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Abstract

The analysis of return series from financial markets is often based on the Peaks-over-threshold
(POT) model. This model assumes independent and identically distributed observations and
therefore a Poisson process is used to characterize the occurrence of extreme events. However,
stylized facts such as clustered extremes and serial dependence typically violate the assumption
of independence. In this paper we concentrate on an alternative approach to overcome these
difficulties. We consider the stochastic intensity of the point process of exceedances over a
threshold in the framework of irregularly spaced data. The main idea is to model the time
between exceedances through an Autoregressive Conditional Duration (ACD) model, while the
marks are still being modelled by generalized Pareto distributions. The main advantage of this
approach is its capability to capture the short-term behaviour of extremes without involving an
arbitrary stochastic volatility model or a prefiltration of the data, which certainly impacts the
estimation. We make use of the proposed model to obtain an improved estimate for the Value at
Risk. The model is then applied and illustrated to transactions data from Bayer AG, a blue chip
stock from the German stock market index DAX.
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1. Introduction

In recent years there has been a noticeable increase in the frequency and impact of extreme
events and financial crises. These events range from currency crashes (Asian East 1997, Russia in
1998, Argentina in 2001), to liquidity crises (LTCM in 1998), to stock market crashes (Black Mon-
day in 1987, Dot.com in 2000), to the US subprime market spillovers from 2007 through to 2009.
An important aspect of these extreme events is that their impact is exacerbated by simultaneous
occurrence in a multiple class of assets.

Critical questions are being asked concerning some of the quantitative methods used in risk
management under the Basel II proposals. Why do extreme events occur? What measures are
being taken to meet the current and certainly extreme crisis? Can researchers study former extreme
events and learn how to avoid them in the future? Both theoretical and more practical oriented
questions are on the actual agenda of academics, practitioners and regulators understanding of the
dynamics of asset markets under stress (see Embrechts, 2009 and references therein).

The estimation of the Value at Risk (VaR) and related risk measures is a current topic of inter-
est in finance, for which many approaches of varying sophistication have been derived. According
to Chavez-Demoulin et al. (2005) two main approaches can be distinguished: the time series and
the extreme value approach. The first emphasizes modelling the temporal features (e.g., volatility
clustering and fat tails) with ARCH-type and stochastic volatility models. However, the study of
extreme dependence may reveal contrasts which are obscured when we only concentrate on ex-
amining the conditional second moment of a time series. Interestingly, and unlike the situation for
GARCH processes (see Davis and Mikosch, 2009), there is no extremal clustering for stochastic
volatility processes in either the light- or heavy-tailed cases. That is, large values of the processes
do not come in clusters, which mean that the large sample behaviour of maxima is the same as
that of the maxima of the associated iid sequence. On the other hand, Mikosch (2003) showed in
a simulation study that for the GARCH case the expected cluster size in a set of various log-return
series is smaller than for the fitted GARCH model, i.e., there is less dependence in the tails for the
returns and volatilities than for the prescribed GARCH model. While these models imply some
information about extreme events, still little is known about the extremes per se.

The extreme value approach makes inference on the VaR using results from Extreme Value
Theory (EVT), which only focuses on the tail of the distribution (see Embrechts et al. 1997 for an
introduction). The majority of the approaches on EVT for VaR estimation concern the estimation
of unconditional quantiles (see for example Danielsson and De Vries, 2000, Coles, 2001 and Cotter
and Dowd, 2006). An exception is the work of McNeil and Frey (2000), which addressed the
conditional quantile problem and proposed a method for applying EVT to the conditional return
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distribution by using a two-stage method, combining GARCH models for forecasting volatility and
EVT techniques applied to the residuals from the GARCH analysis. Although this methodology
works quite well in practice it has the major drawback addressed by Mikosch (2003). Thus, one
should be cautious with the interpretation of the results of this method since there is no theory in
the extremal clustering behaviour based on the residuals of a GARCH model.

A novel form to deal with the cluster on extremes is to use a cluster point process version
of Peaks Over Theshold (POT) model introduced preliminarily in McNeil et al. (2005); Chavez-
Demoulin et al. (2005) and Herrera and Schipp (2009), where the cluster of extreme data are
modelled as self-exciting point processes without involving a prefiltration of data. A point process
is described as self-exciting when the past evolution impacts the probability of future events. The
marks contain the information that is associated with these events. The main characteristic of these
models is that the intensity of occurrence of extreme events can depend on past extreme events and
the size of the exceedances, allowing more realistic models.

In this paper we concentrate on a different alternative. We model the stochastic intensity of
the point process of exceedances within the framework of irregularly spaced data. Contrary to the
classical POT methodology, where the time of occurrence of the extreme events is modelled, the
methodology proposed models the inter-exceedance times between extreme events. To this end,
we use a methodology similar to an Autoregressive Conditional Duration (ACD) model (see Engle
and Russell, 1998 for more reference), while the marks still being modelled by generalized Pareto
distributions. Like the GARCH models, the ACD models and their alternatives (see Hautsch, 2004;
Bauwens and Hautsch, 2009 and Bauwens and Hautsch, 2006) have proven to be very useful in
capturing the clustering effects. For this reason, it seems natural to model the cluster behaviour of
extreme observations by means of this class of processes.

In the following we will explain our motivation in investigating extreme events in a stock
market as a marked point process of exceedances. The classical POT model for iid data assumes
that if the threshold u has been chosen highly enough then the exceedances over this threshold, the
extreme events, occur in time according to a homogeneous Poisson process. In addition, the size of
the excess returns over the threshold, the mark sizes, are independently and identically distributed
according to the generalised Pareto distribution (GPD). Figure 1.1 shows in the top panel the
negative daily percentage log returns of Bayer shares between 2 January 1990 and 18 January
2008, and the times and sizes of the negative daily percentage log returns exceeding a threshold
u = 1,5. Observe that this contradicts the classical model assumption of no cluster at the extremes.
Indeed, under a homogeneous Poisson process the inter-exceedance times should be independent
exponential random variables. The lower left picture shows an exponential probability plot for the
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Figure 1.1: Upper left panel shows Bayer daily percentage loss data from 02.01.1990 to 18.01.2008. Upper right
panel displays the 732 largest losses (the exceedances). Lower left panel shows a QQ-plot of inter-exceedance times
against an exponential reference distribution. Finally, the lower right panel displays the autocorrelogram for the
inter-exceedance times for the exceedances.

inter-event times, these are clearly far from exponential, giving evidence against a Poisson process
of exceedances. Furthermore, the autocorrelogram plot suggests clustering of the inter-exceedance
times. This hypothesis is moreover reaffirmed by the Ljung-Box statistic using 10 lags. The null
hypothesis of white noise is easily rejected with the Ljung-Box statistic of 217.63 well above the
critical value of 18.307 at the 5% level, rejecting the Null hypothesis.

Since extreme events are inherently irregularly spaced in time and their inter-exceedance times
provide strong evidence of correlation, it seems natural to study the timing of transactions as an
autoregressive conditional duration model.

The main contribution of this paper from the point of view of extreme value theory is that we
can capture the short-term behaviour of extremes without involving an arbitrary stochastic volatil-
ity model or the prefiltration of the data, which certainly impacts the measures of risk. Further-
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more, contrary to the models proposed in McNeil et al. (2005); Chavez-Demoulin et al. (2005) and
Herrera and Schipp (2009), whose self-exciting functions are restricted to monotone decreasing
functions, the models proposed in this paper allow hazard functions that are both monotonically
decreasing and increasing. This has a logical interpretation in periods of financial turmoil, for
instance, in an initial phase the VaR of a stock market initially should increase, then become close
to constant and after this period decreases. To the best of our knowledge, this is the first research
to take into account the incidence of the inter-exceedance times and models for irregularly spaced
data in extreme value models.

The results of the application to the Bayer stock index indicate that the estimation of such
models can be straightforward, derived through conditionals intensities. Different models were
proposed, having in mind the simplicity of the structure of the conditional intensities. The em-
pirical results show that characteristics associated with previous extreme losses as well the time
between these extreme events have a significant impact on the dynamic aspects and size of future
extreme events. In a VaR context the results of our backtesting procedure, which dynamically ad-
justs quantiles incorporating the new information daily, allows us to statistically conclude that the
models proposed are suitable for the estimation of different risk measures as the VaR, according
to the restriction imposed by Basel Committee on Banking Supervision (1996, 2006).

This paper is organized as follows. In section 2 we outline relevant aspects of the classical POT
model, and then in section 3 we describe the ACD-POT model theory that is central to the paper
and discusse a conditional generalized Pareto distribution based approach for the exceedances. In
addition, we make use of the models proposed to obtain an expression and its estimate for the VaR
one day ahead predictive distribution of the returns, conditionally on the past and current data. In
section 4 the models are applied to transactions data from the Bayer index. Conclusions and future
works are resumed in section 5.

2. The Peaks over threshold model

In the following we will explain our motivation in investigating the consequences of modelling
the inter-exceedance times in the POT framework in relation to the classical approach where only
the time in which the extreme events happen are taken account.

Suppose Y1, . . . ,Yn are random variables with distribution function F which belongs to the
maximum domain of attraction of Hξ ,µ,σ . Then Hξ ,µ,σ is a generalized extreme value distribution

Hξ ,µ,σ (y) =


exp
{
−
(

1+ξ
y−µ

σ

)−1/ξ
}

ξ 6= 0,

exp
{
−exp

(
−y−µ

σ

)}
ξ = 0,
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where 1+ξ y > 0 , ξ ,µ ∈ R and σ > 0 are the shape location and scale parameter respectively.
A point process N can be viewed as a random distribution of indistinguishable points in a

defined state space. For instance, the basic model for threshold exceedances in extreme value
theory is based on constructing a two-dimensional point process {(ti,yi)} with state space T ×
Y = [0,1)× (u,∞). The time events ti are the time of the i-th peak exceedance and we shall refer
to this process as the ground process, while yi−u is the value of the exceedances for a sufficiently
high threshold u and we will call this process the process of the marks. This two dimensional point
process will look like as a non-homogeneous Poisson process with intensity defined for all subsets
of the form A = [t1, t2)× (y,∞) where t1 and t2 are times of occurrence of extreme events. This
representation is as follows

λ (t,y) = λ (y) =
1
σ

(
1+ξ

y−µ

σ

)−1/ξ−1

+

, (2.1)

where y+ = max(y,0) and µ ,σ ,ξ are precisely the parameters of the generalized extreme value
distribution. Furthermore, the intensity measure of the subset A for any y≥ u may be expressed in
the form of an one-dimensional Poisson process with intensity

τ (y) =
ˆ

∞

y
λ (s)ds =− lnHξ ,µ,σ (y) .

If we accept that the point process of exceedances is an one-dimensional Poisson with intensity
τ > 0, then the process has independent increments, i.e., the number of events ti that occur in
disjoint time intervals are mutually independent, which implies lack of memory in the evolution
of the process. In addition, the number of extreme events ti in any interval of length (t2− t1) ≥ 0
is Poisson distributed with mean

ˆ t2

t1

ˆ
∞

y
λ (s)dsdt = τ (y)(t2− t1).

Another important result of extreme value theory is the limiting conditional probability that Y >

u+ y given Y > u
τ(u+ y)

τ(u)
=

(
1+

ξ y
σ +ξ (u−µ)

)−1/ξ

= Gξ ,β (x),

which is just the survival función of the GPD, i.e., Ḡ = 1−G, with scaling parameter β = σ +

ξ (u−µ) for 0≤ y < yF . Here yF is the right endpoint with values yF = ∞ if ξ > 0 and yF =−β/ξ

if ξ < 0.
Regardless of this approach, in this paper the statistical approach is based on viewing the
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high level of exceedances as a marked point processes (MPP). In many stochastic process models,
a point process arises as the component that carries the information about the events t in time
or space of objects that may themselves have a stochastic structure and stochastic dependency
relations. In this paper we define a MPP N as a set of observations, occurrence times and marks
{(ti,yi)} on the space T ×Y , whose history Ht = ({t1,y1} , . . . ,{tt−1,yt−1}) consists only of the
occurrence times and marks {t1,y1} , . . . ,{tt−1,yt−1} up to time t but not including t. Moreover,
we define a point process Ng “the ground process” which refers to the stochastic process of the
inter-exceedance times. This point process has a conditional density function p(t |Ht) and its
corresponding survival distribution function S (t |Ht). The conditional (finite) intensity function
(or hazard function) for the ground process Ng is given by

λg (t |Ht) =
p(t |Ht)

S (t |Ht)
(2.2)

while the conditional intensity function for the MPP N is given by

λ (t,y |Ht) = λg(t |Ht) f (y |Ht , t) (2.3)

where f (y |Ht , t) is the density function of the marks conditional on t and Ht .
Thus, the conditional intensity function with respect to the internal history Ht determines the

probability structure of N uniquely. Furthermore, we say that a MPP N = {(ti,yi)} on T ×Y has
independent marks, if given the ground process Ng the marks yi are mutually independent random
variables such that its distribution depends only on the corresponding location ti. In addition,
we define a MPP as having unpredictable marks for T , if the distribution of the marks at ti is
independent of the locations and marks

{(
t j,y j

)}
for which t j < ti. For a more formal introduction

to marked point processes we refer to Daley and Vere-Jones (2003, p. 246).
According to our definition of MPP, the marks are conditionally independent of the associated

ground process. Therefore, the product of mark densities simply has to be multiplied with the
likelihood of the ground process. Letting N be a MPP on [t0,T )×Y for some finite positive T

and let (t1,y1) , . . . ,
(
tN(T ),yN(T )

)
be a realization of N, we can obtain the log-likelihood L of such

a realization in terms of the conditional densities or intensities as

L =
N(T )

∑
i=1

log pi (ti |Ht)+
N(T )

∑
i=1

log fi (yi |Ht , t) (2.4)

=
N(T )

∑
i=1

logλg (ti |Ht)−
ˆ T

t0
λg (s |Ht)ds+

N(T )

∑
i=1

log fi (yi |Ht , t)
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Observe that an alternative description of the non-homogeneous Poisson process (2.1) is rewrit-
ten as a special case of a MPP in terms of a ground process Ng with rate of the one-dimensional
Poisson process of exceedances of the level u, i.e., τ = λg(t |Ht) = − lnHξ ,µ,σ (u), and a GPD

function for the marks f (y |Ht , t) = 1
β

(
1+ξ

y−u
β

)−1/ξ−1

λ (t,y) = τ
1
β

(
1+ξ

y−u
β

)−1/ξ−1

. (2.5)

This is exactly the idea that we want to to explore in the next section. We will concentrate on
models where the conditional intensity for the ground process will be parameterized in terms
of interval between two consecutive extreme events xi = ti− ti−1 so that the impact of a duration
between successive events depends upon the number of intervening extreme events. The main area
of application of these models has traditionally been in the modelling of high frequency financial
data, however their structure would also seem appropriate for modelling extreme events and the
tremors that follow these.

3. The Autoregresive conditional duration peaks over threshold model (ACD-POT)

As we saw in the introduction, in contrast to iid data, exceedances of a high threshold for daily
financial returns do not necessarily occur according to a homogeneous Poisson process. Thus, the
classical POT model is not directly applicable to financial return data.

We move away from homogeneous Poisson models for the occurrence times of exceedance
of high thresholds and consider autoregressive conditional duration models for the conditional
internsity of the ground process λg(t |Ht). In particular, we propose a set of models, which show
autocorrelation between inter-exceedance times, clustered extremes and non iid exceedances or
marks size.

Following Engle and Russell (1998) we define a model for the conditional intensity of the
ground point process of exceedances depending only on a fixed number of the most recent inter-
exceedance times xi = ti− ti−1. Let ψi be the expectation of the i-th inter-exceedance time given
by

E(x | xi−1, . . . ,x1) = ψi (xi−1, . . . ,x1;θ)≡ ψi, (3.1)

where θ is a parameter vector. We assume that ψi correspond to the ACD class of models. In
general the assumption is based on that for a strictly positive function with positive support ϕ (·) :
R+→ R+ the standardized durations

εi =
xi

ϕ (ψi)
(3.2)
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are iid random variables. To derive a general expression for the conditional intensity let p be the
density function of (3.2)

p
(

xi

ϕ (ψi)
|Ht ;θ

)
= p

(
xi

ϕ (ψi)
| θ
)
, (3.3)

where θ is a parameter vector. This implies that the time dependence of the duration process is
summarized by the conditional expected duration sequence. If we define again a MPP on [t0,T )×
Y for some finite positive time T and let (t1,y1) , . . . ,

(
tN(T ),yN(T )

)
be a realization of N over the

interval [0,T ), one can easily show that the conditional expected intensity of the interexceedances
times between extreme events, the ground process, can be expressed as a multiplicative effect
between the baseline hazard function and a shift given by the expected duration

λg(t |Ht ;θ) = λ0

(
t− tN(T )

ϕ
(
ψN(T )

)) 1
ϕ
(
ψN(T )

) (3.4)

Replacing further the form of the ground process defined in (2.2) by one of this type and plugging
the conditional expected intensity (3.4) in (2.5) we obtain the ACD-POT model in its more general
form.

λ (t,y |Ht ;θ) =

λ0

(
t−tN(T )

ϕ(ψN(T ))

)
ϕ
(
ψN(T )

)
β

(
1+ξ

y−u
β

)−1/ξ−1

+

. (3.5)

Effectively we have combined the one-dimensional intensity in (3.4) with a generalized Pareto
density. Under this model the conditional rate of crossing the threshold x ≥ u at time t, given the
history Ht up to that time, is

τ (t,y |Ht ;θ) =

ˆ
∞

y
λ (t,s |Ht ;θ)ds =

λ0

(
t−tN(T )

ϕ(ψN(T ))

)
ϕ
(
ψN(T )

) (
1+ξ

y−u
β

)−1/ξ

+

.

Observe that the distribution of the marks are assumed to be independent of the behavior of inter-
exceedance times. Indeed, the implied distribution of the marks when an extreme event takes place
is given by

τ(t,u+ y |Ht ;θ)

τ(t,u |Ht ;θ)
=

(
1+

ξ y
β

)−1/ξ

+

= Gξ ,β (y).

The estimation of the parameters of this model can be performed separately. In the first instance
we can estimate the likelihood for the ground process, the conditional intensity of inter-exceedance
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times, and in the second instance, the likelihood of the generalized Pareto distribution of the marks.
The model proposed in (3.5) is, therefore, a model with unpredictable marks because of the fact
that the distribution of the last mark at t is independent of the history Ht .

Nevertheless, we also consider the case of predictable marks, i.e., the marks are conditionally
generalized Pareto, given the history Ht up to the time of the mark. To this end, we parameterized
the scaling parameter β (t,y |Ht) such that it depends on the history2. In this way, we assume that
in a period of turmoil the temporal intensity of the inter-exceedance times and the magnitude of
the marks increase.

λ (t,y |Ht ;θ) =

λ0

(
t−tN(T )

ϕ(ψN(T ))

)
ϕ
(
ψN(T )

)
β (t,y |Ht)

(
1+ξ

y−u
β (t,y |Ht)

)−1/ξ−1

+

. (3.6)

The features of this model immediately follow those of the first model proposed. The conditional
rate of crossing the threshold x≥ u at time t, given the history Ht up to that time, is in this case

τ (t,y |Ht ;θ) =

ˆ
∞

y
λ (t,s |Ht ;θ)ds =

λ0

(
t−tN(T )

ϕ(ψN(T ))

)
ϕ
(
ψN(T )

) (
1+ξ

y−u
β (t,y |Ht)

)−1/ξ

+

,

while the implied distribution of the marks when an extreme observation occurs is given by

τ(t,u+ y |Ht ;θ)

τ(t,u |Ht ;θ)
=

(
1+ξ

y−u
β (t,y |Ht)

)−1/ξ

+

= Gξ ,β (t,y|Ht)(y).

Note that the marginal distribution of the marks will now be a conditional GPD. In the practical
application, using a likelihood ratio test, we will formally test the hypothesis that the marks are
unpredictable.

One main purpose of this paper is to develop a methodology to obtain an expression and its
estimate for the quantile of the one day ahead predictive distribution of the returns, conditionally
on the past and current data. In particular, the Value-at-risk (VaR) and Expected shortfall (ES)
measures of risk. These measures have become standard measures in financial risk management
due to their conceptual simplicity, computational facility and ready applicability. Following we
derive these measures for the ACD-POT models.

The VaR is defined as the q-th quantile of a distribution F given by

VaRt
α = yt

α = inf
{

y ∈ R : Fyt+1|Ht (y) = α
}
,

2We can also parameterized the shape parameter ξ . However, the behaviour of the estimation is severely affected.
For this reason it is reasonable to take the shape parameter to be constant.
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which is solution to P(yt+1 > yt
α |Ht) = 1−α . Observe that

P
(
yt+1 > yt

α |Ht
)

= P
(
yt+1−u > yt

α −u |Ht
)

= P
(
yt+1−u > yt

α −u | yt+1 > u,Ht
)
P(yt+1 > u |Ht) . (3.7)

The first term in the right hand side of equation (3.7) can be approximated via

P
(
yt+1−u > yt

α −u | yt+1 > u,Ht
)
=

(
1+ξ

yt
α −u

β (t,y |Ht)

)−1/ξ

+

,

while

P(yt+1 > u |Ht) = P(N (t, t +1) = 1 |Ht)

= 1− exp(−λ (t,s |Ht ;θ)) .

Thus the VaR is defined by

VaRt
α = u+

β (t,y |Ht)

ξ

((
1−α

1− exp(−λ (t,s |Ht ;θ))

)−ξ

−1

)
. (3.8)

The last equation implies that the VaR is only defined for our models if 1−exp(−λ (t,s |Ht ;θ))>

1−α . In the case of expected shortfall (ES), it is defined as the average of all losses which are
greater or equal to VaR, i.e. the average loss in the worst (1−α)% cases ESt

α = E [Y | Y > VaRt
α ].

In the models proposed the ES is given by

ESt
α =

VaRt
α

1−ξ
+

β (t,y |Ht)−ξ u
1−ξ

. (3.9)

In the following sections we introduce the models that we want to utilize to parameterize
the expected conditional duration function ψi, the distribution of probability of the standardized
durations εi and the models for the scale parameter β (t,y |Ht).

3.1. ACD models for the expected conditional duration

In this section, we consider models that allow for additive as well as multiplicative components
in the conditional duration function ψ . In addition, we introduce parameterizations that allow not
only for linear but also for more flexible innovations impact curves.

11



The ACD model

The most popular autoregressive conditional duration model, introduced by Engle and Russell
(1998), is based on a linear parameterization of the conditional mean function

ψi = w+
p

∑
j=1

a jxi− j +
q

∑
j=1

b jψi− j,

where w > 0, a,b ≥ 0. In order to ensure the stationarity and existence of the unconditional
expected duration we need ∑

p
j=1 a j +∑

q
j=1 b j < 1.

The logarithmic ACD (Log-ACD) model

In order to prevent ψi becoming negative, Bauwens and Giot (2000) introduced the Logarith-
mic ACD model in which the autoregression bears on the logarithm of the conditional expected
duration.

ψi = exp

{
w+

p

∑
j=1

a j logxi− j +
q

∑
j=1

b j logψi− j

}
.

Note that the functional form of ψi implies a multiplicative relationship between past durations
which is quite different from a linear form.

The Box-Cox ACD (BCACD) model

Dufour and Engle (2000) propose the Box-Cox-ACD model as a more flexible alternative
based on a Box-Cox transformation of the past innovations due to the Log-ACD model implies a
relatively rigid adjustment process of the conditional mean to recent durations and thus, in general,
an over adjustment of the conditional mean after very short durations.

ψi = w+
p

∑
j=1

a j

δ

(
ε

δ
i− j−1

)
+

q

∑
j=1

b jψi− j.

This specification includes the Log-ACD model for the Box-Cox parameter δ → 0 and a linear
specification for δ = 1.

The EXponential ACD (EXACD) model

Dufour and Engle (2000) also introduce the so called EXponential ACD Model since this
model is similar to the one Nelson (1991) devised for the GARCH model. In this model the news
effects are modelled with a piece-wise linear specification.

ψi = w+
p

∑
j=1

{
a jεi− j +δ j

∣∣εi− j−1
∣∣}+ q

∑
j=1

b jψi− j.

12



Thus, for durations shorter than the conditional mean
(
εi− j < 1

)
, the news impact curve has a

slope a j−δ j and an intercept w+δ j. Durations longer than the conditional mean
(
εi− j > 1

)
, also

have a linear effect, but with a slope a j +δ j and intercept w−δ j.

Strict stationarity of the conditional mean for the models Log-ACD, BCACD and EXACD is
guaranteed by constraints on coefficients b’s, i.e., all roots of 1−∑

q
j=1 b jv j must lie outside the

unit circle.

3.2. Distributional assumptions for the standardized durations

The second important ingredient in the parameterization of our ACD-POT model is the dis-
tributional assumption for the innovation process. In this section we explore two alternatives the
Burr and the generalized gamma distribution. The major advantage of these distributions over
the exponential and Weibull distribution, the most common distributions utilized in ACD models,
is that these have non-monotonic hazard functions taking bathtub shaped or inverted U-shaped
forms. In a bathtub shaped form the hazard rate initially decreases, during the middle phase the
hazard rate is essentially constant, and in the final phase the hazard increases. Inverted U-shaped
forms are the counterparts, the hazard rate initially increases, then becomes close to constant and
ultimately decreases. This feature is of particular importance if we are interested in modelling risk
measures such as the VaR or the expected shortfall.

Generalized Gamma distribution

Lunde (1999) as well Zhang et al. (2001) propose the use of a generalized gamma distribution
to characterize the standardized durations because one can then obtain a non-monotonic hazard
function and a time-varying conditional mean duration. A three parameter generalized gamma
density is given by

f (x | γ,k) = γxkγ−1

λ kγΓ(k)
exp
{
−
( x

λ

)γ}
, x > 0.

It includes the exponential distribution (γ = k = 1), the Weibull distribution (k = 1), the half-
normal (γ = 1/2, k = 1) and the ordinary gamma distribution (k = 1). Under the restriction that
λ = 1 we chose ϕ (ψi) = φi = ψi

Γ(k)

Γ

(
k+ 1

γ

) which implies a conditional density of the standardized

duration given by

p
(

xi

φi
|Ht ;θ

)
=

γψi

xiΓ(k)

(
xi

φi

)kγ

exp
{
−
(

xi

φi

)γ}
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and a conditional density of the durations

p(xi |Ht ;θ) =
γΓ

(
k+ 1

γ

)
xi

(
xi

φi

)kγ

exp
{
−
(

xi

φi

)γ}
,

where θ is once more a parameter vector. Note that if k = 1, then we get the Weibull-ACD model,
while for k = γ = 1 the model reduces to an Exponential-ACD model. The hazard function implied
by the generalized gamma model may now be written as

λg(xi |Ht ;θ) =

γxkγ−1
i

φ
kγ

i Γ(k)
exp
{
−
(

xi
φi

)γ}
I
(

k,
(

xi
φi

)γ) ,

where is the upper incomplete gamma integral I
(

k,
(

xi
φi

)γ)
=
´

∞(
xi
φi

)γ uk−1 exp(−u)du.

In addition, the shape properties of the conditional hazard function can be derived from its
parameters values. If kγ < 1, the hazard rate is decreasing for γ ≤ 1 and U-shaped for γ > 1.
Conversely, if kγ > 1, the hazard rate is increasing for γ ≥ 1, and inverted U-shaped for γ < 1.
Finally, if kγ = 1, the hazard is decreasing for γ < 1, constant for γ = 1, and increasing for γ > 1.

The conditional intensity in this case takes the form

λ (t,y |Ht ;θ) =

γxkγ−1
i

φ
kγ

i Γ(k)
exp
{
−
(

xi
φi

)γ}
I
(

k,
(

xi
φi

)γ) 1
β (t,y |Ht)

(
1+ξ

y−u
β (t,y |Ht)

)−1/ξ−1

+

.

The conditional log-likelihood function of this model on a set of observed inter-exceedance times
and of marks or size of the exceedances can easily be derived of (2.4)

L =
N(T )

∑
i=1

{
logγ +(kγ−1) log

(
xi

φi

)
− log(Γ(k)φi)−

(
xi

φi

)γ}

−(1+1/ξ )
N(T )

∑
i=1

log
(

1+ξ
yi−u

β (t,y |Ht)

)
+
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Burr distribution

Another flexible alternative is the Burr distribution introduced in the context of ACD models
by Grammig and Maurer (2000). The density function is defined by

f (x | λ ,k,γ) = λktk−1(
1+ γ2λ tk

)γ−2+1

In this case we define ϕ (ψi) = φi =ψi
γ

2(1+ 1
k )Γ(γ−2+1)

Γ(1+ 1
k )Γ(γ−2− 1

k )
, where 0< γ−2 < k . We choose the density

(3.3) to be Burr under the restriction that λ = 1,

p
(

xi

φi
|Ht ;θ

)
=

kφ
1−k
i xk−1

i(
1+ γ2φ

−k
i xk

i

)γ−2+1
.

The conditional density of xi is then

p(xi |Ht ;θ) =
kφ
−k
i xk−1

i(
1+ γ2φ

−k
i xk

i

)γ−2+1
,

which is a Burr density with parameter λ = φ
−k
i . The implied conditional hazard function is

λg(xi |Ht ;θ) =
kφ
−k
i xk−1

i

1+ γ2φ
−k
i xk

i
, (3.10)

which is non-monotonic function with respect to duration. From (3.10) can be obtained: the
Weibull-ACD model if γ2 → 0, Exponential-ACD model if γ2 → 0 and k = 1 and Log-Logistic
ACD for γ2 = 1. The conditional intensity in this case takes the form

λ (t,y |Ht ;θ) =
kφ
−k
i xk−1

i

1+ γ2φ
−k
i xk

i

1
β (t,y |Ht)

(
1+ξ

y−u
β (t,y |Ht)

)−1/ξ−1

+

.

The conditional log-likelihood function of this model on a set of observed inter-exceedance times
and of marks or size of the exceedances can be easily obtained from (2.4), i.e.,

L =
N(T )

∑
i=1

{
logk− k logφi +(k−1) logxi−

(
1+ γ

−2) log
(

1+ γ
2
φ
−k
i xk

i

)}
−(1+1/ξ )

N(T )

∑
i=1

log
(

1+ξ
yi−u

β (t,y |Ht)

)
+
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3.3. Models for the time varying scale parameter

In this section we consider different models to parameterize the scaling parameter β (t,y |Ht)

such that it depends on the history. This feature implies that the marks are conditionally general-
ized Pareto, given the history Ht up to the time of the mark. Under these models we assume that
in a period of turmoil the temporal intensity of the inter-exceedance times and the magnitude of
the marks increase. We will specify and estimate two alternatives forms for the scaling parameter
β (t,y |Ht), the lineal

β (t,y |Ht) = ω +β1yi−1 +β2ϕ (ψi)

and the exponential

β (t,y |Ht) = ω +β1yi−1 +β
ϕ(ψi)
2 ,

where ω,β1,β2 ∈ R+.
The two models have in common a natural interpretation; the scaling parameter β (t,y |Ht)

depends on the last mark and the conditional mean function of the inter-exceedance times, given
the information up to time t, but not including t3.

4. Empirical application

In this section we present the main empirical results obtained by testing the models introduced
in the previous sections. For the empirical test we chose the transaction data from Bayer AG as
announced already in the introduction. In this study we only concentrate on the left tail, so that the
daily returns are obtained as rt =−100ln(pt/pt−1), where pt denotes the (closing) stock price at
day t. The sample period spans from 2 January 1990 to January 18, 2008, two days before January
20, when the Global stock markets suffered their biggest falls since September 11, 2001. A second
sample is used for backtesting the estimation of the VaR in the Bayer AG from 20 January 2008 to
January 16, 2009. In the backtest we daily update the new information that becomes available for
the parameter estimates previously obtained. Thus, we dynamically adjust quantiles, which allows
us to improve as accurately as possible the estimation of the risk measures.

In order to summarize adequately the large quantity of empirical results obtained, we use a
classification scheme for the ACD-POT models. The first lower-case letter describes the type of

3In the first instance we take different models into account to find the best approach. Our analyses with financial
time series have suggested that by model comparisons based on the likelihood ratio statistic, these models keep the
formulation easy to understand.
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distributional assumption with respect to the ACD model (generalized gamma or Burr). The fol-
lowing capital letters denote the type of ACD model: ACD, Log-ACD, BCACD or EXACD4. The
last small letter denotes the models for the time varying scale parameter: l (lineal), e (exponential)
or u (for unpredictable marks as in (3.5) or equivalently with scale parameter β constant). For ex-
ample, a model gLog-ACDu means that we are working with a Log-ACD model for the expected
conditional duration with generalized gamma distribution and unpredictable marks. In total we
have 24 models.

All parametric models are estimated using quasi maximum likelihood. We adopt different
models according to our scheme classification to test the different ACD models with different
distributional assumptions regardless the possibility of a model with unpredictable marks (marks
with iid GPD) or predictable marks (marks with GPD whose scale parameter is time-dependent).
Observe that the former is equivalent to fitting separately a ACD model to the inter-exceedance
times and a GPD to the excess losses over the threshold.

An important point is the choice of the threshold, which implies a balance between bias and
variance. The threshold must be set high enough so that the exceedances are distributed general-
ized Pareto. However, the choice of the optimal threshold is still considered an open problem and
different approaches have been proposed to overcome this difficulty. In this paper we choose to
work with the 10% of the maxima of the sample5.

In relation to the measures of goodness of fit we utilize the W-statistics to assess our success
in modelling the temporal behaviour of the exceedances of the threshold u. This statistic states
that if the GPD parameter model is correct, then the residuals are approximately independent
unit exponential variables. In addition, to check that there is no further time series structure the
autocorrelation function (ACF) for the residuals is also included. Similarly, we provide empirical
evidence on the accuracy of actual VaR measures derived from the models. The first of them is an
unconditional coverage test proposed by McNeil and Frey (2000). The idea is to test if the fraction
of violations obtained for a particular risk measure, is significantly different from the theoretical
one. A violation of the VaR is defined as occurring when the ex-post return is lower than the
VaR. The second approach proposed by Berkowitz et al. (2009) tests for uncorrelatedness of the
violations. In particular, we suggest the well-known Ljung-Box test of the violation sequence’s
autocorrelation function. All these methods are resumed briefly in the Appendix.

It is quite evident that the performance of the models considered varies depending on the kind

4For a meaningful comparison of alternatives and for simplicity, we limit the dynamic structure of the ACD-POT
models to the first lag order only.

5The choice of the threshold is done with help of the the mean excess (ME) function, which is a popular tool used
to determine the adequacy of the GPD model in practice.
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Figure 4.1: The path of the conditional intesities of an ACD-POT model under four types of distributional assump-
tions: in the top panel the exponential (left) and the Weibull (right) distributions. In the bottom panel the Burr (left)
and the generalized gamma (right) distributions.

of distributional assumption or the model for the time varying scale parameter, that we fitted.
To gain understanding about how each class of models and distribution assumptions affect the
estimations we visually compare the behaviour of the estimate conditional intensity of a small
sample for the Bayer returns.

In the first instance we only concentrate on the kind of distributional assumption. In Figure
4.1 we display the path of a ACD-POT model with four types of distributional assumptions: in the
top panel the exponential (left) and the Weibull (right), as especial cases of the Burr or generalized
gamma distribution, and in the bottom panel the Burr (left) and the generalized gamma (right)
distribution. Observe that in the case of the exponential and Weibull distributions we have a flat or
monotone conditional intensity, respectively. On the other hand, both the Burr and the generalized
gamma distribution show a non-monotone conditional intensity. This important feature allows to
the last two distributions rapidly adapting the conditional intensity to periods of high volatility
which are associated with clustering of short interexceedance times.

In relation to the type of ACD model for conditional mean duration, Figure 4.2 shows con-
ditional intensities for the four models proposed under the assumption of a generalized gamma
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Figure 4.2: The path of the conditional intesities for the four models proposed under the assumption of a generalized
gamma distribution for the innovations: the gACDu (top left), the gLog-ACDu (top right), the gEXACDu (bottom
left) and the gBCACDu model (bottom right).

distribution for the innovations: the ACD (top left), the Log-ACD (top right), the EXACD (bot-
tom left) and the BCACD model (bottom right). At this stage, it is not yet possible to reach a
conclusion on the appropriateness of each model. However, there are some important features of
the models to keep in mind, before we make a choice. On the one hand, the Log-ACD allows
for nonlinear effects of short and long durations in the conditional mean, without requiring the
estimation of additional parameters in comparison to the standard ACD model. While on the other
hand, the BCACD and the EXACD models offer a captivating compromise between the need of
greater flexibility and the burden of higher complexity.

Empirical results

The maximum log-likelihood estimates of the ACD-POT models proposed in section 3 for the
returns are displayed in Tables A.1 and A.2 in the Appendix. For the inter-exceedance times, the
generalized gamma seems to be the best distribution between the two choices. The results on ACD
models for the expected conditional duration lead to markedly fovour the Log-ACD specifications,
followed by the ACD one. Finally, the models with time varying scale parameters lead to a better
fit. Indeed, the results suggest that the models with predictable marks react more quickly to in-
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creasing and decreasing cluster of extremes, which means that the size of the exceedances has an
effect on the probability of further exceedances in the near future.

According to the AIC of the models proposed, the best fitted model for the Bayer index is a
ACD model with generalized gamma distribution and lineal form for the scale parameter (gACDl)
with AIC of 4067.59. We observe further that k = 53.767 (36.539), γ = 0.121 (0.041), which
implies that kγ > 1 and γ < 1 so that the hazard rate is inverted U-shaped. This should not come
as a surprise if one is aware of the intimate relationship between durations and cluster of extremes.
Furthermore, this is the sort of hazard function that earlier authors have found to be realistic in
modeling the dynamics of "price durations" in stock markets (see for instance Zhang et al., 2001
and Grammig and Maurer, 2000). In relation to the results of estimation of the conditional GPD
model to the excedances we obtained ξ =0.503 (0.100), ω= 0.094 (0.044), β1=5.7e-07 (0.001) and
β2= 4.492 (0.826).This result indicates that the lineal form to parameterize the scaling parameter
β (t,y |Ht), such that it depends on the history, was a good choice. Interestingly, the size of the
last exceedance is not as important as the expectation of the i-th inter-exceedance time.

Although the model of choice identified by the AIC may be seen as the best among the existing
models because it shows the best global fit, this does not mean that no better model is possible for
backtesting. So, we usually check whether the major features of the given data can be reproduced
by the estimated models, for instance, the cluster of extreme events. If this important feature is
not reproduced, we must consider further models whose AIC values can be compared with those
of the previous best model. To this end, we include two other models to have a comparison of
different alternatives in the backtest. The second best alternative is a Log-ACD and the third is a
BCACD, both with generalized gamma distribution and lineal form for the scale parameter. We
concentrate on these three alternatives and test the reliability of these models by investigating the
conditional GPD assumption of the marks in the models fitted, the quality of the times component
of our model and the performance in-sample of the estimated VaRs.

The results on the goodness of fit in sample are displayed in Figure A.1. More general test
on miss specification in an ACD model were proposed by Meitz and Teräsvirta (2006). Here,
we first assess the conditional GPD assumption of the marks in the models fitted. To this end,
we provide the W-statistic explained in details in the Appendix. This statistic forms an iid se-
quence of exponential random variables with mean one if the marks are GPD. According to the
QQ-plots displayed in Figure A.1, we do not observe a substantial deviation from an exponential
distribution. In addition, to check that there is no further time series structure, the autocorrelation
function (ACF) for the residuals (middle panel) is also included. The autocorrelations is negligible
at nearly all lags. Finally, to appraise the quality of the times component of our model, we employ
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the residual analysis method for point processes resumed briefly in the Appendix. This is based
on the change of time scale using the estimated conditional intensity. We investigated whether the
transformed time-scale version of the data constitutes a homogeneous Poisson process. The resid-
ual analysis for the three models indicates that the ACD-POT models in their three alternatives in
the changed time scale seems to be acceptable. Hence, for the returns the ACD-POT specification
seems to be appropriate.

In relation to the performance in-sample of the estimates VaRs, Tables A.3 displays the results
for the unconditional coverage test and the Ljung-Box test, for all the models for three different
VaR levels (0.05, 0.01, and 0.001). For each model proposed in the last section we give the number
of violations or failures in the VaR, the unconditional coverage test and the Ljung-Box test (the last
two in brackets). In the case of these three models fitted the conditional VaR is correctly estimated
for all the confidence levels6.

Backtesting the models

Backtesting provides invaluable feedback about the accuracy of the models proposed to risk
managers. The performance of VaR w.r.t backtesting has been carried out with the daily returns
for one year, i.e., from January 20,2008 to January 16, 2009. The backtest method consists on
comparing the estimated conditional VaR for one day time horizon t, given knowledge of returns
up to and including t for three different confidence levels (0.95, 0.99, and 0.999). For each day
in the back test we reestimate the models, something that immediately reveals possible stability
problems of a model. Then, we reestimated the risk measures for each return series according to
the formula (3.8).

Table A.4 reports the results on the VaR backtesting exercise for all confidence levels, while
the VaR violations for the 0.99 confidence level under the gLog-ACDl, gACDl and gBCACDl
models are shown in Figure A.2. The performances for the models are similar for the results on
VaR forecasting, although we observe some differences. For instance, the gLog-ACDl model tends
to lightly underestimate the VaR0.95, while the gBCACDl do the same for the VaR0.99. However,
the unconditional coverage test and the Ljung-Box test for all the confidence levels indicate that
no severe clustering of exceedances is present and that the VaR violations can be considered as in-
dependent, respectively. In addition, according to the “traffic light” approach the three models are
all classified in the green zone (see for more reference Basel Committee on Banking Supervision
(2006)). Finally, due to the shortness of the time horizon we do not find a VaR violation for the
0.999 quantile, and therefore the Box-Ljung test p-values are not reported.

6The null hypothesis is rejected whenever the p-value of the binomial test and the Ljung_Box test are less than 5
percent.
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To summarize, the results of our backtesting procedure with a dynamic adjustment of quan-
tiles incorporating the new information daily allows us to statistically conclude that the models
proposed are suitable for the estimation of different risk measures, as for example, the VaR ac-
cording to the restriction imposed by Basel Committee on Banking Supervision (1996, 2006).
Moreover, these models allow us to take the heavy-tailness or the stochastic nature of the cluster
of extreme events into consideration.

5. Conclusions and future works

This paper proposed a new technique for modelling extreme events of stationary sequences
as is the case of the most financial returns. We make use of a new class of self-exciting point
process models that seem particularly well suited. The idea was to create a model being able to
incorporate stylized facts such as clustering of extreme events and autocorrelation of the inter-
exceedance times of extreme events, i.e., properties that are observed in practice.

The model can be interpreted as a combination between the classical Peaks over Threshold
(POT) model from Extreme Value Theory and the class of Autoregresive Conditional Duration
(ACD) models that are popular in finance. For this reason we call it ACD-POT models.

We observe that under this methodology the estimation of such models can be straightfor-
wardly derived through conditionals intensities. Different models were proposed having in mind
the simplicity of the structure of the conditional intensities. However, other more complicated
structures could also be adopted.

With regard to the empirical application the models and their estimations with returns from
Bayer AG were more than satisfactory. Our empirical results show that characteristics associated
with previous extreme losses as well the time between these extreme events have a significant
impact on the dynamic aspects and size of future extreme events.

On average, the best three models fit well in-sample for the VaR for different levels of risk,
i.e., in terms of capital requirement; the models keep necessary capital to guarantee the desired
confidence level. For these models the VaR is backtested through a comparison with the actual
losses over an out-of-the-sample period of one year. The backtesting results indicate that the
proposed methodology performs well in forecasting the risk dynamically and provides therefore
certainly more precise estimate as the information in the data sample is exploited more efficiently.
This refers particularly to clustering of extreme events and the inter-exceedance times.

In summary the ACD-POT models do a very good job of modelling the inter-exceedance times
associated with waiting times between extreme events and the size of exceedances. These models
are presented as a useful starting point along other extensions. Other possible directions for future
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research emerge from the results. For instance, being interested in long term behaviour rather than
in short term forecasting, the simulation of ACD-POT models is possible to calculate the measures
of risk with other time horizons. Other options would be different distributional assumptions for
the standardized durations or other flexible forms for the self-exciting models, which could be
used incorporating other characteristics of the series such as trend of increasingly exceedances
or different regimes as aftershocks. Another idea is to combine ACD with another class of self-
exciting models, such as Hawkes- or ETAS- (Epidemic Type Aftershock Sequence) models. This
could help to characterize other important features such as slow decay of autocorrelation or a
power-law decay between jumps. Finally, the application of these models are not only limited to
daily returns. A natural extension is to use this methodology to high frequency data to estimate
intraday measures of risk.
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AppendixA. Goodness of fit

Point process residual analysis involves rescaling or thinning the original point process to
obtain a new point process that is homogeneous Poisson. The common element of residual analysis
techniques is the construction of an approximate homogeneous Poisson process from the data
points and an estimated conditional intensity function λ̄g(t |Ht ;θ). Suppose we observe a one-
dimensional point process {t1, . . . , tn} on [0,T ) with conditional intensity λg(t |Ht ;θ). It is well
known that the points

τi =

ˆ ti

0
λg(s |Ht ;θ)ds, (A.1)

for i = 1, . . . ,N (T ) constitute a homogeneous Poisson process of rate 1 on an interval [0,N (T )]

hence is part of a transformed time axis. This new point process is called the residual process. If
the estimated model λ̄g(t |Ht ;θ) is close to the true conditional intensity, then the residual process
resulting from replacing λg(t |Ht ;θ) with λ̄g(t |Ht ;θ) in (A.1) should closely resemble a homo-
geneous Poisson process of rate 1. Ogata (1988) used this random rescaling method of residual
analysis to assess the t of one dimensional point process models for earthquake occurrences. The
resulting property of exponentially distributed durations enables us to test for the presence of a
homogeneous Poisson process via a Kolmogorov-Smirnov test.

In the case of the marks, we provide the W-statistics to assess our success in modelling the
temporal behavior of the exceedances of the threshold u. The W-statistic is defined by

W = ξ
−1 ln

(
1+ξ

y−u
β (t,y |Ht)

)
.

This statistic states that if the GPD parameter model is correct, then the residuals are approximately
independent unit exponential variables. In practice, the independence assumption can be checked
via an ACF plot of the residuals.

In relation to the accuracy of VaR estimates, we use a Bernoulli test with a null hypothesis
of estimating correctly the VaRα,ti at time ti against the alternative that the method systematically
underestimates the returns rti+1 . Thus, the indicator for a violation at time ti is Bernoulli It :=
1{rti+1>{VaRα,ti}} ∼ Be(1−α). How it is described by McNeil and Frey (2000), It and Is are
independent for t,s ∈ T , then

∑
ti∈T
∼ B(n,1−α). (A.2)

Expression (A.2) is a two-tailed test that is asymptotically distributed as binomial. We perform
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the null hypothesis that it is a method that correctly estimates the risk measures against the alter-
native that the method has a systematic estimation error and gives too few or too many violations.
A p−value less than 0.05 is interpreted as evidence against the null hypothesis. Moreover, we im-
plement a test statistics proposed by Berkowitz et al. (2009) for the autocorrelations of de-meaned
violations {It−α}, which form a martingale difference sequence. This is a Ljung-Box statistic,
which is a joint test of whether the first m autocorrelations of {It−α} are zero by calculating

LB(m) = T (T +2)
m

∑
k=1

γ2
k

T − k

where T is the sample size, γk is the sample autocorrelation at lag k and LB(m) is asymptotically
chi-square with m degrees of freedom.
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Tables and Figures

Models Number of violations Models Number of violations
VaR0.95 VaR0.99 VaR0.999 VaR0.95 VaR0.99 VaR0.999

bACDu 389 103 2 gACDu 386 95 (0.00) 0

(0.00, 0.00) (0.00, 0.00) (0.35, 1) (0.00, 0.00) (0.00, 0.00) (0.02, - )

bACDl 248 63 7 gACDl 245 54 6

(0.40, 0.15) (0.02, 0.06) (0.28, 0.24) (0.52, 0.22) (0.30, 0.48) (0.48, 0.51)

bACDe 294 55 3 gACDe 291 46 0

(0.00, 0.00) (0.24, 0.26) (0.64, 0.86) (0.00, 0.00) (0.94, 0.88) (0.02, - )

bLog-ACDu 389 102 1 gLog-ACDu 390 90 0

(0.00, 0.00) (0.00, 0.00) (0.10, 1) (0.00, 0.00) (0.00, 0.00) (0.02, - )

bLog-ACDl 251 56 7 gLog-ACDl 243 43 5

(0.30, 0.11) (0.18, 0.25) (0.28, 0.24) (0.60, 0.36) (0.61, 0.92) (0.82, 0.61)

bLog-ACDe 298 51 2 gLog-ACDe 289 41 0

(0.00, 0.00) (0.56, 0.38) (0.35, 1) (0.00, 0.00) (0.42, 0.93) (0.02, - )

bEXACDu 388 102 1 gEXACDu 387 61 3

(0.00, 0.00) (0.00, 0.00) (0.10, 1) (0.00, 0.00) (0.05, 0.09) (0.64, 0.86)

bEXACDl 248 64 7 gEXACDl 400 144 10

(0.40, 0.15) (0.01, 0.02) (0.28, 0.24) (0.00, 0.00) (0.00, 0.00) (0.03, 0.00)

bEXACDe 293 53 2 gEXACDe 288 43 0

(0.00, 0.00) (0.17, 0.62) (0.35, 1) (0.00, 0.00) (0.61, 0.92) (0.02, - )

bBCACDu 386 102 1 gBCACDu 389 93 0

(0.00, 0.00) (0.00, 0.00) (0.10, 1) (0.00, 0.00) (0.00, 0.00) (0.02, - )

bBCACDl 250 64 7 gBCACDl 244 53 6

(0.33, 0.11) (0.02, 0.02) (0.28, 0.24) (0.57, 0.31) (0.17, 0.29) (0.48, 0.51)

bBCACDe 289 70 6 gBCACDe 293 43 0

(0.00, 0.00) (0.00, 0.00) (0.48, 0.51) (0.00, 0.00) (0.69, 0.92) (0.02, - )

Table A.3: Some VaR in-sample results all models. The number of violations for all VaR confidence levels is displayed
for each model. Values in parentheses are p-values for the unconditional coverage test and the Ljung-Box statistic
with 5 lags. The number of observations in the sample is 4607.
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Model Number of violations
VaR0.95 VaR0.99 VaR0.999

gACDl 18 4 0
(0.34, 0.38) (0.54, 0.81) (1, -)

gLog-ACDl 20 3 0
(0.14, 0.72) (0.77, 0.86) (1, -)

gBCACDl 19 5 0
(0.22, 0.48) (0.22, 0.76) (1, -)

Table A.4: Some VaR backtesting results for three models. Values in parentheses are p-values for the unconditional
coverage test and the Ljung-Box test iwth 5 lags. Values smaller than a p-value 0.05 indicate failure. The number of
observations in the sample is 288.
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Figure A.1: QQ-plots of the residuals (left), autocorrelation function of the residuals (middle) and cumulative numbers
of the residual process versus the transformed time {τi} (right), for the returns of the Bayer index for the gACDl (upper
panel), gLog-ACDl (middle panel) and gBCACDl (lower panel) models.
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