~ A Service of
’. b Leibniz-Informationszentrum

.j B I l I Wirtschaft
) o o o Leibniz Information Centre
Make YOUT PUbllCCltlonS VZSlble. h for Economics ' '

Belomestny, Denis; Kratschmer, Volker

Working Paper
Central limit theorems for law-invariant coherent risk
measures

SFB 649 Discussion Paper, No. 2010-052

Provided in Cooperation with:
Collaborative Research Center 649: Economic Risk, Humboldt University Berlin

Suggested Citation: Belomestny, Denis; Kratschmer, Volker (2010) : Central limit theorems for law-
invariant coherent risk measures, SFB 649 Discussion Paper, No. 2010-052, Humboldt University of
Berlin, Collaborative Research Center 649 - Economic Risk, Berlin

This Version is available at:
https://hdl.handle.net/10419/56647

Standard-Nutzungsbedingungen: Terms of use:

Die Dokumente auf EconStor durfen zu eigenen wissenschaftlichen Documents in EconStor may be saved and copied for your personal
Zwecken und zum Privatgebrauch gespeichert und kopiert werden. and scholarly purposes.

Sie durfen die Dokumente nicht fiir 6ffentliche oder kommerzielle You are not to copy documents for public or commercial purposes, to
Zwecke vervielféltigen, 6ffentlich ausstellen, 6ffentlich zugénglich exhibit the documents publicly, to make them publicly available on the
machen, vertreiben oder anderweitig nutzen. internet, or to distribute or otherwise use the documents in public.
Sofern die Verfasser die Dokumente unter Open-Content-Lizenzen If the documents have been made available under an Open Content
(insbesondere CC-Lizenzen) zur Verfiigung gestellt haben sollten, Licence (especially Creative Commons Licences), you may exercise
gelten abweichend von diesen Nutzungsbedingungen die in der dort further usage rights as specified in the indicated licence.

genannten Lizenz gewahrten Nutzungsrechte.

Mitglied der

WWW.ECONSTOR.EU é@“}


https://www.econstor.eu/
https://www.zbw.eu/
http://www.zbw.eu/
https://hdl.handle.net/10419/56647
https://www.econstor.eu/
https://www.leibniz-gemeinschaft.de/

SFB 649 Discussion Paper 2010-052

Central Iimit theorems
for law-invariant
coherent risk measures

Denis Belomestny*
Volker Kratschmer*

* Weierstrass Institute for Applied Analysis and Stochastics, Berlin

This research was supported by the Deutsche
Forschungsgemeinschaft through the SFB 649 "Economic Risk".

http://sfb649.wiwi.hu-berlin.de
ISSN 1860-5664

SFB 649, Humboldt-Universitat zu Berlin
Spandauer Stral3e 1, D-10178 Berlin

BERLIN

X
n
e
O
=
@)
Z
o)
O
LL

SFB 649




Central limit theorems for law-invariant coherent risk measures

Denis Belomestny! and Volker Kriitschmer®

Abstract

In this paper we study the asymptotic properties of the canonical plug-in estimates for
law-invariant coherent risk measures. Under rather mild conditions not relying on the ex-
plicit representation of the risk measure under consideration, we first prove a central limit
theorem for independent identically distributed data and then extend it to the case of weakly
dependent ones. Finally, a number of illustrating examples is presented.

Keywords: law-invariant coherent risk measures, canonical plug-in estimates, functional cen-
tral limit theorems, weak dependence

AMS 2000 Subject Classification: 60F05 60F12 62F17 62G30 91B30
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1 Introduction

In the seminal paper Artzner et al. (1999) the authors introduced the concept of coherent risk
measures as a mathematical tool to assess the risks of financial positions. Formally, these objects
are functionals on sets of random variables expressing risks of financial positions. The functionals
should fulfill some defining properties which are axiomatic in nature to give a foundation for a
normative risk assessment from the viewpoint of a regulator. An alternative axiomatic approach
from the perspective of financial investors has been provided by Foéllmer and Schied (2004)
leading to a more general notion of convex risk measures.

During the last decade coherent risk measures identifying risks of financial positions with iden-
tical distributions, the so called law-invariant coherent risk measures, have become popular in
some applied fields. They are building blocks in quantitative risk management (see McNeil et
al. (2005)), and they have been suggested as a systematic approach for calculations of insurance
premia (cf. Kaas et al. (2008)). Moreover, viewed as statistical functionals on sets of distribution
functions, they satisfy the property to be monotone w.r.t. second order stochastic dominance
(cf. Béuerle and Miiller (2006), for general information on stochastic orders see Miiller and
Stoyan (2002)). This illustrates the genuine intuition of risk measures as indices of distributions
emphasizing the downsize risk of underlying financial positions.

In practice, we are often facing the problem of estimating the values of law-invariant coherent
risk measures from a time series. A customary approach is to replace the unknown distribution
function with its empirical counterpart based on observed data and then to plug this estimate

!This research was supported by Deutsche Forschungsgemeinschaft through SFB 649 “Economic Risk”.
Weierstrass Institute for Applied Analysis and Stochastics, Mohrenstr. 39, 10117 Berlin, Germany.
{belomest,kraetsch}@wias-berlin.de



into the risk measure to obtain its estimate. In this paper we are going to study the asymptotic
properties of the resulting plug-in estimates. Such asymptotic analysis might be, for example,
helpful for constructing confidence sets or performing statistical tests. Asymptotic properties
of the plug in estimates for coherent risk measures have been investigated in two recent works,
namely in Pflug and Wozabal (2010) and Beutner and Zahle (2010). While Pflug and Wozabal
(2010) provided general results for a class of coherent risk measures in the case of independent
data, Beutner and Z#hle (2010) used a new functional delta method to obtain limit distributions
for the subclass of concave distortion risk measures in the case of strongly mixing data.

In both aforementioned articles the results are based on general methods which do not take into
account specific properties of the law-invariant coherent risk measures, leading to unnecessary
strong assumptions on the underlying distribution. The aim of this paper is to extend and
systemize the results on central limit theorems for plug-in estimates of law-invariant coherent
risk measures. The contribution of the paper is twofold. On the one side, we prove central limit
theorems for plug-in estimates for a rather general class of coherent risk measures under less
restrictive assumptions, taking into account the fact that the “loss” tails are more relevant than
the “gain tails” for coherent risk measures. On the other side, in contrast to the previous literature
our results do not rely on the knowledge of the specific representations for the risk measures,
expressing the assumptions just in terms of the functionals itself. The last but not the least, we
extend our CLT also to the case dependent observations and discontinuous distributions.

The paper is organized as follows. After introducing the main setup in section 2 we shall present
our main results in section 3 for independent data. These results will then be extended to the
case of dependent data in section 4. Section 5 gathers some auxiliary results to prove the main
results, whereas the section 6 gives their proofs. Then the following section 7 is devoted to the
proofs of the main results. Some useful technical results will be formulated and shown in the
appendix.

2 DMain setup

Let Fx be a set of distribution functions on R related to a vector space X of integrable random
variables on some atomless probability space (2, F,P) enclosing all P—essentially bounded ones.
A mapping p : Fy — R is called a law-invariant coherent risk measure if the following conditions
are fulfilled.

Monotonicity: For any X1, Xo € X with Fx, (z) < Fx,(z), z € R,
p(Fx,) < p(Fx,)-
Cash-invariance: For any X € X and ¢ € R,
p(Fx+c) = p(Fx) —c.
Sublinearity: For any X1, X3 € X and A, Ao > 0,
PFx x14200%:) < Ap(Fx,) + A2p(Fx,).

Here F; stands for the distribution function of the random variable Z. The definining prop-
erties of the coherent risk measures correspond to the well-known interpretations of them as



representing risk attitudes of financial investors (cf. Foéllmer and Schied (2004), Chapter 4). Let
(Xi)ien be an independent sequence of real random variables defined on (2, F,P) with common
distribution function F' and related left-continuous quantile function gr. Additionally, define,
qr(0) := qr(0+) as well as ¢gr(1) := gr(1—). Denote by F;, the empirical distribution function
based on the sample (Xi,...,X,) and set p,(F) := p(F,). The main goal of this paper is to
study the asymptotic properties of the process (v/n(pn(F) — p(F)))nen. As an important tool
let us consider the following mapping

wp : [07 1] - [07 1]7 l—= p(FfB(l,t)%

where B(1,t) stands for Bernoulli r.v. with expectation ¢. This mapping is a distortion function,

i.e. it is nondecreasing with ¢,(0) = 0 and 1,(1) = 1, suggesting the name associated distortion
function.

3 Main results

In order to prove CLT for the process (v/n(pn(F) — p(F)))nen, we need the following two as-
sumptions.

(AC) X is a Stonean vector lattice, i.e. here X ANY, X VY € X for X, Y € X, and p satisfies

lim p(F_(x_p)+) = 0 for nonnegative X € X,
k—o0

tg%l+ ¥olt) = 0.

(AI) The stationary distribution function F' of the sequence (X;);en fulfills the following inte-
grability condition

[ F@ 20 F@) P u0F @) ds < oo
R
for some A €]0,1/2].

The main result of our study is the following theorem giving the asymptotic distribution of the
process (vn(pn(F) — p(F)))nen.

Theorem 3.1. Let F have a finite set D(F) of discontinuity points such that the restriction of
F to ]gr(0),qr(1)[\D(F) is continuously differentiable with strictly positive derivative.

Then under the assumptions (AC) and (AI) we may find a set S(p(F')) of continuous, concave
distortion functions which is compact w.r.t. the uniform metric, and there exists some centered
Gaussian process (Gy)pes(p(r)) With continuous paths and

B[GWNGE)] = [ (F@APW) IF@ Ay ~ F@P) do dy

for any 1,12 € ¥ such that (v/n[py(F) — p(F)])neN converges in law to . I;l(az(F)) Gy. Here ¢/
€5(p
denotes the right-sided derivative of 1. Moreover, if

E[G(¢1) — G(2)]> #0



for any two different 1,92 € S(p(F)), then sup G(¢) = G(Z) for some Borel-random
PES(p(F))
element Z of S(p(F)).

The proof of Theorem 3.1 is postponed to Section 7.

Remark 3.2. As it will become clear from the proof of Theorem 3.1, S(p(F')) consists of contin-
uous concave distortion functions v satisfying

0 o)
p(F) = / B(F(x)) dz - /0 1 - §(F(2))) de.

In particular, ¢ <1, for any ¢ € S(p(F)).
Remark 3.3. The condition (AC) is always fulfilled if there is some topologically complete semi-

norm || - || on the Stonean vector lattice X such that the following properties are satisfied
1) 1] < [V for |X| < V] P - as.
(2) lim || X%|| =0 whenever X3, 0P —as..

k—ro0

(cf. Ruszczynski and Shapiro (2006)). General classes of random variables meeting these re-
quirements are given by

L9, F,P):={Y € £L2%Q,F,P) | E[g(]Y|/c)] < oo for some ¢ > 0},
and
MIQ,F,P):={Y € LY%Q,F,P) | E[g(]Y|/c)] < oo for all ¢ > 0},

where g denotes any continuous Young function, i.e. a continuous, nondecreasing, unbounded,
convex function g : Ry — Ry with g(0) = 0. Both classes may be equipped with the respective
Luzemburg seminorm || - ||4 defined by

IV, :=inf {¢>0]|E[g(Y]/e)] <1},

being complete, and satisfying the conditions (1), (2) (cf. Kritschmer and Zéhle (2010)).
Let us turn now to some examples.

Ezxample 3.4. An important class of law-invariant coherent risk measures consists of the so-called
concave distortion risk measures. To recall, the concave distortion risk measure p =: py, w.r.t. a
concave distortion function 1 is defined by

0 00

(3) pu(Fx) = / b(Fy(2)) dz — / 1 - $(Fx(a))] de

0

(cf. e.g. Denneberg (1994) or Follmer and Schied (2004)). Notice that 1,, = ¢ holds.

The risk measure may be viewed as a Choquet integral w.r.t. the set function w(IP’()) (cf.
Denneberg (1994)), and Fy consists of all distribution functions on R such that each integral in
the representation (3) is finite. The set X of random variables on (2, F,P) whose distribution



functions belong to Fy is indeed a linear space satisfying X AY, X VY € X for X,Y € X (cf.
Denneberg (1994), Proposition 9.5 with Proposition 9.3). If, in addition, ¢ is continuous, then

1X [y = /0 T (1 - Fix(@) de

defines a topologically complete semi-norm on X satisfying conditions (1) and (2) (cf. Denneberg
(1994), Theorems 9.5, 8.9).
The choice 1(u) = 1 (uA @) with o € (0,1] leads to

pu(Fx) = / L0.1(B)2x (8) dB = AV@R(X),

where gx denote any quantile function of the distribution function Fx of X. It is known as the
average value at risk at level o, and it is well-defined for X = LY(Q, F,P).

If ¢, is continuous, and if F' is as in Theorem 3.1, then the application of Theorem 3.1 along with
Remark 3.2 yields that under condition (AI), the sequence (v/n[pn(F) — p(F)])nen converges in
law to a centered normally distributed random variable with variance o2 satisfying

o? = - Up(F (@), (F(y)) [F(z Ay) — F(2)F(y)] da dy.
Example 3.5. Setting
p(X) = —E[X] +a||(X —E[X])"[,, a€[0,1], pell,o0],

for all X € LP(Q), F,P) we arrive at the so called one-sided moment coherent risk measure (see
Fischer (2003)). The associated distortion function 1, satisfies 1,(t) = ¢ + a(1 — ¢)t'/?. Hence
the assumption (AI) reads as follows

/[F(x)(l — F(x))]'/? [1+a(l- AF(2))(AF ()P~ | dz < oo for some X €]0,1/2],
R
which is always fulfilled in the case of
/ (F(2)(1 = F(@)]2 F(2)/? dz < oo.
R

Ezample 3.6. Let g be a strictly increasing continuous Young function satisfying g(1) = 1, and
let X be the space MY(Q2, F,P) associated with ¢ as in Remark 3.3. Moreover fix a €]0, 1[. It
was shown in Goovaerts et al. (2004) that for every X € M9(Q, F,P) and every z € R with
1 — Fx(x) > 0 there exists a unique real number 73(X,z) > z such that

Blo( )| ~1-a

ma(X,z) —x

Therefore we may define a functional pg “ on the set Y9 of all distribution functions Fx of
random variables X from MY($2, F,P) by

p9(Fx) == inf {79 (-X,x) : z € R with 1 — F_x(x) > 0}.



Indeed, pg’g is a law-invariant coherent risk measure (cf. Bellini and Rosazza Gianin (2008) with
Kratschmer and Zéhle (2010)) which satisfies condition (AC) in view of Remark 3.3. Moreover,
it is easy to check that we have for t €]0, 1]

1— .
wpgvg(t) < 1A <t + g_l((l — f)c)/t))) = ¢pf»9(t)7

where g~! denotes the inverse of g (recall that we assumed the Young function g to be strictly
increasing). Hence we may replace pr,g with pr,g when verifying condition (AI).

Recently, Miiller has pointed out that expectiles, genuinely introduced in Newey and Powell
(1987), may be viewed as law-invariant coherent risk measures (cf. Miiller (2010)).

Ezample 3.7. The expectiles based risk measure w.r.t. to any fixed o € [1/2,1] is defined by

p(Fx) = argmin (1= ((=X) = 2)7[5 + all (= X) — 2)*[I3]

for all X € £}(Q, F,P). The associated distortion function 1, satisfies

at

Volt) = l—a+ta—1)

In particular condition (Al) is equivalent with

V@1~ F@)
r1—a+AF(z)(2a—1)

dx < oo for some \ €]0,1/2].

Discussion Pflug and Wozabal (2010) studied CLT for distortion risk measures discussed in
Example 3.4. Motivated by earlier results on limit theorems for L statistics they implicitely

assumed that sup v,(t)/t’ < oo for some 3 €]0,1/2] and
te]o,1]

(4) ‘QF(t)‘ < C[t(l - t)]idv t 6]07 1[7

for some d €] —o0, f—1/2[. First, note that as opposite to (4), our assumption (AI) concerns only
the left tail of the distribution F. Furthermore, the next example shows that the tail condition
(4) is substantially more restrictive than condition (AI). Define via v (t) := v/¢[1 4+ In(100)]/[1 +
In(100) — In(¢)] a concave distortion function which induces a concave distortion risk measure
say py as in Example 3.4. It is obvious that in this case the tail condition (4) is satisfied for
distributions with lower-bounded support only, in contrast to condition (AI). Indeed for p, the
condition (AI) reads as follows

/qF(l) 1— F(x) e <
x < 00.
gr(0) 1+1n(100) — In(F(z))

Invoking the well-known expansions for the Gaussian error function, it may be seen that the
above condition is satisfied for any normal distribution F'.



4 Extension to dependent data

In this section we carry over the results of the previous section to the case of dependent obser-
vations X1, ..., X,. First, let us impose the following mixing assumption.

(AM) The sequence (X;);en is strictly stationary and strongly mixing with the mixing coefficients
a(7) satisfying

a(i) < agexp(—aigi), i €N,
for some constants ag > 0 and a; > 0.

Remark 4.1. As an example of stationary sequences fulfilling the mixing condition (AM) we
may take ARMA processes with continuously distributed innovations (cf. Mokkadem (1988))
or GARCH processes with continuously distributed innovations and Lebesgue density being
positive in a neighbourhood of zero (cf. Lindner (2008)). For further examples and general
conditions see Masuda (2007).

In order to extend Theorem 3.1 to dependent data we also have to modify condition (AI) and

replace it by the following one.

(AT’) The common distribution function F' of the sequence (X;);en fulfills the following integra-
bility condition:

r(1)
/ U Py F(2))? 0%, (AF(2)'°) da < cc.
qr(0)

for some 0, A €]0,1/2].
We are now ready to formulate the main result of this section concerning the asymptotic distri-

bution of /n(p,(F') — p(F)).

Theorem 4.2. Let F have a finite set D(F') of discontinuity points such that the restriction
of F to Jqr(0),qr(1)[\D(F) is continuously differentiable with strictly positive derivative. Then
under assumptions (AC), (AI’) and (AM), we may find a set S(p(F)) of continuous, concave
distortion functions which is compact w.r.t. the uniform metric, and there exists some centered
Gaussian process (Gy)pes(p(r)) With continuous paths and

E[G(y1)G(¢2)] = /R2 YLEF (@)Y (F(y)) [F(z Ay) — F(z)F(y)
+2) (P(X1 <2, X <y) — F(x)F(y)) | da dy
k=1

for any 1,12 € U such that (v/nlpn(F) — p(F)])neN converges in law to . Ig‘l(afF)) G(¢). More-
es(p
over, if

E[G(¢1) — G(2)]* #0
for any two different 1,109 € S(p(F)), then sup G() = G(Z) for some Borel-random

PES(p(F))
element Z of S(p(F)).

The proof of Theorem 4.2 may be found in section 7.



5 Auxiliary results

In this section we formulate some auxiliary results needed to prove Theorems 3.1 and 4.2.

Proposition 5.1. Under condition (AC) there ezists a set U of continuous concave distortion
functions which is compact w.r.t. the uniform metric on [0, 1] 01 such that

p = sup py.
Ppew

The proof is delegated to Appendix B.

According to Proposition 5.1 we may restrict considerations to the risk measure p admitting

representation p = sup p, for some set ¥ of continuous concave distortion functions which
Yew

is compact w.r.t. the uniform metric on [0,1]%1. Then we may write \/n[pn(F) — p(F)] =

\/ﬁ[ztelg py(Fp) — zlég py(F)]. Let us now consider the auxiliary stochastic processes (Dy(v)) vew

(n € N), where

Do) = vialpy(Fa) — po(F)] = Vit /R W(Fa(z) - (F (@) de, € T,

They have paths in the space [*° (V) defined to consist of all bounded, real-valued mappings on W.
Endowing [°°(¥) with the uniform topology, we shall show next that the mapping D,, : ¥ R®
can be viewed as a Borel random element of [*°(W). The idea behind is to reduce the proof of
the Theorems 3.1, 4.2 to a convergence in law of the sequence of (D), in [*°(¥). This would
allow to apply the functional delta method for sup functionals to obtain the desired convergence
results for (v/n[pn(F) — p(F)]), (see Roémisch (2006)).

Firstly, we have

(5) [ () —¥(s) | < ([t = s]) for £,5 € 0, 1]

(cf. Kriatschmer and Zihle (2010)). Moreover, observe that concavity of each 1) € ¥ implies
that

(©) 100 -66) | =| [ v du] < W)=l < Jse HHZED < g BT

holds for s, €]0,1[ and ¢ € [s, 1], where henceforth ¢/’ denotes the right-sided derivative of ).
The following technical auxiliary result will turn out to be useful later on.

Lemma 5.2. If either (Al) or (AI’) is satisfied, then the set {()(F)11_og o) —[1 =¥ (F)1j0,00] | ¥ €
U} is dominated by a mapping which is integrable w.r.t. the ordinary Lebesgue-Borel measure
on R.

Proof:

We shall restrict ourselves to show the statement of Lemma 5.2 under condition (AI’), the
respective proof under condition (AlI) follows the same line of reasoning.

Let 0, A €]0,1/2] as in (AI’). By concavity of ¢ we have

F(z)’)(F(z)) < (1/A) ¢(AF(x)*?)
< (1/X) F(a)™270(1 = F(a) /20 (AF () ) F(2) /240 (1 — F(2))°~/?

8



Hence in view of (5) we obtain for x < ¢r(1/2)

(7) G(F(x)) < (2/X) F(z)" 272 (1 = F(2))? 700, (AF (2)' ).
Furthermore by (6) and concavity of
1

1= ¢(F(x)) = () du < (1= F(2))¢/(F(z)) < (1 - F(x)y' (AF(2)'*)

F(z)
(6) AE ()19 /2 A\F (z)1+9

AF (z)1+9

(1-F(z)) <2 — F(x))

for F'(x) > 0. This implies for x > ¢r(1/2)

(8) 1 —(F(2)) < (2/0) F(a)"72 (1 = F(a)' 2700, (AF (2) 7).

Since {Y(F)lj_a00) — [1 = Y(F)|1jo,0c] | ¥ € ¥} is uniformly bounded, we may conclude the
statement of Lemma 5.2 from (7), (8) and condition (AI). O

As a first consequence of Lemma 5.2 we may show that within our setting the paths of the
processes (Dn(¢)) pew ATe uniformly continuous.

Lemma 5.3. If either (Al) or (AI’) is satisfied, then each process (Vn(w))we\y, (V(zﬂ))we\y,

(Dn(w))wel, has uniformly continuous paths w.r.t. the uniform metric. Here we use notation

/ V(E)) dat [T v(Fa(e)] do)
/ Y(F da:+/ooo[1—¢(F(x))] dz).

Proof:

Since W is compact, the paths of any process (Vn(l/)))weqj, (V(w))zpexlf’ (Dn (w))we\lf are uniformly
continuous if and only if they are continuous. So it suffices to show the continuity of the paths.
Let () denote any sequence in ¥ which converges to some 1) € ¥ w.r.t. the uniform metric.
Denoting the sample minimum and maximum of (X7, ..., X;,) by X,.1 and X,,.,, respectively, we
may observe

| r(Fa)l—oo0) — [1 = e (F)o,cof | < L[X100, Xm0
Hence in view of Lemma 5.2, {¢x(F,) — i (F) | k € N} is P—a.s. dominated by mappings which

are integrable w.r.t. the ordinary Lebesgue-Borel measure ' on R. This shows continuity of the
paths of (Dn(w)) bew due to the dominated convergence theorem. The proofs of the continuity

of the paths of (Vn(w))we‘lj and (V(T/J))weqj follow the same line of reasoning. O

The uniform metric on ¥ is separable due to compactness, so by Lemma 5.3 the mappings D,
are Borel random elements of UCB(W), the space of bounded real-valued mappings on ¥ which
are uniformly continuous w.r.t. the supremum metric, where UCB(¥) is equipped with the
supremum norm || - ||«. Hence, the map D,, : ¥ — R can be viewed as a Borel random element
of [°(W).

We shall show the following result concerning the convergence of (D, )p.



Theorem 5.4. Let the assumptions of either Theorem 3.1 or Theorem 4.2 be fulfilled. Then
there exists a tight centered Gaussian Borel random element G of UCB(V) with

E[G(41)G / WL(F (@) 6(F(u)) [F(z Ay) — F(2)F(y)

+2Z (P(X1 <z, Xy <y) = F(2)F(y)) | dx dy

for any 1,12 € U such that (Dn(w))we\p converges in law to G.

For the proof of Theorem 5.4 we shall verify the following two results whose formulations need
some preparation. By assumption on F' we may find ¢ (0) =: a9 < a1 < ... < ay41 := qp(1) such
that F||a;—1,a;[ is continuously differentiable with derivative f; > 0. Let us select any strictly
decreasing sequence (tx)ren in |0, F'(a;—)[ which converges to inf{F(x) | F(x) > 0}.

For any k we may find a vector (ako, ..., Qkr, Bk0, ---, Okr) Satisfying

1

k;?

(10) F(a;) < agi < Bri < Fagiy1)-) with max{og; — F(a;), F(agy1)-) — Bri} <
for i € {1,...,r}.

(9) tr = ago < Bro < F(a1—) with F(a1-) — Bro <

,
Setting Iy, := |J |k, Bri[, we consider the mapping
i=0

DU 3R b Vi /R M0 (4)(Fu(2)) — T () (F (2))] da,

where IIj(¢) : [0,1] — [0,1] is defined via IIx(¢)(t) := fg 17, (w)y' (u) du.

The mapping D, may be viewed as a Borel random element of UCB(WV), following an argu-
mentation analogously to that used for the mapping D,,. We are now ready to formulate the
auxiliary results which will be used to prove Theorems 3.1, 4.2.

Proposition 5.5. Let the assumptions of either Theorem 3.1 or Theorem 4.2 be fulfilled. Then
sup | Dy (¢) — Dyi| is a real-valued random variable on (Q, F,P) for arbitrary n,k € N, and
Pew

hm limsup P({sup | Dy, (¢)) — Dpi(¥)| > €}) =0
k=00 n—oo PeEw

holds for arbitrary € > 0.

Proposition 5.6. Let the assumptions of either Theorem 3.1 or Theorem 4.2 be fulfilled, and let
[°(R) denote the set of bounded real-valued mappings on R which is equipped with the uniform
metric. Then there exists some tight centered Gaussian Borel random element Br of 1°°(R)
satisfying

E[Br(z)Br(y)] = FlzAy)—F@)Fy)+2) (P(X1<z,Xp <y)— F(z)F(y))

10



for x;y € R such that for any k € N, the sequence (an)n converges in law to the centered
Gaussian Borel random element Gy, of UCB(¥) defined by

E[G(y1)G ()] = /R2 Ik (F () (F(2)) I (F (9) 95 (F () [F(z Ay) — F(2)F(y)
+2>  (P(X1 <2, X <y) — F(2)F(y)) | da dy
k=1

for every 1,19 € W.

Propositions 5.5, 5.6 and Theorem 5.4 will be shown sequentially in the following section 6.

6 Proofs of Propositions 5.5, 5.6 and Theorem 5.4

Let us retake assumptions and notations from section 5. We want to carry out the announced
proofs by considering the assumptions of Theorems 3.1, 4.2 simultaneously. For that purpose
we shall replace respectively (AI) and (AI’) with the following condition.

(AI!) The distribution function F fulfills
qr (1)
/ F(x) V221 — F(2)Y27 %, (AF(2)'+°) dz < oc.
qr(0)
for some X €]0,1/2[, § € [0,1/2].
For 6 = 0 condition (AI!) reduces to (AI), whereas we have (AI’) if § > 0.

The assumptions of independent (X;);en or strictly stationary (X;);en with mixing coefficients
(a(i))ien satisfying condition (AM) may be described simultaneously by the following condition.

(AM!) The sequence (X;);cn is strictly stationary and strongly mixing with the mixing coefficients
a(1) satisfying

a(i) < agexp(—aii), €N,
for some constants ag > 0 and @; > 0.

In the case of independent (X;);cy we may choose g = 0.

As a starting point we may conclude from (AM!) that there is a centered Gaussian process
Bp = (Bp(x)).er satisfying

Cov(Br(x), Br(y)) = E[Br(z)Br(y)]
(11) = F(zAy) = F@)F(y)+2)_ [P(X1 < 2, X1 <y) — F(2)F(y)],
k=1
and which is a tight Borel random element of the space D(R) of all cadlag functions on R w.r.t

the sup norm such that the sequence ((\/ﬁ[Fn(:U) - F(w)])zeR
n
random elements of D(R), converges in law to Bp (see e.g. Ben Hariz (2005), Corollary 1).

, viewed as a sequence of Borel

11



Moreover, the induced stochastic process (B F(x))z cr has paths which are continuous at every
continuity point of F' (Corollary 1 in Ben Hariz (2005) again).

Let qr(0) =: ap < a1 < ... < ar41 =: qr(1) be as in the discussion preceding Proposition 5.5.
Possibly changing to a suitable probability space we may assume without loss of generality that
there is a set {Z;; | i € N,j € {0,...,7 + 1}} of independent random variables all having the
uniform distribution on ]0, 1] as common distribution such that {Z;; | i € N,j € {0,...,r + 1}}
and (X;);en are independent. This allows us to prove the following result on bounds for empirical
distribution functions which will be crucial for our line of reasoning.

Lemma 6.1. Let conditions (AI!), (AM!) be satisfied, and let X €]0,1/2[ as well as § € [0,1/2] be

as in (AI!). The sample minimum of (X1, ...X,) will be denoted by X,.1. Then for any n €]0, 1],

we may find a constant v, €]0, A, and a sequence (Apy)nen in F with P(Any) > 1 —n such that
Yl )@ F(2) 014, < 1x, (@) Fa(@)1a,,

for any x € R.

Proof:
Let {Z;; | i € N,j € {0,...,7 + 1}} be as discussed above. Then we may invoke the randomized
probability integral transformation U; of each X;, i.e.

r+1
Ui =F(X;) = > 1o} (X0 P X = a;}) Zij.
j=0

In this way we obtain a strictly stationary sequence (U;);cn of random variables with the uniform
distribution on 0, 1] as common distribution and mixing coefficients oV (i) < @ exp(—a1i) with

Qp, @1 as in (AM!). Moreover, X; = qr(U;) a.s. so that Fy,(x) = 1/n Y 1)_o p)(Ui) as.. The
i=1

statement of Lemma 6.1 is then a direct consequence of Inequality 12.11.2 in Shorack (2000) if
ap = 0, and it may be concluded from Theorem 1.3 in Puri and Tran (1980) otherwise. O

Let us now turn over to the proof of Proposition 5.5.

Proof of Proposition 5.5:

Let A €]0,1/2[,0 € [0,1/2[ be as in (Al!). Firstly, sup | Dy, (v)) — Dni(v)] is a real-valued random
variable as a continuous transformation of a Boref}f;jndom element of UCB(V).

Since ¥ is compact w.r.t. the uniform metric it has some at most countable dense subset ¥y.
Then we have sup |D,(¢) — Dpi(¥)| = sup |Dn (1) — Duir(1)| because the paths of D,, and D,
Pev PeW¥y

are continuous. In particular, for any fixed e €]0, 1]

Bk := {sup |Dy, — Dpi| > ¢} = { sup |Dy, — Dpi| > €} € F,
YeEW e¥o

and

gni(x) = Vn sup |[Y(Fu(x)) — Y (F(2))] = M) (Fn(r) — k() (F(2))]]

PpeYy

— i sup | / o1, (00 (1) dt]

pe¥o JF(x)

is indeed a random variable. The important part of the proof is to show the following statement.
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(*) For any n €]0,1[, there exist C' > 0 and a sequence (Any)nen in F with P(Ay,) > 1—1n
such that

VE[La, gak(@)2] < CF(2) Y22 (1 = F(2))/* 04, (AF (2)'+9)
for any = €]qr(0),gr(1)[ and every n € N.

Let us first see how we may conclude the statement of Proposition 5.5 from (*).

For arbitrary n €]0,1] choose C,(Any)nen as in (*), and for = €]gr(0),qr(1)[ use notation
h(z) = F(z)"Y/27%(1 — F(2))Y/?7%,(AF(2)'*°). Then

qr (1) qr(1)
(12) / E (14,1010, (F(2))gnk(2)] dz < C Loapg, (F(z)h(z) dx
qr(0) qr(0)
and
(13) (E[I14,,90k(@)])° < E[|La,,gnr(2)[?] < C2h(x)? for any = €]qr(0), gr(1)[-

By continuous mapping theorem the convergence in law of (y/n[F,, — F]),en implies the conver-
gence of law of (sup |\/n[F,(z) — F(2)]|)nen. In particular the latter sequence is uniformly tight
Tz€R

which implies that for any every 3 €]0, 1], there is some Ag € F with P(Ag) > 1 — 8 such that
(1ag sup |[Fn(x) — F(2)]|)nen converges uniformly to 0. Since any I}, is a finite union of open
z€R

intervals of R, it is then easy to verify that (1 Ik(F(x))gnk(az))n oy converges in probability to
0 for any x €]qr(0),gr(1)[. Moreover, (13) means that (11k(F(x))gnk(x)1Ann)n€N
integrable for z €]qr(0), gr(1)], implying that (11k(F(:c))gnk(a:)1Am)neN converges in mean to
0 for = €]qr(0),gr(1)[. Furthermore, by (13) and condition (Al!), we may apply the dominated
convergence theorem yielding

is uniformly

qr (1)
lim E[|11,(F(2))gnk(x)1a,,|] dc =0 for k € N,n €]0, 1.
0 Jqr(0)
Thus by (12) and Markov’s inequality along with Tonelli’s theorem
qr (1)
(14) lim limsup P(Bpge N Apy) < lim 2/e / Loapg, (F(z)h(z) du.

k—o0 n—oo k—o0 QF(O)

Furthermore, klim Loapg, (F(z)) = 0 for every = €]gr(0), gr(1)[. Then in view of condition (AI!)
—00

we may apply the dominated convergence theorem to conclude from (14)

lim limsup P(Bpi:) < lim limsup P(Bpie N Apy) +1 = 1.

k—00 n—oo k—o0 n—oo
So it remains to show (*).
proof of (*):
Let for n €]0, 1] choose Cy, > 0,7, €]0, A\[ and (Any)nen as in Lemma 6.1. First of all, since every
¥ € VU is concave with ¢(0) = 0, we have ¢ (AF(2)'1%) > AF(z)%(F(z)). Hence

su T 1 z)70 su z)Hte 2 T M
¢e£0w(F( ) <5 Flo) wquow(AF( ) )S%F( ) )
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for z €]qr(0), gr(1)[. Then we obtain for w € Ay, and ¢r(0) < z < Xy (w) := min  X;(w)

i€{1,....,n}
9 U (AF (2)7°)
(15) g (@) () < n;élgoxll(F(x)) < v—n\/ﬁan(az)(w) — F(z)| pF(T

Since the right-side derivative of any ¢ € ¥ is nonincreasing, we may conclude from Lemma 6.1
along with (6)

Fr(z)(w)
G (2)(@) < VT sup | Yt dt] < ValFu(e)w) - F()] sup ¥ (1, F()+)
PYeW F(x) ISV
20, (/2 F () )
< ViR (@)w) = Fla)l == s
T 1+6
(16) < ;MFn(x)(w)—F(xn%

for w € Ay, and F(x) > Xy (w). B
Finally, by Lemma C.1 (cf. appendix C), we may find a constant C' > 0 such that

E[n[F,(z) - F(@)P] < C[F(z)(1 - F(x))]'"*

holds for any = €]qr(0), gr(1)[. Setting C := (2C)/~,, then (x) follows immediately from (15)
and (16). The proof of Proposition 5.5 is complete. O

Proof of Proposition 5.6:

Lemma A.1 (cf. appendix A) gives the following representation of D,

r Bri
(17) Do) = — Z/ VA g (8) — ()] /(1) dt for k€N, v € U,
i=0 v ¥hi

where ¢r, denotes the left-continuous quantile function of F,,. Representation (17) suggests to
apply already known asymptotic results for the quantile processes (v/n[qr, (t) — qr(t)])iejo,1[-

Firstly, we already have convergence in law of (y/n[F,, — F|)pen to some tight centered Borel

random element Bp of D(R) with covariance function satisfying (11), and whose paths are

continuous at every continuity point of F. Furthermore, by construction, we may find for any

k € N some positive constant e > 0 such that F||gr(aki) — €k, ¢r(Bri) + €| is continuously

differentiable with derivative f; > 0 for ¢ =0, ..., r.

Before proceeding, we need some notations. Setting ag; := qr(ag;)—ek and bg; := qr(Bki)+ek, we
T

denote the real vector space of restrictions of members of D(R) to Ji := | [as, bki] by D(Jk), and
i=0

we endow it with the sup norm. The subset D1 (Jx) C D(Jg) is defined to consist of all restrictions

of distribution functions on R to Ji. Finally, 1°°([ako, ko)) X ... X1 ([@kr, Brr]) stands for the set of

mappings (9o, ..., gr) : [@r0, Bro] X ... X [Qkr, Brr] — R™1, whose components are bounded. It will

T

be equipped with the metric d, defined by d((go, ..., gr), (ho, ..., hyr)) := > sup  |gi(t) — hi(t)].

=0 t€[ou;,Bks]

Next, we obtain from the continuous mapping theorem that (v/n[F, — F]|Jk)nen, as a sequence
of Borel random elements of D(Jy) converges in law to the tight centered Gaussian Borel random
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element Bpy := Bp|Ji which has continuous paths. Therefore, in view of Lemma 21.4 in van
der Vaart (1998), we may apply the functional delta method (see Theorem 20.8 in van der Vaart
(1998)) to the mapping

. 2 Di(Ji) = 1°([owo, Bro)) X .. X I%([gr, Brr]), G|k = (qc|aro, Brols ---> acl[kr Brr))

where gg denotes the left-continuous quantile function of G, to conclude that the sequence
(Vn[®g(Fn|Jr) — ‘I’k(FUk)])neN converges in law to the tight Borel random element

ka fr

Then by (17), the application of the continuous mapping theorem yields that (D,x)nen converges
in law to some tight Borel random element Gy, of [°°(¥), defined by

B
( — 2 o grl[aro, Brols - — == 0 qr| [thr, Bir] ) :

_~~ [ Brlar®)
Cr(9) = g/ak fri(gr(t)) V() di.

Since by construction, F||ak;,bg;| is invertible for every ¢ € {0, ...,7}, we obtain by change of
variable formula

Gk(@b)=/}RBF(CU)Z1]qF(aki),qF(ﬂki)[($)¢'(F($)) de:/RBF(iU)lzk(F(ﬂ?)W'(F(ﬂ?)) dz.
=0

Moreover, the set of Borel probability measures on UC B(V) is a Polish space because UCB(¥),
equipped with the uniform metric, is a Polish space too. Since, each D, is a Borel random
elements of UCB(¥), the stochastic process (G(1))ypew has continuous paths a.s., and then G,
is as required. ]

Theorem 5.4 may be concluded from Propositions 5.5, 5.6 in the following way.

Proof of Theorem 5.4:

Let [°°(R) be the space of bounded real-valued mappings on R which is equipped with the
uniform metric. Furthermore let Br be the Gaussian Borel random element of [*°(R) from
Proposition 5.6, inducing a sequence (Gj)gen of Gaussian Borel random elements of UCB(¥)
as in Proposition 5.6.

Since the mappings D,,, D, are Borel random elements of a separable metric space we may
apply Theorem 4.2 in Billingsley (1968). Therefore in view of Propositions 5.5, 5.6 it remains
to show that the mapping G(¢) := [ qj((ol)) x))Bp(x) dx defines a Borel random element G

of UCB(V¥) such that (Gy)i converges in law to G.

Let A\, ¢ € [0,1/2] as in condition (AIl). Then by Lemma C.1 (cf. appendix C), there exists some
constant C' > 0 such that Var(Bp(z)) < C?[F(2)(1 — F(z)]'~2° for every « € R. Then we may
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conclude from (6) along with (AIl)

/qF(l)\/Var (¢’(F($))BF($)> dr < /qF(l) \/Var <¢/ (2>\F($)1+5)BF($)> du

qr(0) r(0)
© 2 @ Y (AF(2)1H9)
< = RCANAIR SOy d
= /qF(O) \/Var ( F(z)1+9 FW) v
C qF

1)
< 201" Py (1 (@)Y (AP (@) ) de
qr(0)
(A1)
< oQ.

By Lemma 3.3 in Rajput (1972), this means that Bp has paths in V' almost surely, where V'
denotes the set of all g € [°°(R) such that gwp()\FH‘s)/Fl*‘s is integrable w.r.t. the ordinary
Lebesgue-Borel measure A! on R. By the same argument from Rajput (1972), (G(¥))pecw is
a well-defined centered Gaussian process. Moreover, kli)ngo Loapz, (F(z)) = 0 holds for every

x €]qr(0),qr(1)[. Then, an application of the dominated convergence theorem along with (6)
yields

qr(1) x)1to
(18) lim sup |G(¢)—Gr(¥)| < lim Lopg, (F(2)) | Br(x) %

| dz =0 a.s..
k—00 Yew k—o00 ar(0)

Since every process (G(1))ypew has paths in UCB(¥), (18) tells us that (G(¢))pecw has paths
in UCB(¥) a.s.. So we may choose an indistinguishable version of (G(v))ycw as a centered
Gaussian Borel random element of UCB(¥), denoted by G, which is in addition tight because
the uniform topology on UCB(¥) is separably and completely metrizable. Finally, (18) also
implies that (G )ken convergese in law to G. The proof is complete now. O

7 Proof of the main results

Let us retake notions and notations from sections 3, 4.
First of all, assumption (AC) on the risk measure p allows us to apply Proposition 5.1. Therefore,

p = sup py, for some set ¥ of continuous concave distortion functions which is compact w.r.t.
Ppew

the uniform metric on [0, 1][ . The compactness of ¥ implies by an exercise of dominated
convergence theorem along with Lemma 5.2

0’1}

(19) S(p(F)) ={Y € V| p(F) = py(F)} # 0 and compact w.r.t. uniform metric

under (AI) or (AT).

Now, let (D,,)nen be the sequence of Borel random elements of UCB(¥) defined as in section
5. Each of them may be decomposed in the following way

(20) Dn(d’) = \/ﬁ[&l}(Fn) - Pw(F)]-

According to Theorem 5.4, if the assumptions of either Theorem 3.1 or Theorem 4.2 are satisfied,
then there exists a tight centered Gaussian Borel random element G of UCB(¥) with
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E[G(1)G(2)] = /R2 V@)V (F (y)) [F(x Ay) = F(z)F(y)

+2) (P(X1 <2, X <y) — F(x)F(y)) | do dy
k=1

for any 1,12 € ¥ such that (D”(w))wetl'
along with representation p = sup py, and (19) allows us to apply the functional delta method
pew

converges in law to G. As a further consequence, (20)

for sup functionals (cf. Rémisch (2006)) to conclude that (v/n[pn(F) — p(F)]), cy converges in

law to sup Gy. Finally, if E[(G(¢1) — G(12))?] # 0 for different 1,12 € S(p(F)), then it is
HeS(p)
well-known that the paths of G|S(p(F')) have unique maximizers a.s. (cf. Lifshits (1982)). Then

by measurable selection we may find a Borel random element Z of S(p(F)) such that G(Z) is

distributed as sup G. This completes the proof. O
YeS(p)
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A Appendix

Lemma A.1. Let ¢ :[0,1] — [0,1] be a nondecreasmg, contmuous mappmg with ¥(0) =0, and
let G be any distribution function on R such that f_oo Y(G(x)) dx, fo —(G(x))] dx < 0.
Then

/ $(G()) dz — /Owwu)w(c:(x)ndx: /Olqaduw,

where qg and p,y denote respectively the left-continuous quantile function of G and the Borel
probability measure on [0, 1] induced by 1.

Proof:
Let p1y0c denote the Borel probability measure on R induced by the right-continuous mapping

1o G. It coincides with the image measure of p,, under g¢, implying fol g dpy = [ @ frpoi(dz).
Furthermore, by right-continuity of ¥ o G

0 00
|z metan) = = [[Flo@e] meotdn) = = [ el e, ~5) d
(21) = — | v as
and
/0 2 tsoa(dn) = [ Noui()2 pooclds) = /0 o (18, 00]) dB
(22) — [ W - v as
0

Then we may conclude the statement of Lemma A.1 from (21) and (22) by applying the change
of variable formula to (21). O

B Proof of Proposition 5.1

The proof of Proposition 5.1 relies on the following lemma.

Lemma B.1. Ifin addition X NY, X VY € X for X,Y € X, then the first property of condition
(AC) implies

p(X) = sup inf p(Fix+ap-(x-am) VX EX.
meN keN
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Proof:

In view of Proposition 6.6 from Krétschmer (2007) the first property of condition (AC) al-
lows us to apply Lemma 6.5 from the same paper. According to Lemma 6.5, .1, we have
sup P(Ext—(x-pm)) = p(Fx), whereas inf p(Fix+nr)—(x-nm)) = P(Fx+-[x-pm)) holds for any
me

m € N due to Lemma 6.5, .2. The statement of Lemma B.1 is obvious now. ]

Lemma B.1 enables us to conclude a robust representation of p by concave distortion risk mea-
sures when its restriction to {Fx | X € £L>*(Q, F,P)} admits such a representation.

Lemma B.2. Let ¥ be any set of concave distortion functions such that p(Fx) = sup py(Fx)
Ppew

holds for X € L>®(Q, F,P).
IfFXANY,XVY € X for X,)Y € X, and if p satisfies the first property of condition (AC), then
p(F) = sup py(F) is valid for arbitrary F € Fy.

Ypew

Proof:

Let us set p := sup py. The proof is divided into two steps: First we will show that p is well-
Yew
defined and defines a law-invariant coherent risk measure on Fy, which obviously concide with

pon {Fx | X € L>(Q,F,P)}. Second we shall prove that both risk measures are even identical.
Step 1. If we can show that py(Fx) € R (for all ¢y € W) and supyey py(Fx) < oo for all
X € X, then it follows easily that p defines a law-invariant coherent risk measure on X, since
every concave distortion risk measure py is a law-invariant coherent risk measure. Of course,
the mentioned conditions hold if we can show

0 00
@) swp [ e de<pF k) and voews  [TH-u(Fx@)lde < oo
Pev J—oco 0

for all X € X with distribution function F'x. To verify the first statement in (23), we pick
X € X. For every ¢ € ¥ we have

V(F_x—(2)) < liminf (Fx—pm)(2))

at every continuity point x < 0 of the distribution function F_y- of —X , since 1) as a concave
function is lower semicontinuous. Using this and applying Fatou’s lemma, we obtain

0 0
sup/ Y(Fx(z))dr < sup/ Y(F_x- )da;<sup/ liminf Y (F_[x-rm(2)) dx

pevw PYeY el m—00

IN

sup hmlnf/ Y(F_(x~nm)(2)) dz = sup liminf py(F_[x-am))

< hmlnf P(F_x-rm)) < p(F_x-).

m—00

Hence the first statement in (23) holds indeed. To verify the second statement in (23), we pick
X € X. As ¢ is nondecreasing and concave its restriction to |0, 1] is continuous, so that

—P(Fx(z)) = ¢(1) =y (Fx(2)) < ' (Fx(w))[1 - Fx(z)]  Va >,
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for any xo > 0 such that Fx(zo) > 0. Moreover, the integral [;°[l — Fx(x)]dz exists since
X € £Y(Q, F,P). Hence,

o0

/ Tl (P (@) d < / U1 = p(Fx (6)] d + o (F (20) [ - B s < o
0 0 x

0

This shows that the second statement in (23) holds, too.

Step2. The first property of assumption (AC) on p ensures that the right-hand side of

N (23)
0 < p(F(x-m+) < p(F_(x—r)+)

converges to 0, as r — 0o, for every nonnegative X € X. Therefore the first property of condition
(AC) is fulfilled by p too, and Lemma B.1 applied to p implies p = p on X. The proof is now
complete. n

Now we are ready for the proof of Proposition 5.1.

Proof of Proposition 5.1:

Possibly changing to a suitable probability space we may assume that L?(§2, F,P) is separable.
Then in the specified setting, Corollary 4.72 in Follmer and Schied (2004) along with Theorem
2.1 in Jouini et al. (2006) yield the existence of some set U of concave distortions such that
p(Fx) = sup py(Fx) holds for X € L£*(Q, F,P). Notice that all members of the topological

Ppew
closure ¥ of ¥ w.r.t. the uniform metric are concave distortion functions again. Therefore, in
view of (5)
[(q) — (@) < Pplqg—p) forp € Pand 0<p<g< 1.

Since h%l 1,(q) = 0 by the second property of condition (AC), we may conclude that ¥ is a
q—U+

uniformly equicontinuous w.r.t. the uniform metric, which means by Arzela-Ascoli theorem that

it is not only closed but also compact w.r.t. the sup metric. We want to show that p admits

a robust representation by concave distortion risk measures with concave distortions from W.

For this purpose by Lemma B.2 it suffices to show that p(Fx) = sup py(Fx) is valid for every
Ppew

X € L*(Q, F,P).
Indeed for any fixed X € L£>(Q,F,P) with distribution function Fx there exists some € > 0

such
0

po(Fx) = [ wFx)@) do = [ 1= b(Px())] do for all v € .

—E&
Then a routine application of the dominated convergence theorem yields the continuity of the

mapping
OV =R, = py(Fx)

w.r.t. the uniform metric. Therefore klim Py, (Fx) = py(Fx) holds for any sequence (¢y)ren in
— 00
U which converges to some ¢ w.r.t. the uniform metric. Hence obviously, p(F'x) = sup py(Fx),
Ppew
and thus p = sup py, due to Lemma B.2. The proof is complete.
Ppew
O
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C Appendix

Lemma C.1. Let (Z;)ien be a strictly stationary, strongly mizing sequence of random variables

on some probability space (Q, F,P) with common distribution function H and mixing coefficients
a(i) satisfying

a(i) < apexp(—ayi), i€N,

for some constants &g > 0 and &y > 0. Then for any n €0, 1], there is some constant Cy, such
that

[H(2)(1 - H(x) +2)_ [PUZ1 < @ Zin < 2}) — H(X)?] < Cy[H(2)(1 — H(x))]""
i=1

for every x € R.

Proof:

Let n €]0,1[, € R, and define Y;(x) := 1j_ 5) © Z;. Without loss of generality we may assume
ag > 1.

Firstly observe

n n—1
1/n Var(d Yi(x)) = Var(Z1)+2)  (n—1i)/n Cov(Zy, Zit1)
=1 =1

n—1
= H@)(1-H@)+2Y (n—i)/n [P{Z <z, Zi <a}) - H(x)?]
=1

[e.e]
for any n > 2. By assumption on («(i));en the series > Cov(Z;, Z;11) converges absolutely (c.f.
i=1

e.g. Athreya an Lahiri (2006), Proposition 16.3.1) so that by dominated convergence theorem

(24)  lim 1/n Var() “Yi(x)) = H(z)(1 — H(z)) + 2> [P({Z1 <z, Zip1 < 2}) — H(z)?].
i=1 =1

)

n
Moreover, we may apply Theorem 1.2 in Rio (1993) to Var()_ Yi(z)) yielding
=1

n

1
1/n Var(3 Yi(z)) < 4 /0 o1 (1/2)Q(u)? du,

i=1

where Q(u) :=sup {y € R | P({|vi(z)] > y}) > u} and o (u/2) ;= sup{i € N | a(i) > u/2}
(sup® :=0).

It is easy to check that Q(u) = 1 if H(x) > u and Q(u) = 0 otherwise. Moreover, by assumption
on (a(7))ien, we obtain o~ (u/2) < [In(2a) — In(u)]/@;. Thus

- A=) z)|l —1In T Q
(25) 1/n Var(z Yi(z)) <4 /0 [In(2a0) — In(u)]/a; du =4 H(z)[1 -1 (_H( )/ (2 0))].
i=1

a1
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Using an analogous line of reasoning, an additional application of Theorem 1.2 in Rio (1993) to

\/;M(:i‘1 [1 = Y;(2)]) leads to

)

(26)
n 1—H(x) _ T I B . 5
1/n Var(3 Yi(x)) < 4 /0 [In(260) — In(w) /a1 du = 4 L= H@IL =0 = H(@))/(2a0))]

(07
i=1 1

Since lirg exp([y — 1]/v] = 0, we may find some v €]0,n[ such that ¢, := 2a¢ exp([y — 1]/7) €
YU+

10, 1[. Then routine considerations yield

. _ v (2a0)Yexp(y —1) _ 2apexp(y — 1)
e t7[1 —1In(t/(2a0))] = t][1 — In(t, /(2a0))] = p < S :

Hence by (25), (26)

n

1/n Var(z Y;(a:)) < WYM (H(x)l—V A (1 — H([Ij))lf'Y)
=1
< 8000 =) gy 0y (1 - HE@)

i
< 167“0 [H(2)(1 — H(x))]'".

Then in view of (24) we may conclude

> 16 _
(@)1= () +2 3 [B({Z1 < 2. Zr < o)) = H)?) < =22 [H(@)(1 = H@)]"
i=1
for every x € R, which completes the proof. O
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