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Abstract

A Lévy process is observed at time points of distance ∆ until time
T . We construct an estimator of the Lévy-Khinchine characteristics of
the process and derive optimal rates of convergence simultaneously in
T and ∆. Thereby, we encompass the usual low- and high-frequency
assumptions and obtain also asymptotics in the mid-frequency regime.

Key words and Phrases: Jump process, Lévy measure, deconvolution problem,
statistical inverse problem
AMS subject classification: 62M05, 60G51, 62G05
JEL subject classification: C14, C22

1 Introduction

Lévy processes are the main building blocks for stochastic continuous-time jump
models, which become more and more popular in applications. One important task
is thus to provide estimation methods for the characteristics of a Lévy process.

There exist two fundamentally different estimation approaches, depending on
the nature of observations. If we can assume high-frequency observations of the
Lévy process, we can discretize a natural estimator based on continuous-time ob-
servations, where the jumps and the diffusion part are observed directly [9, 7, 5].
Alternatively, the low-frequency setting is considered where the observation distance
does not tend to zero and even asymptotically we cannot observe the diffusion and
the jumps directly. Not surprisingly, in that case we face a more complicated in-
ference problem leading to a deconvolution-type inverse problem [14, 4, 12, 11]. A
very similar structure occurs in the estimation for Lévy-Ornstein-Uhlenbeck pro-
cesses [13] and in the calibration of financial derivatives (European options) to Lévy
models [2].

∗The financial support from the Deutsche Forschungsgemeinschaft via SFB 649
”Ökonomisches Risiko”, Humboldt-Universität zu Berlin, is gratefully acknowledged.
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Here, we want to bridge the gap between high- and low-frequency estimation
methods by allowing the time distance ∆ between observations to remain constant
or to converge to zero at an arbitrary speed. First results into that direction have
been obtained by [4] for specific models. In any case, the observation time T tends
to infinity because only this allows identification of the drift and the jump part in
the limit. We extend the approach for general Lévy processes by [14] to arbitrary
observation distances ∆.

First we introduce the setup in Section 2. Then in Section 3 we propose our
estimator based on a minimum-distance criterion. The correct distance relies upon
uniform convergence properties of the empirical characteristic function. The main
result is an asymptotic upper bound for the estimator of the jump measure. Particu-
larly interesting is the fact that we recover simultaneously the convergence rates for
the high- and low-frequency setup, without any prescription for the estimator. As
a minimax lower bound proves, also our intermediate (mid-frequency) risk bounds
are asymptotically optimal. All proofs are postponed to Section 4.

2 Statistical model and estimation strategy

A Lévy process (Xt, t > 0) is observed at the n equidistant time points ∆, · · · , n∆ =
T . It is well known that the characteristic function of X∆ has the form

ϕ∆(u) = E
[
eiuX∆

]
= e∆Ψ(u),

where the characteristic exponent Ψ reads as

Ψ(u) = iub− σ2

2
u2 +

∫ (
eiux − 1− iux1(|x| ≤ 1)

)
ν( dx),

with volatility σ ≥ 0, drift b ∈ R and jump measure ν, where ν is a σ-finite Borel
measure on R with

∫
R \{0}(x

2∧1)ν( dx) <∞. Throughout the text we shall assume
that X1 has finite moments up to order 4 + δ for some positive constant δ. Then
we even have (cf. Thm. 25.3 [15])∫

R \{0}
x2ν( dx) <∞.

We can thus give the following reparametrization of the characteristic exponent in
terms of the finite measure νσ( dx) := σ2δ0( dx) + x2ν( dx) and b := b+

∫
x 1(|x| >

1)ν( dx):

Ψ(u) = iub+
∫

R

(
eiux − 1− iux

)
x2

νσ( dx),

where the integrand is continuously extended to −u2/2 at x = 0. The Lévy process
is fully described by the parameters b (which is equal to the mean value of X1)
and νσ. The motivation for considering the above parametrization comes from the
following fundamental result (see e.g. Theorem 8.7 in [15]):

2.1 Proposition. Let P(b,νσ) and
(
P(bn,νσn )

)
n∈N denote infinitely divisible laws

with the corresponding characteristics. Then weak convergence P(bn,νσn ) ⇒ P(b,νσ)

takes place if and only if bn → b and νσn ⇒ νσ.

2



Using the fact that the increments of a Lévy process are independent and
identically distributed, we can define the empirical characteristic function

ϕ̂∆,T (u) :=
1
n

n∑
k=1

eiu(Xk∆−X(k−1)∆). (2.1)

Pointwise convergence of ϕ̂∆,T to ϕ∆ suggests to choose the estimators of the param-
eters of interest such that the corresponding characteristic function approximately
minimizes the distance to the empirical characteristic function. Consequently, we
define (

b̂∆,T , ν̂σ∆,T

)
:= arginf(b̃,ν̃σ) d

(
ϕ̂∆,T , ϕ∆

(
•; b̃, ν̃σ

))
(2.2)

for an appropriate choice of the metric d. It was shown in [14] that for equidistant
observations with ∆ fixed, the estimators of b and νσ defined according to (2.2) are
strongly consistent under rather general conditions on the choice of the metric d.
Moreover, optimal rates of convergence are obtained if b and νσ are chosen to fit
the weighted empirical characteristic function and its first and second derivative.

The motivation for considering not only the characteristic function, but also its
derivatives comes from the fact that the Fourier transform of the finite measure νσ
can be expressed as

Fνσ(u) :=
∫

R
eiuxνσ( dx) = −Ψ′′(u),

which gives

Fνσ(u) =
ϕ′1(u)2

ϕ1(u)2
− ϕ′′1(u)
ϕ1(u)

, (2.3)

and in terms of ∆:

Fνσ(u) =
1
∆

(
ϕ′∆(u)2

ϕ∆(u)2
− ϕ′′∆(u)
ϕ∆(u)

)
(2.4)

Note that by formula (2.3) and (2.4) there is a strong resemblance of the problem
of estimating νσ with a deconvolution problem. The optimal rates of convergence
depend on the decay behaviour of the characteristic function.

To obtain an estimator which is rate optimal for T →∞ with arbitrary obser-
vation distance ∆, the appropriate choice of a distance function will have to depend
on ∆. Because of the moment sizes E[X2k

∆ ] = O(∆1∧k) (see p.9 for a proof), it turns
out that the distance function

d∆ (ϕ,ψ) :=
2∑
k=0

∆−
1∧k

2 ‖ ϕ(k) − ψ(k)‖L∞(w) (2.5)

is appropriate, where
‖f‖L∞(w) := sup

u∈R
|f(u)|w(u)

for a weight function w : R → R+ specified later. Since we cannot guarantee that
the infimum is always attained, our estimators b̂∆,T and ν̂σ∆,T are chosen such that

d∆

(
ϕ̂∆,T , ϕ∆

(
•; b̂∆,T , ν̂σ∆,T

))
6 inf

(b,νσ)
d∆ (ϕ̂∆,T , ϕ∆ (•; b, νσ)) + εT (2.6)

with εT = o
(

∆1/2T−
1
2

)
. In what follows, we will use the notation

ϕ∆,T := ϕ∆

(
•; b̂∆,T , ν̂σ∆,T

)
.
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3 Rate optimality of the estimation procedure

3.1 Convergence of the empirical characteristic function

The main technical tool needed to prove rate optimality in T and ∆ is the following
result giving control of the weighted empirical characteristic function on the whole
real line uniformly in ∆. In an abstract sense, the statement below will tell us that
the Donsker property holds for the empirical characteristic function uniformly over
the class of distributions (P∆)∆≤1 , where P∆ denotes the distribution of X∆.

Let the normalized version of the k-th derivative of the empirical characteristic
function process be defined by

C
(k)
∆,T (u) := n−

1
2 ∆−

k∧1
2

n∑
j=1

dk

duk
(
eiu(Xj∆−X(j−1)∆) − E

[
eiuX∆

])
. (3.1)

We can now formulate the main result of this section, which is proved in Section
4.

3.1 Theorem. For k ∈ N0 let X be a Lévy process with finite (2k+ γ)-th moment
and choose w(u) = (log(e+ | u |))−1/2−δ for some constants γ, δ > 0. Then for
C

(k)
∆,T , defined by (3.1), we have

sup
n≥1,∆≤1

E
[
‖ C(k)

∆,T ‖L∞(w)

]
<∞.

With the distance d∆ defined according to (2.5), the above theorem tells us
that in terms of T , the empirical characteristic function ϕ̂∆,T satisfies

E
[
∆−

1
2 d∆ (ϕ̂∆,T , ϕ∆)

]
= O(T−

1
2 ). (3.2)

An application of the triangle inequality gives

d∆ (ϕ∆,T , ϕ∆) ≤ 2d∆ (ϕ̂∆,T , ϕ∆) + o(∆1/2T−1/2),

so (3.2) remains true if we replace the empirical characteristic function ϕ̂∆,T by
the minimum distance fit ϕ∆,T .

3.2 Asymptotic risk bounds

We are now ready to prove upper bounds for convergence in probability. We consider
in particular the following decay scenarios for the characteristic function:

a) The characteristic function of X∆ satisfies

|ϕ∆(u)| ≥ Ce−∆c|u|α (3.3)

for some 0 ≤ α ≤ 2 and C, c > 0. This is equivalent to stating that X∆

posesses at most a supersmooth density with parameters c and α (if a density
exists at all).
Any infinitely divisible distribution having nonzero Gaussian part is super-
smooth with α = 2. Examples of distributions which are supersmooth with
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α < 2 are tempered stable laws with index of stability α (e.g. [6], Chapter
4.5). Note that stable distributions do not fit in our setting, as they do not
match the required moment condition. Normal inverse Gaussian processes
which fulfill (3.3) with α = 1 have been used for financial modelling, see e.g.
[1]. Another example of processes in finance matching condition (3.3) with
α = 1 are Meixner-processes, see e.g. [16].

b) We have at most polynomial decay of the characteristic function:

|ϕ∆(u)| ≥ C (1 + |u|)−∆β (3.4)

for C > 0 and β > 0. This means that if X∆ possesses a density at all, this
can be no smoother than ordinary smooth with parameter β.
Typical examples of infinitely divisible random variables with ordinary
smooth densities are Gamma distributions. Compound Poisson distributions,
which do not posess a distributional density, fulfill (3.4) for β = 0. Another
typical example of processes fulfilling (3.4) are variance gamma processes,
which have been used to model the logarithm of stock prices, see, for exam-
ple [3].

Inspired by the weak convergence in Proposition 2.1, the performance of the
estimator of the finite measure νσ is measured by an integral criterion. For s > 0
define the space of test functions

Fs :=
{
f ∈ L1(R) :

∫
|Ff(u)| (1 + |u|)s du < 1.

}
.

The corresponding loss for an estimator ν̂σ of νσ is then defined to be

`s (ν̂σ, νσ) := sup
f∈Fs

∣∣∣∣∫ f dνσ −
∫
f dν̂σ

∣∣∣∣ .
3.2 Theorem. Assume E

[
|X∆|4+γ

]
< ∞ for some γ > 0. Let ν̂σ∆,T and b̂∆,T be

defined according to (2.6). Then

E
[
|b̂∆,T − b|

]
= O

(
T−

1
2

)
.

For ν̂σ∆,T , we obtain the following rates of convergence in probability:

a) For distributions with tail behaviour |ϕ∆(u)| ≥ Ce−∆c|u|α we have

`s
(
ν̂σ∆,T , νσ

)
= OP

((
log T

∆

)− s
α

∨ T− 1
2

)
.

Especially, the parametric rate T−
1
2 , is attained for T → ∞ and simultane-

ously ∆T → 0 provided

∆T = O
(
T−

α
2s log T

)
.

b) For distributions with tail behaviour |ϕ∆(u)| ≥ C(1 + |u|)−∆β we have

`s
(
ν̂σ∆,T , νσ

)
= OP

(
T−

s
2∆β (log(e+ T ))

s(1/2+δ)
∆β ∨ T− 1

2

)
.
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Especially, the parametric rate T−
1
2 , is attained for T → ∞ under the non-

asymptotic condition
∆T <

s

β
.

By standard parametric theory, all parameters cannot be estimated at a better
rate than T−1/2. Therefore the next result shows that our rates of convergence are
minimax optimal (at least up to a logarithmic factor for (b)) within a nonparametric
class.

3.3 Theorem (Minimax lower bounds). Let us introduce the following nonpara-
metric classes for νσ:

A(C, c, α) : =
{
νσ : |ϕ∆(u)| ≥ Ce−∆c|u|α

}
B(C, β) : =

{
νσ : |ϕ∆(u)| ≥ C(1 + |u|)−∆β

}
.

Then we obtain the following minimax lower bounds uniformly for |b| ≤ B, where
B is some positive constant:

∃ε > 0 : lim inf
T→∞

∆T∈(0,1]

inf
νσ∆T ,T

sup
νσ∈A(C,c,α)

Pb,νσ

(((
log T
∆T

) s
α

∧ T 1
2

)
`s

(
νσ∆T ,T

, νσ

)
> ε

)
> 0,

∃ε > 0 : lim inf
T→∞

∆T∈(0,1]

inf
νσ∆,T

sup
νσ∈B(C,β)

Pb,νσ
(
T

s
2∆T β

∧ 1
2 `s

(
νσ∆T ,T

, νσ

)
> ε
)
> 0,

where the infimum is taken over all estimators νσ∆T ,T
of νσ based on observations

of X with distance ∆T up to time T .

The proof follows along the same lines as the proof in [14], but the control of
the dependence on ∆ requires additional and rather tedious calculations, whence it
is omitted.

3.3 Discussion

The convergence rates for νσ can be understood in terms of a deconvolution or
statistical inverse problem. The degree of ill-posedness, i.e. the amplification of the
noise, is governed by the decay of the characteristic function ϕ∆. For fixed ∆ and
the exponential decay of ϕ∆ in (a) we therefore face a severely ill-posed problem
with logarithmic rates of convergence. On the other hand, the risk is smaller for
smoother test functions. If we had looked also at analytic test functions, where
the Fourier transform decays exponentially fast, then we would also in (a) obtain
polynomial rates for fixed ∆. Observe that our estimator does neither rely on the
knowledge of the decay behaviour of the unknown characteristic function nor on the
test function class considered nor on the asymptotics of the observation distance.

The parametric rate is always attained when the smoothness of the test func-
tion sufficiently counterbalances the ill-posedness of the problem. It is remarkable
that in all cases a condition on the observation distance of the type ∆ = O(T−p)
suffices. In the polynomial decay case (b) the ill-posedness is of degree ∆β which
is smaller than the smoothness s exactly under the condition ∆ < s/β and we
need not assume high-frequency observations. Very roughly and intuitively, there
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is an analogy with estimating the derivative of order ∆β of a regression function
and calculating the integral with an s-smooth test function of compact support,
which by partial integration equals the integral of the regression function itself
with an (s − ∆β)-smooth test function. This L2-continuous linear functional can
be estimated with a parametric rate, see e.g. [10].

Like in [9], we might consider the model that ν possesses a density g ∈ Cr

which we want to estimate. The kernel smoothing argument in [14] then yields in
the polynomial decay case (b) a convergence rate for the pointwise risk of order
O(hr + h−∆β−1/2T−1/2) (modulo a log factor, which is suppressed in the follow-
ing), where h denotes the kernel bandwidth. An optimal bandwidth choice yields
the rate O(T−r/(2r+2∆β+1)). Under this loss we attain the high-frequency rate of
convergence O(T−r/(2r+1)) under the condition ∆ 6 c(log T )−1 with c > 0 suffi-
ciently small. This logarithmic decay condition should be compared to [7] and [5]
where in the compound Poisson case a polynomial condition is required for the
critical observation distance ∆.

4 Proofs

4.1 Proof of Theorem 3.1

We start by recalling some definitions from empirical process theory. Let a proba-
bility space (X,A,P) be given. For measurable functions u, l : X→ R, the set

[l, u] := {h : X→ R | l ≤ h ≤ u}

is called an ε-bracket, if ∫
(u− l)2dP < ε2.

Given some class F of measurable, real-valued functions on X, we denote by
N[ ]

(
ε,F, L2(P)

)
the minimal number of ε-brackets which are needed to cover F.

The entropy integral is defined by

J[ ]

(
δ,F, L2(P)

)
:=
∫ δ

0

(
logN[ ]

(
ε,F, L2(P)

)) 1
2 dε.

Finally, a function F ≥ 0 is called an envelope function for F, if

∀f ∈ F : |f | ≤ F.

Proof of Theorem 3.1 . We decompose C
(k)
∆,T in its real and imaginary part and

introduce the set of functions

Fk∆ :=

{
∆−

1∧k
2

dk

duk
cosux : u ∈ R

}
∪

{
∆−

1∧k
2

dk

duk
sinux : u ∈ R

}
.

Denote by P∆ the distribution of X∆. An application of Corollary 19.35 in [17]
gives for any ∆ > 0:

sup
T

E
[
‖C(k)

∆,T ‖L∞(w)

]
< CJ[ ]

(
E
[
F 2(X∆)

]
,F(k)

∆ , L2(P∆)
)
, (4.1)
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for any envelope function F = F k∆ of Fk∆ and a universal constant C which does
not depend on ∆. It is shown in [14] that the right hand side of 4.1 is finite. To
make the result uniform in ∆, it remains to consider the behaviour of the entropy
integral for ∆ ∈ (0, 1] varying.

To cover Fk∆ with brackets of size ε, we define for grid points u∆,j specified later
the bracket functions

g±∆,j(z) = ∆−
1∧k

2

(
w(u∆,j)

dk

duk
cos(u∆,jz)± ε|z|k

)
I[−M.M ](z)±∆−

1∧k
2 |z|kI[−M,M ]c(z)

and

h±∆,j(z) = ∆−
1∧k

2

(
w(u∆,j)

dk

duk
sin(u∆,jz)± ε|z|k

)
I[−M.M ](z)±∆−

1∧k
2 |z|kI[−M,M ]c(z),

with

M := M(ε,∆, k) := inf
{
m : ∆−(1∧k)E|X∆|2kI{|X∆|>m} ≤ ε

2
}
.

By definition of M , the size of the brackets is

E
[(
g+

∆,j(X∆)− g−∆,j(X∆)
)2
]
≤ 4ε2

(
∆−(1∧k)EX2k

∆ + 1
)
.

For ∆ ≤ 1, the expression on the right is uniformly bounded above by cε2 for some
c > 0. This is obvious for k = 0. For k ≥ 1, this is a consequence of the well known
fact that E

[
X2k

∆

]
≤ c∆ for some c > 0, which is seen by using the formula

E
[
X2k

∆

]
= i−2kϕ

(2k)
∆ (0) = i−2k d

2k

du2k
e∆Ψ(u)

∣∣∣
u=0

.

An analogous argument gives:

E
[(
h+

∆,j(X∆)− h−∆,j(X∆)
)2
]
≤ cε2.

For a function gu(•) := ∆−
1∧k

2 w(u) ∂k

∂uk
cos(u•) ∈ Fk∆ to be contained in [g−∆,j , g

+
∆,j ],

we have to ensure

|w(u)
dk

duk
cos(uz)− w(u∆,j)

dk

duk
cos(u∆,jz)| ≤ ε|z|k ∀z ∈ [−M,M ]. (4.2)

With the estimate

|w(u) cos(uz)− w(uj) cos(ujz)|I[−M,M ](z)
≤ (w(u) + w(uj)) ∧(

|w(u) cos(uz)− w(u) cos(ujz)| I[−M,M ](z) + |w(u) cos(ujz)− w(uj) cos(ujz)| I[−M,M ](z)
)

≤ (w(u) + w(uj)) ∧ (M |u− uj |+ Lip(w)|u− uj |) ,

where Lip(w) is the Lipschitz-constant of w, and with the analogous inequality for
the sine-function, (4.2) is seen to hold for any u ∈ R such that

min {|u− u∆,j |(Lip(w) +M), w(u) + w(u∆,j)} ≤ ε.
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Hence to cover Fk∆ with brackets of P∆-size cε2, we need grid points u1, · · · , uJ(ε)

such that w(u1) ≤ ε
2 , w(uJ(ε)) ≤ ε

2 and |uj − uj+1| ≤ ε
Lip(w)+M(ε,∆,k) . For the

minimal number J(ε) of cε-brackets needed to cover F∆,k, this yields the estimate

J(ε) ≤ 2U(ε)(Lip(w) +M(ε,∆, k))/ε,

with
U(ε) := inf

{
u ∈ R : w(u) ≤ ε

2

}
� exp

(
ε−κ

)
for some κ < 2.

The generalized Markov inequality yields for some c′ > 0:

M(ε,∆, k) ≤
(
E
[
|X∆|2k+γ

]
/∆1∧kε2

)1/γ
< c′ε−2/γ .

The second inequality applies the fact that we have the moment bound
E
[
|X∆|2k+γ

]
= O (∆), which is a consequence of Theorem 1.1 in [8].

The entropy with bracketing is

logN[ ](ε,F∆,k, L
2(P∆)) ≤ logU(

ε

c
) + log

(
c (Lip(w) +M(ε/c,∆, k))

ε

)
.

The upper limit in the entropy integral appearing in (4.1),
√

E[F 2
∆,k(X∆)], is again

bounded above uniformly in ∆ < 1. We have thus shown that up to some universal
constant

sup
∆≤1

sup
T

E
[
‖C(k)

∆,T ‖L∞(w)

]
≤

∫ 1

0

√
log(U(ε)) dε+

∫ 1

0

√
log
(
Lip(w)/ε+ ε−(2/γ+1)

)
dε. (4.3)

Now (4.3) is finite since logU(ε) � ε−κ for some κ < 2. This completes the proof.

4.2 Proof of Theorem 3.2

To prove the upper bounds, we establish a number of technical lemmas giving con-
trol on the characteristic exponent and its derivatives. First, we formulate a result
which connects the tail behaviour of the characteristic function (which corresponds
to the smoothnes of the density) to the jump activity round the origin, extending
a result from [14]:

4.1 Lemma. Let an infinitely divisible law with characteristics (b, 0, ν) be given
such that its characteristic function satisfies

|ϕ(u)| ≥ Ce−c|u|
α

for some 0 < α < 2 and C, c > 0. Then for any α′ > α the integral∫ 1

−1

|x|α
′
ν( dx)

is finite.

9



Proof. Setting κ := inf1<x≤2 (1− cosx) > 0, we have the series of inequalities∫ 1

−1

|x|α
′
ν( dx) =

∞∑
m=0

∫
{2−(m+1)<|x|≤2−m}

|x|α
′
ν( dx)

≤ κ−1
∞∑
m=0

2−α
′m

∫ (
1− cos(2m+1x)

)
ν( dx)

= κ−1
∞∑
m=0

2−α
′m
(
−ReΨ(2m+1)

)
≤ κ−1

(
2c
∞∑
m=0

2−(α′−α)m − logC
∞∑
m=0

2−α
′m

)
<∞.

4.2 Lemma. In the situation of the preceding lemma, let α ∈ [1, 2) and assume
finite moments for the law of order α′ > α. Then the following bound on the deriva-
tive of the characteristic exponent holds for α′ ∈ (α, 2):

∀u ∈ R : |Ψ′(u)| ≤ K(1 + |u|α
′−1) (4.4)

for some K > 0.
For α < 1 the derivative of the characteristic exponent is always uniformly

bounded:
sup
u∈R
|Ψ′(u)| <∞. (4.5)

Proof. Since the diffusion part is zero by assumption, we obtain

|Ψ′(u)| =
∣∣∣∣ib+ i

∫ (
eiux − 1

)
xν( dx)

∣∣∣∣ (4.6)

≤ |b|+
∫

(2 ∧ |ux|) |x|ν( dx) (4.7)

≤ |b|+ 22−α′ |u|α
′−1

∫
|x|α

′
ν( dx). (4.8)

and the integral appearing in (4.8) is finite by Lemma 4.1 together with the moment
assumption. We have thus shown (4.4). To see (4.5) , we can estimate

|Ψ′(u)| ≤ |b|+ 2
∫
|x|ν( dx) (4.9)

and this expression is finite for α < 1 by Lemma 4.1.

Next, we focus on the exponential decay behaviour. We first need a result
concerning the minimum distance fit of the characteristic function.

4.3 Lemma. Let |ϕ∆(u)| ≥ Ce−∆c|u|α . With

I∆,T := [−U∆,T , U∆,T ] :=

[
−
(

log T
3∆

) 1
α

,

(
log T
3∆

) 1
α

]
.
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we find for any observation distance ∆ = ∆T ∈ (0, 1]

lim
T→∞

P
(
∀u ∈ I∆,T : |ϕ∆,T (u)| ≥ C

2
e−∆cuα

)
= 1.

Proof. ¿From Theorem 3.1 we infer by Markov’s inequality

P
(
∃u ∈ I∆,T : |ϕ∆,T (u)| < C

2
e−∆c|u|α

)
≤ P

(
∃u ∈ I∆,T : |ϕ∆,T (u)− ϕ∆(u)| > C

2
e−∆c|u|α

)
= P

(
sup

u∈I∆,T
|ϕ∆,T (u)− ϕ∆(u)| 2

C
e∆c|u|α > 1

)

≤ w(U∆,T )−1 2
C
e∆|U∆,T |α∆

1
2O
(
T−

1
2

)
.

The choice of U∆,T ensures that this expression tends to zero for T →∞, whatever
∆ is.

Let Ψ∆ := ∆Ψ(u) denote the characteristic exponent of the true characteristic
function ϕ∆ and Ψ∆,T the characteristic exponent of the minimum distance fit
ϕ∆,T . The next two results give control on the deviation of Ψ∆,T from Ψ∆ and of
its second derivatives.

4.4 Lemma. Let |ϕ∆(u)| ≥ Ce−∆c|u|α . With K > 0 from (4.4) the following bound
in probability is valid:

sup
u∈I∆,T

∣∣Ψ′∆,T (u)−Ψ′∆(u)
∣∣

∆w(u)−1e∆c|u|α
(

1 + ∆
1
2K(1 + |u|α2 )

) = OP(T−
1
2 ). (4.10)

Moreover,

sup
u∈I∆,T

∣∣Ψ′∆,T (u)
∣∣

∆w(u)−1e∆c|u|αK(1 + |u|α2 )
= OP(1). (4.11)

Proof. We have, with probability tending to one, for all u ∈ U∆;T :

∣∣Ψ′∆,T (u)−Ψ′∆(u)
∣∣ =

∣∣∣∣ϕ′∆,T (u)
ϕ∆,T (u)

− ϕ′∆(u)
ϕ∆(u)

∣∣∣∣
≤
|ϕ′∆,T (u)− ϕ′∆(u)|
|ϕ∆,T (u)|

+
∣∣Ψ′∆,T (u)

∣∣ |ϕ∆,T (u)− ϕ∆(u)|
|ϕ∆,T (u)|

≤
(
e∆c|u|αw(u)−1∆ + ∆K(1 + |u|α2 )e∆c|u|αw(u)−1∆

1
2

)
∆−

1
2 d (ϕ∆,T , ϕ∆) ,

where the last inequality is a consequence of Lemma 4.2 and Lemma 4.3.
Another application of Theorem 3.1 gives (4.10).
Now (4.11) follows from (4.10), using Lemma 4.4 and the estimate∣∣Ψ′∆,T (u)

∣∣ ≤ |Ψ′∆(u)|+
∣∣Ψ′∆,T (u)−Ψ′∆(u)

∣∣ .
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4.5 Lemma. Let |ϕ∆(u)| ≥ Ce−∆c|u|α . For the second derivative of the character-
istic exponent we have

sup
u∈R

∣∣Ψ′′∆,T (u)−Ψ′′∆(u)
∣∣ = ∆OP(1).

Moreover, we can give the following bound in probability uniformly on I∆,T :

sup
u∈I∆,T

∣∣Ψ′′∆,T (u)−Ψ′′∆(u)
∣∣

∆Ce∆c|u|αw(u)−1
(

1 + ∆
1
2 (1 + |u|α2 ) + ∆

3
2 (1 + |u|α)

) = OP

(
T−

1
2

)
(4.12)

Proof. To see the first statement of the lemma, recall that the second derivative of
the characteristic exponent is always bounded above:

∀u ∈ R : |Ψ′′∆(u)| = ∆
∣∣∣∣−σ2 +

∫
eiuxx2ν( dx)

∣∣∣∣ ≤ ∆
(
σ2 +

∫
|x|2ν( dx)

)
<∞.

Then apply the series of inequalities∣∣Ψ′′∆,T (u)−Ψ′′∆(u)
∣∣

≤ 4
(
|Ψ′′∆(0)|+

∣∣Ψ′′∆,T (0)−Ψ′′∆(0)
∣∣)

≤ 4
(
|Ψ′′∆(0)|+

∣∣ϕ′′∆,T (0)− ϕ′′∆(0)
∣∣+
∣∣(Ψ′∆,T (0))2 − (Ψ′∆(0))2

∣∣)
= 4

(
|Ψ′′∆(0)|+

∣∣ϕ′′∆,T (0)− ϕ′′∆(0)
∣∣+ 2 |Ψ′′∆(0)|

∣∣ϕ′∆,T (0)− ϕ′∆(0)
∣∣+
∣∣ϕ′∆,T (0)− ϕ′∆(0)

∣∣2)
= ∆OP

(
1 + T−

1
2 + ∆T−

1
2 + ∆T−1

)
= ∆OP (1) .

Next, (4.12) can be seen by estimating∣∣Ψ′′∆,T (u)−Ψ′′∆(u)
∣∣

=
∣∣∣∣ϕ′′∆,T (u)
ϕ∆,T (u)

−
(
Ψ′∆,T (u)

)2 − ϕ′′∆(u)
ϕ∆(u)

+ (Ψ′∆(u))2

∣∣∣∣
≤

∣∣ϕ′′∆,T (u)− ϕ′′∆(u)
∣∣

|ϕ∆(u)|
+
∣∣Ψ′∆,T (u)

∣∣ |ϕ∆,T (u)− ϕ∆(u)|
|ϕ∆(u)|

+
∣∣Ψ′∆,T (u) + Ψ′∆(u)

∣∣ ∣∣Ψ′∆,T (u)−Ψ′∆(u)
∣∣ .

The desired bound is an immediate consequence of Lemma 4.4.

For distributions with characteristic functions decaying at most polynomially,
we can prove auxiliary results analogous to Lemmas 4.1-4.5. As the proofs run in a
completely analogous way, we omit the details and only state the main result:

4.6 Lemma. Let |ϕ∆(u)| ≥ C(1 + |u|)−∆β. Define

I∆,T :=
[
−T

1
2∆β (log(e+ T ))−

1/2+2δ
∆β ,+T

1
2∆β (log T )−

1/2+2δ
∆β

]
.

Then we have

sup
u∈I∆,T

∣∣Ψ′′∆,T (u)−Ψ′′∆(u)
∣∣

∆C(1 + |u|)∆βw(u)−1
= OP

(
T−

1
2

)
.
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The proof of the upper bound result can now easily be obtained as a consequence
of the preceding lemmas.

Proof of Theorem 3.2: The result for b̂∆,T is an immediate consequence of Theorem
3.1, using |b̂∆,T − b| = ∆−1|ϕ′∆,T (0) − ϕ′∆(0)|. For the estimator of νσ, applying
Parseval’s identity, the loss satisfies

`s
(
ν̂σ∆,T , νσ

)
= sup

f∈Fs

∣∣∣∣∫ f(x)ν̂σ∆,T ( dx)−
∫
f(x)νσ( dx)

∣∣∣∣
=

1
2π

sup
f∈Fs

∣∣∣∣∫ Ff(u)
(
Fν̂σ∆,T (u)− Fνσ(u)

)
du
∣∣∣∣

≤ 1
2π

sup
f∈Fs

∫
|Ff(u)| 1

∆

∣∣Ψ′′∆(u)−Ψ′′∆,T (u)
∣∣ du

≤ 1
2π

sup
u∈R

(1 + |u|)−s 1
∆

∣∣Ψ′′∆,T (u)−Ψ′′∆(u)
∣∣ .

By an application of Lemma 4.5 and Lemma 4.6, we can estimate

a) for |ϕ∆(u)| ≥ Ce−∆c|u|α :

sup
u∈R

(1 + |u|)−s 1
∆

∣∣Ψ′′∆,T (u)−Ψ′′∆(u)
∣∣

≤ sup
u∈I∆,T

(1 + |u|)−s
(

1 + ∆
1
2 (1 + |u|α2 ) + ∆

3
2 (1 + |u|α)

e−∆c|u|αw(u)

)
OP

(
T−

1
2

)
∧ (1 + U∆,T )−s

= OP

(
T−

1
2 ∨

(
log T

∆

)− s
α

)
.

b) for |ϕ∆(u)| ≥ C(1 + |u|)−∆β :

sup
u∈R

(1 + |u|)−s 1
∆

∣∣Ψ′′∆,T (u)−Ψ′′∆(u)
∣∣

= OP

(
T−

s
2∆β (log (e+ T ))

s(1/2+δ)
∆β ∨ T− 1

2

)
.
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