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Wolfgang Karl Härdle‡, Ostap Okhrin §, Weining Wang¶
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Abstract

Understanding the dynamics of high dimensional non-normal dependency structure is a
challenging task. This research aims at attacking this problem by building up a hidden Markov
model (HMM) for Hierarchical Archimedean Copulae (HAC), where the HAC represent a
wide class of models for high dimensional dependency, and HMM is a statistical technique
to describe time varying dynamics. HMM applied to HAC provide flexible modeling for high
dimensional non Gaussian time series. Consistency results for both parameters and HAC
structures are established in an HMM framework. The model is calibrated to exchange rate
data with a VaR application, where the model’s performance is compared with other dynamic
models, and in the second application we simulate rainfall process.

Keywords: Hidden Markov model, Hierarchical Archimedean Copulae, Multivariate Distribution

JEL classification: C13, C14, G50

1 Introduction

Modelling high-dimensional time series is an often underestimated exercise of routine econometrical
and statistical work. This slightly pejorative attitude towards day to day statistical analysis is
unjustified since actually the calibration of time series models in high dimensions for standard data
sizes is not only a difficulty on the numerical side but also poses a challenge on the mathematical
side. Computationally speaking, integrated models for high dimensional time series become more
evolved when the parameter space is too high. An example is the multivariate GARCH(1,1)
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BEKK model that for even two dimensions has an associated parameter space of dimension 12.
For moderate sample sizes, the parameter space dimension might well be in the range of the
sample size or even bigger. This data situation has evoked a new strand of literature on dimension
reduction via penalty methods.
In this paper we are taking a different route by calibrating an integrated dynamic model with
unknown dependency structure among the d dimensional time series variables. More precisely,
the unknown dependency structure may vary among a set of given dependencies. The specific
dependence at each time t is unknown to the data analyst, but depend on the dependency patter
at time t− 1. Therefore, hidden Markov models (HMM) come naturally into play. This leaves us
with the problem of specifying the set of dependencies.
An approach based assuming a multivariate Gaussian or mixed normal is limited in capturing
important types of data features such as heavy tails, asymmetry and nonlinear dependence. Such
a simplification might in practice be a too restrictive assumption and might lead to biased results.
Copulae are one of possible approaches in solving these problems, see Joe (1996). Moreover,
copulae allow us to separate the marginal distributions and the dependency model, see Sklar
(1959). Over decades copula based models gained their popularity in various fields like finance,
insurance, biology, hydrology, etc. Nevertheless, many basic multivariate copulae are still too
restrictive and a simple extension by putting in more parameters would lead to the extreme of
a total nonparametric approach that runs into a curse of dimensionality problem. A natural
compromise is the class of hierarchical Archimedean copulae (HAC). A HAC allows a rich copula
structure with a finite number of parameters. Recent works which have shown their flexibility are
McNeil and Nešlehová (2009), Okhrin, Okhrin and Schmid (2009b), Whelan (2004).
Many attempts have been done to give insights into the dynamics of the copulae: Chen and Fan
(2005) assumes the underlying sequence is Markovian; Patton (2004) considers an asset-allocation
problem with a time-varying parameter of bivariate copulae; Rodriguez (2007) studies financial
contagion using switching-parameter bivariate copulae. A likelihood based local adaptive method
is an alternative approach to understand the time evolution, see Giacomini, Härdle and Spokoiny
(2009), Härdle, Okhrin and Okhrin (2011). Figure 1 presents the LCP (local change point method)
window analysis of HAC for exchange rate data. One observes that the structure (upper panel)
stays very often the same for a long time, and the parameters (lower panel) are slowly varying over
time. This indicates that the dynamics of HAC functions is likely driven by Markovian sequence
connected with structures and parameter values. This suggests us a different path of modeling
the dynamics: instead of taking a local point view, we adopt a global dynamic model (HMM)
for the change of both tree structure and parameters of HAC along time horizon. Under HMM,
a stochastic process Y with a not directly observable underlying Markov process X, it is needed
to determine state of distributions of Y . It has been widely applied to speech recognition see
Rabiner (1989), molecular biology, digital communications over unknown channels. Estimation
and inference issues in HMM see Bickel, Ritov and Rydén (1998) and Fuh (2003), among others.
In this paper, we propose a new type of dynamic models, called HMMHAC, by incorporating
HAC into an HMM framework. The theoretical problems like parameter consistency and struc-
ture consistency are solved. The expectation maximization (EM) algorithm is developed in this
framework for parameter estimation. See section 2 for model description, section 3 for theorems
for consistency. EM algorithm and computation issues are in section 4. Section 5 is for simulation
study, and section 6 is for applications. The technical details are put into appendix.
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Figure 1: LCP for Exchange Rates: structure (upper) and parameters (lower, θ1(green) and
θ2)(blue) for Gumbel HAC. m0 = 40.

2 Model description

The hidden Markov model is regarded as a parameterized Markov random walk with the underlying
Markov chain viewed as missing data, as in Leroux (1992), Bickel et al. (1998). Specifically,
in our HMM HAC framework, let {Xt, t ≥ 0} be a stationary Markov chain on a finite state
space D = {1, 2, . . . ,M}, with transition probability matrix P v×ω = [pv×ωij ]i,j=1,...,M and initial
distribution πv×ω = {πv×ωi }i=1,...,M , where v × ω ∈ V × Ω ⊆ N∗ × Rq denotes an element in the
parameter space V × Ω which parametrize this model, and q as the number of parameters (note
that our parameter space is partially discrete (V ), and partially continuous (Ω)). Suppose that
a real-valued additive component Bt,j =

∑t
k=0 Yk,j, j ∈ 1, . . . , d with Bt = (Bt,1, Bt,2, . . . , Bt,d)

>

and Yk = (Yk,1, Yk,2, . . . , Yk,d)
> are r.v. taking values on Rd, is adjoined to the chain such that

{(Xn, Bt), t ≥ 0} is a Markov chain on D × Rd and

P{(Xt, Bt) ∈ A× (B + b)|(Xt−1, Bt−1) = (i, b)} (1)
= P{(X1, B1) ∈ A×B|(X0, B0) = (i, 0)}

= P(i, A×B) =
∑
j∈A

∫
b∈B

pv×ωij fj{b; sj(v × ω), θθθ(j)(v × ω)}µ(db),

where B, b ⊆ Rd, A ⊆ D, fj{b; s(j)(v × ω), θθθ(j)(v × ω)} is the conditional density of Yt given
Xt−1, Xt with respect to a σ-finite measure µ on Rd, θθθ(v × ω) ∈ Θ, s(v × ω) ∈ S, j = 1, . . . ,M
are the unknown parameters. That is, {Xt, t ≥ 0} is a Markov chain, given X0, X1, . . . , XT , with
Y1, . . . , YT being independent. We give a formal definition as follows. {Bt, t ≥ 0} is called a hidden
Markov model if there is a Markov chain {Xt, t ≥ 0} such that the process {(Xt, Bt), t ≥ 0}
satisfies (1). Note that in (1), the usual parameterization θθθ(j)(v×ω) = θθθ(j), and s(j)(v×ω) = s(j).
Moreover, θθθ = (θθθ(1), . . . , θθθ(M)) ∈ RdM are the unknown dependency parameters, s = (s(1), . . . , s(M))
are the unknown structure parameters, and its true value is denoted by θθθ∗ and s∗. For simplicity,
we will use πi for πv×ωi and pij for pv×ωij . See Figure 2 for a graphical illustration of HMM.
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Figure 1: Graphical representation of the dependence structure of HMM

1

Figure 2: Graphical representation of the dependence structure of HMM, where Xt depends only
on Xt−1 and Yt only on Xt.

For given d dimensional times series y1, · · · , yT ,∈ Rd (yt = (y1t, y2t, y3t, . . . , ydt)
>) connected with

unobservable (or missing) x1, . . . , xT from a hidden Markov model {Bt, t ≥ 0}, define πxt as the
πi for x0 = i, i = 1, . . . ,M , and pxt−1xt = pji for xt−1 = j and xt = i. The full likelihood function
given one realization of {xt, yt}Tt=1 is:

pT (y1, · · · , yT ;x1, . . . , xT ; v × ω) = πx0

T∏
t=1

pxt−1xtfxt(yt;θθθ
(xt), s(xt)), (2)

and the likelihood for only the observations {yt}Tt=1 by marginalization :

pT (y1, · · · , yT ; v × ω) =
M∑
x0=1

· · ·
M∑

xn=1

πx0

T∏
t=1

pxt−1xtfxt(yt;θθθ
(xt), s(xt)), (3)

with the abbreviation of pT (y1, · · · , yT ; v × ω) as pT (y1:T ; v × ω)

2.1 Parametrization of fxt
(yt;θθθ

(xt), s(xt))(xt = i) by HAC

The novelty of our approach lies in a special parametrization of fxt(yt;θθθ(xt), s(xt))(xt = i) (abbrevi-
ated as fi(.)), which helps to properly understand the dynamics of a multivariate distribution. Up
to now, typical parameterizations are mixtures of log-concave or elliptical symmetric densities, like
those from Gamma or Poisson families, which are not flexible enough to model high dimensional
time series. The advantage of the copula is that it splits the multivariate distribution into the
margins and a pure dependency component. In other words, it captures the dependency between
variables eliminating the impact of the marginal distributions.
Usually, copula comes into play, when one is interested in a simple but informative representation of
the joint distribution of a d dimension r.v., say Z1, . . . , Zd with continuous cumulative distribution
function (cdf)F (·). The theorem which guarantees the existence and uniqueness of copula functions
states that there exists a unique function C : [0, 1]d → [0, 1] satisfying

C(u1, . . . , ud) = F{F−1,m
1 (u1), . . . , F−1,m

d (ud)}, u1, . . . , ud ∈ [0, 1],

where F−1,m
1 (u1), . . . , F−1,m

d (ud) are the quantile functions of the corresponding continuous marginal
distributions Fm

1 (Z1), . . . , Fm
d (Zd).
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Figure 1: Fully and partially nested copulae of dimension d = 4 with structures s =

(((12)3)4) on the left and s = ((12)(34)) on the right

copulae. For example, the special case of HAC fully nested copula can be given by

C(u1, . . . , ud) = C1{C2(u1, . . . , ud−1), ud} = Á1{Á−1
1 ∘ C2(u1, . . . , ud−1) + Á−1

1 (ud)}

= Á1{Á−1
1 ∘ Á2(Á

−1
2 (C3(u1, . . . , ud−2)) + Á−1

2 (ud−1)) + Á−1
1 (ud)}. (2)

The composition can be applied recursively using different segmentations of variables

leading to more complex HACs. For notational convenience let the expression s =

{(. . . (i1 . . . ij1) . . . (. . . ) . . . )} denote the structure of a HAC, where iℓ ∈ {1, . . . , d} is

a reordering of the indices of the variables. sj denotes the structure of subcopulae with

sd = s. Further let the d-dimensional hierarchical Archimedean copula be denoted by

C(u1, . . . , ud; s,µµµ), where µµµ the set of copula parameters. For example the fully nested

HAC (2) can be expressed as

C(u1, . . . , ud; s = sd, µµµ) = C{u1, . . . , ud; ((sd−1)d), (µ1, . . . , µd−1)
⊤}

= Ád−1,µd−1
(Á−1

d−1,µd−1
∘ C{u1, . . . , ud−1; ((sd−2)(d− 1)), (µ1, . . . , µd−2)

⊤}

+ Á−1
d−1,µd−1

(ud)),

where s = {(. . . (12)3) . . . )d)}. In Figure 1 we present the fully nested HAC with structure

s = (((12)3)4) and partially nested with s = ((12)(34)) in dimension d = 4.

HAC are thoroughly analysed in Joe (1997), Whelan (2004), Savu and Trede (2006),

Embrechts, Lindskog and McNeil (2003).

Note that generators Ái within a HAC can come either from a single generator family or

from different generator families. If Ái’s belong to the same family, then the complete

monotonicity of Ái ∘ Ái+1 imposes some constraints on the parameters µ1, . . . , µd−1. The-

orem 4.4 of McNeil (2008) provides sufficient conditions on the generator functions to

5

Figure 3: Fully and partially nested copulae of dimension d = 4 with structures s = (((12)3)4) on
the left and s = ((12)(34)) on the right

We need a further parametrization of the copula function, which are flexible enough to capture
the tail dependency and have an explicit form and are simple in estimation and estimation. One
candidate would be the family of Archimedean copulae, see Nelsen (2006).

C(u1, . . . , uk) = φ{φ−1(u1) + · · ·+ φ−1(ud)}, u1, . . . , ud ∈ [0, 1], (4)

where φ(.) is defined as the generator of the copula and most depends on the parameter θ.
φ(.) ∈ L = {φ(.) : [0;∞) → [0, 1] |φ(0) = 1, φ(∞) = 0; (−1)jφ(j) ≥ 0; j = 1, . . . ,∞}, simpli-
fied assumptions on φ may be found in McNeil and Nešlehová (2009). As an example, the Gumbel
generator is given by φ(.) = exp(−x1/θ) for 0 ≤ x <∞, 1 ≤ θ <∞.
However, multivariate Archimedean copulae are still restrictive, since the rendered dependency is
symmetric with respect to the permutation of variables and the multivariate dependency structure
depends on a single parameter of the generator function. For refined structure, we consider Hier-
archical Archimedean Copulae (HAC) which are the compositions of simple Archimedean copulae.
Conveniently, we denote the structure of a HAC as

s = {(. . . (i1 . . . ij1) . . . (. . .) . . .)},
where i` ∈ {1, . . . , d} is a reordering of the indices of the variables. sj denotes the structure of
subcopulae with sd = s. Further let the d-dimensional hierarchical Archimedean copula be denoted
by C(u1, . . . , ud; s,θθθ), where θθθ the set of copula parameters. For example the fully nested HAC
(see Figure 3, left) can be expressed as

C(u1, . . . , ud; s = sd, θθθ) = C{u1, . . . , ud; ((sd−1)d), (θ1, . . . , θd−1)>}
= φd−1,θd−1

(φ−1
d−1,θd−1

◦ C{u1, . . . , ud−1; ((sd−2)(d− 1)), (θ1, . . . , θd−2)>}+ φ−1
d−1,θd−1

(ud)),

where s = {(. . . (12)3) . . . )d)}. Figure 3 presents the fully nested HAC with structure s =
(((12)3)4)(left) and partially nested with s = ((12)(34))(right) in dimension d = 4. For more
details of HAC, see Joe (1997), Whelan (2004), Savu and Trede (2006), Okhrin, Okhrin and
Schmid (2009a).
The aforementioned tree structure with different generator functions would be too many to con-
sider. To make the problem more concrete without loss of generality, we concentrate on one single
generator family within one HAC, and the discussion is constrained to binary structures, i.e. at

5



each level of the hierarchy only two variables are joined together. This makes our model very
flexible and simultaneously parsimonious.
Note for each HAC not only the parameters are unknown, but also the structure has to be de-
termined. We adopt the computation procedure as in Okhrin et al. (2009b) to estimate the HAC
structure and parameters, which leads to efficient and unbiased estimators. In this procedure, one
estimates the marginal distributions either parametrically or nonparametrically. Then assuming
that the marginal distributions are known, one selects the couple of variables with the strongest
fit and denote the respective estimator of the parameter at the first level by θ̂1 and the set of
indices of the variables by I1 . The selected couple is joined together to define the pseudo-variables
z1 = C{(I1); θ̂1, φ1}. Next, one proceeds in the same way by considering the remaining variables
and the new pseudo-variable. At every level, the copula parameter is estimated by assuming that
the margins as well as the copula parameters at lower levels are known. The considered procedure
allows us to determine the estimated structure of the copula recursively.
Further, we incorporate the above mentioned procedure into the HMM framework. We denote the
underlying Markov variable Xt as a dependency type variable. If xt = i, the parameters (s(i), θθθ(i))
determined by state i = 1, . . . ,M take values on S × Θ, where S is discrete number of candidate
states corresponding to different dependency structure of HAC, and Θ is a compact set in Rd−1

where the HAC parameters take values. Therefore,

fi(·) = c{Fm
1 (y1), Fm

2 (y2), . . . , Fm
d (yd), s

(i), θθθ(i)}fm
1 (y1)fm

2 (y2) · · · fm
d (yd), (5)

with fm
i (yi) are the marginal densities.

Let θθθ(i) = (θi1, . . . , θid−1)> be the dependency parameters of copulae starting with the lowest up to
the highest level connected a fixed state xt = i and the fi(.). The multistage maximum likelihood
estimator ŝ(i), θ̂θθ

(i)
solves the system(

∂L1

∂θi1
, . . . ,

∂Ld−1

∂θid−1

)>
= 0, (6)

where Lj =
T∑
t=1

witlij(Yt), for j = 1, . . . , d− 1,

lij(Yt) = log
(
c
[
{F̂m

m(ytm,αααm)}m∈{1,...,d}; s(j), {θi`}`=1,...,d−1

] ∏
m∈{1,...,d}

f̂m
m(ytm,αααm)

)
for j = 1, . . . , d− 1, t = 1, . . . , T.

where F̂m
m(·) is an estimator (either nonparametric or parametric, depending on the data) of the

marginal cdf Fm
m(·) and if estimated margins are parametrical then F̂m

m(·) = Fm
m(·, α̂ααm). Marginal

densities f̂m
m(·) are estimated accordingly to the c.d.f.s, and wit is the weight associated with state i

and time t, see (17). Chen and Fan (2006) and Okhrin et al. (2009b) provide asymptotic behavior
of the estimates.

2.2 Likelihood estimation

For the estimation of the HMM HAC model, we adopt the EM algorithm, Dempster, Laird and
Rubin (1997). In the context of HMM, the EM algorithm is also known as the Baum-Welch
algorithm. Let us recall the description in the setting of HMM on HAC.

6



Recall the definition of a Markov chain:

P(X0 = i) = πi, (7)
P(Xt = j|Xt−1 = i) = pij (8)

= P(Xt = j|Xt−1 = i,Xt−2 = xt−2, . . . , X1 = x1, X0 = x0),

i, j = 1, . . . ,M

In addition, at time t, given Xt = i, the distribution of Yt is fixed. Namely, the following holds:

P(Xt|X1:(t−1), Y1:(t−1)) = P(Xt|Xt−1) (9)
P(Yt|Y1:(t−1), X(1:t)) = P(Yt|Xt), (10)

where Y1:(t−1) stands for {Y1, . . . , Yt−1}, t < T .
Recall the full likelihood pT (y1:T ;x1:T ; v × ω) in (2) and the partial likelihood
pT (y1, . . . , yT ; v × ω) in (3), and the log likelihood :

log{pT (y1, . . . , yT ; v × ω)} = log{
M∑
x0=1

· · ·
M∑

xn=1

πx0

T∏
t=1

pxt−1xtfxt(yt; s
(xt), θθθ(xt), s(xt))} (11)

The EM algorithm suggests to estimate a sequence of parameters g(i)
def
= (P(i), s(i), θθθ(i)) (for the ith

iteration) by iterative maximization of Q(g; g(i)) with Q(g; g(i))
def
= Eg(i)(log pT (Y1:T ;X1:T ; v×ω)|Y ),

(Y stands for Y1:T ), namely, one conducts the following two steps:

• (a) E-step : compute Q(g; g(i)),

• (b) M-step : choose the update parameters g(i+1) = arg maxgQ(g; g(i)).

The essence of the EM algorithm is that Q(g; g(i)) can be used as a surrogate for
log pT (y1, . . . , yT ;1 , . . . , xT ; θ), see Cappé, Moulines and Rydén (2005).

7



In our setting, we may write Q(g; g(i)) as :

Q(g; g(i)) =
M∑
i=1

E g(i) [log{1{X0 = i}πifi(y0)}|Y ] (12)

+
T∑
t=1

M∑
i=1

M∑
j=1

E g(i) [log{1{Xt = j}1{Xt−1 = i}pijfj(yt)}|Y ]

=
M∑
i=1

E g(i) [1{X0 = i} log{πifi(y0)}|Y ] (13)

+
T∑
t=1

M∑
i=1

M∑
j=1

E g(i) [1{Xt = j}1{Xt−1 = i} log{pij}|Y ]

+
T∑
t=1

M∑
i=1

E g(i) [1{Xt = i} log fi(yt)|Y ] (14)

=
M∑
i=1

Pg(i)(X0 = i|Y ) log{πifi(y0)}+
T∑
t=1

M∑
i=1

M∑
j=1

Pg(i)(Xt−1 = i,Xt = j|Y ) log{pij}

+
T∑
t=1

M∑
i=1

Pg(i)(Xt = i|Y ) log fi(yt), (15)

where fi(·) is as in (5) and margins may be estimated nonparametrically as
F̂m
d (x) = (T+1)−1

∑T
i=1 1(Xi ≤ x). The E-step, in which Pg(i)(Xt = i|Y ),Pg(i)(Xt−1 = i,Xt = j|Y )

are evaluated, is carried out by forward-backward algorithm shown in the appendix, and the M -
step is explicit in pijs and πis. Recall fi(·) is defined from last section as
c{Fm

1 (y1), Fm
2 (y2), . . . , Fm

d (yd), s
(i), θθθ(i)}fm

1 (y1)fm
2 (y2) · · · fm

d (yd). Adding constraints to (15) yields:

L(g, λ; g′) = Q(g; g′) +
M∑
i=1

λi(1−
M∑
j=1

pij) (16)

For the M -step, we need to take the first order partial derivative, and plug into the (16). So
dependency parameters θθθ and structure parameters s needs to be estimated iteratively, for θθθ(i) :

∂L(g, λ; g′)

∂θij
=

T∑
t=1

P(Xt = i|Y )∂ log fi(yt)/∂θij, (17)

where, j = 1, . . . , d−1. To simplify the procedure, we adopt the HAC estimation method (6) with
weights in terms of wit

def
= P(Xt = i|Y ). To reduce the number of parameters to be estimated, we

may fix πi, i = 1, . . . ,M as it influences only the first observation Xo which may be consider also
as given and fixed. The estimation of the transition probabilities pij follows:

∂L(g, λ; g′)

∂pij
=

T∑
t=1

P(Xt−1 = i,Xt = j|Y )

pij
− λi (18)

∂L(g, λ; g′)

λi
= 1−

M∑
j=1

pij. (19)
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Equating expression in (18) and (19) yields:

p̂i,j =

∑n
t=1 P(Xt−1 = i,Xt = j|Y )∑n

t=1

∑M
j=1 P(Xt−1 = i,Xt = j|Y )

(20)

3 Theoretical Results

Assumptions

A.1 {Xt} is stationary and irreducible
A.2 The family of mixture of at most M elements {f(y,θθθj, sj) : θθθj ∈ Θ, sj ∈ S} is identifiable
w.r.t. the parameters and structures:

M∑
j=1

αjf(y,θθθj, sj) =
M∑
j=1

α′jf(y,θθθ′j, s
′
j)a.e. =⇒

M∑
j=1

αjδθθθj ,s(j) =
M∑
j=1

α′jδθθθ′j ,s′j , (21)

Define δθθθj ,sj as the distribution function for a point mass in Θ× S, and it only make sense to say
θθθj = θθθ′j when sj = s′j. The property of identifiability is nothing else as the construction of the
finite mixture model. For more details on mixture models we refer to McLanchlan and Peel (2000).
As copula is a special form of the multivariate distribution, similar techniques may be applied to
get identifiability also in the case of copulae. The family of copula mixtures has been thoroughly
investigated in Caia, Chen, Fan and Wang (2006) during developing the estimation techniques. In
that general case one should be careful as the general copula class is very wide and its mixture
identification may cause some problems because of different densities forms. Construction of the
HAC itself narrows the class. Imposing same generator functions on all levels of the HAC we
restrict the family to the vector of parameters and the tree structure. Some discussion on this can
been found in Okhrin et al. (2009b). Our numerical preliminary analysis shows that HAC fulfills
identifiability property for all used in the study structures and parameters. To be more sure we
assume throughout the paper that the copula model is identifiable.
A.3 {Xt}Tt=1 is a time homogeneous Markov chain that is ergodic
A.4 E{| log fi(y,θθθ

(i), s(i))|} <∞, for i = 1, . . . ,M , ∀s ∈ S.
A.5 For every θθθ ∈ Θ, and any particular structure considered s ∈ S,

E[ sup
‖θθθ′−θθθ‖<δ

{fi(Y1, θθθ
′, s)}+] <∞,

for some δ > 0.
Define θ̂θθ

(i)
, ŝ(i) as θ̂θθ

(i)
(v̂ × ω̂) and ŝ(i)(v̂ × ω̂) with (v̂ × ω̂) as the point over the whole parameter

space V × Ω where p(y1:T ; v × ω) achieve the maximum value.
It is known that HMM is not itself identifiable as with the permutation of states pT (y1:T ;v×ω)
would take the same value. We assume θθθ∗(j)s and s∗(j)s are distinct in the sense that: for any
s∗(i) = s∗(j), i 6= j we have θθθ∗(i) 6= θθθ∗(j).

Theorem 3.1 Assume A.1- A.5, and {Yt}Tt=1 are i.i.d and generated from HAC HMM model with
parameters {s∗i , θ∗i , π∗, [p∗ij]i,j}. The parameter θ̂θθ

(i)
satisfies:

lim
n→∞

P(θ̂θθ
(i)

= θθθ∗(i)) = 1,∀i, 1, . . . ,M (22)
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given the selected structure ŝ(1), ŝ(2), . . . , ŝ(M).

Moreover,

Theorem 3.2 Under A.1- A.5, we find the corresponding structure:

lim
n→∞

P(ŝ(i) = s∗(i)) = 1,∀i. (23)

For the proof we refer to the appendix.

4 Simulation

The estimation performance of HMMHAC is evaluated in this section, Subsection I considers four
states with very disjoined copulae parameters, while subsection II considers three states realis-
tically calibrated from exchange rates data. We show that our algorithm converges after a few
iterations with moderate estimation errors. Throughout the simulation study, we keep the marginal
distribution fixed.

4.1 Simulation I

In this setup, a three dimensional generating process has fixed marginal distributions: Yt1 ∼ N(0, 1),
Yt2 ∼ t(3), Yt3 ∼ N(0, 3). The dependence structure is modeled through HAC with Gumbel
generators, and four different dependency parameters and structures correspond to four states
(M = 4).

C{u3, C(u1, u2; θ1 = 4.00); θ2 = 1.5}
C{u1, C(u2, u3; θ1 = 10.0); θ2 = 4.0}
C{u2, C(u1, u3; θ1 = 30.0); θ2 = 10.0}
C{u1, C(u2, u3; θ1 = 40.0); θ2 = 20.0}

As can be seen, we consider quite different state parameters, which helps to easily visualize depen-
dency states. The transition probability matrix is given by:

P = {pij}i,j =


0.985 0.001 0.003 0.006
0.005 0.990 0.003 0.003
0.005 0.005 0.991 0.001
0.005 0.004 0.003 0.990


of sample size T = 2000. With π = (0.25, 0.25, 0.25, 0.25)>. Note that we set the diagonal elements
of P close 1, since it is realistic to assume the states stay the same with a high probability. Figure
4 represents underlying states, and marginal plot of the generated three dimensional time series.
A state switching pattern is not evident from the marginal plots. Figure 5 however clearly displays
the switching of dependency patterns. The black, red, green, blue dots corresponding to the
observations from different states.
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Figure 4: The underlying sequence xt (upper left panel), marginal plots of (yt1, yt2, yt3).

Figure 6 displays the first 7 iterations a (The parameters stay constant after). Since starting values
play an important role, a moving window estimation is proposed to decide the initial parameters.
The blue and the red dotted line show respectively how the estimators behave with the initial
values close to the true (red) and initial values obtained from our algorithm (blue). The upper
panel of Figure 6 shows the number of wrongly estimated states at each iteration; the middle panel
represents the (L1) difference of the true transition matrix from the estimated ones; the lower panel
is the sum of estimated parameter errors of the four states with the correctly estimated states.
One can see that our choice of initial values can perform as good as the true one.

4.2 Simulation II

Let us consider now a Monte Carlo setup where the setting employs parameters calibrated from
data, see application I. The three states with M = 3 are taken as follows:

C{u1, C(u2, u3; θ1 = 1.3); θ2 = 1.05}
C{u2, C(u3, u1; θ1 = 2.0); θ2 = 1.35}
C{u3, C(u1, u2; θ1 = 4.5); θ2 = 2.85},

the transition matrix is chosen as:

P =

0.72 0.15 0.13
0.23 0.64 0.13
0.03 0.02 0.95
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Figure 5: Snapshots of pairwise scatter plots of dependency structures (t = 500, . . . , 1000), the 1st
against 2nd (upper), the 2nd against 3rd (middle), and the 1st against 3rd (lower).
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Figure 6: The convergence of states (upper panel), transition matrix (middle panel), parameters
(lower panel). Estimation starts from near true value (red); starts from values attained by our
proposal (blue)
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Figure 7: The convergence of states (upper panel), transition matrix (middle panel), parameters
(lower panel). Estimation starts from near true value (red); starts from values attained by our
proposal (blue)

sample size T = 2000. The iteration procedure stops after 12 steps. Figure 7 presents respectively
the deviation of estimated states, transition matrix, and parameters from their true value . The
estimation error is presented in the same fashion as Figure 6. To judge the estimation quality, a
histogram of the estimation error from 100 samples is presented in Figure 8. It can be seen that
on average only %15 of the states can not be correctly estimated.

5 Applications

To see how HMM HAC performs on a real data set, applications on financial and rainfall data are
offered. A good model for the dynamics of exchange rates give insights into exogenous economic
conditions, like the business cycle. It is also helpful for portfolio risk management and decisions on
asset allocation. We demonstrate the forecast performance of the proposed technique by estimating
VaR of the portfolio and compare it with multivariate Garch models like DCC, BEKK, etc. The
backtesting results show that VaR calculated from HMMHAC performs significantly better.
The second application is on modeling rainfall process. HMM is a conventional model for rainfall
data, however, bringing HMM and HAC together for modeling the multivariate rainfall process is

14



Figure 8: The error of misidentification of states by 100 samples

totally new in our work. We illustrate the estimation procedure and evaluate its performance by
checking how far the model is from the reality.

5.1 Application I

5.1.1 Data

The data set consists of the daily values for the exchange rates JPY/EUR, GBP/EUR and
USD/EUR. The covered period is [4.1.1999; 14.8.2009], resulting in 2771 observations, Härdle et al.
(2011).
To eliminate intertemporal conditional heteroscedasticity we fit to each marginal time series of
log-returns a univariate GARCH(1,1) process

Yj,t = µj,t + σj,tεj,t with σ2
j,t = ωj + αjσ

2
j,t−1 + βj(Yj,t−1 − µj,t−1)2 (24)

and ω > 0, αj ≥ 0, βj ≥ 0, αj + βj < 1.
The residuals exhibit the typical behavior: they are not normally distributed, which motivates
nonparametric estimation of the margins. From the results of the Box-Ljung test, whose p-values
are 0.73, 0.01 and 0.87 for JPY/EUR, GBP/EUR and USD/EUR, we conclude that the autocor-
relation of the residuals is strongly significant only for GBP/EUR rate. After this intertemporal
correction we work only with the residuals.
The dependency variation is measured by Kendall and Pearson’s correlation coefficients: Figure
9 shows the variation of both coefficients calculated in a rolling window of width r = 250. Their
dynamic behavior is similar, but not identical. This motivates once more a time varying copula
based model.
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Figure 9: Rolling window estimators of Pearson’s (left) and Kendall’s (right) correlation coeffi-
cients between the GARCH(1,1) residuals of exchange rates: JPY and USD (solid line), JPY and
GBP (dashed line), GBP and USD (dotted line). The width of the rolling window is set to 250
observations.

5.1.2 Fitting an HMM model

Figure 1, 10, and 11 summarize the analysis using three methods: moving window, LCP, HMMHAC.
LCP uses moving windows, with varying sizes. To be more specific, LCP is a multiple testing scal-
ing technique which determines a local homogeneous window at each time point Härdle et al.
(2011). In contrast to LCP, HMMHAC is based on a global modeling concept rather than a local
one. One observes, a relative smooth changes of parameters, see Figure 1 and 10 . HMMHAC is
as flexible as LCP as can be seen from Figure 1, 10, and 11, since the structure estimated taken
also three values and confirms with the variations of structures estimated from LCP. Moreover,
the moving window analysis or LCP can serve as guidelines for choosing the initial values for our
HMMHAC. Figure 12 displays the number of states for HMMHAC for rolling windows with a
length of 500 observations.
A VaR estimation example is to show the good performance of HMMHAC. We generate N = 104

pathes with T = 2219 observations, and |W | = 1000 combinations of different portfolios, where
W = {(1/3, 1/3, 1/3)

⋃
[w = (w1, w2, w3)]}, with wi = w′i/

∑3
i=1w

′
i, w′i ∈ U(0, 1). The Profit Loss

(P&L) function of a weighted portfolio based on assets ytd is Lt+1
def
=
∑3

d=1 wi(yt+1d − ytd), with
weights w = (w1, w2, w3) ∈ W . The VaR of a particular portfolio at level 0 < α < 1 is defined as
V aR(α)

def
= F−1

L (α), where the α̂w is estimated as a relative fraction of violations, see Table 1:

α̂w
def
= T−1

T∑
t=1

I{Lt < V̂ aRt(α)},

and the distance between α̂w and α is as:

ew
def
= (α̂w − α)/α.

If the portfolio distribution is i.i.d., and a well calibrated model is properly mimicking the true
underlying asset process, α̂w is close to its nominal level α. The performance is measured through
an average of αw over all |W | portfolios see Table 1.
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Figure 12: Plot of estimated number of states

Window\α 0.1 0.05 0.01
HMM, RGum 500 0.0980 0.0507 0.0128
HMM, Gum 500 0.0981 0.0512 0.0135
Rolwin, RGum 250 0.1037 0.0529 0.0151
Rolwin, Gum 250 0.1043 0.0539 0.0162
LCP, m0 = 40 468 0.0973 0.0520 0.0146
LCP, m0 = 20 235 0.1034 0.0537 0.0169
DCC 500 0.0743 0.0393 0.0163

Table 1: VaR backtesting results, ¯̂α, where “Gum” denotes the Gumbel copula and “RGum” the
rotated Gumbel one.

We considered four main models: HMMHAC for 500 observation windows for Gumbel and rotated
Gumbel ; multiple rolling window with 250 observations windows; LCP with m0 = 20 and m0 = 40
with Gumbel Copulae; DCC based on 500 observation windows. For all the models we made an
out of sample forecast. To better evaluate the performance we calculated the average and SD of
eW as.

AW =
1

|W |
∑
w∈W

ew, DW =

{
1

|W |
∑
w∈W

(ew − AW )2

}1/2

.

Table 1 and 2 show backtesting performance for the described models. One concludes that
HMMHAC performs better than the concurring moving window, LCP, DCC, as Aw and Dw are
typically smaller.

5.2 Application II

Our goal is to propose a realistic model for rainfall, which can be used to forecast or simulate
rainfall. The difficulty for modeling precipitation data is the nonzero point mass at zero of the
rainfall distribution. Another difficulties arises when one incorporates spatial relationships, see
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Window\α 0.1 0.05 0.01
HMM, RGum 500 -0.0204 (0.013) 0.0147 (0.012) 0.2827 (0.064)
HMM, Gum 500 -0.0191 (0.008) 0.0233 (0.018) 0.3521 (0.029)
Rolwin, RGum 250 0.0375 (0.009) 0.0576 (0.012) 0.5076 (0.074)
Rolwin, Gum 250 0.0426 (0.009) 0.0772 (0.030) 0.6210 (0.043)
LCP, m0 = 40 468 -0.0270 (0.010) 0.0391 (0.018) 0.4553 (0.037)
LCP, m0 = 20 235 0.0344 (0.009) 0.0735 (0.026) 0.6888 (0.050)
DCC 500 -0.2573 (0.015) -0.2140 (0.015) 0.6346 (0.091)

Table 2: Robustness relative to AW (DW )

Ailliot, Thompson and Thomson (2009) for an HMM application. However, Ailliot et al. (2009)
only consider Gaussian dependency among locations, and the method is computationally expensive.
We extend Ailliot et al. (2009) to a copula framework. Different from application I, the marginal
distribution here will be varying over states. We propose two methods in modeling marginal dis-
tributions, one is considering ytk to be censored normal distributions, with the following equation:

fm
k {ytk} =

{
1− pxtk ytk = 0
pxtk ϕ{(ytk − µxt(k))/(σxt(k))}/σxt(k) ytk > 0

with k = 1, · · · , d as the location, ϕ(·) as the standard normal density, pxtk as the rainfall occurrence
probability for the location k and state xt, and µxt(k), σxt(k) being mean and standard deviation
parameters at time t, for location k.
A second proposal for the marginal distributions are gamma distributions:

fm
k {ytk} =

{
1− pxtk ytk = 0
pxtk γ{ytk;α(k)xt , β(k)xt} ytk > 0

where again the α(k)xt , β(k)xt are the shape and scale parameter for state xt and location k. We
take the joint distribution function to be a truncated version of a continuous copulae function,
with the copulae density cd(·) denoted through:

cd(µ, θ) =

{
cc(µ, θ) , ytk > 0,∀k
∂Cc(µ, θ)/∂µk1 . . . ∂µkB , ki ∈ {ytki > 0}, i ∈ 1, . . . , E

(25)

where E is denoted as the number of wet places among the d locations, the Cc(·) as the continuous
copulae function, and cc(.) as the continuous copulae density. Our formulation is simpler than
Ailliot et al. (2009) since the copulae has closed form c.d.f., so we do not need additional effort to
calculate integration. Representation in (25) is however more general, as we consider copulae to
capture the dependency.
Assume that the daily rainfall observations from the same month are yearly independent realiza-
tions of a common underlying hidden Markov model, whose states represents different weather
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Figure 13: Map of Guangxi, Guangdong, Fujian in China

types. So the likelihood is different. As an example, we take every June’s daily rainfall.

log pT (y1:T , x1:T ; v × ω)

= log{
M∑
i=1

1{x0 = i}πifi(y0)}+
T∑
t=1

log{
M∑
i=1

M∑
j=1

1{xt = j}1{xt−1 = i}pijfj(yt)}

=
M∑
i=1

1{x0 = i} log{πifi(y0)}+
T∑
t=1

M∑
i=1

M∑
j=1

1{xt = j}1{xt−1 = i} log{pijfj(yt)}

+
∑
t∈B

M∑
i=1

{1{xt = i}{log(πi)} −
M∑
j=1

1{xt = j}1{xt−1 = i} log(pij)}.

where B is the set of days as the first day in June for each year. We use here 50 years of rainfall data
from three locations in China, Guangxi, Guangdong, Fujian (Figure 13). The graphical correlation
can naturally be captured by the fitting of different copulae state parameter.
Table 3 presents with a truncated Gumbel the estimated three states, the corresponding dif-
ferent marginal distributions and copula parameters, with estimated initial probability: π̂Xt =
(0.298, 0.660, 0.042) and estimated transition probability matrix: 0.590 0.321 0.298

0.188 0.742 0.660
0.329 0.271 0.042

 .

In our data situation, gamma distributions fit better as marginal. The states filtered out represents
different weather types. The third states is the most humid state with a high rainfall occurrence
probabilities, while the second states are drier, and the first are the driest. From the parameters of
the gamma distributions, one sees the variance increases from the first to the third states, which
indicates a higher chance for heavy rainfall for the humid states.
To validate our model, 1000 sample of artificial time series of 1500 observations are generated
from the fitted model and compared with the original data. Table 4 presents the true Pearson
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Xt Shape Scale Occur Prob
1 (0.442,0.429,0.552) (139.33,116.70,169.66) (0.252,0.256,0.439)
2 (0.671,0.618,0.561) (273.83,253.25,427.46) (0.806,0.786,0.683)
3 (0.636,1.125,0.774) (381.09,264.83,514.08) (0.667,1.000,0.944)

Table 3: Rainfall occurrence probability and shape, scale parameters estimated from HMM (data
1957− 2006) .

Location True Ĉorr(Yt,1, Yt,2)
1− 2 0.308 0.300 (0.235, 0.373)
2− 3 0.261 0.411 (0.256, 0.586)
1− 3 0.203 0.130 (0.058, 0.215)

Table 4: True correlations, simulated averaged correlations from 1000 samples their 5%confidence
intervals. 1 Fujian, 2 Guangdong, 3 Guangxi

correlation compared with the estimated ones from the generated time series. The 5% confidence
intervals of the estimators cover the true correlation, which implies that the simulated rainfall
can describe the real correlation of the data quite well. Figure 14 shows a marginal plot of the
log survival function derived from the empirical cdf of the real data and generated data. The log
survival function is a transformation of the marginal cdf Fm(ytk):

log{1− Fm(ytk)}. (26)

Again we show that the 95% confidence interval can cover the true curve fairly well.
Figure 15 are the autocorrelation and cross autocorrelation of the real data and the generated time
series. Unfortunately, our generated time series do not show the similar auto correlation and cross
auto correlation. Since there is usually more than one significant lag of auto correlation or cross
correlation, but the simulated time series mostly only have one lag.

6 Conclusion

In this project, we propose a dynamic model for multivariate time series with non Gaussian de-
pendency. The idea has an easy extension to HMM for general Copula models, and implies a
rich class further work on dynamic models for dependency structures. This method is helpful in
studying the financial contagion at extreme level over time, and naturally it can help to derive the
conditional risk measures, such as CoVaR. As we have shown, dynamics copula models are good
enough for mimicking financial markets as well as nature.
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Figure 14: Log-survivor-function (red) and 95% prediction intervals (blue) of the simulated distri-
bution for the fitted model with sample log-survivor-function superimposed (black)

7 Appendix

7.1 Proof of Theorem 3.1, 3.2

Recall the associated parameter space being V × Ω, where V consists of a set of discrete finite
elements and Ω is associated with parameters θθθ, [pij]i,j. Defined s∗ and θθθ∗ is associated with the
point v0 × ω0 in the parameter space, consider the following definitions:

qT (Y1:T ; v0 × ω0)
def
= max

j∈1,...,M
pT (y1:T |x1 = j, ; v0 × ω0) (27)

H(v0 × ω0)
def
= E v0×ω0{− log p(Y0|Y−1, Y−2, . . . ; v0 × ω0)},

where Y−1, . . . , Y−T are finite number of past values of the process.

H(v0 × ω0, v × ω)
def
= E v0×ω0{log pT (Y1:T ; v × ω)}

Theorem 7.1 (Leroux (1992)) Under A.1- A.5

lim
T→∞

T−1 E v0×ω0{log pT (Y1:T ; v0 × ω0)} = −H(v0 × ω0))

lim
T→∞

T−1 log pT (Y1:T ; v0 × ω0)) = −H(v0 × ω0)),

with probability 1, under v0 × ω0, and

lim
T→∞

T−1 E v0×ω0{log pT (Y1:T ; v × ω)} = H(v0 × ω0, v × ω)

lim
T→∞

T−1pT (Y1:T ; v × ω) = H(v0 × ω0, v × ω),
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with probability 1, under v0 × ω0.

To prove the consistency of our estimated parameter, we try to restate the theorems of consistency
in Leroux (1992) for our parameter space. One needs to show that for V c × Ωc which does not
contain any point of the equivalent class of v0×ω0 (equivalent class of v0×ω0 is defined in Leroux
(1992)), we have with probability 1

lim
T→∞

max
v∈V c

log sup
ω∈Ωc

pT (Y1:T ; v × ω)− log pT (Y1:T ; v0 × ω0)→ −∞, (28)

which is implied from, for any closed subset C of Ωc, exists a sequence of open subsets of Oωh
with

h = 1, . . . , H with C ⊆ ∪Hh=1Oωh
, such that

lim
T→∞

max
v∈V c

max
h

log sup
ω∈Oωh

pT (Y1:T ; v × ω)− log pT (Y1:T ; v0 × ω0)→ −∞. (29)

To prove (29), we have the modified definition:

H(v0 × ω0, v × ω;Oωh
)

def
= lim

T
log max

v∈V c
sup
ω′∈ω0

qT (Y1:T , v × ω′)/T. (30)

It can be derived that
H(v0 × ω0, v × ω) < H(v0 × ω0, v0 × ω0), (31)

for v × ω and v0 × ω0 does not lie in the same equivalent class. (31) is a consequence of the
identifiability condition A.2, and it would lead to: ∃ε > 0, Tε and Oω, such that,

E log sup
ω′∈Oω

qTε(vω × ω′)/Tε < E log qTε(vω × ω)/Tε + ε < H(v0 × ω0, v0 × ω0)− ε,

with
vω

def
= argmaxv∈V cH(v0 × ω0, v × ω′,Oω).

Also because maxv∈V c log supω′∈Oω
pT (Y1:T , v × ω′)/T and maxv∈V c log supω′∈Oω

qT (Y1:T , v × ω′)/T
have the same limit value, there exists a constant ε > 0,

lim
T→∞

max
v∈V c

log sup
ω′∈Oωh

pT (y1:T , v × ω′)/T = H(v0 × ω0, v × ω;Oωh
) ≤ H(v0 × ω0, v0 × ω0)− ε.

Then (29) follows.

7.2 Estimation and Algorithm

If original data has GARCH dependence structure, we deGARCH by taking the residuals of the
GARCH model.
The estimation procedure start with initializing the formal unknown parameters, specifically, we
fix M and initialize parameters λ(0) = {s(i)

(0), θ
(i)
(0), π(0), P(0)} by some preliminary analysis, typically

a moving window analysis.
1) We estimate x1, x2, . . . , xT (the realization of the underlying Markov chain) which maximize
P(Y |λ).
To achieve this goal, we use the Viterbi Algorithm, see Rabiner (1989):
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• Initialization : δ1(i) = πifi(y1), 1 ≤ i ≤ M , ψ1(i) = 0. However in the practice it is better
to consider log δ1(i) as in this case convergence is faster.

• Recursion :

δt(i) = max
1≤j≤M

{δt−1(i)pij}fi(yt), 2 ≤ t ≤ T, 1 ≤ j ≤M,

ψt(j) = arg max
1≤i≤M

ψt−1(i)pij (32)

• Termination :

p∗ = max
1≤i≤M

{δT (i)}
x∗T = arg max

1≤i≤M
{δT (i)}

• Path (State Sequence) back tracking : x∗t = ψt+1(q∗t+1) , t = T − 1, T − 2, . . . , 1

We propose to estimate the marginal distribution function of the realizations of Yt nonparametri-
cally, namely,

F̂i(s) = (T + 1)−1

T∑
t=1

1{yti ≤ s}

2) After estimating the optimal sequence x∗ from 1), the next step would be to update parameters
λ(0). Define :

αt(i) = P(y1, y2, . . . , yt, xt = i|λ(0))

βt(i) = P(yt+1, yt+2, . . . , T |xt = i, λ(0))

They can be estimated efficiently by the following algorithm:

• α1(i) = πifi(y), 1 ≤ i ≤M

• Induction : αt+1(j) =
∑M

i=1 αt(i)pijfj(yt+1). Following Rabiner (1989) we use a computa-
tionally more efficient by setting αt+1(j) =

∑M
i=1 αt(i)pijfj(yt+1)/

∑M
i=1 αt(i)

• Termination: P(Y |λ) =
∑M

i=1 αt(i)

• βT (i) = 1, 1 ≤ i ≤M .

• βt(i) =
∑M

j=1 pijfj(yt+1)βt+1(j), t = T − 1, T − 2, . . . , 1, 1 ≤ i ≤ M , similarly to the case
with α, we define βt(i) =

∑N
j=1 pijfj(yt+1)βt+1(j)/

∑M
j=1 βt+1(j)

Updates of π(0) and P(0), define:

ξt(i, j)
def
= P(xt = i, xt+1 = j|Y, λ)

rt(i)
def
= P(xt = i|Y, λ),
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which can be estimated by:

ξt(i, j) =
αt(i)pijfj(yt+1)βt+1(j)∑N

i=1

∑N
j=1 αt(i)pijfj(yt+1)βt+1(j)

rt(j) =
N∑
j=1

ξt(i, j).

Therefore, update equations for the step k are:

πi,(k) = r
(k−1)
i (i)

pij,(k) =

∑T−1
t=1 ξ

(k−1)
t (i, j)∑T−1

t=1 r
(k−1)
t (i)

Given the updates of πi,(k), and pij,(k), the coefficients of copulae θ can be reestimated by (20) with
the weights rt for each observation. In this case structure s and parameters θθθ are estimated jointly.
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(a) the simulated rainfall time series.

(b) the original rainfall time series.

Figure 15: Autocorrelations and cross correlations of the simulated rainfall and original time series
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