣
≤ lim

U→∞
‖δ‖2∞ ‖FfU‖L2(R)

(∫ U(θ−θk)

−∞
|FgU (y)|2 dy

)1/2

= 0.

A similar calculation shows that the integral over (0,∞) converges to zero
and consequently

lim
U→∞

T 2e2T (γ−λ)

ε2U3
E

[∫ 1

0

wj(u)Lε,U (u)

exp(iUuxj)
du

∫ 1

0

wk(v)Lε,U (v)

exp(iUvxk)
dv

]
= 0.

The same way follows

lim
U→∞

T 2e2T (γ−λ)

ε2U3
E
[∫ 1

0

wj(u)Lε,U (u)

exp(iUuxj)
du

∫ 1

0

wk(v)Lε,U (v)

exp(iUvxk)
dv

]
= 0.
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The 1/(εU3/2)
∫ 1
0 wj(u)Lε,U (u)e−iUuxjdu are centered normal random

variables and their covariance matrix converges to the covariance matrix
of the claimed limit. Thus, the characteristic function converges pointwise.
By Lévy’s continuity theorem this shows the convergence in distribution.

Lemma 2. Let σ > 0 and δ ∈ L∞(R). Let wU , w̃U ∈ L∞([0, 1],C) be
Riemann-integrable and let there be a constant C > 0 such that for all U ≥ 1
‖wU‖∞, ‖w̃U‖∞ ≤ C. Let there be a, ã : [1,∞)→ C such that the condition

lim
δ→0

sup
U≥1

sup
u∈[1−δ/U,1]

|wU (u)− a(U)| = 0 (6.16)

and the corresponding condition for w̃U and ã hold. Then

lim
U→∞

1

ε2 exp(Tσ2U2)
E
[∫ 1

0
wU (u)Lε,U (u)du

∫ 1

0
w̃U (v)Lε,U (v)dv

]
= 0,

lim
U→∞

(
1

ε2 exp(Tσ2U2)
E

[∫ 1

0
wU (u)Lε,U (u)du

∫ 1

0
w̃U (v)Lε,U (v)dv

]

−
a(U)ã(U)

∫∞
−∞ δ(y)2dy

exp(2T (σ2/2 + γ − λ))T 4σ4

)
= 0.

Remark. Obviously a(U) := wU (1) is the only possible definition. Thus, a
describes the dependence of wU on U at one.

Proof. We notice that (6.10) applies to the complex-valued functions and
yields for wj := wU and wk := w̃U with the definitions (6.8) and (6.9) of fU
and gU , respectively, and with θ := Tσ2 + Tγ

T 2e2T (σ
2/2+γ−λ)E

[∫ 1

0
wU (u)Lε,U (u)du

∫ 1

0
w̃U (v)Lε,U (v)dv

]

= ε2U4

∫ ∞
−∞
F(fU (u)eTσ

2U2u2/2)(U(x− θ))

F(gU (v)eTσ2U2v2/2)(U(x− θ))δ(x)2dx,

= 2πε2U3

∫ ∞
−∞

fU (u)eTσ
2U2u2/2(

gU (v)eTσ
2U2v2/2 ∗ F−1(δ(y/U + θ)2)(v)

)
(u)du

= 2πε2U4

∫ 1

0

∫ 1

0
fU (u)gU (v)

F−1(δ(y + θ)2)(U(u− v))eTσ
2U2(u2+v2)/2dudv. (6.17)

For all δ > 0 we have

lim
U→∞

Tσ2U2e−Tσ
2U2/2

∫ 1

1−δ/U
ueTσ

2U2u2/2du

= lim
U→∞

e−Tσ
2U2/2

[
eTσ

2U2u2/2
]1
1−δ/U
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= 1− lim
U→∞

e−Tσ
2U2(1−(1−δ/U)2)/2

= 1− lim
U→∞

e−Tσ
2U2(2δ/U−δ2/U2)/2

= 1− lim
U→∞

e−Tσ
2Uδ+Tσ2δ2/2 = 1. (6.18)

For the product of two such sequences we obtain for all δ > 0

lim
U→∞

T 2σ4U4e−Tσ
2U2

∫ 1

1−δ/U

∫ 1

1−δ/U
uveTσ

2U2(u2+v2)/2dudv = 1. (6.19)

Likewise

lim
U→∞

T 2σ4U4e−Tσ
2U2

∫ 1

0

∫ 1

0
uveTσ

2U2(u2+v2)/2dudv = 1 (6.20)

holds. We scale the integral in (6.17) appropriately:

lim
U→∞

(
T 2σ4U4e−Tσ

2U2

∫ 1

0

∫ 1

0
fU (u)gU (v)

F−1(δ(y + θ)2)(U(u− v))eTσ
2U2(u2+v2)/2dudv

− a(U)ã(U)
1

2π

∫ ∞
−∞

δ(y)2dy

)
(6.21)

= lim
U→∞

(
T 2σ4U4e−Tσ

2U2

∫ 1

0

∫ 1

0
uveTσ

2U2(u2+v2)/2

F−1(δ(y + θ)2)(U(u− v))fU (u)gU (v)/(uv)dudv

− a(U)ã(U)
1

2π

∫ ∞
−∞

δ(y)2dy

)
(6.22)

We recall that in the Gaussian white noise model we assumed δ to be
in L2(R). Since F−1(δ(y + θ)2)(U(u− v))fU (u)gU (v)/(uv) is bounded in
L∞([0, 1]2) independently of U for U ≥ 1 and since the difference between
(6.20) and (6.19) is zero, only the integral over [1 − δ/U, 1]2 contributes to
the limit. For all δ > 0 the limit equals

= lim
U→∞

(
T 2σ4U4e−Tσ

2U2

∫ 1

1−δ/U

∫ 1

1−δ/U
uveTσ

2U2(u2+v2)/2

F−1(δ(y + θ)2)(U(u− v))fU (u)gU (v)/(uv)dvdu

− a(U)ã(U)
1

2π

∫ ∞
−∞

δ(y)2dy

)
= 0, (6.23)

which can be seen the following way. F−1(δ(y + θ)2) is continuous and
|U(u − v)| ≤ δ for all u, v ∈ [1 − δ/U, 1]. So by choosing δ small enough
F−1(δ(y + θ)2)(U(u − v)) gets arbitrarily close to F−1(δ(y + θ)2)(0) =
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(1/2π)
∫∞
−∞ δ(y)2dy. By (6.16), wU (u) tends to a(U) and w̃U (v) tends

to ã(U) for δ tending to zero. By choosing U large the factor (−u +
i/U)/ exp(TFµ(Uu)) gets close to minus one for all u ∈ [1− δ/U, 1]. Thus,
for small δ and large U the term fU (u)gU (v)/(uv) is close to a(U)ã(U) for
all u, v ∈ [1− δ/U, 1].

Rescaling (6.17) and taking the limit U →∞ leads to

lim
U→∞

(
1

ε2 exp(Tσ2U2)
E

[∫ 1

0
wU (u)Lε,U (u)du

∫ 1

0
w̃U (v)Lε,U (v)dv

]

−
a(U)ã(U)

∫∞
−∞ δ(y)2dy

exp(2T (σ2/2 + γ − λ))T 4σ4

)
= lim

U→∞

(
2πU4 exp(−Tσ2U2)

T 2 exp(2T (σ2/2 + γ − λ))

∫ 1

0

∫ 1

0
fU (u)gU (v)

F−1(δ(y + θ0)2)(U(u− v))eTσ
2U2(u2+v2)/2dudv

− 2π

exp(2T (σ2/2 + γ − λ))

a(U)ã(U)

T 4σ42π

∫ ∞
−∞

δ(y)2dy

)
= 0, (6.24)

where we used that (6.21) is zero. By (6.11) we have

T 2e2T (σ
2/2+γ−λ)E

[∫ 1

0
wU (u)Lε,U (u)du

∫ 1

0
w̃U (v)Lε,U (v)dv

]
= ε2U4

∫ ∞
−∞
F(fU (u)eTσ

2U2u2/2)(U(x− θ))

F(gU (v)eTσ2U2v2/2)(−U(x− θ))δ(x)2dx

= ε2U4

∫ ∞
−∞
F(fU (u)eTσ

2U2u2/2)(U(x− θ))

F(gU (−v)eTσ2U2v2/2)(U(x− θ))δ(x)2dx

= 2πε2U3

∫ ∞
−∞

fU (u)eTσ
2U2u2/2(

gU (−v)eTσ
2U2v2/2 ∗ F−1(δ(y/U + θ)2)(v)

)
(u)du

= 2πε2U4

∫ 1

0

∫ 0

−1
fU (u)gU (−v)

F−1(δ(y + θ)2)(U(u− v))eTσ
2U2(u2+v2)/2dvdu

= 2πε2U4

∫ 1

0

∫ 1

0
uveTσ

2U2(u2+v2)/2

F−1(δ(y + θ)2)(−U(u+ v))fU (u)gU (v)/(uv)dvdu.
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Rescaling as in (6.24) leads to

lim
U→∞

1

ε2 exp(Tσ2U2)
E
[∫ 1

0
wU (u)Lε,U (u)du

∫ 1

0
w̃U (v)Lε,U (v)dv

]
= lim

U→∞

2πU4 exp(−Tσ2U2)

T 2 exp(2T (σ2/2 + γ − λ))

∫ 1

0

∫ 1

0
uveTσ

2U2(u2+v2)/2

F−1(δ(y + θ)2)(−U(u+ v))fU (u)gU (v)/(uv)dudv = 0, (6.25)

since F−1(δ(y + θ)2)(u)→ 0 for |u| → ∞.

Lemma 3. Let σ > 0 and δ ∈ L∞(R). Let x0 ∈ R and for j = 1, . . . , n let
wj : [0, 1]→ R be continuous at one, Riemann-integrable and in L∞([0, 1]).
Then

1

ε exp(Tσ2U2/2)

∫ 1

0
wj(u)Lε,U (u)e−iUux0du

converge jointly in distribution to

‖δ‖L2(R)wj(1)
√

2 exp(T (σ2/2 + γ − λ))T 2σ2
(W + iV )

as U →∞, where W and V are independent standard normal random vari-
ables.

Proof. We define wU (u) := wj(u)/ exp(iUux0), w̃U (u) := wk(u)/ exp(iUux0),
a(U) := wj(1)/ exp(iUx0) and ã(U) := wk(1)/ exp(iUx0) and apply Lemma 2.
Condition (6.16) is satisfied since wj and wk are continuous at one and
since exp(−iUux0) = exp(−iUx0) exp(iU(1 − u)x0) where U(1 − u) ≤ δ
for u ∈ [1 − δ/U, 1]. We note that a(U)ã(U) = wj(1)wk(1) is real. By
Lemma 2 the covariances converge to the covariances of the claimed limit.
The convergence in distribution follows by Lévy’s continuity theorem.

Lemma 4. Let σ > 0 and δ ∈ L∞(R). Let w1, w2 : [0, 1]→ R be Riemann-
integrable, in L∞([0, 1]) and continuous at one. Let x1, x2 ∈ R and denote
x2 − x1 by ϕ. Then

1

εeTσ2U2/2

(
w1(1)

∫ 1

0

w2(u)Lε,U (u)

eiUux2
du− w2(1)

eiUϕ

∫ 1

0

w1(u)Lε,U (u)

eiUux1
du

)
Q−→ 0,

as U →∞.

Proof. We define

wU (u) :=
w1(1)w2(u)

exp(iUux2)
− w2(1)w1(u)

exp(iUϕ) exp(iUux1)
.

wU (u) fulfills condition (6.16) with a(U) = 0 for all U ≥ 1. Lemma 2 yields

lim
U→∞

1

ε2 exp(Tσ2U2)
E

[∣∣∣∣∫ 1

0
wU (u)Lε,U (u)du

∣∣∣∣2
]

= 0

and the statement follows by Lévy’s continuity theorem.
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6.3 The remainder term

In this section, we show that the contribution of the remainder term to the
estimation vanishes asymptotically. We recall that the remainder term Rε,U
depends on the Lévy triplet.

Lemma 5. Let σ0 > 0. Let wU ∈ L∞([0, 1],C) be Riemann-integrable and
let there be a constant C > 0 such that ‖wU‖∞ ≤ C for all U ≥ 1. If
εU(ε)2

√
log(U(ε)) exp(Tσ20U(ε)2/2)→ 0 as ε→ 0, then for all Lévy triplets

with σ ≤ σ0
1

ε exp(Tσ20U(ε)2/2)

∫ 1

0
wU(ε)(u)Rε,U(ε)(u)du

Q−→ 0, as ε→ 0.

Proof. By the identity Rε,U (u) = (1/T ) log≥κU (u)(1 + TLε,U (u)) − Lε,U (u),

where κU (u) ≤ 1/2, we have to show that for U = U(ε)

1

ε exp(Tσ20U
2/2)

∫ 1

0
wU (u)

(
log≥κU (u)(1 + TLε,U (u))− TLε,U (u)

)
du

(6.26)
converges in probability to zero.

For z ∈ C holds log(1 + z) − z = O(|z|2) as |z| → 0. We define g by
g(z) := (log(1 + z) − z)/|z|2 for z 6= 0 and g(0) := 0. There are M and
η > 0 such that |g(z)| ≤ M for all |z| ≤ η. We may assume that η ≤ 1/2.
If the logarithm in the definition of g is replaced by the trimmed logarithm
log≥κ with κ ∈ (0, 1/2] then g remains unchanged for |z| ≤ 1/2. Thus,
the statement holds uniformly for all gκ(z) := (log≥κ(1 + z) − z)/|z|2 with
κ ∈]0, 1/2].

By Proposition 1 we have supu∈[−1,1] |Lε,U (u)| Q−→ 0. Let τ > 0 be given.
Eventually we have

Q
(
∃u ∈ [−1, 1] : | log≥κU (u)(1 + TLε,U (u))− TLε,U (u)| > MT 2|Lε,U (u)|2

)
≤ Q

(
T sup
u∈[−1,1]

|Lε,U (u)| > η

)
< τ.

Except on a set with probability less than τ we have eventually

1

ε exp(Tσ20U
2/2)

∣∣∣∣∫ 1

0
wU (u)

(
log≥κU (u)(1 + TLε,U (u))− TLε,U (u)

)
du

∣∣∣∣
≤ MT 2

ε exp(Tσ20U
2/2)

∫ 1

0
|wU (u)Lε,U (u)2|du. (6.27)

Hence (6.26) converges in probability to zero if (6.27) converges in proba-
bility to zero. The convergence

1

ε exp(Tσ20U
2/2)

∫ 1

0
|wU (u)Lε,U (u)2|du→ 0
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holds even in L1 since

1

ε exp(Tσ20U
2/2)

E
[∫ 1

0
|wU (u)Lε,U (u)2|du

]
(6.28)

≤ C

ε exp(Tσ20U
2/2)

E
[∫ 1

0
|Lε,U (u)2|du

]
≤ C

ε exp(Tσ20U
2/2)∫ 1

0

∣∣∣∣ ε iUu(1 + iUu)

T (1 + iUu(1 + iUu)FO(Uu))

∣∣∣∣2 E
[∣∣∣∣∫ ∞
−∞

eiUuxδ(x)dW (x)

∣∣∣∣2
]

du

≤ C

ε exp(Tσ20U
2/2)

∫ 1

0

ε2(U2 + U4)u exp(Tσ2U2u2)‖δ‖2L2(R)

T 2 exp(2T (σ2/2 + γ − λ)− 2T‖Fµ‖∞)
du, (6.29)

for σ = 0 this converges to zero and for σ > 0 we further calculate,

=
Cε(1 + U2)‖δ‖2L2(R)

∫ 1
0 2Tσ2U2u exp(Tσ2U2u2)du

exp(Tσ20U
2/2)2T 3σ2 exp(2T (σ2/2 + γ − λ)− 2T‖Fµ‖∞)

=
Cε(1 + U2)‖δ‖2L2(R)(exp(Tσ2U2)− 1)

exp(Tσ20U
2/2)2T 3σ2 exp(2T (σ2/2 + γ − λ)− 2T‖Fµ‖∞)

≤
C‖δ‖2L2(R)ε(1 + U2)(exp(Tσ20U

2/2))

2T 3σ2 exp(2T (σ2/2 + γ − λ)− 2T‖Fµ‖∞)
→ 0

as ε→ 0. Thus, (6.26) converges in probability to zero.

Lemma 6. Let wU ∈ L∞([0, 1],C) be Riemann-integrable and let there be
a constant C > 0 such that ‖wU‖∞ ≤ C for all U ≥ 1. If U(ε) → ∞ and
εU(ε)5/2 → 0 as ε→ 0, then for all Lévy triplets with σ = 0

1

εU(ε)3/2

∫ 1

0
wU(ε)(u)Rε,U(ε)(u)du

Q−→ 0,

as ε→ 0.

Proof. We follow the proof of Lemma 5. supu∈[−1,1] |Lε,U (u)| Q−→ 0 holds by

Proposition 1. We set σ0 = 0 and divide by U3/2 in (6.26) and (6.27). Then
we use that (6.28) is bounded by (6.29), where we set σ0 = σ = 0 and divide
by U3/2 again. We obtain

1

εU3/2
E
[∫ 1

0
|wU (u)Lε,U (u)2|du

]
≤

Cε (U1/2 + U5/2)‖δ‖2L2(R)

T 2 exp(T (2(γ − λ)− 2‖Fµ‖∞))
→ 0

as ε→ 0, which implies the desired convergence.
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6.4 The approximation errors

The approximation error can be controlled as in [2] using the order conditions
(2.9) on the weight functions. The Lévy triplet T = (σ2, γ, µ) was assumed
to be contained in Gs(R, σmax), especially µ is s-times weakly differentiable
and max0≤k≤s ‖µ(k)‖L2(R) ≤ R, ‖µ(s)‖∞ ≤ R.

We use (iu)sFµ(u) = Fµ(s)(u) and the Plancherel identity to bound the
approximation error by∣∣∣∣ 2

U2

∫ 1

0
Re(Fµ(Uu))w1

σ(u)du

∣∣∣∣
=

1

U2

∣∣∣∣∫ 1

−1
Fµ(Uu)w1

σ(u)du

∣∣∣∣
=

2π

U2

∣∣∣∣∫ ∞
−∞

µ(s)(x/U)U−1F−1(w1
σ(u)/(iUu)s)(x)dx

∣∣∣∣
≤ U−(s+3)‖µ(s)‖∞‖F(w1

σ(u)/us)‖L1(R). (6.30)

Analogously we obtain∣∣∣∣ 2

U

∫ 1

0
Im(Fµ(Uu))w1

γ(u)du

∣∣∣∣ ≤ U−(s+2)‖µ(s)‖∞‖F(w1
γ(u)/us)‖L1(R),

(6.31)∣∣∣∣2 ∫ 1

0
Re(Fµ(Uu))w1

λ(u)du

∣∣∣∣ ≤ U−(s+1)‖µ(s)‖∞‖F(w1
λ(u)/us)‖L1(R).

(6.32)

The last error term in (6.3) can be bounded by∣∣UF−1 [(1− w1
µ(u))Fµ(Uu)

]
(Ux)

∣∣
=

U

2π

∣∣∣∣∫ ∞
−∞

(1− w1
µ(u))Fµ(Uu)e−iUuxdu

∣∣∣∣
=

1

2πU s−1

∣∣∣∣∣
∫ ∞
−∞

1− w1
µ(u)

us
eiUuxFµ(s)(Uu)du

∣∣∣∣∣
= U−s

∣∣∣∣∣
∫ ∞
−∞
F−1

(
1− w1

µ(u)

us
eiUux

)
(y)µ(s)

( y
U

)
dy

∣∣∣∣∣
≤ ‖µ

(s)‖∞
2πU s

∥∥∥∥∥F
(

1− w1
µ(u)

us

)∥∥∥∥∥
L1(R)

. (6.33)

6.5 Proof of Theorem 1

We consider the decompositions of the estimation errors (6.1)–(6.3). The un-
dersmoothing εU(ε)(2s+5)/2 →∞ is equivalent to U(ε)−(s+3) = o(εU(ε)−1/2)
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and implies in view of (6.30) that the approximation error of σ̂2 is asymp-
totically negligible. Likewise the error terms 2U−1

∫ 1
0 Im(Fµ(Uu))w1

γ(u)du,

2
∫ 1
0 Re(Fµ(Uu))w1

λ(u)du and UF−1
[
(1− w1

µ(u))Fµ(Uu)
]

(Ux) can be bounded
as in (6.31), (6.32) and (6.33) and vanish asymptotically. Since σ̂2 converges
with a faster rate than γ̂ and γ̂ converges with a faster rate than λ̂, the error
∆σ̂2 vanishes asymptotically in (6.1) and in (6.2) as well as ∆γ̂ is asymp-
totically negligible in (6.2). For x 6= 0 we can apply the Riemann-Lebesgue
lemma to the second, the third and the fourth error term in (6.3) and we see
that they are of order oQ(εU(ε)5/2). For x = 0 due to the symmetry of w1

µ

the third term vanishes asymptotically but the second and the fourth term
do not. The error terms of µ̂(x) we have to consider are in the case x 6= 0

UF−1
[
∆ψε(Uu)w1

µ(u)
]

(Ux)

=
U

2π
2

∫ 1

0
w1
µ(u)Re

(
∆ψε(Uu)e−iUux

)
du

and in the case x = 0

F−1
[
∆ψε(Uu))w1

µ(u)
]

(0)

+

∫ 1

0
Re(∆ψε(Uu))w1

σ(u)duF−1
[
u2w1

σ(u)
]

(0)

− 2

∫ 1

0
Re(∆ψε(Uu))w1

λ(u)duF−1
[
w1
µ(u)

]
(0)

=
1

2π
2

∫ 1

0
Re(∆ψε(Uu))w0(u)du.

(2.9) implies that w1
σ, w1

γ , w1
λ and w1

µ are continuous and bounded, especially
they are Riemann-integrable and in L∞([−1, 1]). Applying Lemma 1 to the
linearized stochastic errors and Lemma 6 to the remainder terms yields the
theorem.

6.6 Proof of Theorem 2

To see the first line we set x1 = x2 = 0, w1 ≡ 1 and w2 = wσ in Lemma 4
and wU = w1

σ in Lemma 5. The second and third line follow analogously.
In order to derive the last line we observe

F−1
[
∆ψε(Uu)w1

µ(u)
]

(Ux)

= 2

∫ 1

0
Re(∆ψε(Uu)e−iUux)w1

µ(u)du/(2π)

and apply Lemma 4 with x1 = 0, x2 = x, w1 ≡ 1 and w2 = w1
µ, . The

remainder term vanishes by setting wU (u) = w1
µ(u)e−iUux in Lemma 5.
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6.7 Proof of Theorem 3

By the undersmoothing εU s+1 exp(Tσ2U2/2) → ∞ we have U−(s+3) =
o(εU−2 exp(Tσ2U2/2)) so that the approximation error of σ̂ vanishes. A
similar reasoning applies to the approximation errors of the other estima-
tors. Since σ̂ converges with a faster rate than γ̂ and γ̂ with a faster rate than
λ̂ the leading stochastic error terms are given in Theorem 2 and the conver-
gence of the first three lines follows by this theorem. For x 6= 0 all stochastic
errors in (6.3) are negligible except the first one. We obtain the convergence
in the last line by Theorem 2. We observe that F−1[uw1

µ(u)](0) = 0, since
w1
µ is symmetric. For x = 0 the relevant stochastic error terms are

F−1
[
∆ψε(Uu)w1

µ(u)
]

(0)

+

∫ 1

0
Re(∆ψε(Uu))w1

σ(u)duF−1
[
u2w1

µ(u)
]

(0)

− 2

∫ 1

0
Re(∆ψε(Uu))w1

λ(u)duF−1
[
w1
µ(u)

]
(0)

=
1

2π
2

∫ 1

0
Re(∆ψε(Uu))w0(u)du.

We apply Lemma 4 with x1 = x2 = 0, w1 ≡ 1 and w2 = w0 to this term. The
remainder term converges to zero by Lemma 5. This shows the convergence
in the next to last line.

7 Tests and a confidence set for the volatility

In this section, we test the hypotheses H0 : σ = σ0 against the alternative
H1 : |σ − σ0| ≥ τ , τ > 0, and construct a confidence set for σ. We assume
that T ∈ Hs(R, σmax) especially we assume that σ ∈ [0, σmax].

For σ0 > 0 the most natural test statistic is the following. In or-
der to apply the uniform version of Theorem 3 under H0 we choose a
cut-off value U(ε) such that εU(ε)2 log(U(ε))1/2 exp(Tσ20U(ε)2/2) → 0 and
εU(ε)s+1 exp(Tσ20U(ε)2/2) → ∞ as ε → 0. Let σ̂2 be the estimator cor-
responding to this cut-off value U(ε). We ensure σ̂2 ∈ [0, σ2max] by taking
the maximum with zero and the minimum with σ2max. Likewise we ensure
γ̂ ∈ [−R,R] and λ̂ ∈ [0, R]. We choose a weight function with w1

σ(1) 6= 0
and define

Sσ0 :=
U(ε)2(σ̂2 − σ20)

d̂σ0 ε exp(Tσ20U(ε)2/2)
, d̂σ0 :=

√
2 |w1

σ(1)| ‖δ‖L2(R)

exp(T (σ20/2 + γ̂ − λ̂))T 2σ20
.

Under H0 the test statistic Sσ0 converges uniformly in distribution to a
standard normal random variable by the uniform version of Theorem 3. We
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decompose

Sσ0 =
U(ε)2∆σ̂2

d̂σ0 ε exp(Tσ20U(ε)2/2)
+

U(ε)2(σ2 − σ20)

d̂σ0 ε exp(Tσ20U(ε)2/2)
. (7.1)

We will show that for σ ≤ σ0 − τ the first term converges uniformly in
probability to zero. The approximation error contributes a term that con-
verges deterministically to zero by the bound (6.30) and by the assumption
εU(ε)s+1 exp(Tσ20U(ε)2/2) → ∞ as ε → 0. The remainder term of the
stochastic error in the first summand of (7.1) converge uniformly in prob-
ability to zero by Subsection 8.3 and the linearized stochastic error by the
following lemma.

Lemma 7. Let δ ∈ L∞(R). Let wU ∈ L∞([0, 1],C) be Riemann-integrable
and let there be a constant C > 0 such that ‖wU‖∞ ≤ C for all U ≥ 1. Then
for all η, τ > 0

sup
T ∈Hs(R,σ0−τ)

QT
(∣∣∣∣ 1

ε exp(Tσ20U
2/2)

∫ 1

0
wU (u)Lε,U (u)du

∣∣∣∣ > η

)
→ 0,

as U →∞

Proof. It is equivalent to consider for all τ ′ > 0 the supremum overHs(R,
√
σ20 − τ ′),

such that σ2 ≤ σ20 − τ ′ is satisfied for each T . By (6.17) we have

sup
T

1

ε2 exp(Tσ20U
2)
E

[∫ 1

0
wU (u)Lε,U (u)du

∫ 1

0
wU (v)Lε,U (v)dv

]

= sup
T

2πU4 exp(2T (λ− γ − σ2/2))

T 2 exp(Tσ20U
2)

∫ 1

0

∫ 1

0
fU (u)fU (v)

F−1(δ(y + θ)2)(U(u− v))eTσ
2U2(u2+v2)/2dudv

≤ 4πU4 exp(6TR)C2

T 2 exp(Tτ ′U2)
‖F−1δ2‖∞ → 0,

as U →∞, where we used ‖fU‖∞ ≤
√

2C exp(TR).

We have seen that for σ ≤ σ0 − τ the first term in (7.1) converges to
zero uniformly in probability. The second term is d̂−1σ0 times a deterministic

sequence converging to −∞. We note that d̂σ0 is bounded from above and
below. Consequently it holds limε→0 infHs(R,σ0−τ)Q(Sσ0 < c) = 1 for all
c ∈ R. We would like to make a similar statement in the case σ ≥ σ0 + τ .
Unfortunately for σ > σ0 the variance of Lε,U(ε)(1) does not converge to zero.
So it is not possible to find a bound like in Proposition 1, which converges to
zero. Consequently the remainder term cannot be controlled by Lemma 5.
We modify the test statistic in the following way. We choose σ̄ > σmax and
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let Ū(ε) be a cut-off value with εŪ(ε)2 log(Ū(ε))1/2 exp(T σ̄2Ū(ε)2/2) → 0
and εŪ(ε)s+1 exp(T σ̄2Ū(ε)2/2)→∞ as ε→ 0. We further assume that

Ū(ε)2 exp(−T σ̄2Ū(ε)2/2)

U(ε)2 exp(−Tσ20U(ε)2/2)
→∞. (7.2)

This can for example be ensured by choosing the cut-off values U(ε) and
Ū(ε) according to (3.6) with α and ᾱ > α, respectively. Let σ̃2 be the
estimator of σ2 corresponding to the cut-off value Ū(ε). We define

S̃σ0 := Sσ0 +
Ū(ε)2(σ̃2 − σ20)

ε exp(T σ̄2Ū(ε)2/2)
(7.3)

= Sσ0 +
Ū(ε)2(σ̃2 − σ2)

ε exp(T σ̄2Ū(ε)2/2)
+

Ū(ε)2(σ2 − σ20)

ε exp(T σ̄2Ū(ε)2/2)
. (7.4)

Under H0 the statistic Sσ0 can be written as in Lemma 8. The second
term in (7.3) converges uniformly in probability to zero. Thus, under H0

the modified statistic S̃σ0 converges uniformly in distribution to a stan-
dard normal random variable by Lemma 8. For σ ≤ σ0 − τ the sec-
ond term in (7.4) converges uniformly in probability to zero and the third
term is deterministic sequence converging to −∞. As for Sσ0 it holds
limε→0 infHs(R,σ0−τ)Q(S̃σ0 < c) = 1 for all c ∈ R. But now we are also
able to make a similar statement for σ ≥ σ0 + τ . Since we bounded the
estimators Sσ0 cannot diverge faster than ε−1U(ε)2 exp(−Tσ20U(ε)2/2). For
σ ∈ [0, σmax] the second term in (7.4) converges uniformly in probability to
zero. Owing to (7.2) the third term in (7.4) tends to infinity faster than the
bound of Sσ0 . It holds limε→0 infT Q(S̃σ0 > c) = 1 for all c ∈ R, where the
infimum is over all T ∈ Hs(R, σmax) with σ ≥ σ0 + τ .

Let qα denote the (1− α)–quantile of the standard normal distribution.
For σ0 ∈ (0, σmax) we define the tests

ϕσ0 :=

{
0, if |S̃σ0 | ≤ qα/2
1, if |S̃σ0 | > qα/2

, ϕσmax :=

{
0, if Sσmax ≥ q1−α
1, if Sσmax < q1−α

.

For σ0 = 0 we would like to apply Theorem 1. To this end we choose the
cut-off value U(ε) such that εU(ε)5/2 → 0 and εU(ε)(2s+5)/2 →∞. Let σ̂2 be
the estimator corresponding to this cut-off value U(ε), where σ̂2 ∈ [0, σ2max]
is ensured. We assume that δ is positive on [−TR, TR] and define

S0 :=
U(ε)1/2σ̂2

d̂0 ε
+

Ū(ε)2σ̃2

ε exp(Tσ2maxŪ(ε)2/2)
,

d̂0 :=
2
√
πδ(T γ̂)

exp(T (γ̂ − λ̂))T

(∫ 1

0
u4w1

σ(u)2du

)1/2

.

Under H0 : σ2 = 0 the test statistic S0 converges uniformly in distribution
to a standard normal random variable by a similar argument as for S̃σ0 .
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We observe that the first term of S0 is nonnegative. Under H1 : σ ≥ τ
the second term of S0 may be decomposed as in (7.4) into a part that
converges uniformly in distribution to zero and into a deterministic sequence
converging to infinity. It holds limε→0 infT Q(S0 > c) = 1 for all c ∈ R,
where the infimum is over all T ∈ Hs(R, σmax) with σ ≥ τ . We define the
test

ϕ0 :=

{
0, if S0 ≤ qα
1, if S0 > qα

.

Since we have a test on σ = σ0 for each σ0 ∈ [0, σmax] we may use this
family of tests to define a confidence set for σ. We define Mε := {σ|ϕσ = 0}
and obtain limε→0 infT QT (σ ∈ Mε) = 1− α, where the infimum is over all
T ∈ Hs(R, σmax) with volatility σ. The set Mε is not necessarily an interval.
For σ0 ∈ (0, σmax) the cut-off value U(ε) may be chosen as a continuous
function of σ0 by (3.6). The estimators σ̂2, γ̂ and λ̂ depend continuously
on the cut-off value U(ε), which can be seen by substituting v = u/U in
(2.3), (2.4) and (2.5) and applying the continuity theorem on parameter
dependent integrals. Thus, S̃ : (0, σmax) → R, σ 7→ S̃σ is continuous and
Mε ∩ (0, σmax) may be written as the preimage S̃−1([−qα/2, qα/2]) of the

continuous function S̃.

8 Uniform convergence

The asymptotic normality results hold for each Lévy triplet T ∈ Gs(R, σmax).
The speed of convergence might depend on T . To make statements on
confidence sets and on hypotheses tests it is useful to control the speed of
convergence uniformly over a class of Lévy triplets. We fix some arbitrarily
slowly decreasing function h with h(u) → 0 as |u| → ∞. We will show
uniform convergence for the class Hs(R, σmax) consisting of all Lévy triplets
in Gs(R, σmax) satisfying the additional conditions (4.2), which we recall to
be

‖Fµ‖∞ ≤ R, |Fµ(u)| ≤ Rh(u), ∀u ∈ R.

The first condition can easily be ensured by ‖µ‖L1(R) ≤ R. For h(u) = |u|−1

the second condition can be ensured by ‖µ(1)‖L1(R) ≤ R. For each Lévy
triplet in Gs(R, σmax) the function Fµ(u) tends to zero as |u| → 0 by the
Riemann-Lebesgue lemma. Especially for each T ∈ Gs(R, σmax) there are h
and R′ > 0 such that T ∈ Hs(R′, σmax).

In the case σ > 0 some covariances do not converge. We show uniform
convergence for the joint distribution only in such cases, where for σ >
0 the covariances do converge. As it turns out it is also important that
the covariance matrix of the limit is nondegenerated. We cover uniform
convergence of σ̂2, γ̂, λ̂, µ̂(x) and of (γ̂, λ̂).
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A sequence of random variables Xn converges to X in total variation if

sup
B
|P(Xn ∈ B)− P(X ∈ B)| → 0

as n → ∞, where the supremum is taken over all measurable sets B. For
sequences Xϑ,n, ϑ ∈ θ, we say that they converge to X in total variation
uniformly over θ if

sup
ϑ∈θ

sup
B
|P(Xϑ,n ∈ B)− P(X ∈ B)| → 0

as n → ∞. Motivated by the Portmanteau theorem we say for Xϑ,n, ϑ ∈
θ, and X with values in some metric space that Xϑ,n converge to X in
distribution uniformly over θ if for all Borel sets B with P(X ∈ ∂B) = 0 we
have

sup
ϑ∈θ
|P(Xϑ,n ∈ B)− P(X ∈ B)| → 0 as n→∞.

Theorem 4. Let the assumptions of Theorem 1 be fulfilled and let δ be
continuous and positive. Each marginal convergence in Theorem 1 is a uni-
form convergence in distribution over Hs(R, 0) if the standard deviation is
positive and both sides are divided by it.

Let σ > 0 and let the assumptions of Theorem 3 be fulfilled. Each
marginal convergences in Theorem 3 is a uniform convergence in distri-
bution over all T ∈ Hs(R, σmax) with volatility σ if the standard deviation
is positive and both sides are divided by it.

Remark. In both cases uniform convergence in distribution does also hold
for γ̂ and λ̂ jointly and in the standard deviation on the left side γ and λ
may be replaced by their estimators.

The following lemma may be seen as a generalization of Slutsky’s lemma
for uniform convergence. It is the key step to show the uniform convergence
in distribution in Theorem 4.

Lemma 8. Let Xϑ,n, Yϑ,n, ϑ ∈ θ, n ∈ N, and X be random vectors such that
Xϑ,n converge to X in total variation uniformly over θ and supϑ∈θP(|Yϑ,n| ≥
δ) → 0 as n → ∞ for all δ > 0. Let Zϑ,n be random variables with
supϑ∈θP(|Zϑ,n − 1| ≥ δ) → 0 for all δ > 0. Then Zϑ,nXϑ,n + Yϑ,n con-
verge to X in distribution uniformly over θ.

Proof. For δ > 0 we define

Bδ := {y ∈ Rd| |x− y| < δ for some x ∈ B},
B−δ := {y ∈ Rd|x ∈ B for all x with |x− y| < δ}.
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As Bδ and B−δ are open and closed, respectively, they are Borel sets. It
holds

⋂
δ>0B

δ = B and
⋃
δ>0B

−δ = B◦. For B with P(X ∈ ∂B) = 0, we
have P(X ∈ B◦) = P(X ∈ B) = P(X ∈ B). Consequently

lim
δ→0

P(X ∈ Bδ) = lim
δ→0

P(X ∈ B−δ) = P(X ∈ B). (8.1)

Let η > 0 be given. For all δ > 0 it holds

sup
ϑ∈θ

P(Zϑ,nXϑ,n + Yϑ,n ∈ B)

≤ sup
ϑ∈θ

P(Zϑ,nXϑ,n ∈ Bδ) + sup
ϑ∈θ

P(|Yϑ,n| ≥ δ),

for large n the second term is smaller than η owing to the assumptions on
Yϑ,n,

≤ sup
ϑ∈θ

P(Zϑ,nXϑ,n ∈ Bδ) + η.

As a single random vector X is tight meaning that for each η > 0 there
is M such that P(|X| ≥ M) < η. By taking the set {x |x ≥ M} in the
definition of uniform convergence in total variation we obtain for n large
enough supϑ∈θ P(|Xϑ,n| ≥ M) < 2η. By considering possibly larger n we
can also ensure supϑ∈θ P(|Zϑ,n − 1| ≥ δ/M) ≤ η. But if |Xϑ,n| < M and
|Zϑ,n − 1| < δ/M , then |Xϑ,nZϑ,n −Xϑ,n| < δ. For n large enough it holds

sup
ϑ∈θ

P(Zϑ,nXϑ,n + Yϑ,n ∈ B) ≤ sup
ϑ∈θ

P(Zϑ,nXϑ,n ∈ Bδ) + η

≤ sup
ϑ∈θ

P(Xϑ,n ∈ B2δ) + 4η

≤ P(X ∈ B2δ) + 5η

≤ P(X ∈ B) + 6η, (8.2)

for δ small enough by (8.1).
Let η > 0 be given. For n large enough and δ > 0 small enough we

obtain similarly

inf
ϑ∈θ

P(Zϑ,nXϑ,n + Yϑ,n ∈ B) ≥ inf
ϑ∈θ

P(Zϑ,nXϑ,n ∈ B−δ)− η

≥ inf
ϑ∈θ

P(Xϑ,n ∈ B−2δ)− 4η

≥ P(X ∈ B−2δ)− 5η

≥ P(X ∈ B)− 6η. (8.3)

The statement follows by combining (8.2) and (8.3).

Lemma 8 outlines how to proceed in showing uniform convergence. Xϑ,n

will be the leading term of the linearized stochastic error, Yϑ,n will be the sum
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of the smaller stochastic errors, the remainder term and the approximation
error and Zϑ,n will be the quotient of standard deviation and estimated
standard deviation. The approximation error is uniformly controlled over
Gs(R, σmax) and thus over Hs(R, σmax), too.

The substitution of the standard deviation by its empirical counterpart
works as follows. We fix some x and write d instead of d(x) in Theorem 1
to unify the notation with Theorem 3 and to treat both simultaneously.
For δ continuous and positive the standard deviation depends continuously
on γ and λ through d. γ and λ are restricted to a compact set. By the
uniform convergence and by an upper bound of the standard deviation we
obtain supT QT (|∆ρ̂| > δ) → 0 for all δ > 0 and for ρ ∈ {γ, λ}, where the
supremum is over all T ∈ Hs(R, σmax) with a fixed volatility σ. Since d is
uniformly continuous in γ and λ, we obtain supT QT (|∆d̂| > δ) → 0 for all
δ > 0, which gives the assumption on d/d̂ corresponding to Zϑ,n in Lemma 8
by a lower bound on d.

By the following lemma uniform convergence in total variation of the lin-
earized stochastic error follows from uniform convergence in each component
of the covariance matrix.

Lemma 9. Let X be a normal random vector with symmetric positive def-
inite covariance matrix A ∈ Rd×d. Let Xϑ,n, n ∈ N, ϑ ∈ θ, be normal
random vectors with covariance matrices Aϑ,n ∈ Rd×d. If Aϑ,n converge to
A in each component uniformly over θ as n→∞, then Xϑ,n converge to X
in total variation uniformly over θ as n→∞.

Proof. We have to show that

sup
ϑ∈θ

sup
B

∣∣∣∣∣
∫
B

exp(−〈x,A−1ϑ,nx〉/2)

det(
√

2πAϑ,n)
− exp(−〈x,A−1x〉/2)

det(
√

2πA)
dx

∣∣∣∣∣ (8.4)

converges to zero as n → ∞. The determinant is a continuous function of
the components of a matrix. For all δ ∈ (0,det(

√
2πA)) there is N ∈ N such

that supϑ∈θ |det(
√

2πAϑ,n)− det(
√

2πA)| ≤ δ holds for all n ≥ N and A−1ϑ,n
is well-defined for all ϑ ∈ θ if n ≥ N . Expression (8.4) equals

= sup
ϑ∈θ

1

2

∫
Rd

∣∣∣∣∣exp(−〈x,A−1ϑ,nx〉/2)

det(
√

2πAϑ,n)
− exp(−〈x,A−1x〉/2)

det(
√

2πA)

∣∣∣∣∣ dx
= sup

ϑ∈θ

1

2

∫
Rd

exp(−〈x,A−1x〉/2)

|det(
√

2πA)|∣∣∣∣∣det(
√

2πA) exp(−〈x, (A−1ϑ,n −A
−1)x〉/2)

det(
√

2πAϑ,n)
− 1

∣∣∣∣∣dx. (8.5)

Aϑ,n converges to A in each component uniformly over θ. Likewise A−1ϑ,n
converges to A−1 in each component uniformly over θ. We now addition-
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ally require δ ∈ (0, λmin(A−1)/d), where λmin(A−1) is the smallest eigen-
value of A−1. By going over to a possibly larger N we may assume that
supϑ∈θ |(A−1ϑ,n − A

−1)jk| ≤ δ for all j, k = 1, . . . , d, for all n ≥ N . Then for
all n ≥ N

|〈x, (A−1ϑ,n −A
−1)x〉| =

∣∣∣∣∣∣
d∑

j,k=1

xj(A
−1
ϑ,n −A

−1)jkxk

∣∣∣∣∣∣
≤ δ

 d∑
j=1

|xj |

2

≤ δd‖x‖22,

where in the last step the Cauchy-Schwarz inequality is used. We see that
(8.5) can be bounded by

1

2

∫
Rd

exp(−〈x,A−1x〉/2)

|det(
√

2πA)|(
| det(

√
2πA)| exp(dδ‖x‖22/2)

| det(
√

2πA)| − δ
− |det(

√
2πA)| exp(−dδ‖x‖22/2)

|det(
√

2πA)|+ δ

)
dx.

(8.6)

The integrand converges pointwise to zero for δ → 0. For fixed δ the func-
tion is at the same time a dominating function, which is integrable since
A−1 − δdId is positive definite by the choice δ ∈ (0, λmin(A−1)/d). By
the dominated convergence theorem (8.6) converges to zero and likewise
(8.4).

We will show uniform convergence in each component of the covariance
matrix. By Lemma 9 this leads to uniform convergence in total variation of
the linearized stochastic errors provided that the covariance matrix of the
limit is nondegenerated. To this end we assume in the case σ = 0 that δ
is positive and that

∫ 1
0 u

4w1
ρ(u)2du > 0 for the weight functions w1

ρ, ρ ∈
{σ, γ, λ, 0, µ}, involved. Joint distributions may further only involve more
than one of the estimators σ̂2, λ̂ or µ̂(0), if the covariance matrix is positive
definite. in the case σ > 0 we assume that w1

σ(1), w1
γ(1), w1

λ(1), w1
µ(1) 6= 0

and ‖δ2‖L2(R) > 0. By the uniform version of Lemma 5 the remainder term
converges uniformly to zero. By Lemma 8 each of the rescaled stochastic
error terms

1

ε exp(Tσ2U2/2)w1
σ(1)

2

∫ 1

0
Re(∆ψε(Uu))w1

σ(u)du,

1

ε exp(Tσ2U2/2)w1
γ(1)

2

∫ 1

0
Im(∆ψε(Uu))w1

γ(u)du,

1

ε exp(Tσ2U2/2)w1
λ(1)

2

∫ 1

0
Re(∆ψε(Uu))w1

λ(u)du,
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2π

ε exp(Tσ2U2/2)w1
µ(1)
F−1

[
∆ψε(Uu)w1

µ(u)
]

(Ux)

converges uniformly in distribution to

√
2‖δ2‖L2(R)

exp(T (σ2/2 + γ − λ))T 2σ2
W,

where W is a standard normal random variable. By the uniform versions of
Lemma 3 and Lemma 5 we also obtain that for the second and third of the
above stochastic error terms holds joint uniform convergence in distribution
to independent normal variables.

8.1 Uniform convergence in the case σ = 0

The convergence in distribution of the linearized stochastic errors is shown
in Lemma 1 by the convergence of the components in the covariance matrix.
We restrict ourselves to the case x1 = · · · = xn and show uniform conver-
gence in each component of the covariance matrix. This implies uniform
convergence in total variation by Lemma 9. We assume that δ is continuous
at all x ∈ [x1 − TR, x1 + TR]. We note that fU , gU and θj depend on the
Lévy triplet T . The uniform convergence of the rescaled covariances (6.12)
will be shown by the following easy lemma.

Lemma 10. Let fϑ,n, fϑ, gϑ,n, gϑ ∈ L1([0, 1],C), n ∈ N, ϑ ∈ θ, and M >
0 such that ‖fϑ,n‖∞, ‖gϑ‖∞ ≤ M for all n ∈ N, for all ϑ ∈ θ. Let
supϑ∈θ ‖fϑ,n − fϑ‖L1([0,1],C) → 0 and supϑ∈θ ‖gϑ,n − gϑ‖L1([0,1],C) → 0 as
n→∞. Then

sup
ϑ∈θ

∫ 1

0
|fϑ,n(x)gϑ,n(x)− fϑ(x)gϑ(x)|dx→ 0 as n→∞.

Proof. For all ϑ ∈ θ it holds

|fϑ,ngϑ,n − fϑgϑ| ≤ |fϑ,ngϑ,n − fϑ,ngϑ|+ |fϑ,ngϑ − fϑgϑ|
≤M |gϑ,n − gϑ|+M |fϑ,n − fϑ|.

By assumption supϑ∈θ ‖fϑ,n−fϑ‖L1([0,1],C) → 0 as n→∞ and supϑ∈θ ‖gϑ,n−
gϑ‖L1([0,1],C) → 0 as n→∞ and the claimed statement follows.

Let us verify the assumptions of Lemma 10 for the first factor in (6.12).
fU and u2wj(u) will correspond to fϑ,n and fϑ, respectively. It holds

|fU (u) + u2wj(u)|
= |u2wj(u)(1− exp(−TFµ(Uu))) + iu exp(−TFµ(Uu))/U |
≤ u2|wj(u)|(exp(TR(1 ∧ h(Uu)))− 1) + iu exp(TR)/U. (8.7)
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This bound does not depend on T and converges everywhere to zero. Further
fU (u), u2wj(u) ≤

√
2‖wj‖∞ exp(TR) is a bound that does not depend on U

nor on T . By the dominated convergence theorem

sup
T
‖fU (u) + u2wj(u)‖L1([0,1],C) → 0 (8.8)

as U →∞ and the conditions on the first factor in Lemma 10 are satisfied.
To show the assumptions of Lemma 10 on the second factor, which is

the complex conjugate of

(gU (v) ∗ F−1(δ(y/U + θj)
2)(v))(u)

=

∫ ∞
−∞

gU (u− v)F−1(δ(y + θj)
2)(Uv)Udv,

we apply the following lemma. It is a uniform version of the basic theorem
on approximate identities.

Lemma 11. Let f, fϑ,n ∈ L1(R,C), n ∈ N, ϑ ∈ θ. Let supϑ∈θ ‖fϑ,n −
f‖L1(R,C) → 0 for n → ∞. Let δϑ,n ∈ L1(R,C) fulfill the following proper-
ties:

(i) There exists c > 0 such that ‖δϑ,n‖L1(R,C) ≤ c for all n ∈ N, for all
ϑ ∈ θ.

(ii)
∫∞
−∞ δϑ,n(y)dy = cϑ for all n ∈ N, for all ϑ ∈ θ.

(iii) For any neighborhood V of zero we have supϑ∈θ
∫
V c |δϑ,n(y)|dy → 0 as

n→∞.

Then supϑ∈θ ‖δϑ,n ∗ fϑ,n − cϑf‖L1(R,C) → 0 as n→∞.

Proof. By the triangle inequality

sup
ϑ∈θ
‖δϑ,n ∗ fϑ,n − cϑf‖L1(R,C)

≤ sup
ϑ∈θ
‖δϑ,n ∗ (fϑ,n − f)‖L1(R,C) + sup

ϑ∈θ
‖δϑ,n ∗ f − cϑf‖L1(R,C). (8.9)

The first term in the triangle inequality (8.9) can be bounded by

sup
ϑ∈θ
‖δϑ,n ∗ (fϑ,n − f)‖L1(R,C) ≤ sup

ϑ∈θ
‖δϑ,n‖L1(R,C) ‖fϑ,n − f‖L1(R,C)

≤ c sup
ϑ∈θ
‖fϑ,n − f‖L1(R,C),

which converges to zero by assumption. To bound the second term in the
triangle inequality (8.9) proceed as in the proof of Theorem 1.2.19 in [13,
p. 26]. Without loss of generality we may assume that ‖f‖L1(R,C) > 0.
Continuous functions with compact support are dense in L1(R,C). Since
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continuous functions g with compact support are bounded we obtain by the
dominated convergence theorem∫ ∞

−∞
|g(x− y)− g(x)|dx→ 0

as y → 0. We approximate f ∈ L1(R,C) by a continuous function with
compact support and see that for all δ > 0 there is some neighborhood V of
zero such that∫ ∞

−∞
|f(x− y)− f(x)|dx < δ

2c
for all y ∈ V. (8.10)

It further holds

(δϑ,n ∗ f)(x)− cϑf(x)

= (δϑ,n ∗ f)(x)− f(x)

∫ ∞
−∞

δϑ,n(y)dy

=

∫ ∞
−∞

(f(x− y)− f(x))δϑ,n(y)dy

=

∫
V

(f(x− y)− f(x))δϑ,n(y)dy +

∫
V c

(f(x− y)− f(x))δϑ,n(y)dy.

We take L1 norms with respect to x and obtain for the first term by (8.10)

sup
ϑ∈θ

∥∥∥∥∫
V

(f(x− y)− f(x))δϑ,n(y)dy

∥∥∥∥
L1(R,C)

≤ sup
ϑ∈θ

∫
V
‖f(x− y)− f(x)‖L1(R,C)|δϑ,n(y)|dy

≤ sup
ϑ∈θ

∫
V

δ

2c
|δϑ,n(y)|dy < δ

2
(8.11)

and for the second term

sup
ϑ∈θ

∥∥∥∥∫
V c

(f(x− y)− f(x))δϑ,n(y)dy

∥∥∥∥
L1(R,C)

≤ sup
ϑθ

∫
V c

2‖f‖L1(R,C)|δϑ,n(y)|dy < δ

2
, (8.12)

where n is taken large enough such that

sup
ϑ∈θ

∫
V c
|δϑ,n(y)|dy < δ

4‖f‖L1(R,C)
.

The lemma is a consequence of (8.11) and (8.12).
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Let us first verify the assumptions (i), (ii) and (iii) for F−1(δ(y+θj)
2(Uv)U ,

which will correspond to δϑ,n. We have

F−1(δ(y + θ)2)(v) = eiθvF−1(δ(y)2)(v). (8.13)

By the assumptions of Lemma 1 it holds Fδ2 ∈ L1(R). The equality

|F−1(δ(y + θj)
2)(Uv)U | = |F−1(δ(y)2)(Uv)U |

shows that the absolute value does not depend on T and that conditions (i)
and (iii) are satisfied. Condition (ii) is satisfied by (6.13). We have

sup
T
‖gU (u) + u2wk(u)‖L1([0,1],C) → 0 (8.14)

as in the corresponding equation (8.8) for fU . By extending gU and wk
by zero outside [0, 1] this holds in L1(R,C), too. We apply Lemma 11 to
gU (v) and v2wk(v), which correspond to fϑ,n and f in this lemma. v2wk(v)
is bounded and since condition (i) is satisfied we see that δ(θj)

2v2wk(v) is
uniformly bounded over all Lévy triplets. By Lemma 10 the convergence of
the covariances (6.14) holds uniformly. The convergence in the analogous
equation without conjugation (6.15) holds uniformly, too.

8.2 Uniform convergence in the case σ > 0

Let us first fix σ > 0 and prove uniform convergence for all Lévy triplets
with this fixed value of σ. To this end we show uniform convergence in
Lemma 2. In order to control the error when going over to smaller domain
of integration in (6.22) the term F−1(δ(y + θ)2)(U(u− v))fU (u)gU (v)/(uv)
needs to be bounded uniformly. The inverse Fourier transform is bounded
by the L1-norm of δ2. The functions fU and gU are uniformly bounded
since ‖Fµ‖∞ ≤ R. The crucial step is the limit (6.23), where the refined
dirac sequence argument is applied. As stated in (8.13), a translation before
the Fourier transform is equal to a multiplication by a complex unit after
the Fourier transform. Since |θ| ≤ T (σ2max + R) the complex unit tends
uniformly to one. wU and w̃U do not depend on the Lévy triplet. Since
there is h with |Fµ(u)| ≤ Rh(u) and h(u) → 0 as |u| → ∞ the factor
(−u + i/U)/ exp(TFµ(Uu)) converges to −u uniformly over Hs(R, σmax).
This leads to uniform convergence in (6.23) and thus in (6.24). To see
that the covariance without conjugation converges in (6.25) uniformly to
zero we observe that F−1(δ(y + θ)2)(u) → 0 for |u| → ∞ uniformly since
the translation by θ corresponds to a multiplication by a complex unit by
equation (8.13). We immediately obtain the uniform convergence in each
component of the covariance matrix in Lemma 3.
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8.3 Uniform convergence of the remainder term

To begin with, we observe that Proposition 1 holds with the same constant
for all Lévy triplets in Hs(R, σmax). This follows from the bound (6.7) in the
proof and from the fact that X(u) =

∫∞
−∞ e

iuxδ(x)dW (x) does not depend
on the Lévy triplet.

Lemma 5 and Lemma 6 hold uniformly, meaning that for all η > 0

sup
T ∈Hs(R,σ0)

QT
(∣∣∣∣ 1

ε exp(Tσ20U(ε)2/2)

∫ 1

0
wU(ε)(u)Rε,U(ε)(u)du

∣∣∣∣ > η

)
→ 0,

sup
T ∈Hs(R,0)

QT
(∣∣∣∣ 1

εU(ε)3/2

∫ 1

0
wU(ε)(u)Rε,U(ε)(u)du

∣∣∣∣ > η

)
→ 0,

as ε → 0. For Lemma 6 this follows from the uniform convergence of the
bound in the proof. For Lemma 5 this can be seen by the corresponding
uniform statements along the lines of the proof up to the bound (6.29). Then
we bound (6.29) in two different ways depending on whether σ2 ∈ [0, σ20/2]
or σ2 ∈ (σ20/2, σ

2
0]. In the latter case we can proceed as in the proof for

σ > 0. Since σ2 is bounded from below by σ20/2 > 0 the convergence is
uniform. For σ2 ∈ [0, σ20/2] we estimate

C

ε exp(Tσ20U
2/2)

∫ 1

0

ε2(U2 + U4)u exp(Tσ2U2u2)‖δ‖2L2(R)

T 2 exp(2T (σ2/2 + γ − λ)− 2T‖Fµ‖∞)
du

≤
Cε(U2 + U4)‖δ‖2L2(R)

T 2 exp(2T (σ2/2 + γ − λ)− 2T‖Fµ‖∞)
,

which converges uniformly to zero by σ0 > 0 and by the assumption

εU2
√

log(U) exp(Tσ20U
2/2)→ 0

of Lemma 5. The maximum of the bounds is a bound that holds for all Lévy
triplets in the class. This shows the uniform version of Lemma 5.
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estimators. Sankhyā Ser. A, 53(1):97–110, 1991.
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