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Song Song †, Wolfgang K. Härdle ‡, Ya’acov Ritov§
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Abstract

(High dimensional) time series which reveal nonstationary and possibly periodic behavior
occur frequently in many fields of science. In this article, we separate the modeling of high
dimensional time series to time propagation of low dimensional time series and high dimensional
time invariant functions via functional factor analysis. We propose a two-step estimation proce-
dure. At the first step, we detect the deterministic trends of the time series by incorporating time
basis selected by the group Lasso-type technique and choose the space basis based on smoothed
functional principal component analysis. We show properties of this estimator under various sit-
uations extending current variable selection studies. At the second step, we obtain the detrended
low dimensional stochastic process, but it also poses an important question: is it justified, from
an inferential point of view, to base further statistical inference on the estimated stochastic time
series? We show that the difference of the inference based on the estimated time series and “true”
unobserved time series is asymptotically negligible, which finally allows one to study the dynam-
ics of the whole high-dimensional system with a low dimensional representation together with
the deterministic trend. We apply the method to our motivating empirical problems: studies
of the dynamic behavior of temperatures (further used for pricing weather derivatives), implied
volatilities and risk patterns and correlated brain activities (neuro-economics related) using fMRI
data, where a panel version model is also presented.

Keywords: Semiparametric model, Factor model, Group Lasso, Seasonality, Spectral Analysis,
Periodic, Asymptotic inference, Weather, fMRI, Implied Volatility Surface

AMS 2000 subject classification: 62G08, 62G20, 62M10
JEL classification: C14, C32, G12

1 Introduction

Modeling high-dimensional data is a challenging task in statistics especially when the data come in a
dynamic context and are observed at different time points with changing structure and different sample
sizes. Such modeling challenges appear in many different fields. In meteorology and agricultural
economics, one of the primary interests is to study fluctuations of temperatures at different locations,
for a recent summary, see Gleick et al. (2010). Such an analysis is essential for pricing weather
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derivatives and hedging weather risks, Odening et al. (2008). In neuro-economics, one uses (high
dimensional) functional magnetic resonance imaging data (fMRI) to analyze the brain’s response to
certain (economics related) stimuli as well as identifying its activation area, Worsley et al. (2002). In
financial engineering, one studies the dynamics of the implied volatility surface for risk management,
calibration and pricing purposes, Fengler et al. (2007). Other examples and research fields for very
large dimensional time series include empirical macroeconomics, Stock and Watson (2005); mortality
analysis, Lee and Carter (1992); bond portfolio risk management or derivative pricing, Nelson and
Siegel (1987) and Diebold and Li (2006); limit order book dynamics, Hall and Hautsch (2006); yield
curves, Hautsch and Ou (2008). In the biostatistical field, we refer to Martinussen and Scheike (2000)
for bio-medical research; Kauermann (2000) for radiation treatment of prostate cancer; Gasser et al.
(1983) for Electroence-phalogram (EEG) analysis.

The modeling challenge for high dimensional time series is that there are both high dimensionality
(in space) and dynamics (in time). One approach utilizes a factor type model, which allows low-
dimensional representation of the data by separating high dimensionality and dynamics, see Forni
et al. (2005), Giannone et al. (2005), Stock and Watson (2002a), Stock and Watson (2002b). In an
orthogonal L-factor model, a J-dimensional random vector Yt = (Yt,1, . . . , Yt,J)> can be represented
as

Yt,j = Zt,1m1,j + · · ·+ Zt,LmL,j + εt,j, (1)

where Zt,l are common factors, εt,j are errors and the coefficients ml,j are factor loadings. In the above
described applications, the index t = 1, . . . , T reflects the time evolution, and Yt can be considered as
a multidimensional not necessarily stationary time series. The study of the time behavior of the high-
dimensional Yt is then simplified to the modeling of Zt = (Zt,1, . . . , Zt,L)>, which is a more feasible
task when L� J . In a variety of applications, one has explanatory variables Xt,j ∈ Rd at hand that
may influence the factor loadings ml. An important refinement of the model (1) is to incorporate the
existence of observable covariates Xt,j. The factor loadings are then generalized to functions of Xt,j,
so that the model (1) is generalized to:

Yt,j =
L∑

l=1

Zt,l ml(Xt,j) + εt,j, 1 ≤ j ≤ Jt, 1 ≤ t ≤ T.

def
= Z>t m(Xt,j) + εt,j (2)

where Zt = (Zt,1, . . . , Zt,L)> (common factors) is an unobservable L-dimensional process (not neces-
sarily stationary), m (factor loading functions) is an L-tuple (m1, . . . ,mL) of unknown real-valued
functions ml defined on a subset of Rd and εt,j are errors. The variables X1,1, . . . , XT,JT , ε1,1, . . . , εT,JT
are independent. Throughout the paper we assume that the Xt,j are deterministic. The errors εt,j are
i.i.d., have zero mean and finite second moments. Park et al. (2009) consider this model when Zt is
stationary and call it a dynamic semiparametric factor model (DSFM). For simplicity of notation, we
assume that the covariates Xt,j have support [0, 1]d, and also that Jt ≡ J do not depend on t unless
otherwise specified.

The approximation (2) involves unknown “space functions” ml(·) which in Park et al. (2009) are
estimated via a B-Spline series:

ml(x) =
K∑

k=1

alkψk(x) (3)

with a possibly multidimensional (as a tensor product of one dimensional) B-spline basis {ψk}Kk=1. Us-
ing the K×J matrix Ψt = {ψ1(xt), . . . , ψK(xt)}> and the matrix A = (alk), l = 1, . . . , L, k = 1, . . . , K
we can rewrite (2) as Yt = Z>t AΨt + εt. Expanding the time effect in a series leads us to modeling Zt
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as a sum of basis functions as well:

Ztl =
R∑

r=1

γrlur(t) (4)

Putting (3) and (4) together we obtain (5) and (6), i.e. we observe (Xt,j, Yt,j) for j = 1, . . . , Jt and
t = 1, . . . , T such that

Yt,j =
L∑

l=1

R∑

r=1

ur(t)γrl

K∑

k=1

alkψk(Xt,j) + εtj (5)

Y >t = U>t Γ∗︸ ︷︷ ︸
Z>t

A∗Ψt︸ ︷︷ ︸
m

+εt
def
= U>t β

∗>Ψt + εt. (6)

Here U>t = (u1(t), . . . , uR(t)) is a 1 × R matrix with ur(t) as the pre-specified initial time basis,
which we introduce to capture the global trend and periodic variations. Ψt = (ψ1(Xt), . . . , ψK(Xt))

>

is a K × J matrix with ψk a space basis function. Γ∗, A∗ and β∗> are R × L, L × K and R × K
(unknown) underlying coefficient matrices consisting of γrl, alk and βrk respectively. For every β
matrix, we introduce βr = (βkr, 1 ≤ k ≤ K), that is, the column vector formed by the coefficients

corresponding to the r-th time basis. Additionally we define ‖β‖2,1 =
∑R

r=1

√∑K
k=1 β

2
rk. Finally we

set R(β) = {r : βr 6= 0} and M(β) = |R(β)| where |R(β)| denotes the cardinality of set R(β). For
sake of simplicity and convenience, we sometimes use | · | to denote the L1 norm for vectors and ‖ · ‖
to denote the L2 norm for vectors or the mixed (2, 1) norm for matrices.

Since certainly not all initially included time basis are fully loading, to avoid overparametrization
in time, basis or variable selection is necessary, i.e. some βrs will be shrunk to 0 equivalently. A
popular variable selection method is Lasso, Tibshirani (1996). An extension for factor structured
models is the group Lasso, Yuan and Lin (2006), in which the penalty term is a mixed (2, 1)-norm of
the coefficient matrix.

Under an additional Gaussian error assumption, we first show that this group Lasso type estimator
enjoys sparsity inequalities (upper bounds on the prediction error and the distance between the
estimator and the true regression matrix β∗) and variable selection properties. Finally, we show how
our results can be extended to more general noise distributions, of which we only require the variance
to be finite. Since the standard assumption on εt being independent is often not met in practice,
we further extend our results into the dependent scenario. Since the original model (6) actually
assumes that there is no randomness in time, we face some restrictions in practice. To this end,
we consider an extension incorporating the stochasticity (in time) and call it a generalized dynamic
semiparametric factor model (GDSFM). But it also poses an important question: is it justified, from
an inferential point of view, to base further statistical inference on the detrended stochastic time
series? We show that the difference of the inference based on the estimated time series and “true”
unobserved time series is asymptotically negligible, which finally allows one to study the dynamics of
the whole high-dimensional system with a low dimensional stochastic process representation together
with the deterministic trend.

Another motivation of (4) (the expansion in time), is from the temperature analysis (across China
over the past 50 years). Our data set is taken from Climatic Data Center (CDC), China Meteorological
Administration (CMA), which contains daily observations from 159 weather stations across China
(reduced from 202 after data cleaning) from Jan 1st, 1957 to Dec 31st, 2009, as can be seen from Figure
1 (left) (average over the 159 weather stations’ observations). Except the well known seasonality effect,
we may expect a climate change related trend. If we take the moving average of 730 nearby days,
which is (159 · 730)−1

∑+365
s=−354

∑159
j=1 Yt+s,j with Yt,j being the temperature of the jth weather station

at time t, Figure 1 (right) shows a “large period” (around 10 years between peaks) and an upward
trend of the Chinese temperatures. Xt,j = Xj is the three-dimensional geographical information of
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the jth weather station. Studying the dynamics of temperatures in various places simultaneously
using a well calibrated GDSFM model will enable us to forecast temperatures in time and space.
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Figure 1: Temperatures of China from Jan 1st, 1957 to Dec 31st, 2009 (left) and the corresponding
moving average (of 730 nearby days) view (right).

Another motivation for this research is from neuro-economics. Understanding which part of our
brain is activated during risky decisions and whether there is a significant reaction to specific stimuli
(neural processes underlying investment decisions) are important goals in neuroscience. We address
this problem through the analysis of high dimensional, dynamic fMRI data recorded in an experiment
(to be described in more detail later). The fMRI is a noninvasive technique of recording brain’s
signals on spatial area in a given time period (2.5 sec for our data set). One obtains a series of three-
dimensional images of the blood-oxygen-level-dependent (BOLD) fMRI signals, when an exercised
person is subject to certain stimuli related with financial decisions (periodically), where Yt,j is the
BOLD value at voxel j and time t. Xt,j = Xj is the three-dimensional geographical information of
the jth voxel. An example of the images at one particular time point is presented in Figure 2.

Figure 2: Typical fMRI data in one particular time point. The brightness corresponds to the strength
of the observed signals.

The third motivation for this modeling approach (especially the space part) comes from financial
engineering, i.e. the dynamics of the implied volatility surface (IVS) (although considered as sta-
tionary time series here), as is observed in Figure 3. The IV is a volatility parameter that matches
observed plain vanilla option prices with the ones given by the formula of Black and Scholes (1973),
which is a key financial variable for trading, heading and the risk management of option portfolios.
Figure 3 shows the “string” structure of the IV data obtained from European option prices on the
German stock index DAX (ODAX) for two different days from the whole data set - intraday observa-
tions from Jan 1, 2004 to Dec 30, 2004 from Bloomberg. The volatility strings shift towards expiry,
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which is indicated by the bottom line in the figure. Moreover the shape of the IV strings is subject
to stochastic deformation. Apart from the dynamic degeneration, one may also observe nonuniform
frequency of the trades with significant greater market activities and the “smile” effect for the options
closer to expiry or at-the-money. Fengler et al. (2007) first proposed to study the dynamics of the
IV data, where Yt,j are the values of IV on the day t, and Xt,j are the two-dimensional vectors of the
moneyness and time-to-maturity, where the dimensionality J (number of transactions) depends also
on t.
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Figure 3: The typical IV data design on two different days. In the maturity direction observations appear in the
discrete points for each particular day. Bottom solid lines indicate the observed maturities. Left panel: observations
on 20040701, Jt = 5606. Right panel: observations on 20040819, Jt = 8152.

The rest of the article is organized as follows. In the next section we present the estimation of (6)
to extract the complex deterministic trends of the nonstationary time series using the group Lasso
type technique. Its properties under various situations are presented in Section 3. Section 4 consid-
ers the general framework incorporating the stochasticity (in time) together with the corresponding
asymptotic analysis. In Section 5 we present the results of simulation studies that illustrate the the-
oretical findings. In Section 6 we apply the model to the temperature, IVS and fMRI data, where a
panel version of (6) is also presented. All technical proofs are sketched in Section 7.

2 Methodology

2.1 Choice of Time Basis

To capture the global trend in time, one may use an orthogonal Legendre polynomial basis: u1(t) =
1/C1, u2(t) = t/C2, u3(t) = (3t2 − 1)/C3, . . . (throughout this paper, Ci are generic constants). The
rescaling is made here such that

∑T
t=1 u

2
r(t)/C

2
r = 1. To capture periodic variations, we could use

Fourier series, u4(t) = sin(2πt/p)/C4, u5(t) = cos(2πt/p)/C5, u6(t) = sin{2πt/(p/2)}/C6, u7(t) =
cos{2πt/(p/2)}/C7, . . . with the given the period p. For example, in the fMRI application, we know
that p = 11.8 (29.5s per trial & 2.5s per scan) and in the weather application, p1 = 365, p2 = 365 · 10.

2.2 Choice of Space Basis

There are various choices for a space basis. For example, Park et al. (2009) use a series estimator
as described in (3). However, it has some disadvantages. Firstly, since the B-spline basis {ψk}Kk=1

is possibly multidimensional (d > 1), it is constructed as a tensor product of one dimensional ones.
When d > 3, this may lead to quite large K, e.g. K = 9 × 9 × 5 = 405 in the fMRI application.
More importantly, since the knots of the B-spline are equal-spaced, it could not capture some special
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structure, e.g. the “smile” effect in the IVS modeling when the options are close to the maturity, as
can be seen in Figure 4 from Park et al. (2009) (adaptive choice of the knots of the B-splines may
solve this problem, but it is omitted here since not primary interest).
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Figure 4: Space basis using the series estimator for the IVS modeling.

To this end, we propose a data driven method to estimate the space basis ψ1(x), . . . , ψK(x),
motivated by Hall et al. (2006), which combines smoothing techniques with ideas related to functional
principal component analysis. We summarize the basic steps as follows:

1 Estimate the covariance operator. Write Xtj = (X1
tj, . . . , X

d
tj), u = (u1, . . . , ud) and v =

(v1, . . . , vd) (same for b, b̂, b1, b̂1, b2 and b̂2). Given u ∈ [0, 1]d, let hµ and hφ denote band-
widths, which could be selected as in the usual local polynomial regression setup and select
(â, b̂) = (a, b) to minimize

T∑

t=1

Jt∑

j=1

{Ytj − a−
d∑

c=1

bc(uc −Xc
tj)}2K

(Xtj − u
hµ

)
,

and take µ̂(u) = â. Then, given u, v ∈ [0, 1]d, choose (â0, b̂1, b̂2) = (a0, b1, b2) to minimize

T∑

t=1

∑

16j 6=k6Jt

{YtjYtk − a0 −
d∑

c=1

bc1(u
c −Xc

tj)−
d∑

c=1

bc2(v
c −Xc

tk)}2

×K
(Xtj − u

hφ

)
K
(Xtj − v

hφ

)
.

Denote â0 by φ̂(u, v) and construct µ̂(v) similarly with µ̂(u). The estimate of the covariance
operator is thus:

ψ̂(u, v) = φ̂(u, v)− µ̂(u)µ̂(v).

Since the covariance operator is J × J , where J could be very large, to get its consistent
estimates, various large covariance matrices regularization techniques, e.g. banding, Bickel and
Levina (2008b) and thresholding, Bickel and Levina (2008a), could be further used.

2 Compute the principal space basis. Given the estimated operator, compute the largest K
eigenvalues and corresponding orthonormal eigenfunctions as the basis
ψ1(Xt,j), . . . , ψK(Xt,j) (ΨtΨ

>
t /Jt = IK is thus valid). Computational methods could be found,

for example, in Section 8.4 of Ramsay and Silverman (2005), where practical features regarding
the operator-eigenfunction implementation are discussed in detail.
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2.3 Estimation Procedure

We have now accumulated sufficient information to introduce the estimation method, which is sum-
marized as below:

1 Find significantly loaded time basis functions by the group Lasso technique by minimizing:

minβ(JT )−1
T∑

t=1

(
Y >t − U>t β>Ψt

) (
Y >t − U>t β>Ψt

)>
+ 2λ‖β‖2,1. (7)

2 Split the joint matrix β̂ into 2 separate coefficient matrices Γ̂, Â by taking Γ̂ as the L eigenvectors
of β̂β̂> with respect to the L largest eigenvalues, and Â = Γ̂>β̂.

To select K and L here, we could use either the classic “90%” rule in principal component analysis
or the “explained variance” type selection method. Alternatively we could also sequentially test the
size of the eigenvalues. But since it goes beyond the scope of this paper, we will therefore study its
theoretical properties in a separate paper.

In order to study the statistical properties of this estimator, it is useful to derive some optimality
condition for a solution of (7). Our implementation of the group Lasso-type estimator comes from
Yuan and Lin (2006), which is an extension of the shooting algorithm of Fu (1998) for the lasso.
As a direct consequence of the Karush-Kuhn-Tucker conditions, we have a necessary and sufficient
condition for β̂ to be a solution to expression (7) is

(JT )−1
T∑

t=1

{Ψt(Yt −Ψ>t β̂Ut)U
>
t }r = λ

β̂r

‖β̂r‖
, if β̂r 6= 0 (8)

(JT )−1‖
T∑

t=1

{Ψt(Yt −Ψ>t β̂Ut)U
>
t }r‖ 6 λ, if β̂r = 0 (9)

Recall that ΨtΨ
>
t /J = IK . It can be easily verified that the solution to (8) and (9) is

β̂r =
(

1− λ/‖Sr‖
)
+
Sr, (10)

where Sr =
∑T

t=1{Ψt(Yt−Ψ>t β̂−rUt)U
>
t }r, with β̂−r = (β̂1, . . . , β̂r−1, 0, β̂r+1, . . . , β̂R). The solution to

expression (7) can therefore be obtained by iteratively applying equation (10) to r = 1, . . . , R. We

choose the ordinary least square estimate β̂OLS as the initial value, with which usually a reasonable
convergence tolerance is reached within 5 iterations. However, the computational burden increases
dramatically as the number of initial basis increases.

Since the group Lasso type estimates depend on the unknown tuning parameter parameter λ, which
needs to be estimated, to select the final models on the solution paths of the group selection methods,
we introduce an easily computable Cp-type criterion as in Yuan and Lin (2006). The solution path is
computed by evaluating on 100 equally spaced λ’s between 0 and λmax = maxr ‖

∑
t ΨtYtUtr ‖ /

√
K.

We select the λ minimizing

Cp(λ) =

∑
t ‖ Y >t − U>t β̂>Ψt ‖2

σ̃2
− JT + 2df

σ̃2 =

∑
t ‖ Y >t − U>t β̂>OLSΨt ‖2

JT − df

df =
∑

r

1{‖ β̂r ‖> 0}+
∑

r

‖ β̂r ‖
‖ β̂OLS ‖

(K − 1)
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Empirical evidence suggests that this approximation works fairly well. In our experience, the
performance of this approximate Cp-criterion is generally comparable with that of computationally
much more expensive (especially for the high-dimensional data) fivefold cross-validation, as already
noted in Yuan and Lin (2006).

3 Estimates’ Properties

In this section, we first study the properties of this estimator as defined in (6) when the errors εt are
Gaussian. Our main results concern upper bounds on the prediction error and the distance between
the estimator and the true matrix β∗, (Theorem 3.1). The techniques of proofs are closely build upon
those of Lounici et al. (2009), Bickel et al. (2009) and Lounici (2008). In Theorem 3.2 we discuss how
our results can be extended to more general noise distribution, of which we only require the variance
to be finite. Since the standard assumption on εt being independent is often not met in practice, in
Theorem 3.3, we further extend our results into the dependent scenario.

LEMMA 3.1 Consider the model (6) for R > 2 and T, J > 1. Assume that the random vec-
tors ε1, . . . , εT are i.i.d. Gaussian with zero mean and covariance matrix σ2IJ×J , ΨtΨ

>
t /J = IK,∑T

t=1 U
>
t Ut/R = 1, and M(β∗) 6 s. Let

λ =
2σ√
JT

(
1 + A logR/

√
T
)1/2

,

where A > 8 and let q = min(A logR,
√
T ). Then with probability at least 1− R1−q, for any solution

β̂ of problem (7) and ∀β we have:

(JT )−1
T∑

t=1

‖ Ψ>t (β̂ − β∗)Ut ‖
2

+ λ‖β̂ − β‖2,1

6 (JT )−1
T∑

t=1

‖ Ψ>t (β − β∗)Ut ‖
2

+ 4λ
∑

r∈R(β)

‖β̂r − βr‖, (11)

(JT )−1 max
16r6R

‖
T∑

t=1

{ΨtΨ
>
t (β̂ − β∗)UtU>t }r‖ 6

3

2
λ, (12)

and

M(β̂) 6
4φ2

max

λ2T 2
‖β̂ − β∗‖22, (13)

where φmax is the maximum eigenvalue of the matrix
∑T

t=1 UtU
>
t .

Before stating the first main result of this section, we make the following assumption first.

ASSUMPTION 3.1 There exists a positive number κ = κ(s) such that

min
{∑

t ‖Ψ>t ∆Ut‖√
J ‖ ∆R ‖

: |R| 6 s,∆ ∈ RK×R\{0},

‖ ∆Rc ‖2,16 3 ‖ ∆R ‖2,1
}
> κ,

where Rc denotes the complement of the set of indices R, ∆R denotes the matrix formed by stacking
the rows of matrix ∆ w.r.t. row index set R.

8



Assumption 3.1 is essentially a restriction on the eigenvalues of Ut as a function of sparsity s. It
actually requires the initially involved time basis not to be too dependent, which is naturally satisfied
by the orthogonal polynomials and Fourier series. Low sparsity means that s is big and therefore κ is
small. κ(s) is thus a decreasing function of s. For this reason we sometimes refer to it as Assumption
RE(s), see also Bickel et al. (2009), but note that in their paper l1 norms are used.

THEOREM 3.1 Assume all conditions in Lemma 3.1 still hold and add Assumption 3.1. Then with
probability at least 1−R1−q, for any solution β̂ of (7):

(JT )−1
T∑

t=1

‖ Ψ>t (β̂ − β∗)Ut ‖
2
6 64σ2s(1 + A logR/

√
T )/(κ2J), (14)

T−1/2‖ β̂ − β∗ ‖2,1 6 32σs

√
1 + A logR/

√
T/(κ2

√
J), (15)

and

M(β̂) 6 64φ2
maxs/κ

2 (16)

Note that Theorem 3.1 is valid for any fixed J,R, T and therefore yields non-asymptotic bounds. We
could see that dependence on the number of initially specified time basis R can be made negligible
for large T . Additionally when the true coefficient matrix β∗’s sparsity level is low (s large, κ small,

s/κ2 large), all the three bounds get larger and the number of nonzero rows of estimated one β̂> is
larger too correspondingly.

From now on, we only assume that the random variables εtj are independent with zero mean and
finite variance E(ε2tj) 6 σ2. In this case the results remain similar to those of the previous theorem,
though the concentration effect is weaker. We use the following mild technical assumption.

ASSUMPTION 3.2 The matrices Ψt and Ut are such that

(JT )−1
T∑

t=1

J∑

j=1

(
max
r
|
K∑

k=1

ΨtkjUtr|
)2
6 C,

for a constant C > 0.

THEOREM 3.2 Consider the DSFM (6) for R > 3 and T, J > 1. Assume that the random
vectors ε1, . . . , εT are independent with zero mean and finite variance E(ε2tj) 6 σ2, ΨtΨ

>
t /J = IK,∑T

t=1 U
>
t Ut/R = 1, and M(β∗) 6 s. Let also Assumption 3.2 be satisfied. Furthermore let κ be

defined as in Assumption 3.1 and φmax is the maximum eigenvalue of the matrix
∑T

t=1 UtU
>
t . Let

λ = σ
√

(logR)1+δ/(JT ), δ > 0.

Then with probability at least 1− (2e logR− e)C/(logR)1+δ, for any solution β̂ of (7) we have:

(JT )−1
T∑

t=1

‖ Ψ>t (β̂ − β∗)Ut ‖
2
6 16σ2s(logR)1+δ/(κ2J)

T−1/2‖ β̂ − β∗ ‖2,1 6 16σs
√

(logR)1+δ/(κ2
√
J)

and

M(β̂) 6 64φ2
maxs/κ

2
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Since the standard assumption on εt being independent is often not met in practice, it is important
to understand how the proposed estimator behaves under dependent error terms. As far as we
know, our result is the first attempt with dependent error terms for (group) Lasso variable selection
techniques. The other effort of getting rid of the independence assumption could be found in Jia et al.
(2009), where they consider a sparse Possion-like model. Before moving on, similar to Janson (2004),
we introduce the following definitions first.

Given a set T and random variables Vt, t ∈ T , we say:

• A subset T ′ of T is independent if the corresponding random variables {Vt}t∈T ′ are independent.

• A family {Tj}j of subsets of T is a cover of T if
⋃
j Tj = T .

• A family {(Tj, wj)}j of pairs (Tj, wj), where Tj ⊆ T and wj ∈ [0, 1] is a fractional cover of T if∑
j wj1Tj > 1T , i.e.

∑
j:t∈Tj wj > 1 for each t ∈ T .

• A (fractional) cover is proper if each set Tj in it is independent.

• X (T ) is the size of the smallest proper cover of T , i.e. the smallest m such that T is the union
of m independent subsets.

• X ∗(T ) is the minimum of
∑

j wj over all proper fractional covers
{(Tj, wj)}j.

Note that, in spite of our notation, X (T ) and X ∗(T ) depend not only on T but also on the family
{Vt}t∈T . Note further that X ∗(T ) > 1 (unless T = ∅) and that X ∗(T ) = 1 if and only if the variables
Vt, t ∈ T are independent, i.e. X ∗(T ) is a measure of the dependence structure of {Vt}t∈T . For
example, if Vt just depends on Vt−1 but independent of all Vs, s < t− 1, e.g. AR(1), X ∗(T ) = 2.

We use the following mild technical assumption similar to Assumption 3.2.

ASSUMPTION 3.3 The matrices Ψt and Ut and random variables εt are such that

(J−1
K∑

k=1

J∑

j=1

ΨtkjεtjUtr)
2 6 b2t with a high probabilityp

E(JT )−1
{ T∑

t=1

(
K∑

k=1

J∑

j=1

ΨtkjεtjUtr)
2
}1/2

6
C ′√
T
.

for ∀ r and some constants bt, C
′ > 0, t = 1, . . . , T . Note that dropping the sub-index r for all constants

here does not matter, since they could be taken as the maximum of all corresponding constants over
different rs. Given bt, t = 1, . . . , T , C ′ could be taken as maxt bt for example.

We can now state our main result.

THEOREM 3.3 Consider the DSFM (6) for R > 3, T, J > 1 and T = {1, . . . , T}. Let also
Assumption 3.3 be satisfied for the random vectors ε1, . . . , εT and ΨtΨ

>
t /J = IK,

∑T
t=1 U

>
t Ut/R = 1,

and M(β∗) 6 s. Furthermore let κ be defined as in Assumption 3.1 and φmax is the maximum
eigenvalue of the matrix

∑T
t=1 UtU

>
t . Let

λ =
C ′√
T

+

√
X ∗(T )

∑
t b

2
t

(logR)1−δ′T 2
, δ′ > 0.
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Then with probability at least p(1−R−δ′), for any solution β̂ of (7) we have:

(JT )−1
T∑

t=1

‖ Ψ>t (β̂ − β∗)Ut ‖
2
6 16

(
C ′ +

√
X ∗(T )

∑
t b

2
t

(logR)1−δ′T

)2

s/κ2

T−1/2‖ β̂ − β∗ ‖2,1 6 16

(
C ′ +

√
X ∗(T )

∑
t b

2
t

(logR)1−δ′T

)
s/κ2

and

M(β̂) 6 64φ2
maxs/κ

2

Not surprisingly, this theorem tells that the bounds get larger when the dependence level, i.e. X ∗(T )
increases, i.e. the bound is minimized when X ∗(T ) = 1.

4 Generalized Dynamic Semiparametric Factor Model

The original model (6) assumes that there is no stochastic evolution in time. To this end, we consider
the following extension of (4) and (6):

Ztl =
R∑

r=1

γrlur(t)

Y >t = (Z>0,t + U>t Γ)AΨt + ε′t = U>t ΓAΨt + (Z>0,tAΨt + ε′t), (17)

with an unobservable L-dimensional random process Z0,t with E(Z0,t|Xt) = 0 and i.i.d. assumption on
ε′t. We call (17) a generalized dynamic semiparametric factor model (GDSFM). If we concentrate on
prediction, the trend represented by U>t Γ is enough. However, if we are interested in the stochasticity
or dynamics of the original high dimensional time series, Z0,t comes into play, e.g. for pricing weather
derivatives and various other financial engineering examples. The estimation procedure is now divided
into 2 steps:

• For the model Y >t = U>t ΓAΨt + (Z>0,tAΨt + ε′t), treat Z>0,tAΨt + ε′t as the εt in (6) and find the
best parametric approximation according to the estimation procedure described in Subsection
2.3 to get the deterministic trend U>t Γ.

• Based on
̂̃
Y
>

t
def
= Y >t − U>t β̂Ψt, Â and Ψt, use the ordinary least square method to obtain the

estimated random process Ẑ0,t.

As we could see from step one here, since εt in (6) involves Z>0,tAΨt + ε′t, where Z0,t is a random
process inhering dependence structure, Theorem 3.3 shows its necessity again. In the second step,
Z0,t is estimated based on β̂ instead of β∗, we need to show the influence of this plug-in estimate
is negligible. Our first result this section relies on the following assumptions, which are similar to
Assumptions (A1-8) in Park et al. (2009).

ASSUMPTION 4.1 4.1.1 The variables X1,1, . . . , XT,J , ε′1,1, . . . , ε
′
T,J , and Z0,1, ..., Z0,T are indepen-

dent.

4.1.2 For t = 1, . . . , T the variables Xt,1, . . . , Xt,J are identically distributed, have support [0, 1]d and
a density ft that is bounded from below and above on [0, 1]d, uniformly over t = 1, . . . , T .
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4.1.3 We assume that E ε′t,j = 0 for 1 ≤ t ≤ T, 1 ≤ j ≤ J , and for c > 0 small enough
sup1≤t≤T,1≤j≤J E exp{c(ε′t,j)2} <∞.

4.1.4 The vector of functions m = (m1, . . . ,mL)> can be approximated by Ψk, i.e.

δK
def
= sup

x∈[0,1]d
inf

A∈RL×K
‖m(x)− AΨ(x)‖ → 0

as K →∞. We denote A that fulfills supx∈[0,1]d ‖m(x)− AΨ(x)‖ ≤ 2δK by A∗.

4.1.5 There exist constants 0 < CL < CU <∞ such that all eigenvalues of the matrix T−1
∑T

t=1 Z0tZ
>
0,t

lie in the interval [CL, CU ] with probability tending to one.

4.1.6 The minimization (7) runs over all values β with

sup
x∈[0,1]d

max
16t6T

‖Z>0,tAΨ(x)‖ 6MT ,

where the constant MT fulfils max16t6T ‖Z0,t‖ 6MT/Cm (with probability tending to one) for a
constant Cm such that supx∈[0,1]d ‖m(x)‖ < Cm.

4.1.7 It holds that ρ2 = (K + T )M2
T log(JTMT )/(JT )→ 0. The dimension L is fixed.

Assumption (4.1.6) and the additional boundMT in the minimization is introduced for purely technical
reasons.

THEOREM 4.1 Suppose that model (17), all assumptions in Theorem 3.3 and Assumption 4.1 hold.
Then we have

1

T

∑

1≤t≤T

∥∥∥Ẑ>0,tÂ− Z>0,tA∗
∥∥∥
2

= OP (ρ2 + δ2K). (18)

In the following we discuss how a statistical analysis differs if the inference of stochasticity on Z0,t is

based on Ẑ0,t (note that the trend U>t Γ is deterministic) instead of using (the unobserved) process Z0,t.
We will show that the differences are asymptotically negligible (up to an orthogonal transformation).
This is the content of the following theorem, where we consider estimators of autocovariances and
show that these estimators differ only by second order terms. This asymptotic equivalence carries
over to classical estimation and testing procedures in the framework of fitting a vector autoregresssive
model. For the statement of the theorem we need the following assumptions, which are similar to
Assumptions (A9-11) in Park et al. (2009):

ASSUMPTION 4.2 4.2.1 Z0,t is a strictly stationary sequence with E(Z0,t) = 0, E(‖Z0,t‖γ) < ∞
for some γ > 2. It is strongly mixing with∑∞

i=1 α(i)(γ−2)/γ < ∞. The matrix EZ0,tZ
>
0,t has full rank. The process Z0,t is independent of

X11, . . . , XTJ , ε
′
11, . . . , ε

′
TJ .

4.2.2 It holds that [log(KT )2{(KMT/J)1/2 + T 1/2M4
TJ
−2 +K3/2J−1

+K4/3J−2/3T−1/6}+ 1]T 1/2(ρ2 + δ2K) = O(ρ2 + δ2K)

Assumption (4.2.2) poses very weak conditions on the growth of J,K, T . Suppose, for example,
that MT is of logarithmic order and that K is of order (JT )1/5 so that the variance and the bias are
balanced for twice differentiable functions. In this setting, (4.2.1) only requires that T/J2 times a
logarithmic factor converges to zero.
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Furthermore, please note that the minimization problem (7) has only a unique solution up to β,

but not to Γ, A. If (Ẑ0,t, Â) is a minimizer, then also (B>Ẑ0,t, B
−1A) is a minimizer, where B is an

arbitrary invertible matrix. In particular, with the choice B = (
∑T

t=1 Z0,tẐ0,t)
−1∑T

t=1 Z0,tZ
>
0,t, we get

for Z̃0,t
def
= B>Ẑ0,t and Ã

def
= B−1A that

∑T
t=1 Z0,t(Z̃0,t − Z0,t)

> = 0. Without loss of generality, we

may assume T−1
∑T

s=1 Ẑ0,s = T−1
∑T

s=1 Z0,s = 0. Additionally define

Z̃n,t = (T−1
T∑

s=1

Z̃0,sZ̃
>
0,s)
−1/2Z̃0,t

Zn,t = (T−1
T∑

s=1

Z0,sZ
>
0,s)
−1/2Z0,t.

THEOREM 4.2 Suppose that model (17) holds. Besides all assumptions in Theorem 3.3, let also
Assumption 4.1-4.2 be satisfied. Then there exists a random matrix B such that for h ≥ 0

T−1
min[T,T−h]∑

t=max[1,−h+1]

Z̃0,t

(
Z̃0,t+h − Z̃0,t

)>
− Z0,t (Z0,t+h − Z0,t)

> = OP (T−1/2)

and

T−1
min[T,T−h]∑

t=max[1,−h+1]

Z̃n,tZ̃
>
n,t+h − Zn,tZ>n,t+h = OP (T−1/2).

5 Simulation Study

We present three simulations which investigate how the spread of the sparsity level M(β∗), the number
of initial time basis R and the dependence level of the error terms affect the performance. In the
first example, we show how changing the values of M(β∗) result in changing the two measures of
estimation error in light of Theorem 3.1:

Lpar = 1−
∑R

r=1 ‖β̂r − βr‖∞∑R
r=1 ‖βr‖∞

Lpre = 1−
∑R

r=1 ‖Ψ>t (β̂r − βr)Ut‖∞∑R
r=1 ‖Ψ>t βrUt‖∞

All codes were done in Matlab and are available on the author’s homepage or www.quantlet.com. We
applied the above algorithm (8), (9) to the following simulated data. We generate random β1, . . . ,
β179 ∈ R5 such that all coordinates are independent and consider an initial model with the parameters
such that βrk ∼ N{0, exp(−2k/5)}, r = 1, . . . , 179, k = 1, . . . , 5. We randomly pick 179 −M(β∗) βrs
from β1, . . . , β179 and assign them to be 0 ∈ R5. We choose the same time basis as in Table 4. For
the space part, inspired by Park et al. (2009), we considered d = 2, L = 3 and the following tuple of
2-dimensional functions:

m0(x1, x2) = 1, m1(x1, x2) = 3.46(x1 − .5),

m2(x1, x2) = 9.45
{

(x1 − .5)2 + (x2 − .5)2
}
− 1.6,

m3(x1, x2) = 1.41 sin(2πx2).
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Figure 5: An illustration plot about how group Lasso penalty shrinks the coefficients.

The coefficients in these functions were chosen so that m1,m2,m3 are close to orthogonal. The design
points Xt,j were independently generated from a uniform distribution on the unit square. We generate
Y >t = U>t β

>Ψt + εt, t = 1, . . . , 19345 where εt is drawn as i.i.d. N(0, 0.05).
The convergence of the algorithm presented in (10) is usually achieved up to 5 iterations. Figure

5 is an illustration plot about how the group Lasso penalty shrinks the coefficients.
With 250 repetitions, Table 1 displays different Lpar and Lpres w.r.t. different sparsity levels. Our

theoretical results in the previous sections suggest that when M(β∗) (s) is small, Lpar and Lpre will
be large, which is confirmed by the simulation results.

M(β∗) = 100 M(β∗) = 50 M(β∗) = 20
Lpar 0.870 0.918 0.931
Lpre 0.710 0.835 0.859

Table 1: Lpar and Lpre w.r.t. different sparsity levels.

The second experiment compares how Lpar and Lpre react to changing the numbers of initial time
basis R, for M(β∗) = 50, if we additionally include the quartic term in the orthogonal polynomial
and double the number of Fourier series, R = 53 · 4 + 40 = 252 and if we remove the cubic term in
the orthogonal polynomial and half the number of Fourier series, R = 53 · 2 + 10 = 116. The Lpar and
Lpres are presented in Table 2.

R = 116 R = 179 R = 252
Lpar 0.879 0.918 0.920
Lpre 0.695 0.835 0.841

Table 2: Lpar and Lpre w.r.t. different number of initially involved time basis.

As we could see, when R increases, Lpar and Lpres increase. This indicates us that in practice we
need take a relatively large R value, i.e. involve as many as possible time basis.

The third experiment compares how Lpar and Lpre are sensitive to the dependence level of the error
items. We generated εt from a centered VAR(1) process εt = Rεt−1+Ut, where Ut is N3(0,ΣU) random
vector, the rows of R from the top equal (0.95,−0.2, 0), (0, 0.8, 0.1), (0.1, 0.0.6), and ΣU = 10−4I3. We
choose M(β∗) = 50, R = 179 as before. Besides the VAR(1) process indicated before, we also tried the
VAR(2) to generate εt. Table 3 displays the result, where we use VAR(0) to denote the independent
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case. The performance decreases when the error terms are more dependent, which is consistent with
Theorem 3.3.

V AR(0) V AR(1) V AR(2)
Lpar 0.918 0.854 0.783
Lpre 0.835 0.774 0.712

Table 3: Lpar and Lpre w.r.t. different levels of dependence of εt.

For more Monte Carlo experiments concerning Theorem 4.2, we refer to Park et al. (2009).

6 Weather, Neuro-economics and IVS

This section presents three applications to the temperature, fMRI and IVS analysis. First, we fit the
model to the daily temperature observations by Climatic Data Center (CDC), China Meteorological
Administration (CMA), as introduced in Figure 1. To capture the upward trend, seasonal and “large
period” effects, for time basis, similar to Racsko et al. (1991), Parton and Logan (1981) and Hedin
(1991), we propose the following initial choice of time basis (rescaling factors omitted) in Table 4.

Factors Factors
Trend 1 Large sin 2πt/(365 · 10)
(Year by Year) t Period cos 2πt/(365 · 10)

3t2 − 1 sin 4πt/(365 · 10)
Seasonal sin 2πt/365 cos 4πt/(365 · 10)
Effect cos 2πt/365 sin 6πt/(365 · 10)

. . . . . .
cos 20πt/365 cos 20πt/(365 · 10)

Table 4: Initial choice of 53 · 3 + 20 = 179 time basis.
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Figure 6: Distribution of the eigenvalues and the relative proportion of variance explained by the first
K basis.

For the space basis, consider the eigenvalues of the smoothed (with the usual optimal bandwidth
for local polynomial regression) covariance operator (Figure 6) and also the climate types of China
(Figure 7), the number of space basis K = 5 seems to be satisfactory although K = 10 is needed
to pass the “90%” rule. Please note that it is significantly smaller than the number of terms of a
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Figure 7: China Climate Types

series estimator. Figure 8 displays the estimated coefficients of the 5 factors with respect to the 54 · 3
yearly polynomial time basis under the optimal choice of λ. The coefficients of constant, linear and
quadratic terms are displayed as solid, dashed and dotted lines correspondingly. As one may see,
the fact that most of the coefficients are nonnegative (especially for k = 1) shows strong evidence of
global warming effect (especially with a quadratic upward trend) in China during the past 50 years.
In a climatological context this has also been observed by Karl et al. (1991), while the global climate
change has been recently summarized by Gleick et al. (2010). The high estimates over the second
half of 1960s are due to the high temperatures then in China (Figure 1). The pattern that all the
coefficients display an upward trend further indicates the stronger and stronger warming effect. The
coefficients estimates of the 20 Fourier series time basis corresponding to the optimal λ are displayed
in Table 5. It clearly indicates the 10-year period effect which, as some meteorologists claimed, are
related to the solar activity. Figure 9 displays the extracted trends based on U>t β̂, where the five
lines correspond to the five factors. The characters of this kind of nonstationary time series further
indicate that the autoregressive model may not be a proper tool to capture them. Firstly, since there
exists the “stronger and stronger global warming” effect, if we use AR model, the constant, linear and
quadratic coefficients should be time variant (increasing). Secondly, the existence of “large period”
effect also poses the problem of lag or frequency selections there. Both of these actually introduce
bigger technical challenges.

Basis Estimates
sin 2πt/365 −0.1777 0.0076 0.0177 −0.0136 0.0084
cos 2πt/365 −0.6081 0.0126 0.0366 −0.0369 0.0114
sin 4πt/365 0.0000 0.0000 0.0000 0.0000 0.0000
cos 4πt/365 −0.0145 0.0028 0.0021 −0.0022 0.0029
. . . 0.0000 . . .
cos 20πt/365 0.0000 . . .
sin 2πt/(365 · 10) 0.0025 −0.0006 0.0009 −0.0008 −0.0001
cos 2πt/(365 · 10) 0.0000 . . .
. . . 0.0000 . . .
cos 20πt/(365 · 10) 0.0000 . . .

Table 5: Estimated coefficients of the 5 factors w.r.t. the 20 Fourier series time basis.

Since the eigenvalues of β̂β̂> are (0.4683, 0.0106, 0.0068, 0.0040, 0.0007, 0.0000, . . .), we choose L =

5 and estimated the remaining 5-dimensional random process Ẑ0,t, e.g. Ẑ0,t,1 as displayed in Figure
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Figure 8: Estimated coefficients of the 54 · 3 yearly polynomial time basis w.r.t. k = 1, . . . , 5 from up
to down and left to right.

10 (Ẑ0,t,2 - Ẑ0,t,5 are omitted due to the limited space here). The expectation of the random process
is close to zero, which indicates our detrending using the group Lasso type technique works well.
The residual multi-dimensional random process could be further modeled by multivariate time series
techniques. For example, if we use VAR(1) process Ẑ0,t = RẐ0,t−1+ε0,t, where ε0,t is a random vector,
the estimated coefficient matrix is:




0.9732 −0.0135 −0.0002 −0.0006 −0.0002
0.0127 0.1766 −0.1824 −0.0682 −0.0009
0.0358 −0.2867 0.4493 −0.1138 0.0053
−0.0001 −0.1967 −0.1962 0.8010 −0.0052

0.0790 0.0492 0.0690 −0.0225 0.8418



.

In comparison with the existing temperature modeling or weather derivatives pricing techniques,
e.g. Benth and Benth (2005), we have the following advantages. Firstly, based on the high dimensional
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Figure 9: Extracted trends based on U>t β̂.
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Figure 10: Estimated Stochastic Process Ẑ0,t,1 and a 10 year zoom.

time series data, we offer integrated analysis considering space (high dimensionality) and time (dy-
namics) parts simultaneously, while forecasting at places different from the existing weather stations
is also possible since the space basis are actually functions of the geographical location information.
Secondly, we extract the trend more clearly. Thirdly, we provide the theoretical justification for fur-
ther inferential analysis of Ẑ0,t instead of Z0,t. However, if we have a closer look at the enlarged
estimated stochastic process in Figure 10, we find that the volatility of the random process also has
a seasonality, which is actually due to the fact that the variance of the noise (temperature, fMRI
etc.) scale linearly with the expectation of the measurements. This motivates to consider (6) under
heteroscedasticity (Poisson - like model) as follows:

Y >t = U>t ΓAΨt + εt, Cov(εt) = diag(|U>t ΓAΨt|),

which will be presented in a separate paper.
As a second application of the model, we consider a microeconomic experiment based on fitting

an fMRI data set. Here we used a novel investment decision task that uses streams of (past) returns
as stimuli to the exercised subjects, where the flowchart of the experiment is presented in Figure 11
(left), and obtain a series of three-dimensional images of the blood-oxygen-level-dependent (BOLD)
fMRI signals. Our model helps to identify the corresponding brain’s activation areas and to sim-
plify the inference to the analysis of time propagation of a few number of factors (low-dimensional
representation). Additionally we classify the risk attitudes of different subjects based on the coeffi-
cients of time basis, which performed quite well compared to the classic risky decision making model
(risk-return model) which is based on the subjects’ answers directly, where the risk attitude can be
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measured as value reduction in Euro for maximum risk (the case when the subjective perceived risk
= 100), as described in Mohr et al. (2010). All subjects were classified as risk averse indicated by
a positive risk weight as shown in Figure11 (right). However, for six subjects the risk attitude was
quite low (risk weight< 5, colored with blue) resulting in only a small influence of risk on value. For
the experimental procedure and the fMRI data description, we refer to Myšičková et al. (2010).
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Figure 11: Flowchart of the experiment (left) “Returns Pause Decision” and risk attitudes of 16
subjects (right). Subjects with risk attitude < 5 are colored blue, otherwise green.

Since we are analyzing multi subjects 1 ≤ i ≤ I here, we obtain a panel version of the original
model (6) to

Y i
t,j =

L∑

l=1

(αit,l + U>t Γil)ml(Xt,j) + εt,j, 1 ≤ j ≤ Jt, 1 ≤ t ≤ T,

where the fixed effect αit,l is the individual effect on function ml for subject i at time point t. For
identification purpose, we assume
I∑

i=1

L∑

l=1

αit,lml(Xt,j) = 0. Please notice that assuming different subjects have the same basis function

in space ml makes sense here since the basis function is used to detect which part of the brain is
activated for risky decisions, which should be homogeneous for human beings. Thus for this panel
data, we have:

Y t,j =
L∑

l=1

(U>t Γl)ml(Xt,j) + εt,j , 1 ≤ j ≤ J,

and our 2-step estimation procedure is as follows:

1 Take the average of Y i
t,j across different subjects i, and estimate the common basis function in

space ml as in the original approach.

2 Given the common ml, for different subjects i, estimate their specific factors in time Zi
t,l.

Y i
t,j =

L∑

l=1

U>t Γilml(Xt,j) + εit,j

Since most of the technical details have been illustrated in the previous application, it is skipped
here, while the differences will be emphasized. Since the significantly larger dimension J = 76176 is
observed here, computing eigenvalues of a 76176× 76176 matrix will encounter significant numerical
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difficulties. By using the fact that cc> has the same eigenvalues as c>c (where c is a J × T matrix),
we only need to compute eigenvalues of a 722 × 722 matrix. If we additionally take the average of
every 10 Y i

t,js over t, we only need compute eigenvalues from a 73× 73 matrix.
The third factor loading function m̂3 shown in Figure 12 could be identified as the Ventromedial

prefontal cortex (VMPFC) located in the bottom frontal part in the brain, which is the center for
utility and conform herewith with our experiment (it is why it is presented here). The other functions
ml, which also represent exactly those brain regions which we have expected to be involved during
the experiment, are presented in Myšičková et al. (2010).

Figure 12: Estimated function m̂3 shown in 12 axial slices (left) and as a 3D-plot in a posterior view
(right) with highlighted Ventromedial prefrontal cortex (VMPFC).

We use the same 3 orthogonal polynomials and 10 Fourier series as before as time basis. Figure 13
displays the response curve (to stimuli) U>t Γ̂i2 for different subjects. Based on the estimated factors
for different individuals, we could further develop a classification method which can predict the risk
aversion only based on the measured fMRI signals. Observing that different probands’ response
curves have different patterns and their corresponding Ẑ0,t have different volatilities, for this purpose
we use the estimated coefficients Γi3 since it correspond to the brain activity of the VMPFC, which is
linked with utility. To provide the classification analysis, we apply Support Vector Machines (SVM),
which is a widely used nonlinear method based on statistical learning theory. For the learning step,
strongly risk averse subjects were labeled by −1 and weakly risk averse subjects by 1. Then, we
applied the leave-one-out method to first train and then estimate the classification rate of the SVM.
The classification rates are 85% for strongly risk averse and 60% for weakly risk averse individuals.
More importantly, these rates hold for a wide range of prior parameters: the radial basis coefficient r
(0.25− 0.35) and the capacity C (20− 90).

MEAN Estimated

Data
Strongly 0.85 0.14
Weakly 0.59 0.40

Table 6: Classification rates of the SVM method using median(left) and mean (right) of volatilities

of ∆Ẑt,2.

In the analysis of IVS data, deterministic trends are not present, and do not make sense from
a non arbitrage point of view. We may therefore assume stationarity. The first detrending step
is therefore omitted, alternatively, we could still use the dynamic semiparametric factor modeling
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Figure 13: Response curve (to stimuli) U>t Γ̂i2 for proband 18 (up) and 16, 19 and 11 (down, left to
right) w.r.t l = 3.

approach proposed by Park et al. (2009) except for a different space basis. To this end, due to
the limited space here, we only present the new space basis of the implied volatility surface (IVS)
application in Figure 14 (left). We see that the “smile” effect is captured very well. The corresponding

estimated time series of factors Ẑt,1, Ẑt,2 (stationary) are presented in Figure 14 (right).
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Estimated time series of factors Ẑt1, Ẑt2
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Figure 14: Space basis using the FPCA approach for IVS modeling and the estimated time series of
factors Ẑt,1, Ẑt,2.

7 Appendix

Here we collect one auxiliary result which is used in the proof of Lemma 3.1.

LEMMA 7.1 For any I × J matrix A and any J ×K matrix B, we have ‖AB‖2,1 6 ‖A‖2,1‖B‖2,1.
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Proof With Cauchy Schwartz inequality it is not hard to derive:

‖AB‖2,1 =
I∑

i=1

√√√√
K∑

k=1

(
J∑

j=1

aijbjk)2

6
I∑

i=1

√√√√
K∑

k=1

(
J∑

j=1

a2ij

J∑

j=1

b2jk)

6 (
I∑

i=1

√√√√
J∑

j=1

a2ij)(
K∑

k=1

√√√√
J∑

j=1

b2jk)

= ‖A‖2,1‖B‖2,1
�

Proof of Lemma 3.1 The proof is in a similar spirit of the one of Lemma 3.1 in Lounici et al. (2009).

By the definition of β̂ as a minimizer of (7), for ∀β we have

(JT )−1
T∑

t=1

‖ Ψ>t β̂Ut − Yt ‖
2

+ 2λ
R∑

r=1

‖β̂r‖

6 (JT )−1
T∑

t=1

‖ Ψ>t βUt − Yt ‖
2

+ 2λ
R∑

r=1

‖βr‖,

(19)

which, using Yt = Ψ>t β
∗Ut + εt, is equivalent to

(JT )−1
T∑

t=1

‖ Ψ>t (β̂ − β∗)Ut ‖
2
6 (JT )−1

T∑

t=1

‖ Ψ>t (β − β∗)Ut ‖
2

+2(JT )−1
T∑

t=1

ε>t Ψ>t (β̂ − β)Ut + 2λ
R∑

r=1

(‖βr‖ − ‖β̂r‖). (20)

By Hölder’s inequality, we have that

T∑

t=1

ε>t Ψ>t (β̂ − β)Ut 6 ‖
T∑

t=1

ΨtεtU
>
t ‖2,∞‖β̂ − β‖2,1 (21)

where ‖
∑T

t=1 ΨtεtU
>
t ‖2,∞ = max16r6R

√∑T
t=1

∑K
k=1(

∑J
j=1 Ψ>tkjεtjUtr)

2.

Consider the random event

A =
{

2(JT )−1‖
T∑

t=1

ΨtεtU
>
t ‖2,∞ 6 λ

}
. (22)

Since ΨtΨ
>
t /J = IK and

∑T
t=1 U

>
t Ut/R = 1, the random variables Vtr = (

√
Jσ)−1/2

∑K
k=1

∑J
j=1 ΨtkjεtjUtr,

t = 1, . . . , T , are i.i.d. standard Gaussian. Using this fact, we can write, for any r = 1, . . . , R, and

λ = 2σ/
√
JT
(

1 + A logR/
√
T
)1/2

,

P
{ T∑

t=1

K∑

k=1

( J∑

j=1

ΨtkjεtjUtr

)2
> λ2(JT )2/4

}
= P

{
X 2
T > λ2JT 2/(4σ2)

}

= P
(
X 2
T > T + A

√
T logR

)
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where X 2
T is a chi-square random variable with T degrees of freedom. By the tail property of X 2

T

distribution (Lemma A.1 of Lounici et al. (2009)), and the fact that A > 8 we get:

P(Ac) 6 R exp{−A logR/8 min(
√
T ,A logR)} 6 R1−q

with q = min(A logR,
√
T ). It follows from (20) and (21) that, on the event A:

(JT )−1
T∑

t=1

‖Ψ>t (β̂ − β∗)Ut‖2 + λ
R∑

r=1

‖β̂r − βr‖

6 (JT )−1
T∑

t=1

‖Ψ>t (β − β∗)Ut‖2 + 2λ
R∑

r=1

(‖β̂r − βr‖+ ‖βr‖ − ‖β̂r‖)

6 (JT )−1
T∑

t=1

‖Ψ>t (β − β∗)Ut‖2 + 2λ
∑

r∈R(β)

(‖β̂r − βr‖+ ‖βr‖ − ‖β̂r‖)

+ 2λ
∑

r∈Rc(β)

(‖β̂r − βr‖+ ‖βr‖ − ‖β̂r‖)

6 (JT )−1
T∑

t=1

‖Ψ>t (β − β∗)Ut‖2 + 4λ
∑

r∈R(β)

‖β̂r − βr‖

(23)

which coincides with (11). To prove (12), we use (8) and (9) resulting in the inequality

(JT )−1 max
16r6R

‖
T∑

t=1

{Ψt(Yt −Ψ>t β̂Ut)U
>
t }r‖ 6 λ. (24)

Then

(JT )−1‖
T∑

t=1

{ΨtΨ
>
t (β̂ − β∗)UtU>t }r‖

6 (JT )−1‖
T∑

t=1

{Ψt(Ψ
>
t β̂Ut − Yt)U>t }r‖+ (JT )−1‖

T∑

t=1

(ΨtεtU
>
t )r‖ (25)

where we have used Yt = Ψ>t β
∗Ut+εt and the triangle inequality. The derived bound (12) then follows

by combining (25) with (24) and using the definition of the event A. Finally, we prove (13). First,
observe that,

T∑

t=1

Ψt(Yt −Ψ>t β
∗Ut)U

>
t =

T∑

t=1

ΨtΨ
>
t (β̂ − β∗)UtU>t +

T∑

t=1

ΨtεtU
>
t .

On the event A, following from (8) and the triangle inequality, we have:

(JT )−1‖
T∑

t=1

{ΨtΨ
>
t (β̂ − β∗)UtU>t }r‖ > λ/2, if β̂r 6= 0.
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The following arguments yields the bound (13) on the number of nonzero rows of β̂>r :

M(β̂) 6
4

λ2(JT )2

∑

r∈R(β̂)

‖
T∑

t=1

{ΨtΨ
>
t (β̂ − β∗)UtU>t }r‖2

6
4

λ2(JT )2

R∑

r=1

‖
T∑

t=1

{ΨtΨ
>
t (β̂ − β∗)UtU>t }r‖2

=
4

λ2T 2
‖

T∑

t=1

{J−1ΨtΨ
>
t (β̂ − β∗)UtU>t }‖22,1

6
4

λ2T 2
‖β̂ − β∗‖22,1‖

T∑

t=1

UtU
>
t ‖22,1

6
4φ2

max

λ2T 2
‖β̂ − β∗‖22,1,

which follows from Lemma 7.1, ΨtΨ
>
t /J = IK and φmax is the maximum eigenvalues of the matrix∑T

t=1 UtU
>
t . �

Proof of Theorem 3.1 We proceed similarly to the proof of Theorem 3.1 in Lounici et al. (2009)
and Theorem 6.2 in Bickel et al. (2009). Let R = R(β∗) = {r : β∗r 6= 0}

By inequality (11) in Lemma 3.1 with β = β∗ we have, on the event A defined in (22):

(JT )−1
T∑

t=1

‖Ψ>t (β̂ − β∗)Ut‖2 6 4λ
∑

r∈R

‖β̂r − β∗r‖

6 4λ
√
s‖(β̂ − β∗)R‖

(26)

Moreover by the same inequality, on the event A, we have
∑R

r=1 ‖β̂r−β∗r‖ 6 4
∑

r∈R ‖β̂r−β∗r‖, which

implies that
∑

r∈Rc ‖β̂r − β∗r‖ 6 3
∑

r∈R ‖β̂r − β∗r‖. Thus, by Assumption 3.1 with ∆ = (β̂ − β∗):

‖(β̂ − β∗)R‖ 6
T∑

t=1

‖Ψ>t (β̂ − β∗)Ut‖/(κ
√
J). (27)

Now (14) follows from (26) and (27). Inequality (15) follows by noting that

R∑

r=1

‖β̂r − β∗r‖ 6 4
∑

r∈R

‖β̂r − β∗r‖ 6 4
√
s‖(β̂ − β∗)R‖

and then using (14). Inequality (16) follows from (13) and (14). �

Proof of Theorem 3.2 The proofs of this theorem are similar to the one of Theorem 3.1 up to a
modification of the bound on P(Ac) in Lemma 3.1. We consider now the event

A =
{

max
16r6R

{ T∑

t=1

K∑

k=1

(
J∑

j=1

ΨtkjεtjUtr)
2
}1/2

6 λJT
}
.

The Markov inequality yields that

P(Ac) 6
T∑

t=1

E
{

max
16r6R

(
K∑

k=1

J∑

j=1

ΨtkjεtjUtr)
2
}
/(λJT )2.
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Then we use Nemirovski’s inequality, see Corollary 2.4 of Dümbgen et al. (2008)[p.5], with the random
vectors

Wtj =
( K∑

k=1

ΨtkjεtjUt1/J, . . . ,

K∑

k=1

ΨtkjεtjUtR/J
)
∈ RR, ∀j, ∀t.

We get that

P(Ac) 6 2e logR− e
λ2JT

σ2(JT )−1
T∑

t=1

J∑

j=1

(
max
16r6R

|
K∑

k=1

ΨtkjUtr|
)2
.

By the definition of λ in Theorem 3.2 and Assumption 3.2 we obtain

P(Ac) 6 (2e logR− e)C
(logR)1+δ

. �

Proof of Theorem 3.3 The proofs of this theorem are similar to the one of Theorem 3.1 up to a
modification of the bound on P(Ac) in Lemma 3.1. We consider now the event

A =
{

max
16r6R

{ T∑

t=1

K∑

k=1

(
J∑

j=1

ΨtkjεtjUtr)
2
}1/2

6 λJT
}
.

Thus, following the fact that different space basis Ψk and Ψk′ are independent, we have:

P(Ac) = P
[

max
16r6R

{ T∑

t=1

K∑

k=1

(
J∑

j=1

ΨtkjεtjUtr)
2
}1/2

> λJT
]

= P
[

max
16r6R

{ T∑

t=1

(
K∑

k=1

J∑

j=1

ΨtkjεtjUtr)
2
}1/2

> λJT
]

6 RP
[{ T∑

t=1

(
K∑

k=1

J∑

j=1

ΨtkjεtjUtr)
2
}1/2

> λJT
]

= RP
[{ T∑

t=1

(
K∑

k=1

J∑

j=1

ΨtkjεtjUtr)
2
}1/2

> λJT
]

= RP{f(V ) > λ}

where

Vt
def
= J−1

K∑

k=1

J∑

j=1

ΨtkjεtjUtr

V
def
= (V1r, . . . , VTr)

f(V )
def
= T−1

(
T∑

t=1

V 2
t

)1/2

.

Since Assumption 3.3 holds, i.e. with a high probability p, for ∀ t and v1r, . . . , vTr, v
′
tr,

|f(v1r, . . . , vtr, . . . , vTr)− f(v1r, . . . , v
′
tr, . . . , vTr)| 6 b2t/T

E f(V ) 6
C ′√
T
.
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Then, by the (extended) Mcdiarmid inequality, see Theorem 2.1 of Janson (2004), with the random
vectors V and function f , we have

P(Ac) 6 RP{f(V ) > λ} 6 RP{f(V )− E f(V ) > λ− C ′√
T
}

6 R exp

{
−

(λ− C′√
T

)2T 2

X ∗(T )
∑

t b
2
t

}
= R−δ

′

with λ = C′√
T

+
√
X ∗(T )

∑
t b

2
t

(logR)1−δ′T 2 , δ′ > 0. �

Proof of Theorem 4.1 Similar to
̂̃
Y
>

t
def
= Y >t − U>t β̂Ψt, define Ỹ >t

def
= Y >t − U>t β

∗Ψt with the

corresponding estimate Z̃0,t. Thus

1

T

∑

1≤t≤T

∥∥∥Ẑ>0,tÂ− Z>0,tA∗
∥∥∥
2

6
1

T

∑

1≤t≤T

∥∥∥Ẑ>0,tÂ− Z̃>0,tÂ
∥∥∥
2

+
1

T

∑

1≤t≤T

∥∥∥Z̃>0,tÂ− Z>0,tA∗
∥∥∥
2

,

where the second term is bounded by OP (ρ2 + δ2K) by Theorem 2 of Park et al. (2009). For the first
term, since

Ẑ0,t = (ÂΨtΨ
>
t Â
>)−1ÂΨt

̂̃
Yt

Z̃0,t = (ÂΨtΨ
>
t Â
>)−1ÂΨtỸt

Z̃0,t − Ẑ0,t = (ÂΨtΨ
>
t Â
>)−1ÂΨt{Ψ>t (β̂ − β∗)Ut}

and Theorem 3.3 tells us that (JT )−1
∑T

t=1 ‖ Ψ>t (β̂ − β∗)Ut ‖
2

could be arbitrary small, i.e. ∃ large
enough R, s.t. the first term is dominated by the second one. �

Proof of Theorem 4.2 The proof is in a similar spirit of the one of Theorem 3 in Park et al. (2009).
We will prove the first equation of the theorem for h 6= 0. The second equation follows from the first
equation. We first prove that the matrix T−1

∑T
t=1 Z0,tẐ

>
0,t is invertible. Suppose that the assertion

is not true. We can choose a random vector e such that ‖e‖ = 1 and e>
∑T

t=1 Z0,tẐ
>
0,t = 0. Note that

‖T−1
T∑

t=1

Z0,tẐ
>
0,tÂ− T−1

T∑

t=1

Z0,tZ
>
0,tA

∗‖

6 T−1
T∑

t=1

‖Z0,t(Ẑ
>
0,tÂ− Z>0,tA∗)‖

6 (T−1
T∑

t=1

‖Z0,t‖2)1/2(T−1
T∑

t=1

‖Ẑ>0,tÂ− Z>0,tA∗‖2)1/2

= OP (ρ+ δK), (28)

because of Assumption (4.1.5) and Theorem 4.1. Thus with f = T−1
∑T

t=1 Z0,tZ
>
0,te, we obtain

‖f>m‖ = ‖f>(A∗Ψ)‖+OP (δK)

= ‖e>T−1
T∑

t=1

Z0,tZ
>
t ÂΨ‖+OP (ρ+ δK)

= OP (ρ+ δK).
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This implies that m1, . . . ,mL are linearly dependent, contradicting to the construction that all space
basis are independent.

Z̃0,t = B>Ẑ0,t and Ã = B−1A give with (28)

‖Ã− A∗‖ = ‖T−1
T∑

t=1

Z0,tZ
>
t (Ã− A∗)‖OP (1)

= ‖T−1
T∑

t=1

Z0,tZ̃
>
0,tÃ− T−1

T∑

t=1

Z0,tZ
>
0,tA

∗‖OP (1)

= OP (ρ+ δK) (29)

From Assumptions (4.1.4), (29) and Theorem 4.1, we get

T−1
T∑

t=1

‖Z̃>t − Z0,t‖2

= T−1
T∑

t=1

‖Z̃>t (m1, . . . ,mL)> − Z>0,t(m1, . . . ,mL)>‖2OP (1)

= T−1
T∑

t=1

‖Z̃>t A∗ − Z̃>t Ã‖2OP (1)

+ T−1
T∑

t=1

‖Z̃>t Ã− Z>0,tA∗‖2OP (1) +OP (δ2K)

6 T−1
T∑

t=1

‖Z̃0,t − Z0,t‖2‖Ã− A∗‖2OP (1)

+ T−1
T∑

t=1

‖Z0,t‖2‖Ã− A∗‖2OP (1)

+ T−1
T∑

t=1

‖Z̃>t Ã− Z>0,tA∗‖2OP (1) +OP (δ2K)

= OP (ρ2 + δ2K).

(30)

We will show that for h 6= 0

T−1
T∑

t=h+1

{(Z̃0,t+h − Z0,t+h)− (Z̃0,t − Z0,t)}Z>0,t = OP (T−1/2) (31)

This implies the first statement of Theorem 4.2, because by (30)

T−1
T∑

t=−h+1

(Z̃0,t − Z0,t)(Z̃0,t+h − Z0,t+h) = OP (b2) = OP (T−1/2).
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For the proof of (31), define

S̃t,Z = J−1
J∑

j=1

ÃΨ(Xt,j)Ψ(Xt,j)
>Ã>

St,Z = A∗E
{

Ψ(Xt,j)Ψ(Xt,j)
>}A∗>

S̃α = (JT )−1
T∑

t=1

J∑

j=1

{Ψ(Xt,j)⊗ Z̃0,t}{Ψ(Xt,j)⊗ Z̃0,t}>

Sα = T−1
T∑

t=1

E
[
{Ψ(Xt,j)⊗ Z0,t}{Ψ(Xt,j)⊗ Z0,t}>

∣∣Z0,t

]

S = J−1A∗
[
Ψ(Xt,j)Ψ(Xt,j)

>e− E
{

Ψ(Xtj)Ψ(Xtj)
>e
}]
,

where e ∈ RK with ‖e‖ = 1. Let ã be the stack form of Ã. It can be verified that

Z̃0,t = S̃−1t,ZJ
−1

J∑

j=1

{Yt,jAΨ(Xt,j)} , (32)

ã = S̃−1α (JT )−1
T∑

t=1

J∑

j=1

{Ψ(Xt,j)⊗ Z̃0,t}Yt,j. (33)

Let γ = T−1/2/b. We argue that

sup
1≤t≤T

‖S̃t,Z − St,Z‖ = OP (γ), ‖S̃α − Sα‖ = OP (γ). (34)

We show the first part of (34). The second part can be shown similarly. Since

ÃΨtΨ
>
t Ã
> = (Ã− A∗ + A∗)(ΨtΨ

>
t − EΨtΨ

>
t + EΨtΨ

>
t )(Ã− A∗ + A∗)>,

to prove the first part it suffices to show that, uniformly for 1 6 t 6 T ,

J−1
J∑

j=1

A∗
[
Ψ(Xt,j)Ψ(Xt,j)

> − E
{

Ψ(Xt,j)Ψ(Xt,j)
>}] (Ã− A∗)> = OP (γ) (35)

J−1
J∑

j=1

(Ã−A∗)
[
Ψ(Xt,j)Ψ(Xt,j)

>−E
{

Ψ(Xt,j)Ψ(Xt,j)
>}] (Ã−A∗)>=OP (γ) (36)

J−1
J∑

j=1

A∗
[
Ψ(Xt,j)Ψ(Xt,j)

> − E
{

Ψ(Xt,j)Ψ(Xt,j)
>}]A∗> = OP (γ) (37)

J−1
J∑

j=1

A∗ E
{

Ψ(Xt,j)Ψ(Xt,j)
>} (Ã− A∗)> = OP (γ) (38)

J−1
J∑

j=1

(Ã− A∗)E
{

Ψ(Xt,j)Ψ(Xt,j)
T
}

(Ã− A∗)> = OP (γ) (39)

The proof of (35)-(37) follows by simple arguments. We now show (38). Claim (39) can be shown
similarly. For the proof of (38), we use Bernstein’s inequality for the following sum:

P

(
|

J∑

j=1

Wj| > x

)
6 2 exp

(
−1

2

x2

V +Mx/3

)
. (40)
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Here for a value of t with 1 ≤ t ≤ T , the random variable Wj is an element of the L × 1-matrix
S = J−1A∗

[
Ψ(Xt,j)Ψ(Xt,j)

>e− E
{

Ψ(Xtj)Ψ(Xtj)
>e
}]

where e ∈ RK with ‖e‖ = 1. In (40), V is

an upper bound for the variance of
∑J

j=1Wj and M is a bound for the absolute values of Wj, i.e.
|Wj| ≤ M for 1 ≤ j ≤ J , a.s. With some constants C1 and C2 that do not depend on t and the row
number we get V ≤ C1J

−1 and M ≤ C2K
1/2J−1. Application of Bernstein’s inequality gives that,

uniformly for 1 ≤ t ≤ T and e ∈ RK with ‖e‖ = 1, all L elements of S are of order OP (γ). This shows
claim (35).

From (29), (30), (32), (33) and (34) it follows that uniformly for 1 6 t 6 T ,

Z̃0,t − Z0,t = S−1t,ZJ
−1

J∑

j=1

ε′t,jA
∗Ψ(Xt,j)

+S−1t,ZJ
−1

J∑

j=1

ε′t,j(Ã− A∗)Ψ(Xt,j) + OP (T−1/2) (41)

def
= ∆t,1,Z + ∆t,2,Z + OP (T−1/2).

For the proof of the theorem it remains to show that for 1 6 j 6 2

T−1
T∑

t=−h+1

(∆t+h,j,Z −∆t,j,Z)Z>0,t = OP (T−1/2). (42)

This can be easily checked for j = 1. For j = 2 it follows from ‖Ã− A∗‖ = OP (ρ+ δK) and

E

{
‖(JT )−1

T∑

t=1

J∑

j=1

ε′t,jS
−1
t,ZMΨ(Xt,j)‖2

}
= O(K(JT )−1),

for any L×K matrix M with ‖M‖ = 1. �
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