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Pricing Chinese rain: a multi-site multi-period

equilibrium pricing model for rainfall

derivatives∗

Wolfgang Karl Härdle†, Maria Osipenko‡

Abstract

Many industries are exposed to weather risk which they can trans-

fer on financial markets via weather derivatives. Equilibrium models

based on partial market clearing became a useful tool for pricing such

kind of financial instruments. In a multi-period equilibrium pricing

model agents rebalance their portfolio of weather bonds and a risk

free asset in each period such that they maximize the expected util-

ity of their incomes constituted by possibly weather dependent profits

and payoffs of portfolio positions. We extend the model to a multi-

site version and apply it to pricing rainfall derivatives for Chinese

provinces. By simulating realistic market conditions with two agent

types, farmers with profits highly exposed to weather risk and a finan-

cial investor diversifying her financial portfolio, we obtain equilibrium

prices for weather derivatives on cumulative monthly rainfall. Dy-

namic portfolio optimization under market clearing and utility indif-

ference of these representative agents determines equilibrium quantity

and price for rainfall derivatives.
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1 Introduction

Weather derivatives (WDs) are a special kind of contingent claims which

have a particular weather index as its underlying, e.g. average temperature,

snowfall, rainfall, etc. Since their first introduction in 1996 in OTC market,

the trading volume of WDs has an increasing trend. Since 1999 an elec-

tronic trading place for standardized WDs was set up on Chicago Mercantile

Exchange, where WDs on many cities in North America, Europe, Australia

and Asia are currently traded. There are WDs contingent on different tem-

perature indices, hurricanes, frost, snowfall and rainfall. Nevertheless, OTC

markets are important due to high dependence of weather indices, especially

snowfall and rainfall, on the measurement location.

Investors can diversify their financial portfolio with WDs uncorrelated with

financial markets. Especially important are WDs for industries exposed

to weather risk, they can use these financial instruments for hedging their

weather dependent profits. Energy, tourism and agriculture are the sectors,

where WDs have a hedging potential due to weather dependent profits.

One of the most weather sensitive production sectors is agriculture, where

weather is an indirect production factor and has a great impact on rev-

enue, see Musshoff et al. (2010). It is known that cultivation of such impor-

tant agricultural products as wheat, corn, rice, etc., is rather nonsensitive to

nonextreme fluctuations of temperature (the opposite is the case for energy

demand) but is nevertheless influenced by the amount of rainfall. We devote

this paper therefore to pricing derivatives on rainfall important for hedging

agricultural yield fluctuations.

Traditionally this kind of hedging in agriculture was taken over by crop in-

surance, Glauber et al. (2002). However, crop insurance has major disadvan-

tages: adverse selection, moral hazard and high costs arising by the valuation

of eventual losses, see Just et al. (1999) and Quiggin et al. (1993) on these

issues. Due to their nature WDs help to overcome these problems and the
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underlying index is normally measured by the weather stations with low cost.

Nevertheless, WDs can be used effectively for hedging of agricultural volu-

metric risks, see Musshoff et al. (2010) on the hedging potential of rainfall

derivatives for German farmers.

In China, one of the world’s largest agricultural producers, farmers are ex-

posed to pronounced weather risks (The World Bank (2007), Turvey and

Kong (2010)), this hedging potential of WDs can play an important role

in stabilizing the income of farmers and stimulating therefore agricultural

investment flow. According to The World Bank (2007) the existing agricul-

tural insurance schemes are too expensive for Chinese agricultural producers.

The existing gap between the willingness to pay for agricultural insurance

and the willingness to accept it can be potentially overcome with trading of

WDs as a more flexible alternative to agricultural crop insurance.

However, pricing of WDs is not straightforward, since their underlying is non

tradeable and the market is incomplete. Classical arguments imposing exis-

tence of a unique pricing measure or perfect replication strategy fail in this

case. Staum (2008) gives a survey of pricing methodologies in incomplete

markets.

Most of the literature on WDs is devoted to pricing temperature deriva-

tives. Many authors use a risk-neutral valuation of WDs, e.g. Alaton et al.

(2002) derive their pricing model under assumption of a constant market

price of risk, a premium for taking risk in the incomplete market, and tem-

perature following an Ornstein-Uhlenbeck process. Others infer the market

price of risk parameter using different assumptions of its form from the mar-

ket, Härdle and López Cabrera (2011). The drawbacks of these models are

the unavoidable assumption about the form of the market price of risk (e.g

constant or zero market price of risk) and Gaussian type of the underlying

process imputed by the Brownian motion. Their applicability to rainfall as

a point process is limited though.

An alternative to finding a proper risk neutral pricing measure is to use utility
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based pricing through utility indifference and equilibrium. Indifference pric-

ing applied to temperature and based on the utility indifference of the market

players is used by Yamada (2007), Brockett et al. (2006) and Davis (2001).

Prices for rainfall derivatives using indifference arguments were derived by

Carmona and Diko (2005), who use a Bartlett-Lewis Poisson Cluster Process

in continuous time to obtain a closed form of indifference prices for buyer and

seller. Leobacher and Ngare (2011) stay in discrete time and assume rainfall

follows a Markovian process to derive the indifference prices. However, by

indifference pricing alone one obtains a buyers and a sellers price, a unique

price for a WD is unknown. One can overcome this major disadvantage of

indifference pricing by imposing the equilibrium condition.

Equilibrium pricing models result in one equilibrium price and quantity which

clear the market, the price is thereby a result of the interaction between sup-

ply and demand for WDs of the market participants. In continuous time

equilibrium pricing under the assumption that the underlying weather in-

dex follows a mean-reverting Brownian motion were suggested by Horst and

Müller (2007) and Chaumont et al. (2006). Consumption based discrete time

pricing by equilibrium in financial and goods market can be found in Cao

and Wei (2004). Finally, Lee and Oren (2009) proposed an equilibrium pric-

ing model in a multi-commodity and a single planning period setting and

later Lee and Oren (2010) developed a multi-period extension. In this model

agents rebalance their portfolio of commodities, WDs with a payoff being a

predefined function of a particular weather index, and risk free asset in each

period such that they maximize the expected utility of their profits composed

by their weather dependent incomes and payoffs of portfolio positions.

The models above do pricing of WDs at a single site. However, farmers are

usually exposed to basis risk arising from the fact that the average yield is

generally not perfectly correlated with rainfall at a particular site, due to the

point process nature of the rainfall and possible geographical stretch of the

fields, Musshoff et al. (2010). If the weather station, where measurements

can be completed, is not exactly at the farmer’s location, then she should be
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able to set up a better hedging portfolio by including WDs on two or more

sites, which rainfall her yield is correlated to. On the other hand an investor

can diversify her financial risks by holding a basket of WDs for several sites,

Brockett et al. (2006).

Taking the considerations above into account we extend the single site model

of Lee and Oren (2010) to a multi-site setting and apply the model to pric-

ing rainfall bonds. Thereby we do not consider commodities in the portfo-

lio, since with the exception of the large scale extreme events as flood and

drought, agricultural commodity prices are uncorrelated with the rainfall

amount in a specific area and can hedge therefore only the price risks.

We also compare the prices arising from the multi-site model to the single-

site pricing of Lee and Oren (2010) using the concept of association (Esary

et al. (1967), Joag-Dev and Proschan (1983)) of weather indices in different

locations.

The structure of the paper is as follows. In section 2 we derive the equilibrium

pricing model for rainfall derivatives. Section 3 applies the model to pricing

rainfall derivatives for Chinese provinces. In section 4 we conclude.

2 The Pricing Model

Consider a simplified market model where weather bonds on the set of ge-

ographical sites S are priced at times t = 0, 1, . . . , T. The involved agents

maximize their expected utility (here we use exponential utility) with and

without weather bonds and attain their demand/supply in terms of utility

indifference. The market clearing condition determines then the equilibrium

quantities and prices.

The set of agents J contains farmers with weather dependent profit and an

investor who specializes in issuing weather bonds. Farmers take positions in

weather bonds of the nearby sites to hedge weather caused fluctuations in
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their profits. The investor holds positions in weather bonds on all relevant

sites. By weather bonds here and in the following we mean WDs with a pay-

off proportional to the prespecified weather index, e.g. cumulative rainfall,

the tick value is set to one income currency unit.

The price of the sth weather bond, s ∈ S, at time t = 0, . . . , T , Wt,s, is mod-

eled as a positive random variable on a probability space {Ω,F , (Ft)Tt=0,P},
where (Ft)Tt=0 is a natural filtration of F and incorporates the information

level of the agents at time t. Wt = (Wt,s1 ,Wt,s2 , . . . ,Wt,sn)>, si ∈ S, i =

1, . . . , n, n = |S| is a vector of equilibrium prices and |Z| denotes the num-

ber of elements of Z. The price process (Wt)t=0,...,T is adapted to the filtration

(Ft)Tt=0.

The agents are exposed to the self-financing convex constraints which arise

from holding dynamic portfolios such that at each t they contain αj,t =

(αj,t,s1 , . . . , αj,t,sn)>, si ∈ S, i ≤ n weather bonds and βj,t risk free assets Bt

with constant return r. Every jth agent determines an optimal self-financing

trading strategy (αj,t, βj,t)
>
t=0,1,...,T predictable with respect to the filtration

(Ft)Tt=0. To proceed with the model formulation we need to state the following

assumptions:

A1 Agents preferences are expressed by an exponential utility function of

the form Ui(x) = − exp(−aix), i = j,m, j,m ∈ J .

This utility exhibits constant risk aversion (Pratt (1964)) and com-

pared to the isoelastic and logarithmic utility is more convenient for

calculations.

A2 (Wt)t=0,...,T is adapted to the filtration (Ft)Tt=0.

A3 (αj,t, βj,t)
>
t=0,1,...,T predictable with respect to (Ft)Tt=0.

A4 Agents price by utility indifference in each time period.

Assumption A4 implies that agents maximize their expected utilities in each

period t ≤ T with and without WD at s ∈ Sx ⊂ S, x ∈ J and demand
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or supply this WD such that both expected utilities are equal. Each agent

j ∈ J is faced with the following discrete time stochastic control system:

Sj,t+1 = fj,t{Sj,t, (αj,t,s)s∈Sj , Yj,t+1}, t = 0, 1, . . . , T (1)

where Sj,t = {Vj,t, (Wt,s)s∈Sj} denotes the state of the system at time t for

agent j ∈ J , it incorporates to time t available portfolio value Vj,t and equi-

librium WD prices (Wt,s)s∈Sj . In the system (1) (αj,t,s)s∈Sj are the controls

of the agent. Yj,t+1 is the random influence factor which is in our case the

next period prices for weather bonds contained in portfolio of the agent j

(Wt+1,s)s∈Sj and Yj,T is the random value of the chosen weather index at T .

Finally fj,t : R|Sj |+1 × R|Sj | × R|Sj | 7→ R|Sj |+1 is some deterministic function

which maps to the next state of the stochastic system.

Now we consider the two types of agents (farmers and an investor) separately.

We keep the index j ∈ J for farmers and we index investor relevant variables

with m ∈ J .

The profit Πj,T , j ∈ J at T of farmer j is:

Πj,T = Ij(p) +
∑
s∈Sj

αj,T,sWT,s + βj,TBT (2)

= Ij(p) + Vj,T

with Ij
def
= Ij(p) an income, correlated with the weather indices (WT,s)s∈Sj .

The production price p is assumed to be constant and
∑

s∈Sj
αj,T,sWT,s,

βj,TBT are then the payoffs of the WDs and the risk free asset at traded

stations s ∈ Sj ⊂ S, set of sites the income of the farmer j is dependent on.

An example herefor would be a farmer, whose income I1 is correlated to

the cumulative rainfall at T (RTs)s∈S1 of the set of neighbor stations S1 =

{a, b} ⊂ S = {a, b, c} with the correlation parameters ρa, ρb 6= 0. This farmer

could then hedge rainfall caused fluctuations of her income by holding a port-

folio of WDs with payoff at T α1,T,aRT,a + α1,T,bRT,b.
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Based on (2) and corresponding to the j-farmer’s utility maximization value

function J(Vj,t −
∑

s∈Sj αj,t+1,sWt,s,
∑

s∈Sj αj,t+1,sWt,s) is defined as

J(Vj,t −
∑
s∈Sj

αj,t+1,sWt,s,
∑
s∈Sj

αj,t+1,sWt,s) = max
{αj,t+1,s}s∈Sj

Et {Uj (Πj,T )}

s.t.
∑
s∈Sj

αj,t+1,sWt,s + βj,t+1Bt − Vj,t = 0.

Consider now the investor m, m ∈ J who issues WD at all sites in S. The

profit of the investor at T is:

Πm,T = −
∑
s∈S

αm,T,sWT,s + βm,TBT = Vm,T

with
∑

s∈S αm,T,sWT,s, βm,TBT payoffs of the WDs and the risk free asset.

Then the value function corresponding to the investor’s utility maximization

J(Vm,t +
∑

s∈S αm,t+1,sWt,s,−
∑

s∈S αm,t+1,sWt,s) is given by

J(Vm,t +
∑
s∈S

αm,t+1,sWt,s,−
∑
s∈S

αm,t+1,sWt,s) = max
{αm,t+1,s}s∈S

Et {Um (Πm,T )}

s.t.
∑
s∈S

αm,t+1,sWt,s − βm,t+1Bt + Vm,t = 0.

These value functions along with assumption A4 allow us to derive the sup-

ply and demand functions for the WD at s in t time period. By applying

the equilibrium condition we can determine for each farmer j and investor m

the equilibrium quantities (α∗j,t,s)s∈Sj and (α∗m,t,s)s∈S and the resulting equi-

librium prices (W ∗
t,s)s∈S for each t = 0, . . . , T − 1, such that

∑
j∈J\{m}

α∗j,t+1,s = α∗m,t+1,s,

W ∗
t,s = Wt,s(α

∗
j,t+1,s), for all s ∈ S and t = 0, . . . , T − 1.

where Wt,s(αj,t+1,s) denotes the reverse demand or supply for the WD at site
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s of the agent j in time t. Its specific form is given in Propositions 2.1 and

2.2.

By substituting the equilibrium prices and quantities into the agents value

functions we can find their optimal value functions, which are

• for the farmers:

J(Vj,t −
∑
s∈Sj

α∗j,t+1,sW
∗
t,s,
∑
s∈Sj

α∗j,t+1,sW
∗
t,s)

def
= J∗j,t(Vj,t), j ∈ J \ {m},

• for the investor:

J(Vm,t +
∑
s∈S

α∗m,t+1,sW
∗
t,s,−

∑
s∈S

α∗m,t+1,sW
∗
t,s)

def
= J∗m,t(Vm,t).

PROPOSITION 2.1 The reverse supply for the WD at site s′ ∈ Sj and

the value function of farmer j at time t, Wt,s′(αj,t+1,s′) and J∗j,t(Vj,t), are

defined:

WT−1,s′(αj,T,s′) =
1

ajRαj,T,s′

log
ET−1

[
exp

{
−aj(Ij +

∑
s∈Sj\{s′} αj,T,sWT,s)

}]
ET−1

[
exp

{
−aj(Ij +

∑
s∈Sj αj,T,sWT,s)

}] (3)

J∗j,T−1(Vj,T−1) = − exp {−ajVj,T−1R}Θj,T−1

Θj,T−1 = exp{aj
∑
s∈Sj

α∗j,T,sW
∗
T−1,sR}

ET−1

[
exp{−aj(Ij +

∑
s∈Sj

α∗j,T,sWT,s)}
]
,
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Wt,s′(αj,t+1,s′) =
1

ajαj,t+1,s′RT−t

log
Et{exp(−aj

∑
s∈Sj\{s′} αj,t+1,sWt+1,sR

T−(t+1))Θj,t+1}
Et{exp(−aj

∑
s∈Sj αj,t+1,sWt+1,sRT−(t+1))Θj,t+1}

,

J∗j,t(Vj,t) = − exp(−ajVj,tRT−t)Θj,t

Θj,t = exp(ajR
T−t
∑
s∈Sj

α∗j,t+1,sW
∗
t,s)

Et{exp(−ajRT−(t+1)
∑
s∈Sj

α∗jt+1sWt+1s)Θjt+1},

with R = 1 + r, 0 ≤ t < T − 1.

The proof of Proposition 2.1 is given in the appendix.

PROPOSITION 2.2 The reverse demand for the WD at site s′ ∈ S and

the value function of the investor m at time t, Wt,s′(αm,t+1,s′) and J∗m,t(Vm,t),

are:

Wt,s′(αm,t+1,s′) =
1

amαm,t+1,s′RT−t

log
Et
[
exp

{
am(
∑

s∈S αm,t+1,sWt+1,sR
T−(t+1))

}]
Et
[
exp

{
am
∑

s∈S\{s′} αm,t+1,sWt+1,sRT−(t+1)
}] ,(4)

J∗(Vm,t) = exp(amVm,tR
T−t)

with R = 1 + r, 0 ≤ t ≤ T.

The proof of Proposition 2.2 is given in the appendix.

With the proposed setup we are in the position to analyze the properties

of farmers’ supply and investor’s demand under different underlying spatial

dependence types in a one-period multi-site pricing model. The following

propositions specify the shifts of the demand/supply curves assuming posi-

tive or negative dependence between sites.

To specify the directional dependence of weather indices across locations we

adopt a concept of positive/negative association of random variables intro-
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duced in Esary et al. (1967) and Joag-Dev and Proschan (1983). According

to their definitions random variables Z = (Z1, . . . , Zl) are positively (neg-

atively) associated if Cov{f(Z), g(Z)} ≥ 0 (Cov{f(Z), g(Z)} ≤ 0) for all

nondecreasing functions f, g for which the corresponding expectations ex-

ist, see Definition 1.1 in Esary et al. (1967) and Definition 2.1 in Joag-Dev

and Proschan (1983). This concept of association is a very broad one and

includes many types of the underlying dependence structures, e.g. Pearson

correlation as a special case.

In the following WT−1,s′(αm,T,s′) and WT−1,s′(αj,T,s′) remains the demand of

the investor and the supply the farmer j for the weather bond in site s′

respectively, defined in (3) and (4) in a multi-site setting and

W S
T−1,s′(αm,T,s′) = (amRαm,T,s′)

−1 log ET−1 {exp (amαm,T,s′WT,s′)}

the demand of the investor and

W S
T−1,s′(αj,T,s′) = (ajRαj,T,s′)

−1 log
ET−1 {exp(−ajIj)}}

ET−1 [exp {−aj(Ij + αj,T,s′WT,s′)}]

the supply of the farmer j in the same site in a single-site setting (see Lee and

Oren (2010) for the derivation). We assume a one-period multi-site setting

from now forth.

PROPOSITION 2.3 If (WT,s)s∈S are positive (negative) associated ran-

dom variables, then for (αm,T,s)s∈S ≥ 0 and am > 0 the investors demand for

the WD in s′ shifts upwards (downwards) resulting in higher (lower) equi-

librium prices in comparison to the single-site case, keeping other conditions

equal.

11



Proof. From the definition of the positive (negative) association we have:

Cov[f(WT,s′), g{(WT,s)s∈S\{s′}}]
≥

(≤)
0, for all nondecreasing f, g

E[f(WT,s′), g{(WT,s)s∈S\{s′}}]
≥

(≤)
E{f(WT,s′)}E[g{(WT,s)s∈S\{s′}}] (5)

Note, that for T = 1 F0 is trivial and therefore:

ET−1[f(WT,s′), g{(WT,s)s∈S\{s′}}] = E[f(WT,s′), g{(WT,s)s∈S\{s′}}].

Using (5) we have:

WT−1,s′(αm,T,s′) =
1

amRαm,T,s′

log
ET−1

{
exp (amαm,T,s′WT,s′) exp

(
am
∑

s∈S\{s′} αm,T,sWT,s

)}
ET−1

{
exp

(
am
∑

s∈S\{s′} αm,T,sWT,s

)}
≥

(≤)

1

amRαm,T,s′

log
ET−1{exp (amαm,T,s′WT,s′)}ET−1{exp(am

∑
s∈S\{s′} αm,T,sWT,s)}

ET−1{exp(am
∑

s∈S\{s′} αm,T,sWT,s)}

=
1

amRαm,T,s′
log ET−1 {exp (amαm,T,s′WT,s′)}

=W S
T−1,s′(αm,T,s′).

and the assertion follows. �

The result of Proposition 2.3 shows, that positive (negative) dependencies

in underlying weather risks force the investor to shrink (to expand) his de-

mand due to higher (lower) risks she bears by buying weather bonds with

dependent payoffs. The diversification effect as known from portfolio theory

is not relevant here, since the amount of money invested is not restricted to

a limited capital.
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We note that in the case of independent (WT,s)s∈S they possess both nega-

tive and positive association property, see Esary et al. (1967) Theorem 2.1

and Joag-Dev and Proschan (1983) Property P5. Therefore in this case an

investor would price as in a single site case.

PROPOSITION 2.4 If WT,s′ is independent of (WT,s)s∈Sj\{s′} and Ij and

(WT,s)s∈Sj are positive associated, then for (αj,T,s)s∈Sj ≤ 0and aj > 0 the

farmers supply for the WD in s′ shifts downwards resulting in lower equilib-

rium prices in comparison to the single-site case, keeping other conditions

equal. A similar result can be obtained for the opposite association.

Proof.

WT−1,s′(αj,T,s′) =
1

ajRαj,T,s′
log

ET−1

{
exp(−ajIj) exp(−aj

∑
s∈Sj\{s′} αj,T,sWT,s)

}
ET−1

[
exp {−aj(Ij + αj,T,s′WT,s′)} exp(−aj

∑
s∈Sj\{s′} αj,T,sWT,s)

]
By the definition of association:

ET−1{− exp(−ajIj) exp(−aj
∑

s∈Sj\{s′}

αj,T,sWT,s)}

≥ ET−1{− exp(−ajIj)}ET−1{exp(−aj
∑

s∈Sj\{s′}

αj,T,sWT,s)}

hence

ET−1{exp(−ajIj) exp(−aj
∑

s∈Sj\{s′}

αj,T,sWT,s)}

≤ ET−1{exp(−ajIj)}ET−1{exp(−aj
∑

s∈Sj\{s′}

αj,T,sWT,s)} (6)
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For the denominator we have:

ET−1[exp{−aj(Ij + αj,T,s′WT,s′)} exp(−aj
∑

s∈Sj\{s′}

αj,T,sWT,s)]

= ET−1(E[exp{−aj(Ij + αj,T,s′WT,s′)}

exp(−aj
∑

s∈Sj\{s′}

αj,T,sWT,s)|Ij, (WT,s)s∈Sj\{s′}]) (7)

= ET−1(E[exp{−aj(Ij + αj,T,s′WT,s′)}|Ij]

exp(−aj
∑

s∈Sj\{s′}

αj,T,sWT,s)) (8)

≥ ET−1(E[exp{−aj(Ij + αj,T,s′WT,s′)}|Ij])

ET−1(exp(−aj
∑

s∈Sj\{s′}

αj,T,sWT,s)) (9)

= ET−1 [exp {−aj(Ij + αj,T,s′WT,s′)}]ET−1{exp(−aj
∑

s∈Sj\{s′}

αj,T,sWT,s)}.

(10)

Above equalities (7) and (8) result using properties of conditional expec-

tations and the independence of WT,s′ from (WT,s)s∈Sj\{s′}. The inequality

in (9) is obtained using the assumptions of the theorem and the increasing

property of E[exp{−aj(Ij +αj,T,s′WT,s′)}|Ij] in Ij. Using (6) and (10) we get:

WT−1,s′(αj,T,s′) ≤
1

ajRαj,T,s′
log

ET−1 {exp(−ajIj)}}
ET−1 [exp {−aj(Ij + αj,T,s′WT,s′)}]

= W S
T−1,s′(αj,T,s′),

which completes the proof. �

Proposition 2.4 yields that farmer is willing to supply the same quantity of

weather bond for a lower price in comparison to the single-site case, whenever

the dependence between her income and weather bond payoffs of other sites

is positive, which also implies the assumption of (αj,T,s)s∈Sj ≤ 0 in the case

of independence between payoff of site s′ and other sites from Sj, so that she

bears less risk.
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3 Application to Pricing Chinese Rain

In practice the pricing according to the model includes further aspects. Hav-

ing the pricing model at hand we still have to concretize some steps, taken

abstract in the previous section, as the statistical modeling of the relevant

weather variable, in our case rainfall, and the quantification of the relation-

ship between the rainfall and the farmers income.

station number latitude longitude start date end date
Changde 57662 29.05 111.68 19510101 20091130

Enshi 57447 30.28 109.47 19510801 20091130
Yichang 57461 30.70 111.30 19520701 20091130

Table 1: Description of the rainfall data and stations.

We illustrate the later on the application to pricing Chinese rain. We base

our calculations on the rainfall data of three weather stations in a Chinese

provinces Hunan and Hubei, summarized in Table 1 and Figure 1. The data

was acquired via Research Data Center of CRC 649 (Collaborative Research

Center 649: Economic risk).

We calculate the price of the rainfall bonds for April traded on these three

stations. The cumulative rainfall of April will be taken for the illustration

purposes because of it’s relative importance in the cultivating rice in China.

3.1 Rainfall Dynamics

Because of the multi-site nature of the pricing model, the model for rainfall

should also account for its spatial characteristics. Following the traditional

way of modeling daily rainfall, see e.g. Richardson (1981), we first model

the rainfall occurrences at site s′ in day t Xs′,t as a Markov chain with two

states.

Xs′,t =

{
1 (wet,≥ 0.1mm),

0 (dry, < 0.1mm),

15
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Changde

Enshi
Yichang

Figure 1: Three stations in China considered in the example.

The threshold of 0.1 mm for the definition of ”wet” and ”dry” was taken

according to the data description. The multi-site feature is added through

the contemporal dependencies on the state in neighbor locations, Kim et al.

(2008). The stations, where the rainfall occurrences depend only on it’s

own past, follow a single-site Markov model of second order with transition

probabilities:

P (Xs′,t|Xs′,t−1, Xs′,t−2),

Stations, where the occurrences depend on the state of the neighbors fol-

low a multi-site Markov model of first time and space order with transition

probabilities:

P (Xs,t|Xs,t−1, Xs′,t),

here Xs,t are rainfall occurrences in station s at time t and s subordinate to s′.

To determine which station follows which model we have to find an optimal

path from the ”parent” station to other stations, based on some criteria. As

in Kim et al. (2008) we find the optimal permutation of stations maximizing

the cumulative distance of spatial transition probabilities:

π∗(S) = arg max
π(S)∈Π(S)

{ ∑
s∈π(S)

D(s)
}
,

16
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Figure 2: Optimal paths between stations in April: 1.04–28.04 showed in the left
plot and 29.04–7.05 in the right plot.

where π(S) permutation and Π(S) set of all permutations on the set of sta-

tions S, D(s) = |0.5− P (Xs,t = 1|Xs′,t = 1)| + |0.5− P (Xs,t = 1|Xs′,t = 0)|
distance of spatial transition probabilities, s subordinate to s′, s, s′ ∈ S.

For the data of the three stations in China, we first test the plausibility of

the multi-site modeling using a χ2-independence test, Hiscott (1981). The

test rejects pairwise independence of the stations on < 1% significance level

with p-values near zero. The resulting optimal paths on example of April are

illustrated in Figure 2. In the time span of 1.04-28.04 Changde appears to be

the parent station, meaning the rainfall occurrence process of Changde fol-

lows a single site Markov model of the second order, the rainfall occurrences

of Enshi and Yichang depend on those of Changde and Enshi respectively

and follow a Markov model of the first order in space and time. For the time

span of 29.04-7.05 dependence direction is the other way around.

The positive rainfall amount is given only on wet days. The distribution of

the rainfall amount conditioned on a rainy day Rs,t|Xs,t = 1 is assumed to

be a mixture of two exponential distributions with a time dependent mixing

parameter αst and time changing means β1st, β2st. This is a standard dis-

17



station
empirical simulated

mean sd mean sd
Changde 168.6 75.2 172.7 65.2

Enshi 72.1 44.2 73.5 34.4
Yichang 93.5 69.6 89.8 50.1

Table 2: sample means and standard deviations of cumulative rainfall of April in
each station in comparison to the means and standard deviations resulting from
10’000 simulation steps.

tribution of the rainfall amount in the literature, see Woolhiser and Roldán

(1982), Chapman (1997) and Wilks (1998). The parameters were estimated

from the rainfall data using Maximum Likelihood and a rolling window of

29 days centered on the day of interest. The average mixing parameter over

time and space ᾱ was 0.35, average β̄1, β̄2 were (0.78, 11.29)>.

Table 2 presents the sample means and standard deviations of cumulative

rainfall in each station, as well as means and standard deviations resulting

from 10’000 simulation steps using the underlying model described above.

3.2 Quantification of Income-Rainfall relationship and

Pricing Example

The income-rainfall relationship for pricing should be estimated on the in-

dividual farmer level due to its idiosyncratic character. A simple method

to quantify this relationship is to calculate the realized correlation of the

income to the cumulative rainfall of the nearby stations and to use the em-

pirical marginal income distribution. Because of the lack of the data, we

suggest to specify this on a farm level. For our example we use hypothetical

correlation parameters and adopt a normal distribution as the marginal in-

come distribution.

Since homogeneous agents would act identically, we can simplify the general

setting of Section 2 to the market of three representative agents: two farmers

18



and an investor. Investor trades rainfall bonds on three stations in China.

Farmers are situated such that their income is correlated to the two of the

three traded stations. The income of farmer 1 (I1) is correlated with rainfall

of the corresponding station with ρ11, ρ12. The correlations of the income of

farmer 2 (I2) are ρ21 and ρ23, see Table 3 for a more detailed specification.

Other correlations are zero. In this setting farmers are inclined to buy rain-

fall bonds on the two stations with nonzero correlation to their income.

Changde Enshi Yichang
I1 ρ11 = 0.3 ρ12 = 0.6 ρ13 = 0
I2 ρ21 = 0.6 ρ22 = 0 ρ23 = 0.3

Table 3: ρ-values used for simulation.

We compute the expectations in (3) and (4) using the MCMC algorithm

with 10000 simulation steps to generate the distribution of the cumulative

rainfall from the Markov model described above. As the initial state we as-

sume no rain in two previous days in all stations. A Gaussian Copula is used

to generate the income with the given correlations to the rainfall outcomes,

the marginal distribution of the income is taken to be a Gaussian one with

hypothetical mean 500 and variance 100.

The resulting prices for the cumulative rainfall bond of April are presented

in Figure 3. Thereby the risk aversion parameters a1 = a2 = am were

set to 0.01, the correlations to 0.6, 0.3 as in Table 3, product price p to 1

and the risk free interest rate r to 5.3% p.a. The bottom plot in Figure 3

shows the prices of a one-period model (dashed) compared to a two-period

model (solid lines in the left part). After observing the rainfall of the first

15 days in April (upper plot left part) agents can update their expectations

and rebalance their portfolios respectively. As the result of this interaction

the equilibrium prices of the second period (bottom plot right part) establish.
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Figure 3: Upper plot: hypothetical paths of the rainfall observed by the agents
in the three stations till the rebalancing time (solid lines) and possible cumulative
rainfall paths after the rebalancing (dashed lines). Lower plot: simulated equilib-
rium prices for bonds on the cumulative rainfall in a one period model (dashed
lines) and in the two-period model (solid lines) to the left – for the first planning
period, to the right – for the second given the rainfall up to the rebalancing.

A1 B1 C1 A2 B2 C2

Figure 4: Boxplots of the farmers income distributions with and without WDs.
A1, A2 indicate the income distributions of the two farmers before trading WDs,
B1, B2 – with trading WDs only at the station Changde and C1,C2 – with trading
WDs at several stations.
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Figure 4 shows a more desirable distribution of incomes of farmers when

they use WDs in comparison to no WDs in portfolio. Although the median

of the income with WDs is insignificantly lower than without, the spread

and interquartile range are substantially lower with WDs. A multi-site WD

trading allows thus to reduce the basis risk of the farmers, such that hedging

of their income becomes more efficient as they can trade several sites instead

of a single one. This can be seen from Figure 4 by comparing the boxplots

of the income of farmer 1: C1 (WD on two stations) to A1 (no WDs) and

B1 (WD on a single station) and of farmer 2: C2 to A2 and B2 respectively.

The presented income distributions in cases B1 and B2 are calculated for

the situation where farmers trade WDs on Changde only, in cases C1 and

C2 farmer 1 trades WDs on Changde and Enshi and farmer 2 – on Changde

and Yichang. In this case farmers are better off in terms of their income

distribution.

4 Conclusion

We proposed a multi-site multi-period model for pricing WDs. Our approach

is based on utility indifference of the representative agents and on the par-

tial equilibrium on the market of WDs. We derived supply and demand for

WDs in each period and site in this setting and compared the results to a

single-site model of Lee and Oren (2010) using the concept of association of

Esary et al. (1967).

We applied the proposed model to pricing rainfall bonds on three sites in Chi-

nese provinces. Thereby we used historical rainfall data of these provinces

and simulated a two-period three-agent economy. We obtained equilibrium

prices and quantities for rainfall bonds of the provinces. The results of the

simulation could indeed show an improvement in farmers income distribu-

tions in comparison to the case of no WDs and to the single-site weather

trading case.
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5 Appendix

To prove Proposition 2.1 we use the following

REMARK 5.1

Vj,t = R(Vj,t−1 −
∑
s∈Sj

α,,t,sWt−1,s) +
∑
s∈Sj

αj,t,sWt,s, (11)

since

Vj,T−k = R(Vj,T−k−1 −
∑
s∈Sj

αj,T−k,sWT−k−1,s) +
∑
s∈Sj

αj,T−k,sWT−k,s

= R(
∑
s∈Sj

αj,T−k,sWT−k−1,s + βj,T−k
BT−k

R
−
∑
s∈Sj

αj,T−k,sWT−k−1,s)

+
∑
s∈Sj

αj,T−k,sWT−k,s = βj,T−kBT−k +
∑
s∈Sj

αj,T−k,sWT−k,s

= Vj,T−k, k ≤ T − 1, j ∈ J \ {m}.

Proof. The maximized utility of farmer j in (T − 1) with WD at s′ ∈ Sj is:

J(Vj,T−1 −
∑
s∈Sj

αj,T,sWT−1,s,
∑
s∈Sj

αj,T,sWT−1,s)

= ET−1[Uj{Ij +
∑
s∈Sj

αj,T,sWT,s + (Vj,T−1 −
∑
s∈Sj

αj,T,sWT−1,s)R}]

(12)

The maximized utility of farmer j in (T − 1) without WD at s′ ∈ Sj:

J(Vj,T−1 −
∑

s∈Sj\{s′}

αj,T,sWT−1,s,
∑

s∈Sj\{s′}

αj,T,sWT−1,s)

= ET−1[Uj{Ij + (Vj,T−1 −
∑

s∈Sj\{s′}

αj,T,sWT−1,s)R}] (13)
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Using A1 and A4 we equalize (12) and (13) and get:

ET−1[
− exp

{
− aj(Ij +

∑
s∈Sj\{s′}

αj,T,sWT,s)− aj(Vj,T−1 −
∑

s∈Sj\{s′}

αj,T,sWT−1,s)R
}]

= ET−1

[
− exp

{
− aj(Ij +

∑
s∈S

αj,T,sWT,s)− aj(Vj,T−1 −
∑
s∈S

αj,T,sWT−1,s)R
}]
,

With A2,A3:

exp {ajαj,T,s′WT−1,s′)R} =
ET−1

[
exp

{
−aj(Ij +

∑
s∈Sj\{s′} αj,T,sWT,s)

}]
ET−1

[
exp

{
−aj(Ij +

∑
s∈Sj αj,T,sWT,s)

}] ,

and thus

WT−1,s′ =
1

ajRαj,T,s′
log

ET−1

[
exp

{
−aj(Ij +

∑
s∈Sj\{s′} αj,T,sWT,s)

}]
ET−1

[
exp

{
−aj(Ij +

∑
s∈Sj αj,T,sWT,s)

}] (14)

for s ∈ Sj.
The value function of farmer j at T − 1 is then:

J∗j,T−1(Vj,T−1) = − exp {−ajVj,T−1R}Θj,T−1,s (15)

with

Θj,T−1 = exp{aj
∑
s∈Sj

α∗j,T,sW
∗
T−1,sR}ET−1

[
exp{−aj(Ij +

∑
s∈Sj

α∗j,T,sWT,s)}
]
.

Using Bellman’s Principal of optimality, Bellman (1952) in T − 2:
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J(Vj,T−2 −
∑
s∈Sj

αj,T−1,sWT−2,s,
∑
s∈Sj

αj,T−1,sWT−2,s) = ET−2

{
J∗j,T−1(Vj,T−1))

}
= ET−2 [− exp {−ajVj,T−1R}Θj,T−1,s] ,

5.1
= ET−2[− exp{−aj(Vj,T−2 −

∑
s∈Sj

αj,T−1,sWT−2,s)R
2

− aj
∑
s∈Sj

αj,T−1,sWT−1,sR}Θj,T−1], (16)

and

J(Vj,T−2 −
∑

s∈Sj\{s′}

αj,T−1,sWT−2,s,
∑

s∈Sj\{s′}

αj,T−1,sWT−2,s)

= ET−2[− exp{−aj(Vj,T−2 −
∑

s∈Sj\{s′}

αj,T−1,sWT−2,s)R
2

− aj
∑

s∈Sj\{s′}

αj,T−1,sWT−1,s}Θj,T−1]. (17)

From (16) and (17) using A2–A4:

exp
{
ajαj,T−1,s′WT−2,s′R

2
}

=
ET−2{exp(−aj

∑
s∈Sj\{s′} αj,T−1,sWT−1,sR)Θj,T−1}

ET−2

[
exp

{
−aj

∑
s∈Sj αj,T−1,sWT−1,sR

}
Θj,T−1

] ,

WT−2,s′ =
1

ajR2αj,T−1,s′
log

ET−2{exp(−aj
∑

s∈Sj\{s′} αj,T−1,sWT−1,sR)Θj,T−1}

ET−2

[
exp

{
−aj

∑
s∈Sj αj,T−1,sWT−1,sR

}
Θj,T−1

] .
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The value function of farmer j at T − 2 is then:

J∗j,T−2(Vj,T−2) = − exp{ajVj,T−2R
2} exp{aj

∑
s∈Sj

α∗j,T−1,sW
∗
T−2,sR

2}

ET−2[exp{−aj
∑
s∈Sj

α∗j,T−1,sWT−1,sR}Θj,T−1]

= − exp(ajVj,T−2R
2)Θj,T−2,

with

Θj,T−2 =

exp{aj
∑
s∈Sj

α∗j,T−1,sW
∗
T−2,sR

2}ET−2

[
exp{−aj

∑
s∈Sj

α∗j,T−1,sWT−1,sR}Θj,T−1

]
.

For T − k, k ≤ T we define recursively:

WT−k,s′ =
1

ajαj,T−k+1,s′Rk
(18)

log
ET−k{exp(−aj

∑
s∈Sj\{s′} αj,T−k+1,sWT−k+1,sR

k−1)Θj,T−k+1}
ET−k{exp(−aj

∑
s∈Sj αj,T−k+1,sWT−k+1,sRk−1)Θj,T−k+1}

J∗j,T−k(Vj,T−k) = − exp(−ajVj,T−kRk)Θj,T−k (19)

Θj,T−(k+1) = exp(ajR
k+1
∑
s∈Sj

α∗j,T−k,sW
∗
T−(k+1),s)

ET−(k+1){exp(−ajRk
∑
s∈Sj

α∗j,T−k,sWT−k,s)Θj,T−k}. (20)

We prove it by backward induction over T − k:

• for T − 1 above.

• with induction assumption (19):
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J(Vj,T−(k+1) −
∑
s∈Sj

αj,T−k,sWT−(k+1),s,
∑
s∈Sj

αj,T−k,sWT−(k+1),s)

= ET−(k+1){J∗j,T−k(Vj,T−k)}

= ET−(k+1)[− exp{−ajVj,T−kRk}Θj,T−k]

5.1
= ET−(k+1)

(
− exp[−aj{(Vj,T−(k+1) −

∑
s∈Sj

αj,T−k,sWT−(k+1),s)R
k+1

+
∑
s∈Sj

αj,T−k,sWT−k,sR
k}]Θj,T−k

)
.

J(Vj,T−(k+1) −
∑

s∈Sj\{s′}

αj,T−k,sWT−(k+1),s,
∑

s∈Sj\{s′}

αj,T−k,sWT−(k+1),s)

= ET−(k+1)

(
− exp[−aj{(Vj,T−(k+1) −

∑
s∈Sj\{s′}

αj,T−k,sWT−(k+1),s)R
k+1

+
∑

s∈Sj\{s′}

αj,T−k,sWT−k,sR
k}]Θj,T−k

)
.

WT−(k+1),s′
A4
=

1

ajαj,T−k,s′Rk+1

log
ET−(k+1){exp(−aj

∑
s∈Sj\{s′} αj,T−k,sWT−k,sR

k)Θj,T−k}
ET−(k+1){exp(−aj

∑
s∈Sj αj,T−k,sWT−k,sRk)Θj,T−k}

.

For the value function of farmer j at T − (k + 1) we have:

J∗j,T−(k+1)(Vj,T−(k+1))

= − exp(−ajVj,T−(k+1)R
k+1) exp(aj

∑
s∈Sj

α∗j,T−k,sW
∗
j,T−(k+1)R

k+1)

ET−(k+1){exp(−aj
∑
s∈Sj

α∗j,T−k,sWT−k,sR
k)Θj,T−k}

(20)
= − exp(−ajVj,T−(k+1)R

k+1)Θj,T−(k+1).
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Then it holds

J∗j,T−(k+2)(Vj,T−(k+2)) = − exp(−ajVj,T−(k+2)R
k+2)Θj,T−(k+2)

= ET−(k+2){J∗j,T−(k+1)(Vj,T−(k+1))}

= ET−(k+2){− exp(−ajVj,T−(k+1)R
k)Θj,T−(k+1)}

A2,A3
= − exp(−ajVj,T−(k+2)R

k+2)

exp(aj
∑
s∈Sj

α∗j,T−(k+1),sW
∗
T−(k+2),sR

k+2)

ET−(k+2){exp(−aj
∑
s∈Sj

α∗j,T−(k+1),sWT−(k+1),sR
k+1)Θj,T−(k+1)}

and Θj,T−(k+2)

= exp(aj
∑
s∈Sj

α∗j,T−(k+1),sW
∗
T−(k+2),sR

k+2)

ET−(k+2){exp(−aj
∑
s∈Sj

α∗j,T−(k+1),sWT−(k+1),sR
k+1)Θj,T−(k+1)}.

�

To prove Proposition 2.2 we use the following

REMARK 5.2

Vm,t = R(−Vm,t−1 +
∑
s∈S

αm,t,sWt−1,s)−
∑
s∈S

αm,t,sWt,s,

compare (5.1).

Proof. In T−1 the maximized utility of the investor with WD at site s′ ∈ S:

J(VmT−1 −
∑
s∈S

αmTsWT−1s,
∑
s∈S

αmTsWT−1s)

= ET−1

(
− exp

[
− am

{
−
∑
s∈S

αmTsWTs

+
(∑
s∈S

αmTsWT−1s + VmT−1

)
R
}])

, (21)
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utility of the investor without WD at site s′ ∈ S

J(VmT−1 −
∑

s∈S\{s′}

αmTsWT−1s,
∑

s∈S\{s′}

αmTsWT−1s)

= ET−1

(
− exp

[
− am

{
−

∑
s∈S\{s′}

αmTsWTs

+
( ∑
s∈S\{s′}

αmTsWT−1s + VmT−1

)
R
}])

(22)

With A2–A4 we get

exp {−am(1 + r)αm,T,s′WT−1,s′} =
ET−1

{
exp

(
am
∑

s∈S\{s′} αm,T,sWT,s

)}
ET−1

{
exp

(
am
∑

s∈S αm,T,sWT,s

)} ,

and

WT−1,s′ =
1

amRαm,T,s′

log
ET−1

{
exp

(
am
∑

s∈S αm,T,sWT,s

)}
ET−1

{
exp

(
am
∑

s∈S\{s′} αm,T,sWT,s

)} .
The value function of the investor:

J∗m,T−1(Vm,T−1) = exp
(
− am

∑
s∈S

α∗m,T,sW
∗
T−1,sR

)
ET−1

{
exp

(
am
∑
s∈S

α∗m,T,sWT,s

)}
︸ ︷︷ ︸

=1

exp (−amVm,T−1R)

= exp (−amVm,T−1R)
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In T − 2 the maximized utility of the investor with WD at s′

J(Vm,T−2 −
∑
s∈S

αm,T−1,sWT−2,s,
∑
s∈S

αm,T−1,sWT−2,s) = ET−2

{
J∗m,T−1(Vm,T−1)

}
= ET−2 {exp (−amVm,T−1R)}
5.2
= ET−2

[
exp{−am

(∑
s∈S

αm,T−1,sWT−2,s − Vm,T−2

)
R2

−
∑
s∈S

αm,T−1,sWT−1,sR}
]

(23)

Maximized utility of the investor in T − 2 without WD at s′

J(Vm,T−2 −
∑

s∈S\{s′}

αm,T−1,sWT−2,s,
∑

s∈S\{s′}

αm,T−1,sWT−2,s)

= ET−2[exp{−am(
∑

s∈S\{s′}

αm,T−1,sWT−2,s − Vm,T−2)R2

−
∑

s∈S\{s′}

αm,T−1,sWT−1,sR}] (24)

Using (23), (24) and A2–A4 we get

exp
{
−amαm,T−1,s′WT−2,s′R

2
}

=
ET−2

[
exp

{
am(
∑

s∈S αm,T−1,sWT−1,s)R
}]

ET−2

[
exp

{
am
∑

s∈S\{s′} αm,T−1,sWT−1,sR
}]

and thus

WT−2,s′ =
1

amαm,T−1,s′R2
log

ET−2

[
exp

{
am(
∑

s∈S αm,T−1,sWT−1,s)R
}]

ET−2

[
exp

{
am
∑

s∈S\{s′} αm,T−1,sWT−1,sR
}]
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For T − k, k ≤ T it holds:

WT−k,s′ =
1

amαm,T−k+1,s′Rk

log
ET−k{exp(−am

∑
s∈S αm,T−k+1,sWT−k+1,sR

k−1)}
ET−k{exp(−am

∑
s∈S\{s′} αm,T−k+1,sWT−k+1,sRk−1)}

(25)

J∗m,T−k(Vm,T−k) = exp(amVm,T−kR
k) (26)

We use backward induction over T − k for the proof:

• for T − 1 above.

• for one step backwards from T − k it holds:

J(Vm,T−(k+1) −
∑
s∈S

αm,T−k,sWT−(k+1),s,
∑
s∈S

αm,T−k,sWT−(k+1),s)

= ET−(k+1){J∗m,T−k(Vm,T−k)}
(26)
= ET−(k+1){exp(amVm,T−kR

k)}

= ET−(k+1)[exp{am(Rk+1(−Vm,T−(k+1) +
∑
s∈S

αm,T−k,sWT−(k+1),s)

−
∑
s∈S

αm,T−k,sWT−k,s)R
k}].

J(Vm,T−(k+1) −
∑

s∈S\{s′}

αm,T−k,sWT−(k+1),s,
∑

s∈S\{s′}

αm,T−k,sWT−(k+1),s)

= ET−(k+1)[exp{am(Rk+1(−Vm,T−(k+1) +
∑

s∈S\{s′}

αm,T−k,sWm,T−(k+1),s)

−
∑

s∈S\{s′}

αm,T−k,sWT−k,s)R
k}].
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With A2–A4:

exp(−amαm,T−k,s′WT−(k+1),s′R
k+1)

ET−(k+1){exp(−am
∑
s∈S

αm,T−k,sWT−k,sR
k)}

= ET−(k+1){exp(−am
∑

s∈S\{s′}

αm,T−k,sWT−k,sR
k)}

and

WT−(k+1),s′ =
1

amαm,T−k,s′Rk+1

log
ET−(k+1){exp(−am

∑
s∈S αm,T−k,sWT−k,sR

k)}
ET−(k+1){exp(−am

∑
s∈S\{s′} αm,T−k,sWT−k,sRk)}

For the value function of the investor in T − (k + 1) we have:

J∗m,T−(k+1)(Vm,T−(k+1))

= exp(−amVm,T−(k+1)R
k+1) exp(am

∑
s∈S

αm,T−k,sWT−(k+1),sR
k+1)

ET−(k+1){exp(−am
∑
s∈S

αm,T−k,sWT−k,sR
k)}

= exp(−amVm,T−(k+1)R
k+1).

�
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