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Abstract Sparse non-Gaussian component analysis (SNGCA) is an unsupervised method of extracting

a linear structure from a high dimensional data based on estimating a low-dimensional non-Gaussian data

component. In this paper we discuss a new approach to direct estimation of the projector on the target

space based on semidefinite programming which improves the method sensitivity to a broad variety of

deviations from normality.

We also discuss the procedures which allows to recover the structure when its effective dimension is

unknown.
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1 Introduction

Numerous statistical applications are confronted today with the so-called curse of dimensionality (cf. [13,

31]). Using high-dimensional datasets implies an exponential increase of computational effort for many

statistical routines, while the data thin out in the local neighborhood of any given point and classical

statistical methods become unreliable. When a random phenomenon is observed in the high dimensional
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space Rd the ”intrinsic dimension” m covering degrees of freedom associated with same features may

be much smaller than d. Then introducing structural assumptions allows to reduce the problem com-

plexity without sacrificing any statistical information [17,25]. In this study we consider the case where

the phenomenon of interest is (approximately) located in a linear subspace I. When compared to other

approaches which involve construction of nonlinear mappings from the original data space onto the ”sub-

space of interest”, such that isomaps [29], local-linear embedding [13] or Laplacian eigenmaps [4], a linear

mapping appears attractive due to its simplicity — it may be identified with a simple object, the pro-

jector Π∗ from Rd onto I. To find the structure of interest a statistician may seek for the non-Gaussian

components of the data distribution, while its Gaussian components, as usual in the statistical literature

may be treated as non-informative noise.

Several techniques of estimating the “non-Gaussian subspace” have been proposed recently. In particular,

NGCA (for Non-Gaussian Component Analysis) procedure, introduced in [6], and then developed into

SNGCA (for Sparse NGCA) in [10], is based on the decomposition the problem of dimension reduction

into two tasks: the first one is to extract from the data a set {β̂j} of candidate vectors β̂j which are

”close” to I . The second is to recover an estimation Π̂ of the projector Π∗ on I from {β̂j}. In this

paper we discuss a new method of SNGCA based on Semidefinite Relaxation of a nonconvex minmax

problem which allows for a direct recovery of Π∗. When compared to previous implementations of the

SNGCA in [6,7,10], the new approach ”shortcuts” the intermediary stages and makes the best use of

available information for estimation of I. Furthermore, it allows to treat in a transparent way the case

of unknown dimension m of the target space I.

The paper is organized as follows: in Section 2 we present the setup of SNGCA and briefly review some

existing techniques. Then in Section 3 we introduce the new approach to recovery of the non-Gaussian

subspace and analyze its accuracy. Further we provide a simulation study in Section 5, where we compare

the performance of the proposed algorithm SNGCA to that of some known projective methods of feature

extraction.

2 Sparse Non-Gaussian Component Analysis

2.1 The setup

The Non-Gaussian Component Analysis (NGCA) approach is based on the assumption that a high di-

mensional distribution tends to be normal in almost any randomly selected direction. This intuitive fact

can be justified by the central limit theorem when the number of directions tends to infinity. It leads

to the NGCA-assumption: the data distribution is a superposition of a full dimensional Gaussian distri-

bution and a low dimensional non-Gaussian component. In many practical problems like clustering or

classification, the Gaussian component is uninformative and it is treated as noise. The approach suggests

to identify the non-Gaussian component and to use it for the further analysis.

The NGCA set-up can be formalized as follows; cf. [6]. Let X1, ..., XN be i.i.d. from a distribution P in

Rd describing the random phenomenon of interest. We suppose that P possesses a density ρ w.r.t. the

Lebesgue measure on Rd , which can be decomposed as follows:

ρ(x) = φµ,Σ(x)q(Tx). (1)
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Here φµ,Σ denotes the density of the multivariate normal distribution N (µ,Σ) with parameters µ ∈ Rd

(expectation) and Σ ∈ Rd×d positive definite (covariance matrix). The function q : Rm → R with

m ≤ d is positive and bounded. T ∈ Rm×d is an unknown linear mapping. We refer to I = range T as

target or non-Gaussian subspace. Note that though T is not uniquely defined, I is well defined, same as

the Euclidean projector Π∗ on I .In what follows, unless it is explicitly specified otherwise, we assume

that the effective dimension m of I is known a priori. For the sake of simplicity we assume that the

expectation of X vanishes: E[X] = 0.

The model (1) allows for the following interpretation (cf. Section 2 of [6]): suppose that the observation

X ∈ Rd can be decomposed into X = Z + ξ, where Z is an “informative low-dimensional signal” such

that Z ∈ I, I being an m-dimensional subspace of Rd, and ξ is independent and Gaussian. One can

easily show (see, e.g., Lemma 1 of [6]) that in this case the density of X can be represented as (1).

2.2 Basics of SNGCA estimation procedure

The estimation of I relies upon the following result, proved in [6]: suppose that the function q is smooth,

then for any smooth function ψ : Rd → R the assumptions of (1) and E[X] = 0 ensure that for

β(ψ)
def
= E

[
∇ψ(X)

]
=

∫
∇ψ(x) ρ(x) dx, (2)

there is a vector β ∈ I such that

|β(ψ)− β|2 ≤
∣∣Σ−1E[Xψ(X)]

∣∣
2

where ∇ψ denotes the gradient of ψ and | · |p is the standard `p-norm on Rd. In particular, if ψ satisfies

E[Xψ(X)] = 0 , then β(ψ) ∈ I . Consequently

|(I −Π∗)β(ψ)|2 ≤
∣∣∣Σ−1 ∫ xψ(x)ρ(x) dx

∣∣∣
2
, (3)

where I is the d -dimensional identity matrix and Π∗ is the Euclidean projector on I .

The above result suggests the following two-stage estimation procedure: first compute a set of estimates

{β̂`} of elements {βj} of I , then recover an estimation of I from {β̂`}. This heuristics has been first

used to estimate I in [6]. To be more precise, the construction implemented in [6] can be summarized as

follows: let for a family {h`}, ` = 1, ..., L of smooth bounded (test) functions on Rd

γ`
def
= E[Xh`(X)], η`

def
= E[∇h`(X)], (4)

and let

γ̂`
def
= N−1

N∑
i=1

Xih`(Xi), η̂`
def
= N−1

N∑
i=1

∇h`(Xi) (5)

be their ”empirical counterparts”. The set of ”approximating vectors” {β̂`} used in [6] is as follows:

β̂` = η̂` − Σ̂−1γ̂`, ` = 1, ..., L, where Σ̂ is an estimate of the covariance matrix Σ. The projector estima-

tion at the second stage is Π̂ =
∑m
j=1 eje

T
j , where ej , j = 1, ...,m, are m principal eigenvectors of the

matrix
∑L
`=1 β̂`β̂

T
` . A numerical study, provided in [6], has shown that the above procedure can be used

successfully to recover I. On the other hand, such implementation of the two-stage procedure possesses
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two important drawbacks: it relies upon the estimation of the covariance matrix Σ of the Gaussian com-

ponent, which can be hard even for moderate dimensions d. Poor estimation of Σ then will result in badly

estimated vectors β̂`, and as a result, poorly estimated I. Further, using the eigenvalue decomposition of

the matrix
∑L
`=1 β̂`β̂

T
` entails that the variance of the estimation Π̂ of the projector Π∗ on I is propor-

tional to the number L of test-functions. As a result, the estimation procedure is restricted to utilizing

only relatively small families {h`}, and is sensitive to the initial selection of ”informative” test-functions.

To circumvent the above limitations of the approach of [6] a different estimation procedure has been

proposed in [10]. In that procedure the estimates β̂ of vectors from the target space are obtained by the

method, which was referred to as convex projection. Let c ∈ RL and let

β(c) =

L∑
l=1

c`η` γ(c) =

L∑
l=1

c`γ`.

Observe that β(c) ∈ I conditioned that γ(c) = 0 . Indeed, if ψ(x) =
∑
` c
`h`(x) , then

∑
` c
`E[Xh`(X)] =

0 , and by (3),

η(c) =
∑
`

c`E[∇h`(X)] ∈ I.

Therefore, the task of estimating β ∈ I reduces to that of finding a ”good” corresponding coefficient

vector. In [10] vectors {ĉj} are computed as follows: let

η̂(c) =

L∑
l=1

c`η̂` and γ̂(c) =

L∑
l=1

c`γ̂`, ` = 1, ..., L

and let ξj ∈ Rd, j = 1, ..., J constitute a set of probe unit vectors. Then it holds

ĉj = arg minc
{
|ξj − η̂(c)|2 | γ̂(c) = 0, |c|1 ≤ 1

}
, (6)

and we set β̂j = β̂(ĉj) =
∑
` ĉ
`
j η̂`. Then I is recovered by computing m principal axes of the minimal

volume ellipsoid (Fritz-John ellipsoid) containing the estimated points {±β̂j}Jj=1 .

The recovery of Î through the Fritz-John ellipsoid (instead of eigenvalue decomposition of the matrix∑
` β̂j β̂

T
j ) allows to bound the estimation error of I by the maximal error of estimation β̂ of elements of

the target space (cf. Theorem 3 of [10]), while the `1-constraint on the coefficients ĉj allows to control

efficiently the maximal stochastic error of the estimations β̂j (cf. Theorem 1 of [10,28]). On the other

hand, that construction heavily relies upon the choice of the probe vectors ξj . Indeed, in order to recover

the projector on I, the collection of β̂j should comprise at least m vectors with non-vanishing projection

on the target space. To cope with this problem a multi-stage procedure has been used in [10]: given a

set {ξj}k=0 of probe vectors an estimation Îk=0 is computed, which is used to draw new probe vectors

{ξj}k=1 from the vicinity of Îk=0; these vectors are employed to compute a new estimation Îk=1, and

so on. The iterative procedure improves significantly the accuracy of the recovery of I. Nevertheless, the

choice of ”informative” probe vectors at the first iteration k = 0 remains a challenging task and hitherto

is a weak point of the procedure.
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3 Structural Analysis by Semidefinite Programming

In the present paper we discuss a new choice of vectors β which solves the initialization problem of probe

vectors for the SNGCA procedure in quite a particular way. Namely, the estimation procedure we are to

present below does not require any probe vectors at all.

3.1 Informative vectors in the target space

Further developments are based on the following simple observation. Let η` and γ` be defined as in (4),

and let U = [η1, ..., ηL] ∈ Rd×L, G = [γ1, ..., γL] ∈ Rd×L. Using the observation in the previous section

we conclude that if c ∈ RL satisfies Gc =
∑L
`=1 c

`γ` = 0 then Uc =
∑L
`=1 c

`η` belongs to I. In other

words, if Π∗ is the Euclidean projector on I, then

(I −Π∗)Uc = 0.

Suppose now that the set {h`} of test functions is rich enough in the sense that vectors Uc span I when

c spans the subspace Gc = 0. Recall that we assume the dimension m of the target space to be known.

Then projector Π∗ on I is fully identified as the optimal solution to the problem

Π∗ = arg min
Π

max
c

|(I −Π)Uc|22

∣∣∣∣∣∣∣∣
Π is a projector on an

m-dimensional subspace of Rd

c ∈ RL, Gc = 0

 . (7)

In practice vectors γ` and η` are not available, but we can suppose that their “empirical counterparts” –

vectors γ̂`, η̂`, ` = 1, ..., L can be computed, such that for a set A of probability at least 1− ε,

|η̂` − η`|2 ≤ δN , |γ̂` − γ`|2 ≤ νN , ` = 1, ..., L. (8)

Indeed, it is well known (cf., e.g., Lemma 1 in [10] or [30]) that if functions h`(x) = f(x, ω`), ` = 1, ..., L,

are used, where f is continuously differentiable, ω` ∈ Rd are vectors on the unit sphere and f and ∇xf
are bounded, then (8) holds with

δN = C1 maxx∈Rd, |ω|2=1 |∇xf(x, ω)|2N−1/2
√

min{d, lnL}+ ln ε−1,

νN = C2 maxx∈Rd, |ω|2=1 |xf(x, ω)|2N−1/2
√

min{d, lnL}+ ln ε−1,
(9)

where C1, C2 are some absolute constants depending on the smoothness properties and the second mo-

ments of the underlying density.

Then for any c ∈ RL such that |c|1 ≤ 1 we can control the error of approximation of
∑
` c`γ` and

∑
` c`η`

with their empirical versions. Namely, we have on A:

max
|c|1≤1

∣∣∣∣∣∑
`

c`(η̂` − η`)

∣∣∣∣∣
2

≤ δN and max
|c|1≤1

∣∣∣∣∣∑
`

c`(η̂` − η`)

∣∣∣∣∣
2

≤ νN .
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Let now Û = [η̂1, ..., ηL], Ĝ = [γ̂1, ..., γ̂L]. When substituting Û and Ĝ for U and G into (7) we come to

the following minmax problem:

min
Π

max
c

|(I −Π)Ûc|22

∣∣∣∣∣∣∣∣
Π is a projectoron an m-dimensional

subspace of Rd

c ∈ RL, |c|1 ≤ 1, |Ĝc|2 ≤ %

 . (10)

Here we have substituted the constraint Gc = 0 with the inequality constraint |Ĝc|2 ≤ % for some % > 0

in order to keep the optimal solution c∗ to (7) feasible for the modified problem (10) (this will be the

case with probability at least 1− ε if % ≥ νN ).

As we will see in a moment, when c runs the νN -neighborhood of intersection CN of the standard

hyperoctahedron {c ∈ RL, |c|1 ≤ 1} with the subspace Ĝc = 0, vectors Ûc span a close vicinity of the

target space I.

3.2 Solution by Semidefinite Relaxation

Note that (10) is a hard optimization problem. Namely, the candidate maximizers ci of (10) are the

extreme points of the set CN = {c ∈ RL, |c|1 ≤ 1, |Ĝc|2 ≤ νN}, and there are O(Ld) of such points. In

order to be efficiently solvable, the problem (10) is to be ”reduced” to a convex-concave saddle-point

problem, which is, to the best of our knowledge, the only class of minmax problems which can be solved

efficiently (cf. [18]).

Thus the next step is to transform the problem in (10) into a convex-concave minmax problem using the

Semidefinite Relaxation (or SDP-relaxation) technique (see e.g., [5, Chapter 4]). We obtain the relaxed

version of (10) in two steps. First, let us rewrite the objective function (recall that I − Π is also a

projector, and thus an idempotent matrix):

|(I −Π)Ûc|22 = cT ÛT (I −Π)2Ûc = cT ÛT (I −Π)Ûc = trace
[
ÛT (I −Π)ÛX

]
,

where the positive semidefinite matrix X = ccT is the ”new variable”. The constraints on c can be easily

rewritten for X:

1. the constraint |c|1 ≤ 1 is equivalent to |X|1 ≤ 1 (we use the notation |X|1 =
∑L
i,j=1 |Xij |);

2. because X is positive semidefinite, the constraint |Ĝc|2 ≤ % is equivalent to into trace [ĜXĜT ] ≤ %2.

The only ”bad” constraint on X is the rank constraint: rankX = 1, and we simply remove it. Now we

are done with the variable c and we arrive at

min
Π

max
X

trace
[
ÛT (I −Π)ÛX

] ∣∣∣∣∣∣∣∣
Π is a projector on an m-dimensional

subspace of Rd

X � 0, |X|1 ≤ 1, trace [ĜXĜT ] ≤ %2

 .

Let us recall that an m-dimensional projector Π is exactly a symmetric d× d matrix of rankΠ = m and

traceΠ = m, with the eigenvalues 0 ≤ λi(Π) ≤ 1, i = 1, ..., d. Once again we remove the ”difficult” rank

constraint rankΠ = m and finish with

min
P

max
X

{
trace

[
ÛT (I − P )ÛX

] ∣∣∣∣∣ 0 � P � I, traceP = m,

X � 0, |X|1 ≤ 1, trace [ĜXĜT ] ≤ %2

}
(11)



7

(we write P � Q if the matrix Q−P is positive semidefinite). There is no reason for an optimal solution

P̂ of (11) to be a projector matrix. If an estimation of Π∗ which is itself a projector is needed, one can

use instead the projector Π̂ onto the subspace spanned by m principal eigenvectors of P̂ .

Note that (11) is a linear matrix game with bounded convex domains of its arguments - positive semidef-

inite matrices P ∈ Rd×d and X ∈ RL×L.

We are about to describe the accuracy of the estimation Π̂ of Π∗. To this end we need an identifiability

assumption on the system {h`} of test functions as follows:

Assumption 1 Suppose that there are vectors c1, ..., cm, m ≤ m ≤ L such that |ck|1 ≤ 1 and Gck = 0,

k = 1, ...,m, and non-negative constants µ1, . . . , µm such that

Π∗ �
m∑
k=1

µkUckc
T
k U

T . (12)

We denote µ∗ = µ1 + . . .+ µm.

In other words, if Assumption 1 holds, then the true projector Π∗ on I is µ∗× convex combination of

rank-one matrices UccTUT where c satisfies the constraint Gc = 0 and |c|1 = 1.

Theorem 1 Suppose that the true dimension m of the subspace I is known and that % ≥ νN as in (8).

Let P̂ be an optimal solution to (11) and let Π̂ be the projector onto the subspace spanned by m principal

eigenvectors of P̂ . Then with probability ≥ 1− ε:
(i) for any c such that |c|1 ≤ 1 and Gc = 0,

|(I − Π̂)Uc|2 ≤
√
m+ 1((%+ νN )λ−1min(Σ) + 2δN );

(ii) further, if Assumption 1 holds then

trace
[

(I − P̂ )Π∗
]
≤ µ∗((%+ νN )λ−1min(Σ) + 2δN )2, (13)

and

‖Π̂ −Π∗‖22 ≤ 2µ∗(λ−1min(Σ)(%+ νN ) + 2δN )2 τ,

τ = (m+ 1) ∧ (1− µ∗(λ−1min(Σ)(%+ νN ) + 2δN )2)−1
(14)

(here ‖A‖2 =
(∑

i,j A
2
ij

)1/2
=
(

trace [ATA]
)1/2

is the Frobenius norm of A).

Note that if we were able to solve the minimax problem in (10), we could expect its solution, let us call

it Π̃, to satisfy with high probability

|(I − Π̃)Uc|2 ≤ (%+ νN )λ−1min(Σ) + 2δN

(cf. the proof of Lemma 1 in the appendix). If we compare this bound to that of the statement (i) of The-

orem 1, we conclude that the loss of the accuracy resulting from the substitution of (10) by its treatable

approximation (11) is bounded with
√
m+ 1. In other words, the “price” of the SDP-relaxation in our

case is
√
m+ 1 and does not depend on problem dimensions d and L. Furthermore, when Assumption

1 holds true, we are able to provide the bound on the accuracy of recovery of projector Π∗ which is

seemingly as good as if we were using instead of Π̂ the solution Π̃ of (10).
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Suppose now that the test functions h`(x) = f(x, ω`) are used, with ωl on the unit sphere of Rd, that

% = νN is chosen, and that Assumption 1 holds with “not too large” µ∗, e.g., µ∗ ≤ 1
2 (%+νN )λ−1min(Σ)+δN .

When substituting the bounds of (9) for δN and νN into (14) we obtain the bound for the accuracy of

the estimation Π̂ (with probability 1− ε):

‖Π̂ −Π∗‖22 ≤ C(f)µ∗N−1
(

min(d, lnL) + ln ε−1
)

where C(f) depends only on f . This bound claims the root-N consistency in estimation of the non-

Gaussian subspace with the log-price for relaxation and estimation error.

3.3 Case of unknown dimension m

The problem (11) may be modified to allow the treatment of the case when the dimension m of the

target space is unknown a priori. Namely, consider for ρ ≥ 0 the following problem

min
P,t

t
∣∣∣∣∣∣ traceP ≤ t, maxX trace

[
ÛT (I − P )ÛX

]
≤ ρ2, 0 � P � I,

X � 0, |X|1 ≤ 1, trace [ĜXĜT ] ≤ %2

 (15)

The problem (15) is closely related to the `1-recovery estimator of sparse signals (see, e.g., the tutorial

[8] and the references therein) and the trace minimization heuristics widely used in the Sparse Principal

Component Analysis (SPCA) (cf. [2,3]). As we will see in an instant, when the parameter ρ of the problem

is ”properly chosen”, the optimal solution P̂ of (15) possesses essentially the same properties as that of

the problem (11).

A result analogous to that in Theorem 1 holds:

Theorem 2 Let P̂ , X̂ and t̂ = trace P̂ be an optimal solution to (15) (note that (15) is clearly solvable),

m̂ =ct̂b,1 and let Π̂ be the projector onto the subspace spanned by m̂ principal eigenvectors of P̂ . Suppose

that % ≥ νN as in (8) and that

ρ ≥ λ−1min(Σ)(%+ νN ) + δN . (16)

Then with probability at least 1− ε:
(i)

t̂ ≤ m and |(I − Π̂)Uc|2 ≤
√
m+ 1(ρ+ 2δN );

(ii) furthermore, if Assumption 1 hold then

trace
[

(I − P̂ )Π∗
]
≤ µ∗(ρ+ δN )2,

and

‖Π̂ −Π∗‖22 ≤ 2µ∗(ρ+ δN )2
[
(m+ 1) ∧ (1− µ∗(ρ+ δN )2)−1

]
(17)

(here ‖A‖2 =
(∑

i,j A
2
ij

)1/2
is the Frobenius norm of A).

1 Here cab is the smallest integer ≥ a.
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The proof of the theorems is postponed until the appendix.

The estimation procedure based on solving (15) allows to infer the target subspace I without a priori

knowledge of its dimension m. When the constraint parameter ρ is close to the right-hand side of (16),

the accuracy of the estimation will be close to that, obtained in the situation when dimension m is known.

However, the accuracy of the estimation heavily depends on the precision of the available (lower) bound

for λmin(Σ). In the high-dimensional situation this information is hard to acquire, and the necessity to

compute this quantity may be considered as a serious drawback of the proposed procedure.

4 Solving the saddle-point problem (11)

We start with the following simple observation: by using bisection or Newton search in ρ (note that

the objective of (15) is obviously convex in ρ2) we can reduce (15) to a small sequence to feasibility

problems, closely related to (11): given t0 report, if exists, P such that

max
X

 trace
[
ÛT (I − P )ÛX

]
≤ ρ2, 0 � P � I, traceP ≤ t0,

X � 0, |X|1 ≤ 1, trace [ĜXĜT ] ≤ %2

 .

In other words, we can easily solve (15) if for a given m we are able to find an optimal solution to (11).

Therefore, in the sequel we concentrate on the optimization technique for solving (11).

4.1 Dual extrapolation algorithm

In what follows we discuss the dual extrapolation algorithm of [22] for solving a version of (11) in

which, with a certain abuse, we substitute the inequality constraint trace ĜXĜT ≤ %2 with the equality

constraint trace [ĜXĜT ] = 0. This way we come to the problem:

min
P∈P

max
X∈X

trace
[
ÛT (I − P )ÛX

]
(18)

where

X = {X ∈ SL, X � 0, |X|1 ≤ 1, trace [ĜT ĜX] = 0}

(here SL stands for the space of L× L symmetric matrices) and

P = {P ∈ Sd, 0 � P � I, trace [P ] ≤ m}.

Observe first that (18) is a matrix game over two convex subsets (of the cone) of positive semidefinite

matrices. If we use a large number of test functions, say L2 ∼ 106, the size of the variable X rules out

the possibility of using the interior-point methods. The methodology which appears to be adequate in

this case is that behind dual extrapolation methods, recently introduced in [19–22]. The algorithm we use

belongs to the family of subgradient descent-ascent methods for solving convex-concave games. Though

the rate of convergence of such methods is slow — their precision is only O(1/k) , where k is the iteration

count, their iteration is relatively cheap, what makes the methods of this type appropriate in the case of

high-dimensional problems when the high accuracy is not required.
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We start with the general dual extrapolation scheme of [22] for linear matrix games. Let En and Em be

two Euclidean spaces of dimension n and m respectively, and let A ⊂ En and B ⊂ Em be closed and

convex sets. We consider the problem

min
x∈A

max
y∈B
〈x,Ay〉+ 〈a, x〉+ 〈b, y〉. (19)

Let ‖ · ‖x and ‖ · ‖y be some norms on En and Em respectively. We say that dx (resp., dy) is a distance-

generating function of A (resp., of B) if dx (resp., dy) is strongly convex modulus αx (resp., αy) and

differentiable on A (resp., on B).2 Let for z = (x, y) d(z) = dx(x)+dy(y) (note that d is differentiable and

strongly convex on A×B with respect to the norm, defined on A×B according to, e.g. ‖z‖ = ‖x‖x+‖y‖y).

We define the prox-function V of A× B as follows: for z0 = (x0, y0) and z = (x, y) in A× B we set

V (z0, z)
def
= d(z)− d(z0)− 〈∇d(z0), z − z0〉. (20)

Next, for s = (sx, sy) we define the prox-tranform T (z0, s) of s:

T (z0, s)
def
= arg min

z∈A×B
[〈s, z − z0〉 − V (z0, z)]. (21)

Let us denote F (z) = (−AT y−a,Ax+b) the vector field of descend-ascend directions of (19) at z = (x, y)

and let z be the minimizer of d over A×B. Given vectors zk, z
+
k ∈ A×B and sk ∈ E∗ at the k-th iteration,

we define the update zk+1, z
+
k+1 and sk+1 according to

zk+1 = T (z, sk),

z+k+1 = T (zk+1, λkF (zk+1)),

sk+1 = sk + λkF (z+k+1),

where λk > 0 is the current stepsize. Finally, the current approximate solution ẑk+1 is defined with

ẑk+1 =
1

k + 1

k+1∑
i=1

z+i .

The key element of the above construction is the choice of the distance-generaing function d in the

definition of the prox-function. It should satisfy two requirements:

– let D be the variation of V over A × B and let α be the parameter of strong convexity of V with

respect to ‖ · ‖. The complexity of the algorithm is proportional to D/α, so this ratio should be as

small as possible;

– one should be able to compute efficiently the solution to the auxiliary problem (21) which is to be

solved twice at each iteration of the algorithm.

Note that the prox-transform preserve the additive structure of the distance-generating function. Thus,

in order to compute the prox-transform on the feasible domain P ×X of (18) we need to compute its “P

and X components” – the corresponding prox-transforms on P and cX. There are several evident choices

of the prox-functions dP and dX of the domains P and X of (18) which satisfy the first requirement

above and allow to attain the optimal value O(
√
m ln d lnL) of the ratio D/α for the prox-function V of

(18). However, for such distance-generating functions there is no known way to compute efficiently the

X-component of the prox-transform T in (21) for the set X . This is why in order to admit an efficient

solution the problem (18) is to be modified one more time.

2 Recall that a (sub-)differentiable on F function f is called strongly convex on F with respect to the norm ‖ · ‖
of modulus α if 〈f ′(x)− f ′(y), x− y〉 ≥ α‖x− y‖2 for all x, y ∈ F .
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4.2 Modified problem

We act as follows: first we eliminate the linear equality constraint which, taken along with X � 0, says

that X = QTZQ with Z � 0 and certain Q; assuming that the d rows of Ĝ are linearly independent,

we can choose Q as an appropriate (L− d)× L matrix satisfying QQT = I (the orthogonal basis of the

kernel of Ĝ). Note that from the constraints on X it follows that trace [X] ≤ 1, whence

trace [QTZQ] = trace [ZQQT ] = trace [Z] ≤ 1.

Thus, although there are additional constraints on Z as well, Z belongs to the standard spectahedron

Z = {Z ∈ SL−d, Z � 0, trace [Z] ≤ 1}.

Now can rewrite our problem equivalently as follows:

min
P∈P

max
Z∈Z, |QTZQ|1≤1

trace [ÛT (I − P )Û(QTZQ)]. (22)

Let, further,

W = {W ∈ SL, ‖W‖2 ≤ 1}, and Y = {Y ∈ SL, |Y |1 ≤ 1}.

We claim that the problem (22) can be reduced to the saddle point problem

min
(P,W )∈P×W

max
(Z,Y )∈Z×Y

{
trace [ÛT (I − P )ÛY ] + λ trace [W (QTZQ− Y )]

}
︸ ︷︷ ︸

F (P,W ;Z,Y )

. (23)

provided that λ is not too small.

Now, ”can be reduced to” means exactly the following:

Proposition 1 Suppose that λ > L|Û |22, where |U |2 is the maximal Euclidean norm of columns of U .

Let (P̂ , Ŵ ; Ẑ, Ŷ ) be a feasible solution ε-solution to (23), that is

(P̂ , Ŵ ; Ẑ, Ŷ ) ∈ (P,W;Z,Y), and F (P̂ , Ŵ )− F (Ẑ, Ŷ ) ≤ ε

where

F (P,W ) = max
(Z,Y )∈Z×Y

F (P,W ; Z, Y ), F (Z, Y ) = min
(P,W )∈P×W

F (P,W ; Z, Y ).

Then setting

Z̃ =

{
Ẑ, if |QTZQ|1 ≤ 1,

|QTZQ|−11 Ẑ otherwise,

the pair (P̂ , Z̃) is a feasible ε-solution to (22). Specifically, we have (P̂ , Z̃) ∈ P × Z with |QT Z̃Q|1 ≤ 1,

and

G(P̂ )−G(Z̃) ≤ ε,

where

G(P ) = max
Z∈Z, |QTZQ|1≤1

trace [ÛT (I − P )ÛQTZQ]; G(Z)

= min
P∈P

trace [ÛT (I − P )ÛQTZQ].

The proof of the proposition is given in the appendix A.3.

Note that feasible domains of (23) admit evident distance-generating functions. We provide the detailed

computation of the corresponding prox-transforms in the appendix A.4.
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5 Numerical Experiments

In this section we compare the numerical performance of the presented approach, which we refer to as

SNGCA(SDP) with other statistical methods of dimension reduction on the simulated data.

5.1 Structural adaptation algorithm

We start with some implementation details of the estimation procedure. We use the choice of the test

functions h`(x) = f(x, ω`) for the SNGCA algorithm as follows:

f(x, ω) = tanh(ωT x)e−α‖x‖
2
2/2,

where ω`, l = 1, ..., L are unit vectors in Rd.

We implement here a multi-stage variant of the SNGCA (cf [10]). At the first stage of the SNGCA(SDP)

algorithm we assume that the directions ω` are drawn randomly from the unit sphere of Rd. At each

of the following stages we use the current estimation of the target subspace to “improve” the choice of

directions ω` as follows: we draw a fixed fraction of ω’s from the estimated subspace and draw randomly

over the unit square the remaining ω’s. The simulation results below are present for the estimation pro-

cedure with three stages. The size of the set of test function is set to L = 10 d, and the target accuracy

of solving the problem (11) is set to 1e− 4.

We can summarize the SNGCA(SDP) algorithm as follows:

Algorithm 1: SNGCA (SDP)

% Initialization:

The data (Xi)
N
i=1 are re-centered. Let σ = (σ1, . . . σd) be the standard deviations of the

components of Xi . We denote Yi = diag(σ−1)Xi the standardized data.

Set the current estimator Π̂0 = Id.

% Main iteration loop:

for i=1 to I do

Sample a fraction of ω(i) ’s from the normal distribution N(0, Π̂i−1) (zero mean, with

covariance matrix Π̂i−1), sample the remaining ω(i) ’s from N(0, Id), then normalize to the

unit length;

% Compute estimations of η` and γ`

for `=1 to L do

η̂
(i)
` = 1

N

∑N
j=1∇hω(i)

`

(Yj);

γ̂
(i)
` = 1

N

∑N
j=1 Yjhω(i)

l

(Yj);

end

Solve the corresponding problem (11) and update the estimation Π̂i;

end
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5.2 Experiment description

Each simulated data set XN = [X1, ..., XN ] of size N = 1000 represents N i.i.d. realizations of a random

vectors X of dimension d. Each simulation is repeated 100 times and we report the average over 100

simulations Frobenius norm of the error of estimation of the projection on the target space. In the

examples below only m = 2 components of X are non-Gaussian with unit variance, other d−2 components

of X are independent standard normal r.v.. The densities of the non-Gaussian components are chosen as

follows:

(A) Gaussian mixture: 2-dimensional independent Gaussian mixtures with density of each component

given by 0.5 φ−3,1(x) + 0.5 φ3,1(x).

(B) Dependent super-Gaussian: 2-dimensional isotropic distribution with density proportional to exp(−‖x‖).
(C) Dependent sub-Gaussian: 2-dimensional isotropic uniform with constant positive density for ‖x‖2 ≤

1 and 0 otherwise.

(D) Dependent super- and sub-Gaussian: a component of X, say X1, follows the Laplace distribution

L(1) and the other is a dependent uniform U(c, c + 1), where c = 0 for |X1| ≤ ln 2 and c = −1

otherwise.

(E) Dependent sub-Gaussian: 2-dimensional isotropic Cauchy distribution with density proportional to

λ(λ2 − x2)−1 where λ = 1.

We provide the 2-d plots of the densities of the non-Gaussian components on Figure 1.

(A) (B) (C)

(D) (E)

Fig. 1 (A) independent Gaussian mixtures, (B) isotropic super-Gaussian, (C) isotropic uniform and (D) dependent

1d Laplacian with additive 1d uniform, (E) isotropic sub-Gaussian

We start with comparing the presented algorithm with Projection Pursuit (PP) method [16] and the

NGCA for d = 10. The results are presented on Figure 2 (the corresponding results for PP and NGCA

has been already reported in [10] and [6]).
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Fig. 2 Comparison of PP, NGCA and SNGCA(SDP)

Since the minimization procedure of PP tends to be trapped in a local minimum, in each of the 100 sim-

ulations, the PP algorithm is restarted 10 times with random starting points. The best result is reported

for each PP-simulation. We observe that SNGCA(SDP) outperforms NGCA and PP in all tests.

In the next simulation we study the dependence of the accuracy of the SNGCA(SDP) on the noise level and

compare it to the corresponding data for PP and NGCA. We present on Figure 3 the results of experiments

when the non-Gaussian coordinates have unit variance, but the standard deviation of the components

of the 8-dimensional Gaussian distribution follows the geometrical progression 10−r, 10−r+2r/7, . . . , 10r

where r = 1, . . . , 8.



15

Fig. 3 estimation error with respect to the standard deviation of Gaussian components following a geometrical

progression on [10−r, 10r] where r is the parameter on the abscissa

The conditioning of the covariance matrix heavily influences the estimation error of PP(tanh) and NGCA,

but not that of SNGCA(SDP). The latter method appears to be insensitive to the differences in the noise

variance along different direction in all test cases.

Next we compare the behavior of SNGCA(SDP), PP and NGCA as the dimension of the Gaussian

component increases. On Figure 4 we plot the mean error of estimation against the problem dimension

d.
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Fig. 4 mean-square estimation error vs problem dimension d

For PP and NGCA methods we observe that the estimation becomes meaningless (the estimation error

explodes) already for d = 30 − 40 for the models (A), (C) and for d = 20 − 30 of the model (D). In

the case of the models (B) and (E) we observe the progressive increase of the error for methods PP and

NGCA. The proposed method SNGCA(SDP) behaves robustly with respect to the increasing dimension

of the Gaussian component for all test models.

5.3 Application to Geometric Analysis of Metastability

Some biologically active molecules exhibit different large geometric structures at the scale much larger

than the diameter of the atoms. If there are more than one such structures with the life span much larger

that the time scale of the local atomic vibrations, the structure is called metastable conformation [27]. In

other words, metastable conformations of biomolecules can be seen as connected subsets of state-space.

When compared to the fluctuations within each conformation, the transitions between different confor-

mations of a molecule are rare statistical events. Such multi-scale dynamic behavior of biomolecules stem

from a decomposition of the free energy landscape into particulary deep wells each containing many local

minima [23,12]. Such wells represent different almost invariant geometrical large scale structures [1]. The

macroscopic dynamics is assumed to be a Markov jump process, hopping between the metastable sets of

the state space while the microscopic dynamics within these sets mixes on much shorter time scales [14].

Since the shape of the energy landscape and the invariant density of the Markov process are unknown,

the “essential degrees of freedom”, in which the rare conformational changes occur, are of importance.

We will now illustrate that SNGCA(SDP) is able to detect a multimodal component of the data density

as a special case of non-Gaussian subspace in high-dimensional data obtained from molecular dynamics

simulation of oligopeptides.
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Clustering of 8-alanine The first example is a times series, generated by an equilibrium molecular dy-

namics simulation of 8-alanine. We only consider the backbone dihedral angles in order to determine

different conformations.

The 14-dimensional time series consists of the cyclic data set of all backbone torsion angles. The simula-

tion using CHARMM was done at T = 300K with implicit water by means of the solvent model ACE2 [26].

A symplectic Verlet integrator with integration step of 1fs was used; the total trajectory length was 4µs

and every τ = 50fs a set of coordinates was recorded.

The dimension reduction reported in the next figure was obtained using SNGCA(SDP) with for a given

dimension m = 5 of the target space containing the multimodal component.

Fig. 5 low dimensional multimodal component of 8-alanine

A concentration of the clustered data in the target space of SNGCA may be clearly observed. In com-

parison, the complement of the target space is almost completely filled with Gaussian noise.
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Fig. 6 Gaussian noise in the complement of the SNGCA target space.

Clustering of a 3-peptide molecule In the next example we investigate Phenylalanyl-Glycyl-Glycine Tripep-

tide, which is assumed to realize all of the most important folding mechanisms of polypeptides [24]. The

simulation is done using GROMACS at T = 300K with implicit water. An integration step of a symplectic

Verlet integrator is set to 2fs, and every τ = 50fs a set of 31 diedre angles was recorded. As in the

previous experience, the dimension of the target space is set to m = 5.

Figure 7 shows that the clustered data can be primarily found in the target space of SNGCA(SDP).
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Fig. 7 low dimensional multimodal component of 3-peptide

6 Conclusions

We have studied a new procedure of non-Gaussian component analysis. The suggested method, same

as the techniques proposed in [6,10], has two stages: on the first stage certain linear functionals of un-

known distribution are computed, then this information is used to recover the non-Gaussian subspace.

The novelty of the proposed approach resides in the new method of non-Gaussian subspace identifica-

tion, based upon semidefinite relaxation. The new procedure allows to overcome the main drawbacks of

the previous implementations of the NGCA and seems to improve significantly the accuracy of estimation.

On the other hand, the proposed algorithm is computationally demanding. While the first-order opti-

mization algorithm we propose allows to treat efficiently the problems which are far beyond the reach of

classical SDP-optimization techniques, the numerical difficulty seems to be the main practical limitation

of the proposed approach.
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A Appendix

Let X = XT ∈ RL×L be positive semidefinite with |X|1 ≤ 1, and let Y = X1/2 be the symmetric positive

semidefinite square root of X. If we denote yi, i = 1, .., L the columns of Y , then |X|1 ≤ 1 implies that∑
1≤i,j≤L

|yTi yj | ≤ 1.

We make here one trivial though useful observation: for any matrix A ∈ Rd×L, when denoting B = ATA, we have

‖AY ‖22 = trace (ATAX) = trace [BX] =

L∑
j=1

L∑
i=1

BjiXij ≤ max
ij
|Bij | = |A|22. (24)

(Recall that for a matrix A ∈ Rd×L with columns ai, i = 1, ..., L, |A|2 stands for the maximal column norm:

|A|2 = max1≤i≤L |ai|2).

We can rewrite the problem (11) using Y = X1/2, so that the objective

f̂(X,P ) = trace [ÛT (I − P )ÛX]

of (11) becomes

ĝ(Y, P ) = ‖(I − P )1/2ÛY ‖22.

Let now (X̂, P̂ ) be a saddle point of (11). Namely, we have for any feasible P and X:

f̂(X, P̂ ) ≤ [f̂∗ ≡ f̂(X̂, P̂ )] ≤ f̂(X̂, P ),

We denote Ŷ = X̂1/2.

In what follows we suppose that vectors γ` and η`, ` = 1, ..., L satisfy (8). In other words,it holds |Û−U |2 ≤ δN
and |Ĝ−G|2 ≤ γN .

A.1 Proof of Theorem 1.

Lemma 1 Let P̂ be an optimal solution to (11). Then

max
c

{
|(I − P̂ )1/2Uc|2 | |c|1 ≤ 1, Gc = 0

}
≤ λ−1

min(Σ)(%+ νN ) + 2δN . (25)

Proof. We write:

max
c

{
|(I − P̂ )1/2Uc|2 | |c|1 ≤ 1, Gc = 0

}
≤ max

Y

{
‖(I − P̂ )1/2UY ‖2

∣∣ |Y 2|1 ≤ 1, GY = 0
}

≤ max
Y

{
‖(I − P̂ )1/2ÛY ‖2

∣∣ |Y 2|1 ≤ 1, GY = 0
}

+ max
Y

{
‖(I − P̂ )1/2(Û − U)Y ‖2

∣∣ |Y 2|1 ≤ 1, GY = 0
}

≤ max
Y

{
‖(I − P̂ )1/2ÛY ‖2

∣∣∣ |Y 2|1 ≤ 1, ‖ĜY ‖2 ≤ %
}

(by (24)) +|(I − P̂ )1/2(Û − U)|2

(due to 0 � I − P̂ � I) = ‖(I − P̂ )1/2Û Ŷ ‖2 + δN ≤ ‖(I −Π∗)1/2Û Ŷ ‖2 + δN

(again by (24)) ≤ ‖(I −Π∗)1/2UŶ ‖2 + 2δN .

On the other hand, as ‖ĜŶ ‖2 ≤ νN , we get

‖GŶ ‖2 ≤ ‖ĜŶ ‖2 + ‖(Ĝ−G)Ŷ ‖2 ≤ %+ |Ĝ−G|2 ≤ %+ νN ,

and by (3),

‖(I −Π∗)UŶ ‖2 ≤ λ−1
min(Σ)(%+ νN ).

This implies (25). �

We now come back to the proof of the theorem. Let λ̂j and θ̂j , j = 1, . . . , d be respectively the eigenvalues and the
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eigenvectors of P̂ . Assume that λ̂1 ≥ λ̂2 ≥ . . . ≥ λ̂d. Then P̂ =
∑d
j=1 λ̂j θ̂j θ̂

T
j and Π̂ =

∑m
j=1 θ̂j θ̂

T
j . Let β = Uc

for c such that |c|1 ≤ 1 and Gc = 0. We have

βT (I − P̂ )β =

m∑
j=1

(1− λ̂j)(θ̂Tj β)2 +
∑
j>m

(1− λ̂j)(θ̂Tj β)2

≥
∑
j>m

(1− λ̂j)(θ̂Tj β)2 ≥ (1− λ̂m+1)(θ̂Tj β)2

= (1− λ̂m+1)βT (I − Π̂)β = (1− λ̂m+1)|(I − Π̂)β|22.

Since, for obvious reasons, λ̂m+1 ≤ m
m+1

, it applies (i) due to (25).

Let us show (ii). We have due to (12) and (25):

trace
[
(I − P̂ )Π∗

]
= trace

[
(I − P̂ )1/2Π∗(I − P̂ )1/2

]
≤

m∑
k=1

µktrace
[
(I − P̂ )1/2Uckc

T
k U

T (I − P̂ )1/2
]

=
m∑
k=1

µk|(I − P̂ )1/2Uck|22

≤
m∑
k=1

µk max
c

{
|(I − P̂ )1/2Uc|22 | |c|1 ≤ 1, Gc = 0

}
= µ∗(λ−1

min(Σ)(%+ νN ) + 2δN )2, (26)

which is (13).

Note that trace [P̂Π∗] ≤
∑
j≤m λ̂j (cf, e.g., Corollary 4.3.18 of [15]), thus by (26),

λ̂m+1 ≤ m−
∑
j≤m

λ̂j ≤ trace [(I − P̂ )Π∗] ≤ µ∗(λ−1
min(Σ)(%+ νN ) + 2δN )2.

On the other hand,

trace [(I − P̂ )Π∗] =

m∑
j=1

(1− λ̂j)θ̂Tj Π∗θ̂j +
∑
j>m

(1− λ̂j)θ̂Tj Π∗θ̂j

≥
∑
j>m

(1− λ̂j)θ̂Tj Π∗θ̂j ≥ (1− λ̂m+1)θ̂Tj Π
∗θ̂j

= (1− λ̂m+1)trace [(I − Π̂)Π∗],

and we conclude that

trace [(I − Π̂)Π∗] ≤
trace [(1− P̂ )Π∗]

1− λ̂m+1

≤
µ∗(λ−1

min(Σ)(%+ νN ) + 2δN )2

1− µ∗(λ−1
min(Σ)(%+ νN ) + 2δN )2

.

Now, using the relation trace Π̂ = traceΠ∗ = m, we come to

‖Π̂ −Π∗‖22 = trace [Π̂2 − 2Π̂Π∗ + (Π∗)2] = 2m− 2trace [Π̂Π∗] = 2trace [(I − Π̂)Π∗],

and we arrive at (14).

A.2 Proof of Theorem 2.

Let now P̂ , X̂ and t̂ = trace P̂ be a triplet of optimal solution to (15).

Lemma 2 Let P̂ be an optimal solution to (15).

(i) In the premises of the theorem Π∗ is a feasible solution of (15) and trace P̂ ≤ traceΠ∗ = m.

(ii) We have

max
c

{
|(I − P̂ )1/2Uc|2 | |c|1 ≤ 1, Gc = 0

}
≤ ρ+ δN . (27)
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Proof. We act as in the proof of Lemma 1: to verify (i) we observe that

max
X

{
trace [ÛT (I −Π∗)ÛX]

∣∣∣ X � 0, |X|1 ≤ 1, trace [ĜXĜT ] ≤ %2
}

= max
Y

{
‖(I −Π∗)ÛY ‖22

∣∣∣ |Y 2|1 ≤ 1, ‖ĜY ‖2 ≤ %
}

≤ max
Y

{
(‖(I −Π∗)UY ‖2 + δN )2

∣∣∣ |Y 2|1 ≤ 1, ‖ĜY ‖2 ≤ %
}

≤
(
λ−1
min(Σ)(%+ νN ) + δN

)2
.

Thus, if ρ ≥ λ−1
min(Σ)(% + νN ) + δN , Π∗ is a feasible solution of (15) and, as a result, trace P̂ ≤ traceΠ∗. To

show (ii) it suffices to note that

max
c

{
|(I − P̂ )1/2Uc|2 | |c|1 ≤ 1, Gc = 0

}
≤ max

Y

{
‖(I − P̂ )1/2UY ‖2

∣∣ |Y 2|1 ≤ 1, GY = 0
}

≤ max
Y

{
‖(I − P̂ )1/2ÛY ‖2

∣∣ |Y 2|1 ≤ 1, GY = 0
}

+ |(I − P̂ )1/2(Û − U)|2

≤ max
Y

{
‖(I − P̂ )1/2ÛY ‖2

∣∣∣ |Y 2|1 ≤ 1, ‖ĜY ‖2 ≤ %
}

+ δN ≤ ρ+ δN

because of the feasibility of P̂ . �

Now using the bound m̂ ≤ m we complete the proof following exactly the lines of the proof of Theorem 1.

A.3 Proof of Proposition 1

Observe that

F (Ẑ, Ŷ ) = min
(P,W )∈P×W

{
trace [BT (I − P )BQT ẐQ] + λ trace [W (QT ẐQ− Ŷ )]

}
= min
P∈P

{
trace [BT (I − P )BQT ẐQ]− λ ‖QT ẐQ− Ŷ ‖2

}
≤ min
P∈P

{
trace [BT (I − P )BQT ẐQ]

}
= G(Ẑ); (28)

and

F (P̂ , Ŵ ) = max
(Z,Y )∈Z×Y

{
trace [BT (I − P̂ )BQTZQ] + λ trace [Ŵ (QTZQ− Y )]

}
≥ max
Z∈Z, |QTZQ|1≤1, Y=QTZQ

{
trace [BT (I − P̂ )BQTZQ] + λ trace [Ŵ (QTZQ− Y )]

}
= G(P̂ ) :

Assume first that |QT ẐQ|1 ≤ 1. In this case Z̃ = Ẑ and

ε ≥ F (P̂ , Ŵ )− F (Ẑ, Ŷ ) = G(P̂ )−G(Ẑ) = G(P̂ )−G(Z̃)

(the second Â¸ is given by (28)), as claimed. Now assume that s = QT ẐQ|1 > 1. We have already established the

first equality of the following chain:

F (Ẑ, Ŷ ) = min
P∈P

{
trace (BT (I − P )BQT ẐQ)− λ ‖QT ẐQ− Ŷ ‖2

}
≤ min
P∈P

{
trace [BT (I − P )BQT ẐQ]−

λ

L
|QT ẐQ− Ŷ |1

}
≤ min
P∈P

{
trace [BT (I − P )BQT ẐQ]−

λ

L
(s− 1)

}
= min
P∈P

{
strace [BT (I − P )BQT Z̃Q]−

λ

L
(s− 1)

}

≤ min
P∈P

trace [BT (I − P )BQT Z̃Q] + (s− 1)|BT (I − P )B|∞|QT Z̃Q|1︸ ︷︷ ︸
≤(s−1)|BTB|∞=(s−1)|B|22

−
λ

L
(s− 1)


≤ min
P∈P

{
trace [BT (I − P )BQT Z̃Q]

}
= G(Z̃),
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where the concluding ≤ is readily given by the definition of λ.3 Further, we have already seen that

F (P̂ , Ŵ ) ≥ G(P̂ ).

Consequently,

ε ≥ F (P̂ , Ŵ )− F (Ẑ, Ŷ ) ≥ G(P̂ )−G(Z̃),

as claimed. �

A.4 Computing the prox-transform

Recall that because of the additivity of the distance-generating function d the computation of the prox-transform

on the set P ×W ×Z × Y can be decomposed into independent computations on the four domains of (23).

Prox-transform on P. The proxy-function of P is the matrix entropy:

d(P0, P ) = βP trace

[
P

m

(
ln

(
P

m

)
− ln

(
P0

m

))]
for P, P0 ∈ P, βP > 0.

To compute the corresponding component of T we need to find, given S ∈ Sd,

Tβ(P0, S) = arg max
P∈P

{
trace [S(P − P0)]− βP trace

[
P

m

(
ln

(
P

m

)
− ln

(
P0

m

))]}
(29)

= arg max
P∈P

{
trace

[(
S +

βP

m
ln

(
P0

m

))
P

]
− βP trace

[
P

m
ln

(
P

m

)]}
.

By the symmetry considerations we conclude that the optimal solution of this problem is diagonal in the basis

of eigenvectors of S + βP
m

ln(P0
m

). Thus the solution of (29) can be obtained as follows: compute the eigenvalue

decomposition

S +
βP

m
ln(

P0

m
) = ΓΛΓT

and let λ be the diagonal of Λ. Then solve the “vector” problem

p∗ = arg max
0≤p≤1,

∑
p≤m

λT p−
βP

m

d∑
i=1

pi ln(pi/m). (30)

and compose

Tβ(P, S) = Γdiag(y∗)ΓT .

Now, the solution of (30) can be obtained by simple bisection: indeed, using Lagrange duality we conclude

that the components of y∗ satisfies

p∗i = exp

(
λi

β
− ν
)
∧ 1, i = 1, ..., d,

and the Lagrange multiplier ν is to be set to obtain
∑
p∗i = m, what can be done by bisection in ν. When the

solution is obtained, the optimal value of (29) can be easily computed.

Prox-transform on W. The distance-generating function of W is βW trace [W 2]/2 = ‖W‖22/2 so that we have to

solve for S ∈ SL

Tβ(W0, S) = arg max
‖W‖2≤1

{
trace [S(W −W0)]−

βW

2

‖W −W0‖22
2

}
. (31)

The optimal solution to (31) can be easily computed

Tβ(W0, S) =

{
W0 + S/βW if ‖W0 + S/βW ‖2 ≤ 1,

(W0 + S/βW )/‖W0 + S/βW ‖2 if ‖W0 + S/βW ‖2 > 1.

3 We denote |A|∞ = maxij |Aij |.
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Prox-transform on Z. The prox-function of Z is the matrix entropy and we have to solve for S ∈ SL−d

Tβ(Z, S) = arg max
Z∈Z

trace [S(Z − Z0)]− βZtrace [Z(ln(Z)− ln(Z0))]

= arg max
Z∈Z

trace [(S + βZ ln(Z0))Z]− βZtrace [Z lnZ].

Once again, in the basis of eigenvectors of S + βZ ln(Z0) the problem reduces to

z∗ = arg max
z≥0,

∑
z≤1

λT z − βZ
d∑
i=1

zi ln(zi),

where λ is the diagonal of Λ with S + βZ lnZ0 = ΓΛΓT . In this case

z∗i =
exp(λi

β
)∑L

j=1 exp(
λj

β
)
, i = 1, ..., L− d.

Prox-transform on Y. The distance generating function for the domain Y is defined as follows:

d(Y ) = min


L∑

i,j=1

(uij ln[uij ] + vij ln[vij ] ) :

n∑
i=1

(uij + vij) = 1,

Yij = uij − vij , uij ≥ 0, vij ≥ 0, 1 ≤ i, j ≤ L } .

In other words, the element Y ∈ Y is decomposed according to Y = u − v, where (u, v) is an element of the

2L2-dimensional simplex ∆ =
{
x ∈ R2L2

, x ≥ 0,
∑
i xi = 1

}
. To find the Y -component of the prox-transform

amounts to find for S ∈ SL

TβY (Y0, S) = TβY (u0, v0, S)

= arg max
u,v∈∆

trace [S(u− v)]− βY
∑
ij

[
uij ln(

uij

u0ij
) + vij ln(

vij

v0ij
)

]
. (32)

One can easily obtain an explicit solution to (32): let

aij = u0ij exp

(
Sij

βY

)
, bij = v0ij exp

(
−
Sij

βY

)
.

Then TβY (Y0, S) = u∗ − v∗, where

u∗ij =
aij∑

ij(aij + bij)
, v∗ij =

bij∑
ij(aij + bij)

.
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