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Abstract

On the temperature derivative market, modeling temperature volatility is an important

issue for pricing and hedging. In order to apply pricing tools of �nancial mathematics, one

needs to isolate a Gaussian risk factor. A conventional model for temperature dynamics

is a stochastic model with seasonality and inter temporal autocorrelation. Empirical work

based on seasonality and autocorrelation correction reveals that the obtained residuals are

heteroscedastic with a periodic pattern. The object of this research is to estimate this het-

eroscedastic function so that after scale normalisation a pure standardised Gaussian variable

appears. Earlier work investigated this temperature risk in di�erent locations and showed that

neither parametric component functions nor a local linear smoother with constant smoothing

parameter are �exible enough to generally describe the volatility process well. Therefore, we

consider a local adaptive modeling approach to �nd at each time point, an optimal smooth-

ing parameter to locally estimate the seasonality and volatility. Our approach provides a

more �exible and accurate �tting procedure of localised temperature risk process by achieving

excellent normal risk factors.
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1 Introduction

Pricing of contingent claims based on stochastic dynamics for example stocks or FX rates is well
known in �nancial engineering. An elegant access of such a pricing task is based on self-�nancing
replication arguments. An essential element of this approach is the tradability of the underlying.
This however does not apply to weather derivatives contingent on temperature or rain since the
underlying is not tradable. In this context, the proposed pricing techniques are based on either
equilibrium ideas (Horst and Mueller (2007)) or econometric modelling of the underlying dynamics
(Campbell and Diebold (2005) and Benth, Benth and Koekebakker (2007)) followed by risk neutral
pricing.

The equilibrium approach relies on assumptions about preferences (with explicitly known func-
tional forms) though. In this study we prefer a phenomenological approach since the underlying
(temperature) we consider is of local nature and our analysis aims at understanding the pricing
at di�erent locations and di�erent time points around the world. Such a time series approach has
been taken by Benth et al. (2007), who corrects for seasonality (in mean), then for intertemporal
correlation and �nally as in Campbell and Diebold (2005), for seasonal variation in volatility. After
these manipulations a Gaussian risk factor needs to be isolated in order to apply continuous time
pricing techniques, Karatzas and Shreve (2001).

Empirical studies following this econometrical route show evidence that the resulting risk factor
deviates severely from Gaussianity, which in turn challenges the pricing tools, Benth, Härdle and
López Cabrera (2011). In particular, for Asian cities, like for example Kaohsiung (Taiwan), one
observes very distinctive non-normality in the form of clearly visible heavy tails caused by extended
volatility in peak seasons. This is visible from Figure 1 where a log density plot reveals a nonnormal
shoulder structure (kurtosis= 3.22, skewness= −0.08, JB= 128.74).
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Figure 1: Kernel density estimates (left panel), Log normal densities (middle panel) and QQ-plots
(right panel) of normal densities (gray lines) and Kaohsiung standardised residuals (black line)

As in Benth et al. (2007) temperature Tt is decomposed into a seasonality term Λt and a stochastic
part with seasonal volatility σt.
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The �tted seasonality trend Λt and seasonal variance σ2
t are approximated with Fourier series (and

an additional GARCH term):

Λt = a+ bt+
L∑
l=1

cl cos

{
2π(t− dl)
l · 365

}
, (1)

σ2
t,FTSG = c10 +

L∑
l=1

{
c2l cos

(
2lπt

365

)
+ c2l+1 sin

(
2lπt

365

)}
+ α1(σt−1ηt−1)2 + β1σ

2
t−1, (2)

ηt ∼ iid(0, 1).

The upper panel of Figure 2 displays the seasonality and deseasonalised residuals over two years
in Kaohsiung. The lower panel RHS displays the empirical and seasonal variance function, while
the lower panel LHS shows the smoothed seasonal variance function over years. The series expan-
sion (1), (2) failed though in the volatility peak seasons. Even incorporating an asymmetry term
for the dip of temperature in winter does not improve the closeness to normality.

One may of course pursue a �ne tuning of (1) and (2) with more and more periodic terms but this
will increase the number of parameters. We therefore propose a local parametric approach. The
seasonality Λs and σs are approximated with a Local Linear Regression (LLR) estimator:

arg min
e,f

365∑
t=1

{
T̄t − es − fs(t− s)

}2
K
(t− s

h

)
(3)

arg min
g,v

365∑
t=1

{
ε̂2
t − gs − vs(t− s)

}2
K
(t− s

h

)
(4)

where T̄t is the mean (over years) of daily averages temperatures, ε̂2
t the squared residual process

(after seasonal and intertemporal �tting), h the bandwidth and K(·) is a kernel. Note, that due to
the spherical character of the data, the kernel weights in (3), (4) may be calculated from �wrapped
around observations� thereby avoiding bias. The estimates Λ̂s, σ̂

2
s are given by the minimisers ês,

ĝs of (3), (4). The upper panel of Figure 2 shows the seasonality in mean and the bottom panel
on the RHS the volatility estimated with Fourier series and local linear regression using the quartic
kernel. We observe high variance in winter and early summer and low variance in spring and late
summer.

The scale correction of the obtained residuals (after seasonal and intertemporal �tting) is appar-
ently not identical over the year. A very structured volatility pattern up to April is followed by
a moderately constant period until an increasing peak starting in September. This motivates our
research to localise temperature risk. The local smoothness of σ2

t is of course not only a matter
of one location (here Kaohsiung) but varies also over the di�erent cities around the world that we
are analysing in this study. Our study is local in a double sense: local in time and space. We
use adaptive methods to localise the underlying dynamics and with that being able to achieve
Gaussian risk factors. This will justify the pricing via standard tools that are based on Gaussian
risk drivers. The localisation in time is based on adjusting the smoothing parameter h. For a
general framework on local parametric approximation we refer to Spokoiny (2009). As a result we
obtain better approximations to normality and therefore less biased prices.

This paper is structured as follows. Section 2 describes the localising approach. In section 3, we
present the data and conduct the analysis to di�erent cities. Section 4 presents an application

3
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Figure 2: Upper panel: Kaohsiung daily average temperature (black line), Fourier truncated
(dotted gray line) and local linear seasonality function (gray line), Residuals in lower part. Lower
left panel: Fourier seasonal variation (Λ̂t) over time. Lower right panel: Kaohsiung empirical
(black line), Fourier (dotted gray line) and local linear (gray line) seasonal variance (ε̂2

t ) function.
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where the pricing of weather derivative contract types is presented. Section 5 concludes the paper.
All quotations of currency in this paper will be in USD and therefore we will omit the explicit
notion of the currency. All the CAT bond computations were carried out in Matlab version 7.6 and
R. The temperature data for di�erent cities in US, Europe and Asia were obtained from the Na-
tional Climatic Data Center (NCDC), the Deutscher Wetterdienst (DWD), Bloomberg Professional
Service and the Japanese Meteorological Agency (JMA).

2 Model

Let us change our notation from t 7→ (t, j), with t = 1, . . . , τ = 365 days, j = 0, . . . , J years. The
time series decomposition we consider is given as:

X365j+t = Tt,j − Λt,

X365j+t =
L∑
l=1

βljX365j+t−l + εt,j,

εt,j = σtet,j,

et,j ∼ N(0, 1),

ε̂t,j = X365j+t −
L∑
l=1

β̂ljX365j+t−l, (5)

where Tt,j is the temperature at day t in year j, Λt denotes the seasonality e�ect and σt the seasonal
volatility. Motivation of this modeling approach can be found in Diebold and Inoue (2001). Later
studies like e.g. Campbell and Diebold (2005) and Benth et al. (2007) have provided evidence that
the parameters βlj are likely to be j independent and hence estimated consistently from a global
autoregressive process model AR(Lj) with Lj = L. Since the stylised facts of temperature are
re-occurring every year, our focus is on �exible estimation of Λt and σ

2
t , see Figure 2.

The seasonal trend function Λt and the seasonal variance function σ2
t a�ect the Gaussianity of

the resulting normalised residuals. The commonly used approaches 1. truncated Fourier series, 2.
local polynomial regression are both too restrictive and do not �t the data well since they are not
yielding normal risk factors. These observations motivate us to consider a more �exible approach.
The main idea is to �t a simple parametric model locally for the trend and variance with adaptively
chosen window sizes. Speci�cally, we use kernel smoothing and adopt an adaptive technique to
choose the bandwidth over days. Other examples of this technique can be found in Cízek, Härdle
and Spokoiny (2009) and Chen, Härdle and Pigorsch (2010).

2.1 How does the adaptation work?

The time series Tt,j are approximated at a �xed time point s ∈ [1, 365]. Our goal is to �nd a local
window that follows certain optimality properties to be de�ned below. Speci�cally, for a speci�ed
weight sequence, we conduct a sequential LRT to choose an appropriate bandwidth. Di�erent
procedures of estimating seasonality and volatility are studied. Suppose that the object to be
approximated is the seasonal variance θ(t) = {σ2

t }. A weighted maximum likelihood approach is

5



given by:

θ̃k(s)
def
= arg max

θ∈Θ
L{W k(s), θ}

= arg min
θ∈Θ

365∑
t=1

J∑
j=0

{log(2πθ)/2 + ε̂2
t,j/2θ}w(s, t, hk), (6)

with the �localising scheme� W k(s) = {w(s, 1, hk), w(s, 2, hk), . . . , w(s, 365, hk)}>, where w(s, t, hk) =
h−1
k K{(s− t)/hk}, k = 1, . . . , K, h1 < h2 < h3 < . . . < hK the prescribed sequence of bandwidths,

and K(u) = 15/16(1− u2)2I(|u| ≤ 1) (quartic kernel).

The explicit solution of (6) is given by:

θ̃k(s) =
∑
t,j

ε̂2
t,jw(s, t, hk)/

∑
t,j

w(s, t, hk)

=
∑
t

ε̂2
tw(s, t, hk)/

∑
t

w(s, t, hk),

with

ε̂2
t

def
= (J + 1)−1

J∑
j=0

ε̂2
t,j.

>From a smoothing perspective we are in a comfortable situation here since the boundary bias
is not an issue, as we are dealing with a periodic function θ(t) = θ(t + 365). We use mirrored
observations: assume hK < 365/2, then the observation set, for example for the seasonal volatility,
is extended to ε̂2

−364, ε̂
2
−363, . . . , ε̂

2
0, ε̂

2
1, . . . , ε̂

2
730, where

ε̂2
t

def
= ε̂2

365+t,−364 ≤ t ≤ 0,

ε̂2
t

def
= ε̂2

t−365, 366 ≤ t ≤ 730.

Since the location s is �xed, we drop s for the simplicity of notation.

For ` < k, the accuracy of the estimation is measured by the �tted likelihood ratio (LR):

L(W `, θ̃`, θ̃k)
def
= L(W `, θ̃`)− L(W `, θ̃k).

The volatility σt or trend Λt estimation happens within an exponential family, so LR can be written
in closed form, Polzehl and Spokoiny (2006):

L(W k, θ̃k, θ
∗)

def
= NkK(θ̃k, θ

∗)

= −{log(θ̃k/θ
∗) + 1− θ∗/θ̃k}/2, (7)

where Nk = J
∑365

t=1w(s, t, hk) and K(θ̃k, θ
∗) is the Kullback-Leibler divergence between two normal

distributions with variances θ̃k and θ
∗. Note that (7) is the divergence in the volatility case. For

trend estimation, it has to be replaced by (θ̃k − θ∗)/(2σ2).

6



The Kullback-Leibler divergence of two distributions with densities p(x) and q(x) is de�ned as:

K{p(x), q(x)} def
= E p(.) log

p(x)

q(x)
.

To guarantee the feasibility of the tests, we need moment bounds and con�dence sets for LR, which
guarantee that the MLE is concentrated in the level set of the likelihood ratio process around the
true parameter. For the volatility case, see Polzehl and Spokoiny (2006); for the trend case, see
Mercurio and Spokoiny (2004).

Theorem 2.1 [Spokoiny (2009)] Assuming that θ(t) = θ∗ for any t ∈ [1, 365], then for z > 0 and
k ∈ 1, . . . , K, r > 0, denote Pθ∗(.) as the measure corresponding to (6). We obtain:

Pθ∗

{
L(W k, θ̃k, θ

∗) > z
}
≤ 2 exp (−z) (8)

and a risk bound for a power loss function:

E θ∗ |L(W k, θ̃k, θ
∗)|r ≤ rr, (9)

where rr = 2r
∫
z≥0

zr−1 exp(−z)dz. This polynomial bound applies to all localising schemes W k

simultaneously.

The risk bound (9) allows us to de�ne likelihood based con�dence sets since together with (8) it
tells us that the likelihood process is stochastically bounded. De�ne therefore con�dence sets with
critical values zk to level α:

Eα,k = {θ : L(W k, θ̃k, θ) ≤ zk}. (10)

Equipped with con�dence sets (10), we launch the Local Model Selection (LMS) algorithm:

• Fix a point s ∈ {1, 2, . . . , 365}.

• Start with the smallest interval h1: θ̂1 = θ̃1

• For k ≥ 2, θ̃k is accepted and θ̂k = θ̃k if θ̃k−1 was accepted and θ̃` ∈ Eα,k,∀` = 1, . . . , k − 1,
i.e.

L(W k, θ̃`, θ̃k) ≤ z`,∀` = 1, . . . , k − 1.

Otherwise, set θ̂k = θ̂k−1, where θ̂k is the latest accepted after �rst k steps.

• De�ne k̂ as the kth step we stopped, and θ̂` = θ̃k̂, ` ≥ k.

The LMS algorithm is illustrated in Figure 3. For every estimate θ̃k the corresponding con�dence
set is shown. If the horizontal line originating θ̃k does not cross all the preceding intervals then
the selection algorithm terminates.

A further integrated approach is to consider an iterative algorithm to cope with heteroscedastic-
ity in the corrected residuals after seasonality in mean and variance component varies between
estimating the seasonal component and the variance θ(t) = {Λt, σ

2
t }. The procedure is:

7
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Figure 3: Localised model selection (LMS)

Step 1. Estimate β̂ in an initial Λ0
t using a truncated Fourier series or any other deterministic func-

tion;

Step 2. For �xed Λ̂s,ν = {Λ̂′s,ν , Λ̂
′′
s,ν}>, s = {1, . . . , 365} from last step ν, and �xed β̂, get σ̂2

s,ν+1 by

σ̂2
s,ν+1 = arg min

σ2

365∑
t=1

J∑
j=0

[{T365j+t − Λ̂
′

s,ν − Λ̂
′′

s,ν(t− s)

−
L∑
l=1

β̂lX365j+t−l}2/2σ2 + log(2πσ2)/2]w(s, t, h′k);

Step 3. For �xed σ̂2
s,ν+1 and β̂, we estimate Λ̂s,ν+1, s = {1, . . . , 365} via another local adaptive pro-

cedure:

Λ̂s,ν+1 = arg min
{Λ′,Λ′′}>

365∑
t=1

J∑
j=0

{
T365j+t − Λ′ − Λ′′(t− s)−

L∑
l=1

β̂lX365j+t−l

}2

w(s, t, h′k)/2σ̂
2
s,ν+1,

where {h′1, h′2, h′3, . . . , h′K′} is a sequence of bandwidths;

Step 4. Repeat steps 2 and 3 till both |Λ̂t,ν+1− Λ̂t,ν | < π1 and |σ̂2
t,ν+1− σ̂2

t,ν | < π2 for some constants
π1 and π2.

Our empirical implementation suggests that one iteration is enough.

The LMS methods requires critical values zk, which de�ne the signi�cance for the LRT statistics
L(W `, θ̃`, θ̃k) or alternatively speaking the length of the con�dence interval (see (8)) at each step.
The critical values are calibrated from the �propagation condition� below which ensures a desired
level of type one error. To be more speci�c, for every step k, de�ne θ̂k as the �survived estimator�
after the kth step (if the estimator is not rejected up to step k, then θ̂k = θ̃k, else if the estimator
has been rejected at step l < k, then θ̂k = θ̃l). Measure the closeness of θ̃k and θ̂k by:

E θ∗ |L(W k, θ̃k, θ̂k)|r ≤ αrr (11)

8



for k = 1, . . . , K with rr the parametric risk bound in (9) and α a control parameter corresponding
to the type one error. In fact

E θ∗ |L(W k, θ̃k, θ̂k)|r → Pθ∗(θ̃k 6= θ̂k)

for r → 0, therefore α can be interpreted as a false alarm probability.

More precisely if step k is accepted as described in Figure 3 then θ̃k = θ̂k and the nonzero loss
Eθ∗ L(W k, θ̃k, θ̂k) can only occur if the estimator has been rejected before or at step k, which under
the homogeneous parametric model case, is denoted as �false alarm�.

With the �propagation condition� (13) below, critical values are constructed.

• Consider �rst z1 and let z2 = z3 = . . . = zK−1 = ∞. This leads to the estimates θ̂k(z1) and
the value z1 is selected as the minimal one for which

sup
θ∗
E θ∗|L{W k, θ̃k, θ̂k(z1)}| ≤ αrr

K − 1
, k = 2, . . . , K. (12)

• Suppose z1, . . . , zk−1 have been �xed, and set zk = . . . = zK−1 = ∞. With estimate
θ̂m(z1, . . . , zk) for m = k + 1, . . . , K. select zk as the minimal value which ful�lls

sup
θ∗
E θ∗|L{Wm, θ̃m, θ̂m(z1, . . . , zk)}|r ≤

kαrr
K − 1

(13)

for m = k + 1, . . . , K.

Inequality (12) describes the impact of the k critical values to the risk, while the factor kα
K−1

in
(13) ensures that every zk has the same impact. The values of (α, r, h1, . . . , hK) are prespeci�ed
hyper-parameters of which robustness and sensitivity issues will be discussed in Section 3. The
following theorem provides insight into the form of zk.

Theorem 2.2 [Spokoiny (2009)] Suppose that 0 < hk−1/hk < 1 and θ(t) = θ∗ for all t ∈ [0, 365].
An upper bound for the critical values zk is given by:

zk = a0 logK + 2 log(nhk/α) + 2r log(hK/hk)

where a0 > 0 is a constant.

A risk bound for a global model (θ(t) = θ∗) has been given in (11). This may now be extended to
the nonparametric setting via the �Small Modeling Bias (SMB)� condition:

∆(θ)
def
=

365∑
t=1

K(θt, θ) I{w(s, t, hk) > 0} ≤ ∆,∀k < k∗, (14)

where k∗ is the maximum k satisfying (14), also called �oracle�.

The estimation risk for the function θ(t) is described for k ≤ k∗ by the �propagation� property:

E θ(·) log{1 + |L(W k, θ̃k, θ̂k)|r/rr} ≤ ∆ + α.

9



An estimate for k∗ is desired. The adaptive estimate θ̂k̂ will in fact enjoy this property as we

show below. The estimate θ̂k̂ behaves similarly to the oracle estimate θ̃k∗ since it is �stable� in the

sense that even if the described selection scheme overshoots k∗, the resulting estimate θ̂k̂ is still

close to the oracle θ̃k∗ . This may be expressed as that the attained quality of estimation during
�propagation� is not lost at further steps:

L(W k∗ , θ̃k∗ , θ̂k̂) I{k̂ > k∗} ≤ zk∗ .

A combination of the propagation and stability property then leads to the �oracle� property:

E θ(·) log
{

1 +
|L(W k∗ , θ̃k∗ , θ)|r

rr

}
≤ ∆ + 1,

E θ(·) log
{

1 +
|L(W k∗ , θ̃k∗ , θ̂k̂)|r

rr

}
≤ ∆ + α + log

{
1 +

zk∗

rr

}
,

for θ ∈ Θ with ∆(W k, θ) ≤ ∆ and k ≤ k∗. This means that the risk of estimating adaptively is
composed into three parts: the SMB, the false alarm rate and a small term corresponding to the
overshooting risk.

3 Empirical analysis

We conduct an empirical analysis of temperature patterns over di�erent cities (Figure 4). The
data set contains daily average temperatures for di�erent cities in Europe, Asia and US: Atlanta,
Beijing, Berlin, Essen, Houston, Kaoshiung, New York, Osaka, Portland, Taipei, Tokyo. The
summary of the data and characteristics can be seen in Table 1.
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Figure 4: Map of locations where temperature are collected

We �rst check seasonality, intertemporal correlation and seasonal variation. Table 2 provides the
coe�cients of the Fourier truncated seasonal function (1) for some cities for di�erent time periods.
The coe�cient a can be seen as the average temperature, the coe�cient b as an indicator for global
warming. The latter coe�cients are stable even when the estimation is done in a window length
of 10 years. In the sense of capturing volatility peak seasons, the left panel of Figure 5 visualises
the power of capturing volatility peak seasons by the seasonal local smoother (3) using the quartic
kernel over the estimates modeled under Fourier truncated series (1).
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City Period ADF KPSS AR(3) CAR(3)

τ̂ k̂ β1 β2 β3 α1 α2 α3

Atlanta 19480101-20081204 -55.55+ 0.21*** 0.96 -0.38 0.13 2.03 1.46 0.28
Beijing 19730101-20090831 -30.75+ 0.16*** 0.72 -0.07 0.05 2.27 1.63 0.29
Berlin 19480101-20080527 -40.94+ 0.13** 0.91 -0.20 0.07 2.08 1.37 0.20
Essen 19700101-20090731 -23.87+ 0.11* 0.93 -0.21 0.11 2.06 1.34 0.16
Houston 19700101-20081204 -38.17+ 0.05* 0.90 -0.39 0.15 2.09 1.57 0.33
Kaohsiung 19730101-20091210 -37.96+ 0.05* 0.73 -0.08 0.04 2.26 1.60 0.29
New York 19490101-20081204 -56.88+ 0.08* 0.76 -0.23 0.11 2.23 1.69 0.34
Osaka 19730101-20090604 -18.65+ 0.09* 0.73 -0.14 0.06 2.26 1.68 0.34
Portland 19480101-20081204 -45.13+ 0.05* 0.86 -0.22 0.08 2.13 1.48 0.26
Taipei 19920101-20090806 -32.82+ 0.09* 0.79 -0.22 0.06 2.20 1.63 0.36
Tokyo 19730101-20090831 -25.93+ 0.06* 0.64 -0.07 0.06 2.35 1.79 0.37

Table 1: ADF and KPSS-Statistics, coe�cients of the autoregressive process AR(3) and continuous
autoregressive model CAR(3) model for the detrended daily average temperatures time series for
di�erent cities. +0.01 critical values, * 0.1 critical value, **0.05 critical value, ***0.01 critical
value.

City Period â b̂ ĉ1 d̂1 ĉ2 d̂2 ĉ3 d̂3
Berlin (19480101-20080527) 9.2173 0.0000 9.8932 -157.9123 0.2247 261.2850 0.1591 -127.7303

(19730101-20080527) 9.3050 0.0001 10.0070 -161.2493 0.4601 -66.0530 -0.3723 -416.4776
(19730101-20080527) 9.3050 0.0001 10.0070 -161.2493 0.4601 -66.0530 -0.3723 -416.4776
(19830101-20080527) 9.4581 0.0001 10.0969 -161.7129 0.5205 -51.9929 0.3734 42.0874
(19930101-20080527) 9.5923 0.0002 10.1995 -162.9774 0.6564 -37.1548 0.4241 41.9970
(20030101-20080527) 9.6948 0.0007 10.1954 -162.3343 0.5554 -43.2293 0.3269 1.5998

Kaohsiung (19730101-20081231) 24.2289 0.0001 0.9157 -145.6337 -4.0603 -78.1426 -1.0505 10.6041
(19730101-19821231) 24.4413 0.0001 2.1112 -129.1218 -3.3887 -91.1782 -0.8733 20.0342
(19830101-19921231) 25.0616 0.0003 2.0181 -135.0527 -2.8400 -89.3952 -1.0128 20.4010
(19930101-20021231) 25.3227 0.0003 3.9154 -165.7407 -0.7405 -51.4230 -1.1056 19.7340

New-York (19490101-20081204) 53.1473 0.0001 18.6810 -143.4051 -3.3872 271.5072 -0.4203 -16.3125
(19730101-20081204) 53.6992 0.0001 18.0092 -148.4124 -3.5236 279.6876 -0.4756 -21.8090
(19730101-19821204) 53.6037 -0.0000 17.7446 -155.2453 -3.7769 289.7932 -0.8326 -4.2257
(19830101-19921204) 54.8740 -0.0003 17.6924 -152.7461 -3.4245 284.6412 -0.4933 -218.9204
(19930101-20021204) 53.8050 0.0003 17.6942 -153.3997 -3.4246 285.7958 0.5753 -315.2792
(20030101-20081204) 52.9177 0.0012 17.8425 -151.2977 -3.8837 287.2022 -0.1290 -216.7298

Tokyo (19730101-20081231) 15.7415 0.0001 8.9171 -162.3055 -2.5521 -7.8982 -0.7155 -15.0956
(19730101-19821231) 15.8109 0.0001 9.2855 -162.6268 -1.9157 -16.4305 -0.5907 -13.4789
(19830101-19921231) 15.4391 0.0004 9.4022 -162.5191 -2.0254 -4.8526 -0.8139 -19.4540
(19930101-20021231) 16.4284 0.0001 8.8176 -162.2136 -2.1893 -17.7745 -0.7846 -22.2583
(20030101-20081231) 16.4567 0.0001 8.5504 -162.0298 -2.3157 -18.3324 -0.6843 -16.5381

Table 2: Seasonality estimates Λ̂t of daily average temperatures in Asia. All coe�cients are nonzero
at 1% signi�cance level. Data source: Bloomberg.
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Figure 5: The empirical (black line), the Fourier truncated (dotted gray line) and the the local
linear (gray line) seasonal mean (left panel) and variance component (right panel) using Quartic
kernel and bandwidth h = 4.49.
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City Corrected residuals with Fourier ε̂t
σ̂t,FTSG

Corrected residuas with Local smoother ε̂t
σ̂t,LLR

JB Kurtosis Skewness KS AD JB Kurtosis Skewness KS AD
Berlin 304.77 3.54 -0.08 0.01 7.65 279.06 3.52 -0.08 0.01 7.29
New-York 403.39 3.47 -0.23 0.02 23.22 375.50 3.45 -0.228 0.02 21.74
Kaohsiung 2753.00 4.68 -0.71 0.06 79.93 2252.50 4.52 -0.64 0.06 79.18
Tokyo 133.26 3.44 -0.10 0.02 8.06 148.08 3.44 -0.13 0.02 10.31

Table 3: Skewness, kurtosis, Jarque Bera (JB), Kolmogorov Smirnov (KS) and Anderson Darling
(AD) test statistics (365 days) of corrected residuals.

�

After removing the local linear seasonal mean (3) from the daily average temperatures (Xt =
Tt − Λt,LNN), we check that Xt is a stationary process with the Augmented Dickey-Fuller (ADF)
and the KPSS tests. The analysis of the partial autocorrelations and Akaike's Information criterion
(AIC) suggest that a simple AR(3) model �ts the temperature evolution well. Table 1 presents
the results of the stationarity tests as well as the coe�cients of the �tted AR(3). The empirical
seasonal variation (square residuals after seasonal and intertemporal �tting), the seasonal variation
curves (2) and (4) are displayed on the right panel in Figure 5, while the descriptive statistics for
the residuals after correcting by seasonality are given in Table 3. Both seasonal volatility estimators
lead to heavy tail distributions of corrected residuals and negative skewness.

The adjustment in the smoothing parameter h will provide the localisation in time. The band-
width sequences are selected from four candidates: (3, 5, 7, 9, 11, 13, 15), (3, 5, 8, 12, 17, 23, 30),
(5, 7, 10, 14, 19, 25, 32), (7, 9, 11, 14, 17, 10, 24). The candidates are chosen according to the low-
est Anderson Darling statistic. The best candidate for bandwidth sequence is that one that yields
a residual distribution close to normality. Smoothing the bandwidths selected at discrete points,
gives yet another adaptive estimator.

The critical values (CV) as calibrated from (12) and (13) are given in Figure 6. The left side
provides CVs simulated from a sample of 103 observations for a quartic kernel for both mean and
volatility with θ∗ = 1, r = 0.5 and di�erent values of signi�cance level α. The CVs for di�erent
bandwidth sequences are displayed in the right side of Figure 6. The CVs, as one observes, are
insensitive to the choice of r and α.

A one year short period is considered in the �rst place for demonstration purpose, while later we
show how the results change with di�erent time length periods. Figures 7, 8, 9 and 10 present
general results for di�erent cities under di�erent adaptive localising schemes for seasonal mean
(Me) and seasonal volatility (Vo): with �xed bandwidth curve (�), adaptive bandwidth curve
(ad) and adaptive smoothed bandwidth (ads) for di�erent time intervals. The seasonal mean is
estimated jointly over the years, using α = 0.3 and power level r = 0.5. The upper panel of each
volatility plot on Figures 7-10 shows the sequence of bandwidths and the smoothed bandwidth;
the bottom panel displays the variance estimation with �xed bandwidth (dashed line), smoothed
adaptive bandwidth (dotted line) and adaptive bandwidth (dot-dashed line). In all countries, one
observes signi�cant di�erences between the estimates. When smoothing the discrete bandwidths
over time, the estimated variance curves are smoother. In particular, in cities like Kaohsiung and
New York, one observes more variation of the seasonal variance curves during peak seasons (winter
and summer times). The triangles and circles in the bottom panel of each volatility plot helps
us to trace the source of non-normality over time, since they corresponds to 10 dots of the upper
and lower tails of the QQ-plots of square residuals respectively (see Figure 11 for Berlin results).
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Figure 6: Simulated CV for likelihood of seasonal volatility (6) with θ∗ = 1, r = 0.5, MC = 5000
with α = 0.3 (gray dotted line), 0.5 (black dotted line), 0.8 (dark gray dotted line) (left), with
di�erent bandwidth sequences (right).

Left top plots of Figures 7- 10 show the mean case. Di�erent from the seasonal variance function,
we do not observe a big variation of smoothness in the mean function. One can see that in all
cities, the bandwidths are varying over the yearly cycle with a slight degree of non homogeneity
for Kaoshiung.
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An approach to cope with the non normality brought in by more observations is to estimate
mean functions year by year (SeMe), and then aggregate the residuals for variance estimation.
We therefore estimate the joint/separate seasonal mean (JoMe/SeMe) and seasonal variance (Vo)
curves with �xed bandwidth curve (�), adaptive bandwidth curve (ad) and adaptive smoothed
bandwidth (ads). Table 5 and Table 6 show the p-values for normality tests. Volatility plots
on the Figures 7-10 displays the behavior of the variance function estimation when the period
length changes. The average over years acts as a smoother when we consider more years. The
estimated AR(L) parameters for di�erent cities using joint/separate mean (JoMe/SeMe) with
di�erent bandwidth curves are illustrated in Table 4. The results again show that an AR(3) �ts
well the stylised facts of temperature.

The p-values of normality test statistics (Kolmogorov Smirnov KS, Jarques-Bera JB, Anderson
Darling AD) of corrected residuals (after seasonal mean and volatility) for di�erent cities under
varying localising schemes are displayed in Table 5 and Table 6. The results are compared for
di�erent periods (3 years, 4 years, 5 years). The longer the period, the smaller the p-value of
normality and therefore the more likely to reject the normality assumption. The standardised
residuals are closer to normality (Berlin and New York) or at the same level (Kaoshiung and Tokyo)
overall. The approach shows stability over more years. The p-values for adaptive estimates, over
all cities, are generally larger than those for �xed bandwidth estimates. We observe that in US
cities the risk factor show a better Gaussian pattern compared to other cities. With smoothed
bandwidth, there are a slightly improvements in some cases. In most of the cases, specially in
cities at sea level, the correction by adaptive models outperforms the classical method.

We tackle the problem of loosing information when considering estimates at individual level or
averaging mean functions over time, with a re�ned approach that considers the minimum variance
between the aggregation of yearly local mean function estimates and an optimal local estimate θo.
Once the sets of local mean functions have been identi�ed, the aggregated local function can be
de�ned as the weighted average of all the observations in a given time set. Formally, if θ̂j(t) is the
localised observation at time t of year j, the aggregated local function is given by:

θ̂ω(t) =
J∑
j=1

ωj θ̂
j(t). (15)

With this aggregation step across J , we give the same weight to all observations, even to obser-
vations that were unimportant at the yearly level. Then a reasonable optimised estimate will be:

arg min
ω

J∑
j=1

365∑
t=1

{θ̂ω(t)− θ̂oj (t)}2 subject to
J∑
j=1

ωj = 1;ωj > 0, j = 1, . . . , J, (16)

where the weights are assumed to be exogenous and nonstochastic, and θ̂oj is de�ned as one of the

following: 1 (SeMe Locave), θ̂oj (t) = J−1
∑J

j=1 σ̂
2
j (t), the average of seasonal empirical variances

over years, 2, (SeMe Locsep) θ̂oj (t) = σ̂2
j (t), the yearly empirical variances, 3, one of above two

approaches with maximised p-values over year. One may interpret this normalisation of weights as
an optimisation with respect to di�erent frequencies (yearly, daily). Table 5 and Table 6 display the
results of the aggregation over time (Locave, Locsep, Locmax). Although the p-values decrease
when considering more years, the aggregation approach performs drastically better than other
approaches, especially in New York, because it weights more to extreme cases.
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Figure 11: QQ-plot for standardised residuals from Berlin using di�erent methods.
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City Method Period Mean α1 α2 α3 mean (AR)
Berlin JoMe 5 years ad 0.9719 -0.2777 0.0971 0.0021

� 0.9607 -0.2791 0.1092 -1.1e-15
SeMe 1 year ad 0.7131 0.1849 - 0.0346

� 0.1434 -0.3480 -0.1722 -9.3e-16
2 years ad 0.8248 -0.2435 - -0.0213

� 0.3267 -0.3397 -0.1390 -9.7e-16
3 years ad 0.9120 -0.2950 - -0.0054

� 0.3935 -0.3418 -0.1266 -1.2e-16
4 years ad 0.8242 -0.2823 - -0.0070

� 0.3091 -0.3294 -0.2674 -9.6e-16
5 years ad 0.8217 -0.2468 - -0.0006

� 0.3949 -0.3491 -0.1301 -1.0e-15
Tokyo JoMe 5 years ad 0.5869 -0.0841 0.0340 7.0e-05

� 0.5820 -0.0861 0.0348 -2.2e-16
SeMe 1 year ad 0.5093 -0.1284 - 0.0093

� 0.2894 -0.2213 -0.1281 -1.4e-15
2 years ad 0.4963 -0.2146 - -0.0045

� 0.3744 -0.3110 - -1.3e-15
3 years ad 0.4970 -0.1475 -0.0774 0.0112

� 0.3025 -0.2194 -0.1857 -1.7e-15
4 years ad 0.3927 -0.0244 -0.1476 -0.0035

� 0.1510 -0.1538 -0.2985 -3.5e-16
5 years ad 0.5474 -0.0663 -0.0767 0.0298

� 0.2376 -0.1828 -0.2062 -6.9e-16
NewYork JoMe 5 years ad 0.7400 -0.2250 0.1333 -0.0016

� 0.7231 -0.2288 0.1480 -3.6e-16
SeMe 1 year ad 0.6355 -0.2447 0.1132 0.0068

� 0.3428 -0.3384 -0.0847 -4.9e-17
2 years ad 0.4617 -0.3050 - -0.0004

� 0.2983 -0.3379 -0.1517 -2.2e-16
3 years ad 0.5154 -0.2506 - 0.0007

� 0.1866 -0.3466 -0.1400 2.8e-16
4 years ad 0.6523 -0.1757 - -0.0111

� 0.3440 -0.2773 -0.1181 4.9e-16
5 years ad 0.6761 -0.2225 - 0.0168

� 0.5069 -0.2846 -0.0768 -3.5e-16
Kaohsiung JoMe 5 years ad 0.7969 -0.1341 - 0.0027

� 0.7801 -0.1205 - -1.9e-15
SeMe 1 year ad 0.4292 - - 0.0155

� 0.2695 -0.1103 -0.0792 1.1e-15
2 years ad 0.7388 -0.2736 -0.0752 0.0526

� 0.4569 -0.3257 -0.2248 -6.1e-16
3 years ad 0.5482 -0.0936 -0.1875 0.0291

� 0.4783 -0.1585 -0.2173 -6.7e-16
4 years ad 0.5625 -0.1269 -0.1556 0.0210

� 0.4719 -0.1740 -0.2126 6.2e-16
5 years ad 0.6219 -0.1742 - 0.0284

� 0.4097 -0.2231 -0.0981 2.9e-16

Table 4: AR(L) parameters for Berlin (20020101-20071201), Tokyo (20030101-20081201),
New-York (20030101-20081201) and Kaohsiung (20030101-20081201) using joint/separate mean
(JoMe/SeMe) with �xed bandwidth curve (�), adaptive bandwidth curve (ad), adaptive smoothed
bandwidth (ads) seasonal mean/volatility (Me/Vo) curve.
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4 A temperature pricing example

Futures and options written on temperature indices are traded at the Chicago Mercantile Exchange
(CME). Temperature futures are contracts written on di�erent temperature indices measured over
speci�ed periods [τ1, τ2] like weeks, months or quarters of a year. The owner of a call option
written on futures F(t,τ1,τ2) with exercise time t ≤ τ1 and measurement period [τ1, τ2] will receive
max

{
F(t,τ1,τ2) −K, 0

}
. The most common temperature indices are: Heating Degree Day (HDD),

Cooling Degree Day (CDD), Cumulative Averages (CAT) (or Average Acumulative Temperatures
AAT). The CAT index accounts the accumulated average temperature over [τ1, τ2]:

CAT (τ1, τ2) =

∫ τ2

τ1

Tudu,

where Tu = (Tu,max+Tu,min)/2 and the measurement period is usually a month or season. The HDD
index measures the cumulative amount of average temperature below a threshold (typically 18◦C or
65◦F) over a period [τ1, τ2]: max(c−Tu, 0). Similarly, the CDD index accumulate max(Tu−c, 0). At
CME, CAT-CDD futures are traded for European cities, CDD-HDD for US, Canada and Australian
cities and AAT for Japanese cities.

Under the non-arbitrage pricing setting, a CAT temperature future is de�ned as:

F(t,τ1,τ2) = E
Qλ [CAT (τ1, τ2)|Ft] ,

where λ denotes the market price of risk and the stochastic process for the daily average tempera-
tures after removing seasonality (Xt = Tt−Λt) is assumed to follow a continuous-time autoregres-
sive process AR(L)(CAR(L)) with deterministic seasonal variation σt > 0:

dXt = AXtdt+ eLσtdBt, (17)

where Xt ∈ RL for L ≥ 1 denotes a vectorial Ornstein-Uhlenbeck process, ek a k'th unit vector in
RL for k = 1, ...L, Bt a Brownian motion and a L× L-matrix A:

A =


0 1 0 . . . 0 0
0 0 1 . . . 0 0
...

. . . 0
...

0 . . . . . . 0 0 1
−αL −αL−1 . . . 0 −α1


with positive constants αk. The AR(L)'s process estimated in (5) can be therefore seen as a
discretely sampled continuous-time processes (CAR(L)) (17), see Härdle and López Cabrera (2010)
or Benth et al. (2007) for more details. The last three columns of Table 1 display the CAR(3)-
parameters for all temperature data. Then, for 0 ≤ t ≤ τ1 < τ2, the explicit form of an CAT
future price is given by:

FCAT (t,τ1,τ2) = E
Qλ

[∫ τ2

τ1

Tudu|Ft
]

=

∫ τ2

τ1

Λudu+ at,τ1,τ2Xt +

∫ τ1

t

λuσuat,τ1,τ2eLdu

+

∫ τ2

τ1

λuσue
>
1 A

−1 [exp {A(τ2 − u)} − IL] eLdu (18)
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with at,τ1,τ2 = e>1 A
−1 [exp {A(τ2 − t)} − exp {A(τ1 − t)}], IL a L × L identity matrix (Note that

λt 6= Λt).

The options at CME are cash settled i.e. the owner of a future receives 20 times the Degree Day
Index at the end of the measurement period, in return for a �xed price. At time t, CME trades
di�erent contracts i = 1, · · · , I with measurement period t ≤ τ i1 < τ i2. For example, a contract with
i = 7 is six months ahead from the trading day t. For US and Europe CAT/CDD/HDD futures I
is usually equal to 7 (April-November or November-April), while for Asia I = 12 (Jan-Dec).

In order to achieve Gaussian risk factors and being able to price temperature future prices, we
estimate Λt and σt by means of the previous adaptive smoothing techniques. The temperature
prices given by CME, the index values computed from the realised temperature data I(τ1,τ2) and the
estimated CAT-AAT future prices with separate adaptive bandwidth for seasonality in mean and
volatility (SeMe Locave, SeMe Locsep, SeMe Locmax) of Berlin, Tokyo and Kaohsiung contracts
are given in Table 7. By inverting (18), we inferred the MPR (λt) from traded weather futures
in Berlin and Tokyo. As we see in Figure 12, the market price of risk for these products is
di�erent for di�erent cities and contract types and time-varing but constant over contracts. We
use the inferred MPR from Tokyo AAT futures to price over the counter (OTC) ATT futures for
Kaohsiung. Similar to Härdle and López Cabrera (2010), we regress the average MPR of contract
i over the trading period, against the variation in period [τ1, τ2], i.e.

θ̂iτ1,τ2 =
1

τ1 − t

τ1∑
t

θ̂it,

σ̂2
τ1,τ2

=
1

τ2 − τ1

τ2∑
t=τ1

σ̂2
t .

The speci�cation of the MPR is estimated as a deterministic function of volatility:

λt = 4.08− 2.19σ̂2
τ1,τ2

+ 0.28σ̂4
τ1,τ2

.
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Figure 12: MPR for Berlin CAT futures and Tokyo AAT futures traded before measurement period.

A more general descriptive measure between the di�erence of CME and estimated prices is given
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by root mean squared errors RMSE ′s:

RMSE =

√√√√n−1

n∑
i=1

(F̂i,t,τ1,τ2 − I(τ1,τ2))2,

where F̂i,t,τ1,τ2(i = 1, . . . , n the number of contracts) are the estimates of future prices, and I(τ1,τ2)

is the realised temperature in [τ1, τ2]. Table 8 shows the corresponding RMSE ′s. The results show
smaller RMSE ′s when future prices are estimated via pricing methods that consider an unbiased
market price of weather risks. By using adaptive local methods, the estimates are closer to the
market temperature prices, meaning that they have learned the market conditional of past weather
surprises. This brings, of course, investment chances: someone who purchased a CAT contract for
Berlin on 20070427 with τ1 = 20070501 and τ2 = 20070531 would have paid 9 140 EUR (1 index
point = 20 EUR per contract, see Table 7 ). If he had held until expiration, a payo� 744 EUR
(9 884-9 140 EUR) would had resulted. The last column of Table 7 shows the di�erence between
CME prices (column 5) and the estimated risk neutral prices (P = Q or λt = 0). Since the risk
neutral prices are quite close to the realised temperature, they can act as a personal forecast for
an investor. When the di�erence is positive, the strategy to hedge would be to buy a Call(C),
and a Put(P) for negative di�erence. For example, if a farmer in Kaoshiung would like to hedge
the exposure to weather risk, let us say that an accumulated average temperature of 825.89 index
points during April 2009, one builds a portfolio of combinations of traded temperature derivatives
e.g. Tokyo's contracts to replicate his payo�. In other words, the realised temperature in April
825.89(C) = 1×118.32(C)+1×283.18(C)+0.830395×511.07(C), where 118.32, 283.18 and 511.07
denote the CME AAT prices for April, May and June respectively.

5 Conclusions and further work

We show that temperature risk stochastics are closer to Gaussian when applying adaptive statistical
methods. We demonstrate that a local smoothing procedure corrects for seasonality and volatility.
Technically, the proposed adaptive technique is rooted in ideas of Mercurio and Spokoiny (2004);
Spokoiny (2009). We found that the method performs well, not mattering the speci�cation given
for Λt or σt.

The localisation works by selection of weights (at each time point t) from a �nite number of
localising schemes W k, k = 1, . . . , K. We calculate local parametric MLEs θ̃k that satisfy a small
modeling bias condition. The adaptation of parameters increases the procedures's �exibility and
estimation accuracy. We also observed in most of the cases, that the proposed method outperforms
the standard estimation methods. One obtains fair temperature derivative prices and consequently
an unbiased market price of weather risk.
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Contract type Measurement Period RMSE between F(t,τ1,τ2,λt,θ̂)
and CME prices

τ1 τ2 No. contracts λt = 0 λt = λ λt = λ λt = λ I(τ1,τ2)
SeMe Locave SeMe Locsep SeMe Locmax

Berlin-CAT 20050401 20050430 62 25.39 14.74 14.72 14.75 26.63
Berlin-CAT 20050501 20050531 83 29.17 29.41 29.49 29.46 15.70
Berlin-CAT 20050601 20050630 104 8.02 89.97 88.93 88.39 8.65
Berlin-CAT 20050701 20050731 126 10.26 53.58 52.95 52.79 11.93
Berlin-CAT 20050801 20050831 146 68.88 77.03 76.95 77.59 85.95
Berlin-CAT 20050901 20050930 169 38.54 27.16 27.07 27.22 43.82
Berlin-CAT 20051001 20051031 190 41.42 46.26 46.08 44.40 46.05
Berlin-CAT 20060401 20060430 231 7.61 68.55 69.62 72.43 8.71
Berlin-CAT 20060501 20060531 228 18.71 109.26 109.94 110.39 15.70
Berlin-CAT 20060601 20060630 226 43.53 62.51 61.49 62.92 41.41
Berlin-CAT 20060701 20060731 164 200.68 124.11 125.05 123.19 231.70
Berlin-CAT 20060801 20060831 219 28.98 96.94 96.35 97.93 61.88
Berlin-CAT 20060901 20060930 227 83.28 31.57 32.41 31.93 109.35
Berlin-CAT 20061001 20061031 220 75.73 32.02 31.85 31.51 79.28
Berlin-CAT 20070401 20070430 230 74.84 70.09 70.09 70.73 74.70
Berlin-CAT 20070501 20070531 38 65.78 70.27 70.15 70.01 59.57
Berlin-CAT 20070601 20070630 58 41.92 91.97 91.43 91.33 44.61
Berlin-CAT 20070701 20070731 79 25.02 54.80 52.69 52.53 33.07
Berlin-CAT 20070801 20070831 79 43.94 87.98 88.40 96.64 29.38
Berlin-CAT 20070901 20070930 79 61.38 55.74 57.59 59.36 60.93
Tokyo-AAT 20080501 20080531 25 514.71 276.57 276.61 254.88 548.00
Tokyo-AAT 20080601 20080630 46 623.82 415.89 415.94 480.31 638.11
Tokyo-AAT 20080701 20080731 67 724.84 223.93 223.95 226.28 830.93
Tokyo-AAT 20080801 20080831 89 699.42 284.87 284.84 292.10 844.41
Tokyo-AAT 20080901 20080930 110 603.28 248.31 248.28 230.61 683.63
Tokyo-AAT 20081001 20081030 5 508.26 0.00 0.00 0.00 585.64
Tokyo-AAT 20090301 20090331 35 331.67 99.61 99.62 84.19 145.00
Tokyo-AAT 20090401 20090430 37 302.85 52.61 52.62 42.25 110.11
Tokyo-AAT 20090501 20090531 37 167.30 23.19 23.19 21.03 57.83
Tokyo-AAT 20090601 20090630 37 184.98 33.90 33.90 36.25 135.19
Tokyo-AAT 20090701 20090731 37 121.99 104.18 104.18 105.18 41.84
Tokyo-AAT 20090801 20090831 19 55.41 57.10 57.10 57.10 136.61

Table 8: Root Mean Squared Error (RMSE) between the CME and the estimated weather futures
F̂t,τ1,τ2,λ,θ under di�erent localisation schemes (θ̂ under SeMe Locave, SeMe Locsep, SeMe Locmax)
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