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A Confidence Corridor for Expectile Functions∗

Esra Akdeniz Duran †, Mengmeng Guo ‡, Wolfgang Karl Härdle §

Abstract

Let (X1, Y1), . . ., (Xn, Yn) be i.i.d. rvs and let v(x) be the unknown τ -
expectile regression curve of Y conditional on X. An expectile-smoother vn(x)
is a localized, nonlinear estimator of v(x). The strong uniform consistency rate
is established under general conditions. In many applications it is necessary
to know the stochastic fluctuation of the process {vn(x)−v(x)}. Using strong
approximations of the empirical process and extreme value theory, we consider
the asymptotic maximal deviation sup06x61 |vn(x)−v(x)|. The derived result
helps in the construction of a uniform confidence band for the expectile curve
v(x). This paper considers fitting a simultaneous confidence corridor (SCC)
around the estimated expectile function of the conditional distribution of Y
given x based on the observational data generated according to a nonpara-
metric regression model. Moreover, we construct the simultaneous confidence
corridors around the expectiles of the residuals from the temperature models
to investigate the temperature risk drivers.

Keywords: Expectile Regression; Consistency Rate; Simultaneous confi-
dence corridor; Asymmetric least squares; Kernel Smoothing.

JEL classification: C00; C14; J01; J31

1 Introduction

In regression function estimation, most investigations are concerned with the con-

ditional mean. Geometrically, the observations {(Xi, Yi), i = 1, . . . , n} form a cloud
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of points in a Euclidean space. The mean regression function focuses on the center

of the point-cloud, given the covariant X, see Efron (1991). However, more insights

about the relation between Y and X can be gained by considering the higher or

lower regions of the conditional distribution.

Asymmetric least squares estimation provides a convenient and relatively ef-

ficient method of summarizing the conditional distribution of a dependent variable

given the regressors. It turns out that similar to conditional percentiles, the condi-

tional expectiles also characterize the distribution. Breckling and Chambers (1988)

proposed M -quantiles, which extends this idea by a ”quantile-like” generalization of

regression based on asymmetric loss functions. Expectile regression, and more gen-

erally M -quantile regression, can be used to characterize the relationship between

a response variable and explanatory variables when the behaviour of ”non-average”

individuals is of interest. Jones (1994) showed that expectiles and M -quantiles are

quantiles, and moreover proved that expectiles are indeed quantiles of a transformed

distribution. Expectiles can be generally used in labor market and financial market,

which would be as interesting as quantile regression.

The expectile curves can be key aspects of inference in various economic prob-

lems and are of great interest in practice. Expectile has recently been applied in

financial and demographic studies. Kuan et al. (2009) considered the conditional

autoregressive expectile model to calculate the VaR, and expectile is used to cal-

culate the expected shortfall in Taylor (2008). Schnabel and Eilers (2009) modeled

the relationship between gross domestic product per capita (GDP) and average life

expectancy using expectile curves. In our paper, we apply the expectile into the

temperature studies. As we know, during the last several years, the dynamic of the

temperatures is not stable especially in different cities. We investigate the perfor-

mance of the temperature from Berlin and Taipei. We also construct the confidence

corridors for the low and high expectile curves of the residuals from the temperature

models, and compare the risk factors between Berlin and Taipei.

Both quantile and expectile can be expressed as minimum contrast parameter

estimators. Define qτ (u) = |I(u ≤ 0) − τ |u for 0 < τ < 1, then the τ -quantile may

be expressed as arg minθ Eqτ (y−θ). With the interpretation of the contrast function

ρτ (u) as the negative log likelihood of asymmetric Laplace distribution, we can see

the τ -quantile as a quasi maximum estimator in the location model. Changing the

loss (contrast) function to

ρτ (u) = | I(u ≤ 0)− τ |u2, τ ∈ (0, 1) (1)
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leads to expectile. Note that for τ = 1
2
, we obtain the mean respectively the sample

average. Putting this into a regression framework, we define the conditional expectile

function (to level τ) as:

v(x) = arg min
θ

E{ρτ (y − θ)|X = x} (2)

From now on, we silently assume τ is fixed therefore we suppress the explicit notion.

Inserting (1) into (2), we obtain:

v(x) = arg min
θ

(1− τ)

∫ θ

−∞
(y − θ)2dF (y|x) + τ

∫ ∞
θ

(y − θ)2dF (y|x) (3)

v(x) can be equivalent in seen as solving the following equation (w.r.t. v):

G(x, v)− τ =

∫ v
−∞|y − v|dF (y|x)∫∞
−∞|y − v|dF (y|x)

− τ = 0 (4)

Yet another representation of v(x) is given by an average of the conditional upside

and downside mean:

v(x) = γ E{Y |Y > v(x)}+ (1− γ)E{Y |Y ≤ v(x)}

where γ = τ [1−FY {v(x)}]/(τ [1−FY {v(x)}]+(1− τ)FY {v(x)}) may be interpreted

as the weighted probability of Y > v(x). Here FY (·) denotes the marginal cdf of Y .

This property distinguishes the expectile from expected shortfall because the latter

is determined only by a conditional downside mean. Newey and Powell (1987) show

that v(x) is monotonically increasing in τ and is location and scale equivalent, in

the sense that for Ỹ = aY + b and a > 0, then vỸ (τ) = avY + b. In our conditional

setting, we need to deal with v(x) from (3) and variation of the RHS of (3) when θ

is in a neighborhood of v(x).

Recall conditional quantile l(x) at level τ can be considered as

l(x) = inf{y ∈ R|F (y|x) ≥ τ}

Therefore, the proposed estimate ln(x) can be expressed :

ln(x) = inf{y ∈ R|F̂ (y|x) ≥ τ} = F̂−1
x (τ)

where F̂ (y|x) is the kernel estimator of F (y|x):

F̂ (y|x) =

∑n
i=1 Kh(x−Xi)I(Yi ≤ y)∑n

i=1 Kh(x−Xi)
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In the similar idea, we can treat expectile v(x) as

GY |x(v) =

∫ v(x)

−∞ |Y − v(x)| dF (Y |x)∫∞
−∞ |Y − v(x)| dF (Y |x)

= τ

v(x) = G−1
Y |x(τ)

τ expectile curve estimator:

vn(x) = Ĝ−1
Y |x(τ)

where the nonparametric estimate of GY |x(v) is

ĜY |x(v) =

∑n
i=1Kh(x−Xi) I(Yi < y)|y − v|∑n

i=1Kh(x−Xi)|y − v|

Quantiles and expectiles both characterize a distribution function although

they are different in nature. As an illustration, Figure 1 plots curves of quantiles

and expectiles of the standard normal N(0, 1). There is a one-to-one mapping

relationship between quantile and expectile, see as Yao and Tong (1996). Fixed x,

define w(τ) such that vw(τ)(x) = l(x), then w(τ) is related to l(x) via

w(τ) =
τ l(x)−

∫ l(x)

−∞ ydF (y|x)

2E(Y |x)− 2
∫ l(x)

−∞ ydF (y|x)− (1− 2τ)l(x)
(5)

l(x) is an increasing function of τ , therefore, w(τ) is also a monotonically increasing

function. Expectile corresponds to quantile with transformation w. For example,

Y ∼ U(0, 1), then w(τ) = τ 2/(2τ 2 − 2τ + 1).

In light of the concepts of M -estimation as in Huber (1981), if we define ψ(u)

as:

ψ(u) =
∂ρ(u)

∂u
= |I(u ≤ 0)− τ |u

= {τ − I(u ≤ 0)}|u|

vn(x) and v(x) can be treated as a zero (w.r.t. θ) of the function:

Hn(θ, x)
def
= n−1

n∑
i=1

Kh(x−Xi)ψ(Yi − θ) (6)

H(θ, x)
def
=

∫
R
f(x, y)ψ(y − θ)dy (7)

correspondingly.
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Figure 1: Quantile Curve(blue) and Expectile Curve(green) for Standard Normal
Distribution.

By employing similar methods as those developed in Härdle (1989) it is shown

in this paper that

P
(

(2δ log n)1/2
[
sup
x∈J

r(x)|{vn(x)− v(x)}|/λ(K)1/2 − dn
]
< z
)

−→ exp{−2 exp(−z)}, as n→∞. (8)

with some adjustment of vn(x), we can see that the supreme of vn(x)− v(x) follows

the asymptotic Gumbel distribution, where r(x), δ, λ(K), dn are suitable scaling

parameters. The asymptotic result (8) therefore allows the construction of (asymp-

totic) uniform confidence bands for v(x) based on specifications of the stochastic

fluctuation of vn(x). The strong approximation with Brownian bridge techniques

that we use in this paper is available only for the approximation of the 2-dimensional

empirical process. The extension to the multivariate covariable can be done by par-

tial linear modelling which deserves further research.

The plan of the paper is as follows. In Section 2, the stochastic fluctuation of

the process {vn(x)− v(x)} and the uniform confidence band are presented through

the equivalence of several stochastic processes, with a strong uniform consistency

rate of {vn(x) − v(x)} also shown. In Section 3, in a small Monte Carlo study we

investigate the behaviour of vn(x) when the data is generated with the error terms

standard normal distributed. In Section 4, an application considers the temperature
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in Berlin and Taipei. Moreover, a simultaneous confidence corridor (SCC) will be

constructed to detect the temperature risk drivers. All proofs are sketched in Section

5.

2 Results

We make the following assumptions about the distribution of (X, Y ) and the score

function ψ(u) in addition to the existence of an initial estimator whose error is a.s.

uniformly bounded.

(A1) The kernel K(·) is positive, symmetric, has compact support [−A,A] and is

Lipschitz continuously differentiable with bounded derivatives;

(A2) (nh)−1/2(log n)3/2 → 0, (n log n)1/2h5/2 → 0, (nh3)−1(log n)2 6 M , M is a

constant;

(A3) h−3(log n)
∫
|y|>an fY (y)dy = O(1), fY (y) the marginal density of Y , {an}∞n=1 a

sequence of constants tending to infinity as n→∞;

(A4) infx∈J |p(x)| > p0 > 0, where p(x) = ∂ E{ψ(Y − θ)|x}/∂θ|θ=v(x) · fX(x), where

fX(x) is the marginal density of X;

(A5) The expectile function v(x) is Lipschitz twice continuously differentiable, for

all x ∈ J .

(A6) 0 < m1 6 fX(x) 6M1 <∞, x ∈ J , and the conditional density f(·|y), y ∈ R,

is uniform locally Lipschitz continuous of order α̃ (ulL-α̃) on J , uniformly in y ∈ R,

with 0 < α̃ 6 1, and ψ(x) is piecewise twice continuously differentiable.

Define also

σ2(x) = E[ψ2{Y − v(x)}|x]

Hn(x) = (nh)−1

n∑
i=1

K{(x−Xi)/h}ψ{Yi − v(x)}

Dn(x) = ∂(nh)−1

n∑
i=1

K{(x−Xi)/h}ψ{Yi − θ}/∂θ|θ=v(x)

and assume that σ2(x) and fX(x) are differentiable.

Assumption (A1) on the compact support of the kernel could possibly be re-

laxed by introducing a cutoff technique as in Csörgö and Hall (1982) for density

estimators. Assumption (A2) has purely technical reasons: to keep the bias at a

lower rate than the variance and to ensure the vanishing of some non-linear remain-

der terms. Assumption (A3) appears in a somewhat modified form also in Johnston
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(1982). Assumptions (A5) and (A6) are common assumptions in robust estima-

tion as in Huber (1981), Härdle et al. (1988) that are satisfied by exponential, and

generalized hyperbolic distributions.

Zhang (1994) has proved the asymptotic normality of the nonparametric ex-

pectile. Under the Assumption (A1) to (A4), we have:

√
nh{vn(x)− v(x)} L→ N

{
0, V (x)

}
(9)

with

V (x) = λ(K)fX(x)σ2(x)/p(x)2

where we can denote

σ2(x) = E[ψ2{Y − v(x)}|x]

=

∫
ψ2{y − v(x)}dF (y|x)

= τ 2

∫ ∞
v(x)

{y − v(x)}2dF (y|x) + (1− τ)2

∫ v(x)

−∞
{y − v(x)}2dF (y|x) (10)

p(x) = E[ψ
′{Y − v(x)}|x] · fX(x)

= {τ
∫ ∞
v(x)

dF (y|x) + (1− τ)

∫ v(x)

−∞
dF (y|x)} · fX(x) (11)

For the uniform strong consistency rate of vn(x) − v(x), we apply the result of

Härdle et al. (1988) by taking β(y) = ψ(y− θ), y ∈ R, for θ ∈ I = R, q1 = q2 = −1,

γ1(y) = max{0,−ψ(y − θ)}, γ2(y) = min{0,−ψ(y − θ)} and λ = ∞ to satisfy

the representations for the parameters there. Thus from Theorem 2.2 and Remark

2.3(v), we immediately have the following lemma.

Lemma 1 Let Hn(θ, x) and H(θ, x) be given by (6) and (7). Under Assumption

(A6) and (nh/ log n)1/2 → ∞ through Assumption (A2), for some constant A∗ not

depending on n, we have a.s. as n→∞

sup
θ∈I

sup
x∈J
|Hn(θ, x)−H(θ, x)| ≤ A∗max{(nh/ log n)−1/2, hα̃} (12)

For our result on vn(·), we shall also require

inf
x∈J

∣∣ ∫ ψ{y − v(x) + ε}dF (y|x)
∣∣ > q̃|ε|, for |ε| 6 δ1, (13)

where δ1 and q̃ are some positive constants, see also Härdle and Luckhaus (1984).

This assumption is satisfied if there exists a constant q̃ such that f(v(x)|x) > q̃/p,

x ∈ J .
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Theorem 1 Under the conditions of Lemma 1 and also assuming (13), we have

a.s. as n→∞

sup
x∈J
|vn(x)− v(x)| ≤ B∗max{(nh/ log n)−1/2, hα̃} (14)

with B∗ = A∗/m1q̃ not depending on n and m1 a lower bound of fX(x). If addition-

ally α̃ > {log(
√

log n)− log(
√
nh)}/log h, it can be further simplified to

sup
x∈J
|vn(x)− v(x)| ≤ B∗{(nh/ log n)−1/2}.

Theorem 2 Let h = n−δ, 1
5
< δ < 1

3
, λ(K) =

∫ A
−AK

2(u)du and

dn = (2δ log n)1/2 + (2δ log n)−1/2[log{c1(K)/π1/2}+
1

2
{log δ + log log n}],

if c1(K) = {K2(A) +K2(−A)}/{2λ(K)} > 0

dn = (2δ log n)1/2 + (2δ log n)−1/2 log{c2(K)/2π}

otherwise with c2(K) =

∫ A

−A
{K ′(u)}2du/{2λ(K)}.

Then (8) holds with

r(x) = (nh)−
1
2p(x){fX(x)/σ2(x)}

1
2

This theorem can be used to construct uniform confidence intervals for the regression

function as stated in the following corollary.

Corollary 1 Under the assumptions of the theorem above, an approximate (1−α)×
100% confidence band over [0, 1] is

vn(x)± (nh)−1/2{σ̂2(x)λ(K)/f̂X(x)}1/2p̂−1(x){dn + c(α)(2δ log n)−1/2}

where c(α) = log 2 − log | log(1 − α)| and f̂X(x), σ̂2(x) and p̂(x) are consistent

estimates for fX(x), σ2(x) and p(x).

With
√
V (x) introduced, we can further write Corollary 1 as:

vn(x)± (nh)−1/2{dn + c(α)(2δ log n)−1/2}
√
V̂ (x)

where V̂ (x) is the nonparametric estimator of V (x). The proof is essentially based

on a liberalization argument after a Taylor series expansion. The leading linear

term will then be approximated in a similar way as in Johnston (1982), Bickel and
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Rosenblatt (1973). The main idea behind the proof is a strong approximation of

the empirical process of {(Xi, Yi)
n
i=1} by a sequence of Brownian bridges as proved

by Tusnady (1977).

As vn(x) is the zero (w.r.t. θ) of Hn(θ, x), it follows by applying 2nd-order

Taylor expansions to Hn(θ, x) around v(x) that

vn(x)− v(x) = {Hn(x)− EHn(x)}/q(x) +Rn(x) (15)

where {Hn(x)− EHn(x)}/q(x) is the leading linear term and

Rn(x) = Hn(x){q(x)−Dn(x)}/{Dn(x) · q(x)}+ EHn(x)/q(x)

+
1

2
{vn(x)− v(x)}2 · {Dn(x)}−1 (16)

·(nh)−1

n∑
i=1

K{(x−Xi)/h}ψ′′{Yi − v(x) + rn(x)}, (17)

|rn(x)| < |vn(x)− v(x)|.

is the remainder term. In Section 5 it is shown (Lemma 4) that ‖Rn‖ = supx∈J |Rn(x)| =
Op{(nh log n)−1/2}.

Furthermore, the rescaled linear part

Yn(x) = (nh)1/2{σ2(x)fX(x)}−1/2{Hn(x)− EHn(x)}

is approximated by a sequence of Gaussian processes, leading finally to the Gaussian

process

Y5,n(x) = h−1/2

∫
K{(x− t)/h}dW (x). (18)

Drawing upon the result of Bickel and Rosenblatt (1973), we finally obtain asymp-

totically the Gumbel distribution.

We also need the Rosenblatt (1952) transformation,

T (x, y) = {FX|y(x|y), FY (y)},

which transforms (Xi, Yi) into T (Xi, Yi) = (X ′i, Y
′
i ) mutually independent uniform

rv’s. In the event that x is a d-dimension covariate, the transformation becomes:

T (x1, x2, . . . , xd, y) = {FX1|y(x1|y), FX2|y(x2|x1, y), . . . ,

FXk|xd−1,...,x1,y(xk|xd−1, . . . , x1, y), FY (y)}. (19)

With the aid of this transformation, Theorem 1 of Tusnady (1977) may be applied

to obtain the following lemma.

9



Lemma 2 On a suitable probability space a sequence of Brownian bridges Bn exists

that

sup
x∈J,y∈R

|Zn(x, y)−Bn{T (x, y)}| = O{n−1/2(log n)2} a.s.,

where Zn(x, y) = n1/2{Fn(x, y)−F (x, y)} denotes the empirical process of {(Xi, Yi)}ni=1.

For d > 2, it is still an open problem which deserves further research.

Before we define the different approximating processes, let us first rewrite (18)

as a stochastic integral w.r.t. the empirical process Zn(x, y),

Yn(x) = {hg′(x)}−1/2

∫∫
K{(x− t)/h}ψ{y − v(x)}dZn(t, y),

g′(x) = σ2(x)fX(x).

10



The approximating processes are now:

Y0,n(x) = {hg(x)}−1/2

∫∫
Γn

K{(x− t)/h}ψ{y − v(x)}dZn(t, y) (20)

where Γn = {|y| 6 an}, g(t) = E[ψ2{y − v(x)} · I(|y| 6 an)|X = x] · fX(x)

Y1,n(x) = {hg(x)}−1/2

∫∫
Γn

K{(x− t)/h}ψ{y − v(x)}dBn{T (t, y)} (21)

{Bn} being the sequence of Brownian bridges from Lemma 2.

Y2,n(x) = {hg(x)}−1/2

∫∫
Γn

K{(x− t)/h}ψ{y − v(x)}dWn{T (t, y)} (22)

{Wn} being the sequence of Wiener processes satisfying

Bn(t′, y′) = Wn(t′, y′)− t′y′Wn(1, 1)

Y3,n(x) = {hg(x)}−1/2

∫∫
Γn

K{(x− t)/h}ψ{y − v(t)}dWn{T (t, y)} (23)

Y4,n(x) = {hg(x)}−1/2

∫
g(t)1/2K{(x− t)/h}dW (t) (24)

Y5,n(x) = h−1/2

∫
K{(x− t)/h}dW (t) (25)

{W (·)} being the Wiener process.

Lemmas 5 to 10 ensure that all these processes have the same limit distributions.

The result then follows from

Lemma 3 (Theorem 3.1 in Bickel and Rosenblatt (1973)) Let dn, λ(K), δ as in

Theorem 2. Let

Y5,n(x) = h−1/2

∫
K{(x− t)/h}dW (t).

Then, as n→∞, the supremum of Y5,n(x) has a Gumbel distribution.

P
{

(2δ log n)1/2
[
sup
x∈J
|Y5,n(x)|/{λ(K)}1/2 − dn

]
< z
}
→ exp{−2 exp(−z)}.

11
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Figure 2: τ = 0.5(left) and τ = 0.9(right) Estimated Quantile and Expectile Plot.
Quantile Curve, Theoretical Expectile Curve, Estimated Expectile Curve

3 A Monte Carlo Study

We generate the bivariate random variables {(Xi, Yi)}ni=1 with the sample size n =

500, and X is uniformly distributed on [0, 3]

Y = 1.5X2 + 4 + cos(3X) + ε (26)

where ε ∼ N(0, 1).

Obviously, the theoretical expectiles (fixed τ) are determined by

v(x) = 1.5x2 + 4 + cos(3x) + vN(τ) (27)

where vN(τ) is the τth-expectile of the standard Normal distribution.

Figure 2 (in the left part) describes the simulated data (the grey points),

together with the 0.5 estimated quantile and estimated expectile and theoretical ex-

pectile curves, which reprensents respectively for conditional median and conditional

mean. The conditional mean and conditional median coincide with each other, since

the error term is symmetrically distributed, which can be found very obviously in

the figure. In the right part of the figure, we consider the conditional 0.9 quantile

and expectile curves. Since the expectile curve contains more information than the

quantile curve, there is a gap between quantile curve and expectile curve, which

can be interpreted by the transformation w(τ). For the standard normal distribu-
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Figure 3: Uniform Confidence Bands for Expectile Curve for τ = 0.1 (Left) and
τ = 0.9 (Right). Theoretical Expectile Curve, Estimated Expectile Curve and
5%− 95% Uniform Confidence Bands

tion, the 0.9 quantile can be expressed by the around 0.96 expectile. Moreover, the

expectile curve is smoother than quantile curve.

Figure 3 shows the 5% − 95% uniform confidence bands for expectile curve,

which are represented by the two red dot lines. We calculate both 0.1 (left) and

0.9 (right) expectile curves. The black lines stand for the corresponding 0.1 and

0.9 theoretical expectile curves, and the blue lines are the corresponding estimated

expectile curves. Obviously, the theoretical expectile curves locate in the confidence

bands.

4 Application

In this part, we apply the expectile into the temperature study. We consider the

daily temperature both of Berlin and Taipei, ranging from 19480101 to 20071231,

together 21900 observations. The statistical property, see Table 4. The Berlin

temperature data was obtained from Deutscher Wetterdienst, and the Taipei tem-

perature data was obtained from the center for adaptive data analysis in National

Central University.

Weather risk is the uncertainty in cash flow and earnings caused by weather

volatility. Many energy companies have a natural position in weather which is their
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Mean SD Skewness Kurtosis Max Min
Berlin 9.66 7.89 -0.315 2.38 30.4 -18.5
Taipei 22.61 5.43 -0.349 2.13 33.0 6.5

Table 1: Statistical Summary of the temperature in Berlin and Taipei

largest source of financial uncertainty. It is a local phenomenon for each city. Sea-

sonal volatility in the regression residuals appears highest during the winter months

where the temperature shows high volatility. One needs to determine how much

”weather noise exists. Time series modeling reveals a wealth of information about

both conditional mean dynamics and conditional variance dynamics of daily average

temperature, and it provides insights into both the distributions of temperature and

temperature surprises, and the differences between them.

To assess the potential for hedging against weather surprises, and to formulate

the appropriate hedging strategies, one needs to determine how much weather noise

exists for weather derivatives to eliminate, and that requires a weather model. What

does weather noise look like over space and time? What are its conditional and un-

conditional distributions? We provide insight into both conditional mean dynamics

and conditional variance dynamics of daily average temperature; strong conditional

variance dynamics are a central part of the story.

Before proceeding to detailed modeling and forecasting results, it is useful to

get an overall feel for the daily average temperature data. In Figure 4 we plot the

average temperature series for the last five years of the sample, the black line stands

for the temperature in Taipei, and the blue line is for the temperature in Berlin. The

time series plots reveal strong and unsurprising seasonality in average temperature:

in each city, the daily average temperature moves repeatedly and regularly through

periods of high temperature (summer) and low temperature (winter). Importantly,

however, the seasonal fluctuations differ noticeably across cities both in terms of

amplitude and detail of pattern.

Obviously the seasonal effect exists in the temperature process. We apply

a conventional model for temperature dynamics, which is a stochastic model with

seasonality and inter temporal autocorrelation. Let us change our notation from

i 7→ (t; j), with t = 1, · · · , τ = 365 days, and j = 0, · · · , J years. The time series

14



Year

Te
m

pe
ra

tu
re

2002 2004 2005 2006 2007

Figure 4: The time series plot of the temperature in Berlin and Taipei from 2002-
2007. The black line stands for the temperature in Taipei, and the blue line is in
Berlin.

decomposition we consider is given as:

X365j+t = Tt,j − Λt

X365j+t =
L∑
l=1

βljX365j+t−l + εt,j (28)

where Tt,j is the temperature at day t in year j, Λt denotes the seasonality effect.

Motivation of this modeling approach can be found in Diebold and Inoue (2001).

Later studies like e.g. Campbell and Diebold (2005) and Benth et al. (2007) have

provided evidence that the parameters βlj are likely to be j independent and hence

estimated consistently from a global autoregressive process AR(Lj) model with Lj =

L. The analyses of the partial autocorrelations and Akaike’s Information criterion

(AIC) suggest that a simple AR(3) model fits the temperature evolution in Berlin

and Taipei well.

Λt = a+ bt+
M∑
m=1

cl cos{2π(t− dm)

l · 365
} (29)

In this part, we consider the residuals of temperature from the fitted model.

Since the temperatures have seasonal effects, and also AR effects, we use the resid-
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uals after taking out such effects. Here we consider the residuals from AR process.

We intend to construct the confidence corridors for the 0.01 and 0.9-expectile for

the residuals of the temperatures. We try to construct the confidence corridor for

the extreme values.

The left part of the pictures stands for Berlin, and the right one is for Taipei.

In each figure, the thick black line stands for the average expectile during the 60

years. The red line is the expectile for the first 20 years residuals, i.e. we use the

data from 1948-1967. The 0.9 expectile for the second 20 years (1968-1987) residuals

is described by the green line, and the blue line is used for the expectile in the latest

20 years (1988-2007). The dot lines stand for the 5% − 95% confidence corridor

corresponding to the expectile with the same color. Figure 4 − 7 describe the 0.9

expectile for the residuals from Berlin and Taipei, and the corresponding confidence

corridors. It is easy to observe that the high variance in winter-earlier summer both

in Berlin and Taipei.

It is obvious to detect that the trends of the expectiles in Berlin and Taipei

are quite different. Firstly, the variation of the temperature in Berlin is smaller

than that of Taipei. All the expectile curves cross with each other during the last

100 observations for Berlin. Moreover, they all almost locate in the corresponding

three confidence corridors. However, the performance of the temperature in Taipei

is quite different from that in Berlin. The expectile curves for Taipei have similar

trends for each 20 years. Remarkably, the expectile curve for the latest 20 years

does not locate in the confidence corridor constructed using the data from the first

20 years and second 20 years in Figure 4 and Figure 7. Similarly, the expectile curve

for the first 20 years does not locate in the confidence corridor constructed by the

latest 20 years.

We also consider the low expectile for the residuals from temperature from

Berlin and Taipei. In fact, it is very hard to get the very low quantile curve. It can

be calculated by the expectile. The 0.01 expecitles of the temperatures in Taipei

and Berlin with the corresponding confidence corridors are described in 8 − 10. The

shapes of the expectile for Berlin and Taipei are different, however all of these curves

locate the corresponding confidence corridors.

We conclude that the risk drivers for temperature are localized. The temper-

ature can be influenced by the human factors and other natural factors. They are

different from Berlin and Taipei. The variation of the temperature in Taipei is more

volatile. Since in the last 60 years, the development of Taiwan is very fast, including
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Figure 5: 0.9-expectile curves for Berlin (left) and Taipei (right) daily temperature
residuals from 1948-2007 with the 5% − 95% confidence corridors for the first 20
years expectile.

the industry, which can be one factor to influence the temperature in Taipei.

5 Appendix

Proof of Theorem 1. By the definition of vn(x) as a zero of (6), we have, for

ε > 0,

if vn(x) > v(x) + ε, and then Hn{v(x) + ε, x} > 0. (30)

Now

Hn{v(x) + ε, x} 6 H{v(x) + ε, x}+ sup
θ∈I
|Hn(θ, x)−H(θ, x)|. (31)

Also, by the identity H{v(x), x} = 0, the function H{v(x) + ε, x} is not positive

and has a magnitude > m1q̃ε by assumption (A6) and (13), for 0 < ε < δ1. That

is, for 0 < ε < δ1,

H{v(x) + ε, x} 6 −m1q̃ε. (32)

Combining (30), (31) and (32), we have, for 0 < ε < δ1:

if vn(x) > v(x) + ε, and then sup
θ∈I

sup
x∈J
|Hn(θ, x)−H(θ, x)| > m1q̃ε.

With a similar inequality proved for the case vn(x) < v(x) + ε, we obtain, for

0 < ε < δ1:

if sup
x∈J
|vn(x)− v(x)| > ε, and then sup

θ∈I
sup
x∈J
|Hn(θ, x)−H(θ, x)| > m1q̃ε. (33)
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Figure 6: 0.9-expectile curves for Berlin (left) and Taipei (right) daily temperature
residuals from 1948-2007 with the 5%− 95% confidence corridors for the second 20
years expectile.
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Figure 7: 0.9-expectile curves for Berlin (left) and Taipei (right) daily temperature
residuals from 1948-2007 with the 5% − 95% confidence corridors for the latest 20
years expectile
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Figure 8: 0.01-expectile curves for Berlin (left) and Taipei (right) daily temperature
residuals from 1948-2007 with the 5% − 95% confidence corridors for the first 20
years expectile
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Figure 9: 0.01-expectile curves for Berlin (left) and Taipei (right) daily temperature
residuals from 1948-2007 with the 5%− 95% confidence corridors for the second 20
years expectile
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Figure 10: 0.01-expectile curves for Berlin (left) and Taipei (right) daily temperature
residuals from 1948-2007 with the 5% − 95% confidence corridors for the latest 20
years expectile

It readily follows that (33), and (12) imply (14). �

Below we first show that ‖Rn‖∞ = supx∈J |Rn(x)| vanishes asymptotically

faster than the rate (nh log n)−1/2; for simplicity we will just use ‖ · ‖ to indicate the

sup-norm.

Lemma 4 For the remainder term Rn(t) defined in (16) we have

‖Rn‖ = Op{(nh log n)−1/2}. (34)

PROOF. First we have by the positivity of the kernel K,

‖Rn‖ 6
[

inf
06x61

{|Dn(x)| · q(x)}
]−1

{‖Hn‖ · ‖q −Dn‖+ ‖Dn‖ · ‖EHn‖}

+C1 · ‖vn − l‖2 ·
{

inf
06t61

|Dn(x)|
}−1

· ‖fn‖∞,

where fn(x) = (nh)−1
∑n

i=1K{(x−Xi)/h}.

The desired result (4) will then follow if we prove

‖Hn‖ = Op{(nh)−1/2(log n)1/2} (35)

‖q −Dn‖ = Op{(nh)−1/4(log n)−1/2} (36)

‖EHn‖ = O(h2) (37)

‖vn − v‖2 = Op{(nh)−1/2(log n)−1/2} (38)
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Since (37) follows from the well-known bias calculation

EHn(x) = h−1

∫
K{(x− u)/h}E[ψ{y − v(x)}|X = u]fX(u)du = O(h2),

where O(h2) is independent of x in Parzen (1962), we have from assumption (A2)

that ‖EHn‖ = Op{(nh)−1/2(log n)−1/2}.

According to Lemma A.3 in Franke and Mwita (2003),

sup
x∈J
|Hn(x)− EHn(x)| = O{(nh)−1/2(log n)1/2}.

and the following inequality

‖Hn‖ 6 ‖Hn − EHn‖+ ‖EHn‖.

= O{(nh)−1/2(log n)1/2}+ Op{(nh)−1/2(log n)−1/2}

= O{(nh)−1/2(log n)1/2}

Statement (35) thus is obtained.

Statement (36) follows in the same way as (35) using assumption (A2) and the

Lipschitz continuity properties of K, ψ′, l.

According to the uniform consistency of vn(x)− v(x) shown before, we have

‖vn − v‖ = Op{(nh)−1/2(log n)1/2}

which implies (38).

Now the assertion of the lemma follows, since by tightness ofDn(x), inf06t61 |Dn(x)| >
q0 a.s. and thus

‖Rn‖ = Op{(nh log n)−1/2}(1 + ‖fn‖).

Finally, by Theorem 3.1 of Bickel and Rosenblatt (1973), ‖fn‖ = Op(1); thus the

desired result ‖Rn‖ = Op{(nh log n)−1/2} follows. �

We now begin with the subsequent approximations of the processes Y0,n to

Y5,n.

Lemma 5

‖Y0,n − Y1,n‖ = O{(nh)−1/2(log n)2} a.s.
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PROOF. Let x be fixed and put L(y) = ψ{y − v(x)} still depending on x. Using

integration by parts, we obtain∫∫
Γn

L(y)K{(x− t)/h}dZn(t, y)

=

∫ A

u=−A

∫ an

y=−an
L(y)K(u)dZn(x− h · u, y)

= −
∫ A

−A

∫ an

−an
Zn(x− h · u, y)d{L(y)K(u)}

+L(an)(an)

∫ A

−A
Zn(x− h · u, an)dK(u)

−L(−an)(−an)

∫ A

−A
Zn(x− h · u,−an)dK(u)

+K(A)
{∫ an

−an
Zn(x− h · A, y)dL(y)

+L(an)(an)Zna(x− h · A, an)− L(−an)(−an)Zn(x− h · A,−an)
}

−K(−A)
{∫ an

−an
Zn(x+ h · A, y)dL(y) + L(an)(an)Zn(x+ h · A, an)

−L(−an)(−an)Zn(x+ h · A,−an)
}
.

If we apply the same operation to Y1,n with Bn{T (x, y)} instead of Zn(x, y) and use

Lemma 2, we finally obtain

sup
06x61

h1/2g(x)1/2|Y0,n(x)− Y1,n(x)| = O{n−1/2(log n)2} a.s..

�

Lemma 6 ‖Y1,n − Y2,n‖ = Op(h1/2).

PROOF. Note that the Jacobian of T (x, y) is f(x, y). Hence

Y1,n(x)− Y2,n(x)

=
∣∣∣{g(x)h}−1/2

∫∫
Γn

ψ{y − v(x)}K{(x− t)/h}f(t, y)dtdy
∣∣∣ · |Wn(1, 1)|.

It follows that

h−1/2‖Y1,n − Y2,n‖ 6 |Wn(1, 1)| · ‖g−1/2‖

· sup
06t61

h−1

∫∫
Γn

|ψ{y − v(x)}K{(x− t)/h}|f(t, y)dtdy.
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Since ‖g−1/2‖ is bounded by assumption, we have

h−1/2‖Y1,n − Y2,n‖ 6 |Wn(1, 1)| · C4 · h−1

∫
K{(x− t)/h}dx = Op(1).

�

Lemma 7 ‖Y2,n − Y3,n‖ = Op(h1/2).

PROOF. The difference |Y2,n(x)− Y3,n(x)| may be written as∣∣∣{g(x)h}−1/2

∫∫
Γn

[ψ{y − v(x)} − ψ{y − v(t)}]K{(x− t)/h}dWn{T (t, y)}
∣∣∣.

If we use the fact that l is uniformly continuous, this is smaller than

h−1/2|g(x)|−1/2 · Op(h)

and the lemma thus follows. �

Lemma 8 ‖Y4,n − Y5,n‖ = Op(h1/2).

PROOF.

|Y4,n(x)− Y5,n(x)| = h−1/2
∣∣∣ ∫ [{ g(t)

g(x)

}1/2

− 1
]
K{(x− t)/h}dW (x)

∣∣∣
6 h−1/2

∣∣∣ ∫ A

−A
W (x− hu)

∂

∂u

[{g(x− hu)

g(x)

}1/2

− 1
]
K(u)du

∣∣∣
+h−1/2

∣∣∣K(A)W (t− hA)
[{g(x− Ah)

g(x)

}1/2

− 1
]∣∣∣

+h−1/2
∣∣∣K(−A)W (x+ hA)

[{g(x+ Ah)

g(x)

}1/2

− 1
]∣∣∣

S1,n(x) + S2,n(x) + S3,n(x), say.

The second term can be estimated by

h−1/2‖S2,n‖ 6 K(A) · sup
06x61

|W (x− Ah)| · sup
06x61

h−1
∣∣∣[{g(x− Ah)

g(x)

}1/2

− 1
]∣∣∣;

by the mean value theorem it follows that

h−1/2‖S2,n‖ = Op(1).
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The first term S1,n is estimated as

h−1/2S1,n(x) =
∣∣∣h−1

∫ A

−A
W (x− uh)K ′(u)

[{g(x− uh)

g(x)

}1/2

− 1
]
du

1

2

∫ A

−A
W (x− uh)K(u)

{g(x− uh)

g(x)

}1/2{g′(x− uh)

g(x)

}
du
∣∣∣

= |T1,n(x)− T2,n(x)|, say;

‖T2,n‖ 6 C5 ·
∫ A
−A |W (t− hu)|du = Op(1) by assumption on g(x) = σ2(x) · fX(x). To

estimate T1,n we again use the mean value theorem to conclude that

sup
06x61

h−1
∣∣∣{g(x− uh)

g(x)

}1/2

− 1
∣∣∣ < C6 · |u|;

hence

‖T1,n‖ 6 C6 · sup
06x61

∫ A

−A
|W (x− hu)|K ′(u)u/du = Op(1).

Since S3,n(x) is estimated as S2,n(x), we finally obtain the desired result. �

The next lemma shows that the truncation introduced through {an} does not

affect the limiting distribution.

Lemma 9 ‖Yn − Y0,n‖ = Op{(log n)−1/2}.

PROOF. We shall only show that g′(x)−1/2h−1/2
∫∫

R−Γn
ψ{y−v(x)}K{(x−t)/h}dZn(t, y)

fulfills the lemma. The replacement of g′(x) by g(x) may be proved as in Lemma A.4

of Johnston (1982). The quantity above is less than h−1/2‖g−1/2‖ · ‖
∫∫
{|y|>an} ψ{y−

v(·)}K{(·− t)/h}dZ(t, y)‖. It remains to be shown that the last factor tends to zero

at a rate Op{(log n)−1/2}. We show first that

Vn(x) = (log n)1/2h−1/2

∫∫
{|y|>an}

ψ{y − v(x)}K{(x− t)/h}dZn(t, y)

p→ 0 for all x

and then we show tightness of Vn(x), the result then follows:

Vn(x) = (log n)1/2(nh)−1/2

n∑
i=1

[ψ{Yi − v(x)}I(|Yi| > an)K{(x−Xi)/h}

−Eψ{Yi − v(x)}I(|Yi| > an)K{(x−Xi)/h}]

=
n∑
i=1

Xn,x(x),
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where {Xn,x(x)}ni=1 are i.i.d. for each n with EXn,x(x) = 0 for all x ∈ [0, 1]. We

then have

EX2
n,x(x) 6 (log n)(nh)−1 Eψ2{Yi − v(x)}I(|Yi| > an)K2{(x−Xi)/h}

6 sup
−A6u6A

K2(u) · (log n)(nh)−1 Eψ2{Yi − v(x)}I(|Yi| > an);

hence

Var{Vn(x)} = E
{ n∑

i=1

Xn,x(x)
}2

= n · EX2
n,x(x)

6 sup
−A6u6A

K2(u)h−1(log n)

∫
{|y|>an}

fy(y)dy ·Mψ.

where Mψ denotes an upper bound for ψ2. This term tends to zero by assumption

(A3). Thus by Markov’s inequality we conclude that

Vn(x)
p→ 0 for all x ∈ [0, 1].

To prove tightness of {Vn(x)} we refer again to the following moment condition as

stated in Lemma 4:

E{|Vn(x)− Vn(x1)| · |Vn(x2)− Vn(x)|} 6 C ′ · (x2 − x1)2

C ′ denoting a constant, x ∈ [x1, x2].

We again estimate the left-hand side by Schwarz’s inequality and estimate each

factor separately,

E{Vn(x)− Vn(x1)}2 = (log n)(nh)−1 E
[ n∑
i=1

Ψn(x, x1, Xi, Yi) · I(|Yi| > an)

−E{Ψn(x, x1, Xi, Yi) · 1(|Yi| > an)}
]2

,

where Ψn(x, x1, Xi, Yi) = ψ{Yi−v(x)}K{(x−Xi)/h}−ψ{Yi−v(x1)}K{(x1−X1)/h}.
Since ψ, K are Lipschitz continuous except at one point and the expectation is taken

afterwards, it follows that

[E{Vn(x)− Vn(x1)}2]1/2

6 C7 · (log n)1/2h−3/2|x− x1| ·
{∫
{|y|>an}

fy(y)dy
}1/2

.

If we apply the same estimation to Vn(x2)− Vn(x1) we finally have

E{|Vn(x)− Vn(x1)| · |Vn(x2)− Vn(x)|}

6 C2
7(log n)h−3|x− x1||x2 − x| ×

∫
{|y|>an}

fy(y)dy

6 C ′ · |x2 − x1|2 since x ∈ [x1, x2] by (A3).
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�

Lemma 10 Let λ(K) =
∫
K2(u)du and let {dn} be as in the theorem. Then

(2δ log n)1/2[‖Y3,n‖/{λ(K)}1/2 − dn]

has the same asymptotic distribution as

(2δ log n)1/2[‖Y4,n‖/{λ(K)}1/2 − dn].

PROOF. Y3,n(x) is a Gaussian process with

EY3,n(x) = 0

and covariance function

r3(x1, x2) = EY3,n(x1)Y3,n(x2)

= {g(x1)g(x2)}−1/2h−1

∫∫
Γn

ψ2{y − v(x)}K{(x1 − x)/h}

×K{(x2 − x)/h}f(t, y)dtdy

= {g(x1)g(x2)}−1/2h−1

∫∫
Γn

ψ2{y − v(x)}f(y|x)dyK{(x1 − x)/h}

×K{(x2 − x)/h}fX(x)dx

= {g(x1)g(x2)}−1/2h−1

∫
g(x)K{(x1 − x)/h}K{(x2 − x)/h}dx

= r4(x1, x2)

where r4(x1, x2) is the covariance function of the Gaussian process Y4,n(x), which

proves the lemma. �
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