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This study analyses credit default risk for firms in the Asian and Pacific region by

applying two methodologies: a Support Vector Machine (SVM) and a logistic regression

(Logit). Among different financial ratios suggested as predictors of default, leverage

ratios and the company size display a higher discriminating power compared to others.

An analysis of the dependencies between PD and financial ratios is provided along with a

comparison with Europe (Germany). With respect to forecasting accuracy the SVM has

a lower model risk than the Logit on average and displays a more robust performance.

This result holds true across different years.

Keywords: Credit risk, Bankruptcy, Asian companies, SVM

JEL Classification: C14, G33, C45



1 Introduction

Although credit risk has always been a major concern for investors, in recent years high

profile insolvencies have attracted widespread attention, first, after the dot-com bubble

and then in connection with the subprime mortgage crisis. In the Asian and Pacific

region, particularly the crisis of 1998, caused a wave of insolvencies. The announcement

of the Basel III Capital Accord in 2010 after the adoption of Basel II in 2004 and Basel

I in 1992 indicates both the concern of banks and regulators about providing protection

against credit risk and, at the same time, inadequacy of the existing protection measures

and methods for measuring risk.

As early as in the beginning of the XXth century Winakor & Smith (1935) pro-

posed the use of financial ratios for seperating firms into solid stable and potentially

bankrupt ones. Ramser & Foster (1931) and Fitzpatrick (1932) also applied financial

ratios for bankruptcy prediction. The systematic application of statistics to bankruptcy

analysis began with the works of Beaver (1966) and Altman (1968). They introduced

the univariate and multivariate discriminant analysis (DA), respectively. In 1968 Alt-

man presented a formula for predicting bankruptcy known as the linear Z-score model

(Altman, Haldeman & Narayanan, 1977). This formula remains popular for forecasting

default rates even today due to its simplicity. The drawback of the Z-score model is the

assumption of equal normal distributions for both failing and successful firms with the

same covariance matrix.

Later the focus of research shifted towards the logit and probit models (Ohlson (1980),

Martin (1977), Wiginton (1980), Zavgren (1983) and Zmijewski (1984)). Other statisti-

cal methods which were introduced at the same time, such as the gambler’s ruin model

(Wilcox, 1971) and option pricing theory (Merton, 1974), were based on time series

data. Later hazard or survival models (Glennon & Nigro, 2005) and Forward Intensity

Approach (J. C. Duan & Wang, 2010) used both time series and cross-sectional data.

Another type of models such as recursive partitioning (Frydman, Altman & Kao, 1985),

neural networks (Tam & Kiang, 1992), rough sets (Dimitras, Slowinski, Susmaga & Zopounidis,

1999) and Support Vector Machines (SVM) (Martens, Baesens, van Gestel & Vanthienen,

2006) were mostly applied to cross-sectional data.

One of the major shortcomings of many methodologies is the fact that they ig-

nore non-monotonic dependence between some financial ratios and the PD such as

the logistic regression or are badly suited for credit risk modelling such as neural net-

works due to their multiple local equilibria. For further information please refer to

Falkenstein, Boral & Carty (2000), Manning (2004), Fernandes (2005) and

Härdle, Moro & Schäfer (2010). For instance, the probability of default (PD) is non-
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monotonically dependent from the net income (NI) growth. Negative or very slowly

growing NI may create problems with paying company debt obligations. On the other

hand, high NI is likely to be non-sustainable in the long run causing high volatility. Both

situations can lead to a higher PD, what is in accordance with the existing literature

(Merton (1974), Bharath & Shumway (2008)). The identification of the shape of the

dependence, however, still remains a problem.

The non-monotonic and non-linear dependence between some financial ratios and the

PD has been addressed by introducing non-linear models such as recursive partition-

ing, also known as classification and regression trees (Frydman, Altman & Kao (1985),

Frydman, Altman & Kao (1985)), neural networks (Tam & Kiang (1992)), Proximal

Support Vector Machines (PSVM) ((Friedman, 2002)) and Support Vector Machines

(SVM) ((Martens, Baesens, van Gestel & Vanthienen, 2006), (Härdle, Moro & Schäfer,

2010)).

When classifying distressed vs. solvent companies, the SVM allows adjustment of

its complexity. The compexity can be then optimised with respect to some accuracy

measure, for example the Accuracy Ratio (AR), for the data and predicting variables at

hand. Figure 1 illustrates the classical trade-off between the good in-sample preformance

and the generalisation ability. In this example by changing complexity of the classifi-

cation method between it possible For more details on the SVM please see Appendix

A.

In this study we use the Logit and SVM approaches, both in their cross-sectional and

dynamic setting, to analyse credit risk of firms in the Asian and Pacific region and to

establish the most important predictors of default selected from financial ratios.

2 Data Description

The data used in this study were collected and prepared by the Risk Management Insti-

tute (RMI) of the National University of Singapore (NUS). The data contain quarterly

and annual company reports, default indicators and stock prices for 25, 000 listed firms

from the Asian and Pacific region as well as the macroeconomic and selected financial

data for the countries in which the firms operate. The time coverage spans from 1980 to

2010. The database also indicates the relevant industry of operation for each firm. In

our analysis we exclude companies in the financial sector, asset backed securities, funds

and governement owned enterprises since the nature of these businesses is different from

non-governmental manufacturing firms and service providers.

At the first stage the financial data are converted into financial ratios. These ratios are
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Figure 1: A classification example. The boundary between the classes of solvent and
insolvent companies can be either linear (1 or 2) or non-linear (3 and 4). A
model capable of producing non-linear boundaries can have low (linear cases
1 and 2), moderate (case 3) and high (case 4 where overfitting is evident)
complexities. By optimising the complexity with respect to some accuracy
criterion, the optimal boundary can be established (e.g. case 3).
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grouped into seven categories: profitability, leverage, liquidity, activity, cost structure,

dynamics and size, characterising company performance from different sides. A summary

statistics of the indicators is presented in tables 2 – 4.

Financial reports in the database are released quarterly, semi annually and annually,

however, the beginning of a financial year and, hence, reporting dates for companies

are different and spread throughout the year. To reflect this situation we index each

financial report by a unique time ID number according to the year and month of the

report in order to have the fianacial information on regular monthly basis for all firms.

Since the reporting date almost invariably falls on the last day of a month, this encoding

gives us the precise time of a default event.

After assigning the report time ID number to each observation, distressed firms are

defined based on the default information in the database. Each monthly report of a

firm receives the default indicator y = 1 if the firm files a credit event report within a

period with a one year long period starting after one year after the date of the financial

report (distressed observations). For the rest of the observations (solvent observations)

the default indicatior is y = −1. In this study we call this horizon specification design

1. This horizon is considered to analyse the effects of the default on the long term debt

which has maturity of over one year.

Additionally, to see the effects of the short term debt on PD, we analyse distress

for a different horizon, when the default indicator y = 1 is assigned to those observa-

tions recording a credit event report filing within the two year period from the date of

the financial report (distressed observations) and for the rest (solvent observations) the

default indicatior is y = −1. This horizon specification is called design 2.

A broad range of credit events is applied to identify distressed firms and assign the

default indicatior (y = 1), including filings under Chapter 11, Chapter 15, Chapter 7,

restructuring, liquidation, being sued by creditors and failing in coupon and principle

payments. Overall, the bankruptcy events coded from 100 to 120 and 300 to 333 in the

database are included to define distressed observations.

In the dataset with the horizon under the design 2 specification, there are 311,682

observations from which 7,449 (2.39%) observations are indicated as distressed and

304,233 (97.61%) as solvent. The distribution of solvent and distressed observations

among countries varies substantially. For instance, for Australia and Hong Kong, there

are respectively only 6 (4.03%) and 19 (0.34%) of distressed observations out of 149 and

5,524 observations whereas for China there are 4,182 (7.22%) distressed observations out

of 57,921 observations (see table 1).
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Country
Horizon: Design 1 Horizon: Design 2

Distressed Solvent Distressed Solvent
firms firms firms firms

Australia 3 (2.01 % ) 146 6 (4.03 % ) 143
China 1088 (2.42 % ) 43784 4182 (7.22 % ) 53739

Hong Kong 10 (0.18 % ) 5514 19 (0.34 % ) 5505
India 48 (0.17 % ) 28840 148 (0.51 % ) 28775

Indonesia 26 (0.42 % ) 6131 70 (1.12 % ) 6186
Japan 124 (0.17 % ) 71489 258 (0.36 % ) 71380

Malaysia 385 (1.17 % ) 32512 1100 (3.12 % ) 34173
Philippines 113 (1.90 % ) 5839 267 (4.16 % ) 6154
Singapore 34 (0.48 % ) 7009 77 (1.08 % ) 7050

South Korea 99 (0.20 % ) 49828 232 (0.46 % ) 50153
Taiwan 260 (1.08 % ) 23906 604 (2.47 % ) 23809
Thailand 202 (1.19 % ) 16702 486 (2.77 % ) 17028

Table 1: Distribution of distressed and solvent firms across countries.

2.1 Variable Description

The components of the financial ratios which are estimated from data are explained

below and the summary statistics for them for distressed and solvent firms are provided

in tables 2 and 3.

Profitability Ratios

1. NI/TA : return on assets; net income / total assets.

2. NI/S : net profit margin; net income / sales.

3. OI/TA: operating return on assets; operating income / total assets.

4. OI/S : operating profit margin; operating income / sales.

5. EBIT/TA: gross return on assets; earnings before interest and taxes / total assets.

6. EBIT/S : gross profit margin; earnings before interest and taxes / sales.

Leverage Ratios

1. OK/TA : own capital ratio; own capital / total assets.

2. CL/TA : current debt ratio; current liabilities / total assets.

3. TD/TA : bank debt ratio; the ratio of total bank debt / total assets.

Liquidity Ratios

1. STD/D : fraction of debt which is short term debt (liquidity).

2. CASH/TA : cash and cash equivalents / total assets.

3. CASH/CL : cash ratio; the ratio of cash and cash equivalents / current liabilities.
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4. QA/CL : quick ratio; quick assets (current assets inventories) / current liabilities.

5. CA/CL : current ratio; the ratio of current assets / current liabilities.

6. WC/TA : working capital (current assets minus current liabilities) / total assets.

7. CL/TL : current liabilities / total liabilities.

Activity Ratios

1. TA/S : asset turnover; total assets / sales.

2. INV/S : inventory turnover; inventories / sales.

3. AR/S : account receivable turnover; account receivables / sales.

4. AP/CS : account payable turnover; account payables / cost of sales.

Cost Structure Ratios

1. INT/D : average cost of debt; the ratio of interest payments to debt.

2. EBIT/INT paid : interest coverage ratio; the ratio of earnings before interest and

taxes to interest paid.

Dynamic Ratios

1. Sales-Growth : one year growth in sales.

2. NI-Growth : one year growth in income.

Size

1. log(TA) : company size; logarithm of total assets.

2. log(S) : logarithm of total sales.

2.2 Summary Statistics

In this section summary statistics of the financial ratios for distressed and solvent com-

panies are provided. They are reported for Design 1 (table 2) and Design 2 (table 3)

horizon designs, pooled across countries. The first five columns in each table summarize

the estimates for distressed companies and the next five columns report the estimates

for solvent companies. q0.05 and q0.95 are 5% and 95% quantiles. N is the number of

observations for which the ratio can be computed based on the available data and IQR

represents the interquartile range for each ratio.
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1986-2010 Distressed Firms Solvent Firms

Variable N q0.05 Med IQR q0.95 N q0.05 Med IQR q0.95

Profitability

NI/TA 1529 -0.10 -0.00 0.01 0.04 231456 -0.05 0.01 0.02 0.05
NI/S 2062 -2.90 -0.00 0.05 0.30 281329 -0.57 0.03 0.09 0.27
OI/TA 1704 -0.06 0.00 0.01 0.03 232939 -0.03 0.01 0.02 0.05
OI/S 1723 -1.17 0.02 0.09 0.30 249187 -0.37 0.05 0.11 0.29
EBIT/TA 1523 -0.06 0.00 0.01 0.04 231084 -0.03 0.01 0.02 0.05
EBIT/S 1542 -1.41 0.02 0.10 0.31 247091 -0.37 0.05 0.11 0.29

Leverage

OK/TA 1716 -0.68 0.36 0.49 0.67 234206 0.16 0.54 0.70 0.88
CL/TA 1716 0.15 0.48 0.65 1.51 233974 0.07 0.32 0.45 0.68
TD/TA 1506 0.12 0.44 0.58 0.87 228469 0.00 0.20 0.36 0.58

Liquidity

STD/D 1497 0.12 0.80 0.97 1.00 204949 0.08 0.69 0.97 1.00
CASH/TA 1685 0.00 0.04 0.10 0.27 233234 0.00 0.09 0.17 0.38
CASH/CL 1685 0.00 0.08 0.24 0.84 232945 0.01 0.27 0.65 2.70
QA/CL 1680 0.11 0.68 1.08 2.15 231103 0.30 1.11 1.91 5.58
CA/CL 1713 0.18 1.00 1.47 2.79 233920 0.50 1.52 2.46 6.60
WC/TA 1713 -0.96 -0.00 0.17 0.42 233948 -0.22 0.17 0.34 0.58
CL/TL 1716 0.28 0.81 0.95 1.00 233921 0.32 0.78 0.92 1.00

Activity

TA/S 1697 2.29 8.67 16.61 90.13 232584 1.74 4.69 7.59 22.83
INV/S 1657 0.05 0.80 1.62 8.57 229603 0.01 0.47 0.84 2.26
AR/S 1653 0.17 0.93 1.66 4.82 230847 0.08 0.72 1.07 2.05
AP/CS 1085 0.09 0.65 1.14 4.52 174888 0.04 0.41 0.68 1.33

Cost Structure

INT/D 712 0.01 0.03 0.08 0.70 130408 0.00 0.02 0.06 0.56
EBIT/INT 803 -20.08 0.45 2.68 20.53 172564 -28.08 4.25 19.86 326.33

Dynamics

Sales-Growth 1617 -72.55 -2.81 27.42 119.62 226216 -48.84 5.21 23.89 97.17
NI-Growth 1744 -5.59 0.46 1.26 13.34 229415 -4.69 0.18 0.93 5.14

Size

log(TA) 1721 4.73 7.57 9.12 12.21 234284 4.95 9.31 11.02 13.51
log(S) 2249 1.80 4.94 6.45 9.83 284275 2.32 7.09 9.24 11.85

Table 2: Summary statistics for distressed firms (the left five columns) and solvent firms
(the right five columns) across countries. Horizon: Design 1. N indicates the
number of observations which contain the variable. q0.05 and q0.95 are respec-
tively 5% and 95% quantiles. IQR is the interquartile range.
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1986-2010 Distressed Firms Solvent Firms

Variable N q0.05 Med IQR q0.95 N q0.05 Med IQR q0.95

Profitability

NI/TA 4989 -0.15 -0.00 0.00 0.03 240454 -0.06 0.01 0.02 0.05
NI/S 6657 -4.18 -0.03 0.04 0.26 292615 -0.69 0.03 0.09 0.28
OI/TA 5342 -0.09 0.00 0.01 0.03 241847 -0.04 0.01 0.02 0.05
OI/S 5397 -1.81 0.01 0.08 0.29 257567 -0.44 0.05 0.11 0.29
EBIT/TA 4967 -0.09 0.00 0.01 0.03 240011 -0.04 0.01 0.02 0.05
EBIT/S 5022 -2.12 0.00 0.09 0.30 255490 -0.43 0.05 0.11 0.29

Leverage

OK/TA 5381 -1.25 0.34 0.48 0.63 243232 0.12 0.53 0.70 0.88
CL/TA 5381 0.18 0.54 0.72 2.02 242997 0.08 0.32 0.47 0.73
TD/TA 4913 0.15 0.44 0.58 1.06 237398 0.00 0.21 0.37 0.60

Liquidity

STD/D 4890 0.17 0.89 1.00 1.00 213146 0.08 0.71 0.97 1.00
CASH/TA 5296 0.00 0.05 0.11 0.30 242186 0.00 0.08 0.17 0.38
CASH/CL 5296 0.00 0.08 0.24 0.71 241890 0.01 0.26 0.63 2.63
QA/CL 5289 0.10 0.64 1.00 1.91 239845 0.27 1.09 1.87 5.47
CA/CL 5375 0.15 0.90 1.37 2.40 242893 0.44 1.49 2.41 6.51
WC/TA 5375 -1.67 -0.04 0.16 0.37 242925 -0.29 0.16 0.33 0.58
CL/TL 5381 0.33 0.88 0.97 1.00 242941 0.32 0.79 0.93 1.00

Activity

TA/S 5294 2.53 9.79 17.62 107.11 240836 1.75 4.77 7.89 25.78
INV/S 5193 0.09 0.90 1.78 9.48 237729 0.01 0.48 0.87 2.54
AR/S 5185 0.19 1.00 1.82 6.54 238940 0.08 0.72 1.09 2.18
AP/CS 3427 0.08 0.65 1.20 4.97 178398 0.04 0.42 0.69 1.38

Cost Structure

INT/D 1802 0.01 0.04 0.12 3.02 131670 0.00 0.02 0.06 0.57
EBIT/INT 2095 -22.50 -0.38 1.68 12.90 174050 -28.00 4.18 19.60 322.00

Dynamics

Sales-Growth 5389 -78.25 -7.82 20.61 117.90 235485 -51.28 5.12 24.24 100.80
NI-Growth 5792 -6.71 0.48 1.43 19.97 239939 -4.77 0.19 0.94 5.31

Size

log(TA) 5393 4.70 7.31 8.32 11.49 243336 4.89 9.16 10.97 13.46
log(S) 7029 1.39 4.70 5.94 9.39 295454 2.18 6.93 9.17 11.80

Table 3: Summary statistics for distressed firms (the left five columns) and solvent firms
(the right five columns) across countries. Horizon: Design 2. N indicates the
number of observations which contain the variable. q0.05 and q0.95 are respec-
tively 5% and 95% quantiles. IQR is the interquartile range.
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Country
Horizon: Design 1 Horizon: Design 2

Distressed Solvent Distressed Solvent
firms firms firms firms

Australia 0 (0.00 % ) 48 0 (0.00 % ) 48
China 634 (1.83 % ) 34048 2639 (6.10 % ) 40627

Hong Kong 3 (0.19 % ) 1588 7 (0.44 % ) 1584
India 0 (0.00 % ) 156 0 (0.00 % ) 156

Indonesia 26 (0.45 % ) 5758 70 (1.19 % ) 5811
Japan 104 (0.16 % ) 64735 227 (0.35 % ) 64637

Malaysia 274 (1.14 % ) 23693 813 (3.21 % ) 24512
Philippines 39 (2.04 % ) 1870 102 (4.84 % ) 2007
Singapore 29 (0.53 % ) 5431 70 (1.27 % ) 5454

South Korea 77 (0.16 % ) 48115 177 (0.37 % ) 48385
Taiwan 77 (0.35 % ) 22025 226 (1.02 % ) 21947
Thailand 161 (1.07 % ) 14856 352 (2.27 % ) 15124

Table 4: Distribution of distressed and solvent firms across countries after removing 6
variables with most missing values. These variables are : INT/D, EBIT/INT,
AP/CS, STD/D, Sales-Growth and NI-Growth.

As we can see from table 3, the lowest number of available observatios belong to 6

variables: INT/D, EBIT/INT, AP/CS, STD/D, Sales-Growth and NI-Growth. Table 4

presents the distribution of distressed and solvent firms after removing these 6 variables

with most missing values. After removing them and cleaning missing values the total

number of distressed observations in the data set increases from 1,182 to 4,688.

3 Univariate Analysis of the Predictors of Default

The analysis of financial ratios and their individual power as predictors of default can

be concisely done by estimating univariate dependence of PD from each variable. Since

the range of each predictor can change significantly, we represent all predictors with

their percentiles. Univariately estimated PDs are reported in figures 2 – 8. They were

obtained as k nearest neighbor estimates (k-NN) with Gaussian weights:

PD(q) =

n∑
i=1

I(yi = 1)e−
(q−qi)

2

2σ2

n∑
i=1

e−
(q−qi)

2

2σ2

, (3.1)

where 0 ≤ q ≤ 1 is a percentile of a company for which PD is estimated, qi is the

percentile of company i of the data set and the smoothing parameter σ is set to 0.08.

I(yi = 1) is the distress indicator which equals 1 if yi = 1 when company i is defined as

distressed and 0 otherwise.
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Figure 2: Univariate probabilities of default for Profitability Ratios pooled over countries
and years. Horizon: Design 1 (left panel), Horizon: Design 2 (right panel).

The variables differ substantially in their predictive power. For instance, variables

EBIT/TA, CL/TA and log(S) indicate strong predictive power and also traditionally

appear in the literature as strong indicators. In contrast some variables such as STD/D,

AR/S and Sales-Growth show less discriminating power.

Another important observation from the plots is that some predictors, many of which

with high discriminating power, such as CL/TA, OK/TA, CA/CL, EBIT/INTpaid,

log(TA), INT/D and CL/TL have a non-monotonic dependence with PD.

We analyse the relationship between each predictor of default with PD and their

predictive power on data pooled over countries. The results are presented for the two

horizon designs, Design 1 and Design 2.
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Figure 3: Univariate probabilities of default for Leverage Ratios pooled over countries
and years. Horizon: Design 1 (left panel), Horizon: Design 2 (right panel).
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Figure 4: Univariate probabilities of default for Liquidity Ratios pooled over countries
and years. Horizon: Design 1 (left panel), Horizon: Design 2 (right panel).
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Figure 5: Univariate probabilities of default for Activity Ratios pooled over countries and
years. Horizon: Design 1 (left panel), Horizon: Design 2 (right panel).
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Figure 6: Univariate probabilities of default for Cost Structure Ratios pooled over coun-
tries and years. Horizon: Design 1 (left panel), Horizon: Design 2 (right
panel).
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Figure 7: Univariate probabilities of default for Dynamic Ratios pooled over countries
and years. Horizon: Design 1 (left panel), Horizon: Design 2 (right panel).
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Figure 8: Univariate probabilities of default for Company Size pooled over countries and
years. Horizon: Design 1 (left panel), Horizon: Design 2 (right panel).
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4 Comparison of the PD between Asian and German

Companies

In this section we compare the results of the PD univariate analysis for Asian firms

(horizon: Design 1) pooled across all countries with the analysis of the same or very

close financial ratios for German firms. The dataset for German companies was kindly

provided for our analysis by the Deutsche Bundesbank and covers the years 1987 –

2005 containing around 500,000 balance sheets and income statements from which 8,000

belong to bankrupt firms. Some of the financial ratios that are used by the Deutsche

Bundesbank for company rating are the same as constructed for Asian companies, while

others are specific for Germany. We report the comparison of the common financial

ratios in figures 9 – 15.

The graphs for Germany report the cumulative default rate with the horizon of de-

fault of three years and above, whereas the horizon of default for RMI data lies be-

tween one and two years. The possibilty of registering default within a much broader

range of horizons explains the higher PD for German data. For more information see

(Härdle, Moro & Schäfer, 2010).

German companies in contrast to Asian ones are primarily private (non-traded) and

are of a smaller size. Moreover, the sample of firms in the Bundesbank database is

expected to be biased. These are the firms who voluntarily applied for rating in or-

der to receive refinancing from commercial banks and are mostly self-selected solvent

companies.

Despite many similarities, the dependence of PD from the individual financial ratios

can display certain differences between German and Asian companies which can be at-

tributed to a more homogeneous sample for Germany, disparity in company registration

forms and sizes and the self-selected nature of the German sample. These differences

are mostly proclaimed if the dependence for the companies from one of the regions has

a U shape.

5 Variable Selection and Rating Model Comparison

The criterion for comparing different models is a robust accuracy measure, the median

Accuracy Ratio (AR) estimated on bootstrapped subsamples. AR is the ratio of two

areas (i) between the cumulative default curves for the model being evaluated and the

model with the zero predictive power and (ii) between the cumulative default curves for

the ideal model and the model with the zero predictive power (figure 16). AR is used
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Figure 9: Univariate probabilities of default for Profitability Ratios pooled over countries
and years for Asia (horizon: Design 1, left panel) and Germany (right panel).
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Figure 10: Univariate probabilities of default for Leverage Ratios pooled over countries
and years for Asia (horizon: Design 1, left panel) and Germany (right panel).
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Figure 11: Univariate probabilities of default for Liquidity Ratios pooled over countries
and years for Asia (horizon: Design 1, left panel) and Germany (right panel).
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Figure 12: Univariate probabilities of default for Activity Ratios pooled over countries
and years for Asia (horizon: Design 1, left panel) and Germany (right panel).
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Figure 13: Univariate probabilities of default for Cost Structure Ratios pooled over coun-
tries and years for Asia (horizon: Design 1, left panel) and Germany (right
panel).
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Figure 14: Univariate probabilities of default for Dynamic Ratios pooled over countries
and years in Asia (horizon: Design 1, left panel) and Germany (right panel).
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Figure 15: Univariate probabilities of default for Company Size pooled over countries
and years in Asia (horizon: Design 1, left panel) and Germany (right panel).

since it is not sensitive to a monotonic transformation of a score in contrast to other

accuracy measures such as hit rate or α and β errors.

The bootstrap procedure (Efron & Tibshirani, 1993) for model comparison starts with

the selection of two non-overlapping random subsamples of 1000 observations (500 non-

defaulting and 500 defaulting firms) from the original data set. One of those subsamples

is used as a training set and the other one as a testing set. A classification model (SVM

or Logit) is trained on the former and its AR is estimated on the latter. The procedure

is repeated 100 times creating a set of 100 estimates of AR from which the median is

computed and used for the comparison of models. The model with the highest median

AR is preferred.

All data were first cleaned from outliers by capping them: if x < qinf (x) then x =

qinf (x) and if x > qsup(x) then x = qsup(x). Here qinf(x) = Median(x) − 1.5IQR(x)

and qsup(x) = Median(x) + 1.5IQR(x). Secondly, all data were standardised as xnew =

(x − median(x))/σ(x). This was done to avoid an excessive influence of the variables

with a higher dispersion. These transformations are routinely applied to the data prior

to analysis.

Variable selection was performed using the forward selection procedure which starts

with univariate models. At step one the first variable is selected that produces the most

accurate univariate model as judged by its median AR estimated by bootsrapping. At

step two, in addition to this variable, the second variable from the remaining is chosen

which has the highest meadian AR among all alternatives. At step three a trivariate

model is selected, etc. The variables selected by Logit and SVM for pooled data are

presented in table 5. After a certain step four the accuracy of both the Logit and SVM
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Figure 16: Accuracy Ratio (AR) is the ratio of two areas A and B.

models does not experience any significant improvements, what is evident from very

high p-values.

The SVM was always applied with R = r
√
d/2 and C = (c/n)(2/d), where r and

c were chosen based on the values reported as performing well for company rating

(Lacerda & Moro (2008), Härdle, Moro & Schäfer (2010)) . These two parameters of

the SVM used in our study were r = 2.5 and c = 1 for a low complexity SVM with

high generalisation ability, which is expected to perform well on a broad range of data

sets. The performance of the SVM can be potentially further increased by optimising r

and c for the studied data. The transformations for computing R and C figuring in the

SVM formulation (see Appendix A) were applied to keep the SVM invariant of the data

dimension d and the number of observations in the training set n.

As the table 5 indicates both models considered – Logit and SVM – have selected the

first three variables identically: TD/TA, log(S), CL/TA. The forth variable selected by

the SVM is TA/S, while log(TA) was selected by Logit. These variables form the basis

for our model comparison.

6 Forecasting Accuracy

Figure 17 represents the time series of Accuracy Ratios (AR) for pooled data and a

separate country with the highest number of distressed observations, China. The training

set data are collected from the year indicated in the plots along the horizontal axis. The

testing set data are collected for the year T + 2, where T is the training set year. The
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Logit SVM (R = 2.5, C = 1)
Step Variable Med. AR pmax p Variable Med. AR pmax p
1 TD/TA 57.5 0 – TD/TA 57.5 0 –
2 log(S) 69.0 0 0 log(S) 69.7 0 0
3 CL/TA 71.1 0 0 CL/TA 71.7 3 5
4 log(TA) 73.2 – 0 TA/S 73.5 – 3

5 WC/TA 73.3 – 19 RV 73.4 – 75

Table 5: Variables selected at each step by the forward selection procedure for Logit and
SVM for the pooled data. For computing the median AR for each combination
of variables and the distributions of AR required for the tests, 100 bootstrapped
subsamples were used. The confidence level pmax is reported for the test with
H0: the model is not significantly different from the four-variable model which
was selected; p corresponds to the H0: a model is not significantly different
compared to a previous reduced model which has one variable less. Median
AR, pmax and p are reported in percentage points.

used default horizon specification is Design 2. This arrangement guarantees that there

are no overlapping observations in the data sets and forecasting is made out-of-sample.

The parameters of the SVM are r = 2.5 and c = 1. The variables are the same ones

selected by varibale selection procedure. For SVM these variables are: TD/TA, log(S),

CL/TA and TA/S and for Logit: TD/TA, log(S), CL/TA and log(TA).

As it is evident from figure 17, SVM usually outperforms Logit in forecasting corporate

distress. The difference in AR can be as high as 7.5%, as it is the case for China in 2005.

On the other hand there are much fewer years when the SVM underperformed compared

to the Logit. The maximum difference in this case is only 2.4%. For the pooled data

in seven years out of eight the SVM has a higher performance than the Logit, although

the differences in this case are more moderate than for China.

The similar conclusion about a higher predictive power of the SVM can be reached

from analysing figure 18. It reports the distribution of the differences in AR between the

SVM and Logit estimated on 100 bootstrapped subsamples of the data pooled across

countries and years. Although the average improvement is moderate, around 0.5%, the

SVM can achieve a much higher relative improvement for extreme scenarios. This is

evident from a longer right tail of the probability density function. In other words, the

SVM has a lower model misspecification risk compared with Logit, both on average and

in the extreme cases.

To illustrate the performance of the SVM and Logit we will consider a two dimensional

case (figures 19 and 20). The lines correspond to the isoquants with the PD equal to the

average PD for the data. However small the differences may be, they are sufficient to
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Figure 17: AR of 2 year probabilities of default estimated with SVM and Logit for pooled
data (left panel) and China (right panel). Horizon: Design 2.
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Figure 18: The distribution of differences in AR for the SVM vs. Logit estimated on 100
bootstrapped subsamples for a four-variable model on pooled data. Horizon:
Design 2. A Gaussian kernel estimator was used with the bandwidth 0.191.
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explain the higher AR achieved by the SVM. The background PDs coded with colours

ranging from green to red are estimated for the SVM.

The PD range for the depicted area is from 0.11% to 8.87% for the pooled data and

from 0.06% to 16.7% for China allowing for more than a 100 time difference between

the highest and the lowest PD.

7 Conclusion

The focus of our study is the analysis of the ability of two models, SVM and Logit, to

predict distress in the Asian and Pacific region in various settings.

Both models selected only four financial ratios as predictors of default, whereas three

financial ratios are the same: TD/TA, log(S) and CL/TA. They are leverage ratios and

a company size. Surprisingly, no profitability ratios were selected.

A strong U-shaped dependence of PD from the leverage and activity ratios implies the

existence of the optimal capital structure (TD/TA=15%, the figure being in accordance

with the existing literature) and inventory stock (Inv/S=38%).

A comparison with the German data leads to a mixed conclusion. On one hand

the dependence of PD from the profitability, leverage and liquidity ratios has a very

similar shape. In all three cases for both countries it is falling. On the other hand,

the dependencies for activity, cost structure and dynamic ratios and company size are

dissimilar.

Comparison of forecasting accuracy reveals that the SVM has a lower model risk than

the Logit. Firstly, on average SVM is more accurate than Logit. Secondly, in the extreme

cases when discrepancies between the two models are the largest, the predictive power

of the Logit can fall significantly below the SVM, while the probability that the SVM

will significantly underperform relative to the Logit is much smaller.

Overall, an SVM with a high generalisation ability appears to be a promising method

for distress forecasting in the Asian and Pacific region providing a reduction of model

risk and a more robust performance compared to the Logit.

Appendix A: Support Vector Machine (SVM)

The Support Vector Machine applied in this paper is a statistical method for binary

classification that is a practical implementation of the Tikhonov regularisation principle

(Tikhonov (1963), Tikhonov & Arsenin (1977)). It is based on linear classifiers that
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Figure 19: PD for log(S) vs. TD/TA for pooled data are represented with a background
colour. 1/50th of all data is represented (1/50th of 228504 solvent and 4678
insolvent observations). Black dots denote solvent and white dots distressed
companies. The separating curves are computed and ploltted for the SVM
and Logit for the average PD=2.01%.
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Figure 20: PD for log(S) vs. TD/TA for pooled data are represented with a background
colour. 1/10th of all data is represented (1/10th of 40,627 solvent and 2,639
insolvent observations). Black dots denote solvent and white dots distressed
companies. The separating curves are computed and plotted for the SVM
and Logit for the average PD=6.10%.
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Figure 21: The separating hyperplane x⊤w+ b = 0 and the margin in a linearly separa-
ble (left) and non-separable (right) case. Crosses denote solvent companies,
zeros are the insolvent ones. The hyperplanes bounding the margin zone
equidistant from the separating hyperplane are represented as x⊤w + b = 1
and x⊤w + b = −1. The misclassification penalty in the non-separable case
is proportional to the distance ξ/ ‖w‖.

simultaneously maximise the margin or the distance between the classes and minimise

empirical risk related to misclassifications on a given data set (Vapnik (1995)).

Figure 21 illustrates the maximum margin classification for linearly separable and

non-separable data in a two-dimensional case. The separating function generated by a

linear SVM is

x⊤w + b = 0. (7.1)

Such a classification rule makes an SVM similar to Logit. xi is a d × 1 vector of the

characteristics of firm i, e.g. financial ratios described in Appendix B, whereas d is

the number of characteristics or variables used. w is a d × 1 vector of weights which

determine the slope of the separating function. The scalar b is a location parameter or

a threshold.

The margin is the empirically estimated distance between the opposite classes of

observations. In Figure 21 it is shown as the distance between the margin boundaries

– the parallel lines located symmetrically on both sides of the separating function. In a

perfectly separable case such as in Figure 21, left panel, no observations may lie in the
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margin zone and all observations must satisfy the constraints:

x⊤
i w + b ≥ 1 for yi = 1, (7.2)

x⊤
i w + b ≤ −1 for yi = −1. (7.3)

The constraints ensure that the observations of the opposite classes lie on the opposite

sides from the margin gap.

Misclassifications may occur if data are linearly non-separable as in Figure 21, right

panel. Here the bold zero on the left-hand side of the separating line shows a solvent

company that is classified as insolvent. SVM adjusts the weights w and the location

parameter b in such a way that the margin is maximised and the sum of misclassification

errors ξi is minimised. ξi ≥ 0 is also called a slack variable and is introduced to (7.2) and

(7.3) to ensure that these constraints are satisfied. For any observation xi the modified

constraints must hold:

x⊤
i w + b ≥ 1− ξi for yi = 1, (7.4)

x⊤
i w + b ≤ −1 + ξi for yi = −1. (7.5)

For the representation (7.2) – (7.5) when 1 appears on the right hand side the margin

equals 2/ ‖w‖. Here ‖w‖ is the Euclidean norm or the length of vector w.

Only the observations lying on the margin boundaries or on the wrong side of the

margin determine the SVM solution. These observations are marked with bold crosses

and zeros. They are called support vectors, hence the name of the method. This

contrasts to Logit where all observations are used to derive the solution.

The primal minimisation problem to be solved is convex and has a unique solution:

min
w

1

2
‖w‖+

n∑

i=1

Ci

ξi
‖w‖ (7.6)

s.t. yi(x
⊤
i w + b) ≥ 1− ξi, (7.7)

ξi ≥ 0. (7.8)

Here (7.4) and (7.5) are rewritten as one constraint. It is easier to see that the

problem is convex if we rewrite the optimised functional in (7.6) as 1
2
‖w‖2 +∑n

i=1Ciξi.

The first term is the inverse margin, which equals 2/ ‖w‖. By minimising this term we

maximise the margin. The second term is a sum of weighted errors that are measured

as a distance to a misclassified observation i from the boundary of its class ξi/ ‖w‖. The
parameters Ci’s which are called capacity represent the penalty weights of in-sample
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false classifications for each company observation i. The SVM will give priority to the

correct classification of the companies with higher Ci’s. Capacity is related to the width

of the margin zone. Smaller Ci’s are associated with bigger margins. In our case Ci are

set equal for the same class. In order to make SVMs comparable for a different number

of observations and various ratios between solvent and insolvent companies we compute

Ci’s as c/2n+ for insolvent and c/2n− for solvent companies. Here n+, and n− are

the numbers of insolvent and solvent companies in the training set, c is the coefficient

that is used to control the capacity of the SVM. In contrast to Ci it is invariant of

the number of observations in the training data set and provides a convenient basis

for comparing SVMs. This formulation implies that in a sample with mostly solvent

companies, misclassifications of insolvent companies are given a higher weight. If the

number of solvent and insolvent companies is the same, then Ci = c/n.

The primal problem (7.6) – (7.8) rewritten in a Lagrangian formulation is

min
wk,b,ξi

max
αi,µi

LP =
1

2
‖w‖2 +

n∑

i=1

Ci ξi −
n∑

i=1

αi{yi(x⊤
i w + b)− 1 + ξi} −

n∑

i=1

ξiµi.

The Karush-Kuhn-Tucker Conditions or first order optimality conditions are:

∂LP

∂wk

= 0 ⇔ wk =
n∑

i=1

αiyixik, k = 1, . . . , d, (7.9)

∂LP

∂b
= 0 ⇔

n∑

i=1

αiyi = 0, (7.10)

∂LP

∂ξi
= 0 ⇔ Ci − αi − µi = 0, (7.11)

αi{yi(x⊤
i w + b)− 1 + ξi} = 0,

µiξi = 0,

yi(x
⊤
i w + b)− 1 + ξi ≥ 0,

αi ≥ 0,

µi ≥ 0,

ξi ≥ 0,

where xik is the k-th characteristic of company i. The dual problem is equivalent to

the primal one since the minimised function is convex (Gale, Kuhn & Tucker (1951)).

By substituting equations (7.9) – (7.11) into the primal Lagrangian we derive the dual
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problem:

max
αi

n∑

i=1

αi −
n∑

i=1

n∑

j=1

αiαjyiyjx
⊤
i xj , (7.12)

s.t. 0 ≤ αi ≤ Ci,
n∑

i=1

αiyi = 0.

The n Lagrange multipliers αi are the free parameters to be estimated. They represent

the weights with which each observation influences the solution (see (7.14) and (7.18)).

Those observations have higher weights which are harder to classify, i.e. which lie closer

to the margin zone. On the contrary, the coefficients in the logistic regression are

the weights assigned to each variable and can not be directly compared to Lagrange

multipliers. Problem (7.12) can be equivalently expressed in a matrix notation:

max
α

ι⊤α− α⊤Hα, (7.13)

s.t. 0 ≤ α ≤ C,

y⊤α = 0.

Here α is a vector of Lagrange multipliers, ι is a vector of 1’s, y is a vector of company

classes, +1 for solvent or −1 for insolvent ones and C here is a vector of the coefficients

Ci; all vectors are of the size n× 1. The n components of the vector α are obtained as

the solution of the constrained maximisation problem (7.13). The i, j’th element of the

matrix H is

hij = yiyjx
⊤
i xj = yiyj

d∑

k=1

xikxjk.

The reader who desires to construct an SVM independently may find the problem formu-

lation in the matrix notation (7.13) more convenient. The SVM problem is a classical

quadratic optimisation problem (Fletcher (1987)) that can be solved with numerous

software packages such as Matlab (routines minq or minqdef) or using algorithms specif-

ically developed for the SVM such as the Sequential Minimal Optimisation (SMO) (Platt

(1998)).

Equation (7.9) of the KKT optimality conditions determines the weights wk, k =

1, . . . , d for the k-th characteristic of a company. By substituting (7.9) into (7.1) we
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derive the classification rule:

f(x) = x⊤w + b = x⊤

n∑

i=1

αiyixi + b =
n∑

i=1

αiyix
⊤
i x+ b (7.14)





f(x) < 0 ⇒ x is solvent,

f(x) ≥ 0 ⇒ x is insolvent.

To derive the coefficient b we will use the fact that the separating hyperplane f(x) = 0

(see Figure 21) lies equidistant from the hyperplanes bounding the classes:

x⊤
+w + b = 1 for y+ = 1, (7.15)

x⊤
−w + b = −1 for y− = −1, (7.16)

where x+ is any support vector that lies on or ‘supports’ the hyperplane for y = 1 and

x− is any support vector that lies on the hyperplane for y = −1. Both x+ and x− have

dimensions d× 1. By summing (7.15) and (7.16) we derive:

b = −1

2

(
x⊤
+ + x⊤

−

)
w = −1

2

n∑

i=1

αiyi
(
x⊤
+ + x⊤

−

)
xi. (7.17)

To reduce numerical errors when training the SVM it is desirable to use averages over

all x+ and x− instead of two arbitrary chosen support vectors.

Note that the classification rule (7.14) depends only on the scalar product x⊤xi, not

on the original x and xi. This makes possible a ‘kernel trick’, i.e. an implicit mapping

of low dimensional data into a highly dimensional Hilbert feature space and performing

a linear classification there, e.g. with an SVM. A kernel transformation corresponds to

(i) performing a variable transformation and (ii) taking a scalar product of transformed

variables.

In practice x⊤xi in the SVM formulation (7.12) is replaced with a kernel function

K(x, xi) which represents a scalar product in a feature space (Weyl (1928)). Then the

elements of the matrix H in (7.13) are hij = yiyjK(xi, xj). A kernel function must satisfy

the Mercer conditions (Mercer (1909)), i.e. be symmetric and semipositive definite as a

scalar product. It can map data into infinitely dimensional spaces as in the case with

Gaussian kernels. The number of Lagrange multipliers αi – parameters to be estimated

– is n and can be large for large data sets. However, by selecting a small Ci’s and, hence,

a narrow interval [0, Ci] in which α may vary we can avoid overfitting and extremely

high complexities of the SVM classifier.
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Figure 22 shows a simple mapping example. The quadratic kernel function

K(x, xi) = (x⊤xi)
2

maps two dimensional data into a three-dimensional space of features. The three features

correspond to the three components of a quadratic form in two dimensions: x̃1 = x2
1,

x̃2 =
√
2x1x2 and x̃3 = x2

2. The transformation from a two dimensional data space

into a three dimensional feature space is Ψ(x1, x2) = (x2
1,
√
2x1x2, x

2
2)

⊤. However, we

do not need to know the transformation Ψ explicitly and can equivalently apply the

kernel K(x1, x2) = Ψ(x1, x2)
⊤Ψ(x1, x2) to represent quadratic dependencies between

input variables. The data separable in the data space of x1 and x2 only with a quadratic

function will be separable in the feature space of x̃1, x̃2 and x̃3 with a linear function.

Thus, a non-linear SVM in the data space is equivalent to a linear SVM in the feature

space. The number of features is growing fast with the dimension of the data d and the

degree of the polynomial kernel making a direct data transformation not feasible and

the advantages of the data transformation via a kernel obvious.

By substituting the scalar product in (7.14) with a kernel function a non-linear score

function f is derived:

f(x) =
n∑

i=1

αiyiK(x, xi) + b, (7.18)

where, by analogy with (7.17):

b = −1

2

n∑

i=1

αiyi {K(x+, xi) +K(x−, xi)} .

The non-parametric score function (7.18) does not have a compact closed form repre-

sentation.

In our study we applied an SVM with an anisotropic Gaussian or radial basis kernel

K(x, xi) = exp
{
−(x− xi)

⊤r−2Σ−1(x− xi)/2
}
, (7.19)

where r is a coefficient and Σ is a scaling matrix, which in our case is a variance-

covariance matrix of the training characteristics x. The k1, k2-th element of the matrix
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Figure 22: Mapping from a two-dimensional data space into a three-dimensional space
of features R2 7→ R

3.

is:

σk1,k2 =
1

n

n∑

i=1

(
xi,k1 −

1

n

n∑

j=1

xj,k1

)(
xi,k2 −

1

n

n∑

j=1

xj,k2

)
.

Here σk1,k2 is the covariance between two financial ratios xk1 and xk1 , e.g. a profitabil-

ity and a leverage financial ratio. Σ is used to bring all variables to the same scale

and exclude the excessive influence of the variables with high variance. The ability to

use differently scaled data explains the term ‘anisotropic’ in the kernel name. Before

computing Σ and training an SVM the outliers should be processed, e.g. capped. The

coefficient r is related to the complexity of classifying functions: the higher the r is,

the lower is the complexity. If kernel functions allow for sufficiently rich feature spaces,

the performance of SVMs with different kernels is comparable in terms of out-of-sample

forecasting accuracy (Vapnik (1995)). Note that only the capacity Ci and the complexity

coefficient r are to be set a priori. The Lagrange multiplies are the free parameters that

are computed when training the SVM.

The SVM has a substantial advantage in comparison to the logistic regression with

transformed variables, namely, it does not require to specify the transformation but

estimates it from a broad range of possible ones defined implicitly by the kernel function

type and the SVM capacity coefficient. This advantage of the SVM is fully revealed

when data are new or the relevance of well known transformations must be tested.
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Appendix B: Conversion of Scores into PDs

The conversion of rating scores into PDs provides us with a link to the existing rating

classes reported by rating agencies such as Moody’s and S&P. In the Logistic model

a sigmoid function is applied to estimate PD assuming the logistic distribution of the

latent variable. However, such an assumption is often not compatible with reality. In

general the company score, as it is computed by the SVM or Logit, defines the distance

between companies in terms of PD: the lower the difference in scores, the closer are

companies. If a company has a higher score, it lies farther from successful companies

and, therefore, its PD should be higher. This means that the dependence between

scores and PDs is assumed to be monotonic. No further assumptions about the form of

this dependence will be made in contrast to the already mentioned Logit model with a

prespecified functional transformation from the score to PD.

The conversion procedure consists of the estimation of PDs for the observations of the

training set with a subsequent monotonisation (step one and two) and the computation

of a PD for a new company (step three).

Step one is the estimation of PDs for the companies of the training set. This is

done using standard smoothing techniques in order to preliminary evaluate PDs for all

i = 1, 2, . . . , n observations of the training set:

P̃D(z) =

∑n

i=1w(z − zi)I(yi = 1)∑n

i=1w(z − zi)
, (7.20)

where w(z− zi) = exp {(z − zi)
2/2h2}. The rank of the i-th company zi = Rank{f(xi)}

can be 1, 2, 3, . . . up to n depending on its score f(xi); the higher the score is, the higher

is the rank. h is a bandwidth, in our case h = 0.09n. The smaller is the bandwidth,

the smoother is P̃D(z). When h → 0 no smoothing is performed and all P̃D(zi),

i = 1, 2, . . . , n, will be either 1 or 0; when h → ∞, all P̃D(zi) will have the same value

equal to the average probability of default for the training set.

Using the company rank z instead of the score f(x) we obtain a k-NN smoother with

Gaussian weights w(z−zi)∑n
j=1 w(z−zj)

which decay gradually as |z − zi| grows. This differs from
the most commonly used k-NN smoother that relies on the uniform weights 1

k
I(|z−zi| <

k
2
+ 1).

The preliminary PDs evaluated at step one are not necessarily a monotonic function

of the score. This is due to the fact that companies with close scores may have for

different reasons a non-concordant binary survival indicator y. The monotonisation of

P̃D(zi), i = 1, 2, . . . , n is achieved at step two using the Pool Adjacent Violator (PAV)
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Figure 23: Monotonisation of PDs with the pool adjacent violator algorithm. The thin
line denotes PDs estimated with the k-NN method with uniform weights and
k = 3 before monotonisation and the bold line after monotonisation. Here
y = 1 for insolvencies, y = 0 for solvent companies.

algorithm (Barlow, Bartholomew, Bremmer & Brunk, 1972). Figure 23 illustrates the

workings of the algorithm. The companies are ordered according to their rank and have

here the indicator y = 1 for insolvent and y = 0 for solvent companies. The thin line

denotes the PDs estimated using the k-NN method with uniform weights and k = 3. At

the interval between the observations with rank 1 and 2 monotonicity is violated and is

corrected with the PAV algorithm. The bold line shows PDs after monotonisation.

The PAV algorithm solves the following optimisation problem: given data {zi, yi}ni=1

with z1 ≤ z2 ≤ . . . ≤ zn find the monotonic increasing function m(zi), i.e. m(z1) ≤
m(z2) ≤ . . . ≤ m(zn) that minimises

∑n

i=1 {yi −m(zi)}2. The solution to this problem

is pooling (averaging) the adjacent observations that are violating monotonicity. The

PAV acronym comes from this property. Mammen (1991) has shown that one can

equivalently start with the PAV step and then smooth with a Nadaraya-Watson kernel

estimator (Nadaraya (1964)).

As a result we obtain monotonised probabilities of default PD(xi) for the observations

of the training set. A PD for any observation x of the testing set is computed by

interpolating PDs for two adjacent, in terms of the score, observations from the training

set. If the score for x lies beyond the range of the scores of the training set, then PD(x)

is set equal to the score of the first neighbouring observation of the training set.
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Härdle, W. K., R. A. Moro, and D. Schäfer, 2010: Estimating probabilities of default

with support vector machines. Preprint Submitted to Elsevier.

J. C. Duan, J. S. and T. Wang, 2010: Multiperiod corporate default prediction – a

forward intensity approach. working paper, Risk Management Institute, National

University of Singapore.

Lacerda, A. I. and R. A. Moro, 2008: Analysis of the predictors of default for portuguese

firms. Working paper 22, Banco de Portugal.

Mammen, E., 1991: Estimating a smooth monotone regression function. Annals of

Statistics, 19, 724–740.

Manning, M. J., 2004: Exploring the relationship between credit spreads and default

probabilities. Working Paper No. 225, Bank of England.

Martens, D., B. Baesens, T. van Gestel, and J. Vanthienen, 2006: Comprehensible credit

scoring models using rule extraction from support vector machines. working paper

878283, Social Science Research Network.

Martin, D., 1977: Early warning of bank failure: A logit regression approach. Journal

of Banking and Finance, 1, 249–276.

Mercer, J., 1909: Functions of positive and negative type and their connection with

the theory of integral equations. Philosophical Transactions of the Royal Society of

London, 209, 415–446.

Merton, R. C., 1974: On the pricing of corporate debt: The risk structure of interest

rates. The Journal of Finance, 29(2), 449–470.

Nadaraya, E. A., 1964: On estimating regression. Theory of Probability and its Appli-

cations, 10, 186–190.

Ohlson, J. A., 1980: Financial ratios and the probabilistic prediction of bankruptcy.

Journal of Accounting Research, 18(1), 109–131.

Platt, J., 1998: Sequential minimal optimization: A fast algorithm for training support

vector machines. technical report msr-tr-98-14, Microsoft Research.

36



Ramser, J. and L. Foster, 1931: A demonstration of ratio analysis. bulletin no. 40.

Bureau of Business Research, University of Illinois, Urbana, Ill.

Tam, K. and M. Kiang, 1992: Managerial application of neural networks: the case of

bank failure prediction. Management Science, 38(7), 926–947.

Tikhonov, A. N., 1963: On solving ill-posed problem and method regularization. Doklady

Akademii Nauk USSR, 153, 501–504.

Tikhonov, A. N. and V. Y. Arsenin, 1977: Solution of Ill-posed Problems. W. H.

Winston, Washington, DC.

Vapnik, V., 1995: The Nature of Statistical Learning Theory. Springer, New York, NY.

Weyl, H., 1928: Gruppentheorie und Quantenmechanik. Hirzel, Leipzig.

Wiginton, J., 1980: A note on the comparison of logit and discriminant models of

consumer credit behaviour. Journal of Financial and Quantitative Analysis, 15(3),

757–770.

Wilcox, J. W., 1971: A simple theory of financial ratios as predictors of failure. Journal

of Accounting Research, 9(2), 389–395.

Winakor, A. and R. Smith, 1935: Changes in the financial structure of unsuccessful

industrial corporations. bulletin no. 51. Bureau of Business Research, University of

Illinois, Urbana, Ill.

Zavgren, C., 1983: The prediction of corporate failure: The state of the art. Journal of

Accounting Literature, 2, 1–38.

Zmijewski, M., 1984: Methodological issues related to the estimation of financial distress

prediction models. Journal of Accounting Research, 20(0), 59–82.

37



 
 
 
 

SFB 649 Discussion Paper Series 2011 

 
For a complete list of Discussion Papers published by the SFB 649, 
please visit http://sfb649.wiwi.hu-berlin.de. 
 

001 "Localising temperature risk" by Wolfgang Karl Härdle, Brenda López 
Cabrera, Ostap Okhrin and Weining Wang, January 2011. 

002 "A Confidence Corridor for Sparse Longitudinal Data Curves" by 
Shuzhuan Zheng, Lijian Yang and Wolfgang Karl Härdle, January 2011. 

003 "Mean Volatility Regressions" by Lu Lin, Feng Li, Lixing Zhu and 
Wolfgang Karl Härdle, January 2011. 

004 "A Confidence Corridor for Expectile Functions" by Esra Akdeniz Duran, 
Mengmeng Guo and Wolfgang Karl Härdle, January 2011.  

005 "Local Quantile Regression" by Wolfgang Karl Härdle, Vladimir Spokoiny 
and Weining Wang, January 2011.  

006 "Sticky Information and Determinacy" by Alexander Meyer-Gohde, 
January 2011. 

007  "Mean-Variance Cointegration and the Expectations Hypothesis" by Till 
Strohsal and Enzo Weber, February 2011. 

008 "Monetary Policy, Trend Inflation and Inflation Persistence" by Fang Yao, 
February 2011. 

009 "Exclusion in the All-Pay Auction: An Experimental Investigation" by 
Dietmar Fehr and Julia Schmid, February 2011. 

010 "Unwillingness to Pay for Privacy: A Field Experiment" by Alastair R. 
Beresford, Dorothea Kübler and Sören Preibusch, February 2011.  

011 "Human Capital Formation on Skill-Specific Labor Markets" by Runli Xie, 
February 2011. 

012 "A strategic mediator who is biased into the same direction as the expert 
can improve information transmission" by Lydia Mechtenberg and 
Johannes Münster, March 2011. 

013 "Spatial Risk Premium on Weather Derivatives and Hedging Weather 
Exposure in Electricity" by Wolfgang Karl Härdle and Maria Osipenko, 
March 2011. 

014 "Difference based Ridge and Liu type Estimators in Semiparametric 
Regression Models" by Esra Akdeniz Duran, Wolfgang Karl Härdle and 
Maria Osipenko, March 2011. 

015 "Short-Term Herding of Institutional Traders: New Evidence from the 
German Stock Market" by Stephanie Kremer and Dieter Nautz, March 
2011. 

016 "Oracally Efficient Two-Step Estimation of Generalized Additive Model" 
by Rong Liu, Lijian Yang and Wolfgang Karl Härdle, March 2011. 

017 "The Law of Attraction: Bilateral Search and Horizontal Heterogeneity" 
by Dirk Hofmann and Salmai Qari, March 2011. 

018 "Can crop yield risk be globally diversified?" by Xiaoliang Liu, Wei Xu and 
Martin Odening, March 2011.  

019 "What Drives the Relationship Between Inflation and Price Dispersion? 
Market Power vs. Price Rigidity" by Sascha Becker, March 2011.  

020 "How Computational Statistics Became the Backbone of Modern Data 
Science" by James E. Gentle, Wolfgang Härdle and Yuichi Mori, May 
2011. 

021 "Customer Reactions in Out-of-Stock Situations – Do promotion-induced   
phantom positions alleviate the similarity substitution hypothesis?" by 
Jana Luisa Diels and Nicole Wiebach, May 2011. 

 

SFB 649, Ziegelstraße 13a, D-10117 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 



 

SFB 649 Discussion Paper Series 2011 

 
For a complete list of Discussion Papers published by the SFB 649, 
please visit http://sfb649.wiwi.hu-berlin.de. 
 

022  "Extreme value models in a conditional duration intensity framework" by 
Rodrigo Herrera and Bernhard Schipp, May 2011. 

023 "Forecasting Corporate Distress in the Asian and Pacific Region" by Russ 
Moro, Wolfgang Härdle, Saeideh Aliakbari and Linda Hoffmann, May 
2011. 

 
 

SFB 649, Ziegelstraße 13a, D-10117 Berlin 
http://sfb649.wiwi.hu-berlin.de 

 
This research was supported by the Deutsche 

Forschungsgemeinschaft through the SFB 649 "Economic Risk". 


	Frontpage 023.pdf
	SFB649DP2011-023_ges.pdf
	paper2011_Singapore.pdf
	Introduction
	Data Description
	Variable Description
	Summary Statistics

	Univariate Analysis of the Predictors of Default
	Comparison of the PD between Asian and German Companies
	Variable Selection and Rating Model Comparison
	Forecasting Accuracy
	Conclusion

	Endpage 023.pdf


