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Abstract

This paper employs a new and comprehensive data set to investigate short-term
herding behavior of institutional investors. Using data of all transactions made by
financial institutions in the German stock market, we show that herding behavior
occurs on a daily basis. However, in contrast to longer-term herding measures
obtained from quarterly data, results based on daily data do not indicate that
short-term herding tends to be more pronounced in small capitalized stocks or in
times of market stress. Moreover, we find that herding measures based on anony-
mous transactions can lead to misleading results about the behavior of institutional
investors during the recent financial crisis.
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1 Introduction

Herding behavior of investors, defined as the tendency to accumulate on the same side

of the market, is often viewed as a significant threat for the stability and the efficiency of

financial markets, see Hirshleifer and Teoh (2003) and Hwang and Salmon (2004). The

empirical literature on herding behavior in financial markets is particularly interested

in the investment behavior of institutional investors, i.e., of banks and other financial

institutions, see e.g. Barber, Odean and Zhu (2009). Yet, the evidence on herding

behavior of institutional investors is mixed and partly elusive.

The evidence on herding is often impeded by data availability problems. In particular,

positions taken by institutions on the stock market are reported only infrequently, if

at all. For example, for U.S. mutual funds reports of holdings are available only on a

quarterly basis, see e.g. Choi and Sias (2009). Evidence for German mutual funds even

had to be based on semi-annual data, see Walter and Weber (2006). In high-developed

financial markets, however, herding might also occur within shorter time intervals.

Several contributions, including Barber et al. (2009), attempt to overcome the problem

of data frequency by using anonymous transaction data instead of reported holdings.

Since those data do not identify the trader, researchers usually separate trades by

size and then simply define trades above a specific cutoff size as institutional. However,

even though large trades are almost exclusively the province of institutions, institutions

with superior information might split their trades to hide their informational advan-

tage. While low-frequency data may still contain useful information about longer-term

herding, the interpretation of herding measures based on anonymous transactions is not

without problems. In particular, it is not clear whether the strategic trading behavior

of institutional investors tends to increase or decrease the evidence on herding.

The current paper sheds more light on the empirical relevance of short-term herding by

introducing a new and comprehensive data-set on German stock market transactions

that includes both high-frequency and investor-level data. Our analysis provides new

evidence on the herding behavior of financial institutions for a broad cross-section of
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stocks over the period from July 2006 to March 2009 in the German stock market.

In order to investigate how the underlying data frequency may affect the empirical

assessment of short-term herding, we evaluate herding measures at daily, monthly, and

quarterly frequency. Neglecting the investor-related information contained in our data

set, we explore how herding measures are affected by the use of anonymous transaction

data.

The empirical results suggest that previous studies based on low-frequent or anony-

mous transaction data might have overestimated the extent of short-term herding.

This conclusion holds irrespective of the herding measure applied. Confirming the re-

sults obtained with the static herding measure proposed by Lakonishok, Shleifer and

Vishny (1992), the dynamic measure of Sias (2004) shows that institutional trades are

correlated over time. However, although there are investors who follow other traders,

the main part of the correlation results from institutions that follow their own trad-

ing strategy. We find that daily herding measures typically contradict implications of

herding theory. In particular, it is not confirmed that short-term herding is more pro-

nounced in smaller and less liquid stocks. Moreover, our results do not indicate that

short-term herding increases in times of market stress, i.e., during the recent financial

crisis. It is worth noting, however, that conclusions concerning the impact of the finan-

cial crisis on the trading behavior of institutional investors would have been misleading

if herding measures were based on anonymous transaction data.

The rest of the paper is structured as follows: Section 2 briefly reviews the literature

on herding. Section 3 discusses the role of data availability on the herding measure.

Section 4 introduces the applied herding measures. Section 5 presents the empirical

results and Section 6 offers some conclusions.
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2 Herding: A Brief Review of the Literature

2.1 Types of Herding

Following e.g. Bikhchandani and Sharma (2001), herding describes the tendency of in-

stitutions or individuals to show similarity in their behavior and thus act like a herd.

Recent economic theory distinguishes between intentional herding and unintentional,

or spurious herding.1 Unintentional herding is mainly fundamental driven and arises

because institutions may examine the same factors and receive correlated private in-

formation, leading them to arrive at similar conclusions regarding individual stocks,

see e.g., Hirshleifer, Subrahmanyam and Titman (1994). Moreover, professionals may

constitute a relatively homogenous group: they share a similar educational background

and professional qualifications and tend to interpret informational signals similarly.

In contrast, intentional herding is more sentiment-driven and involves the imitation

of other market participants, resulting in simultaneous buying or selling of the same

stocks regardless of prior beliefs or information sets. This type of herding can lead to

asset prices failing to reflect fundamental information, exacerbation of volatility, and

destabilization of markets, thus having the potential to create, or at least contribute, to

bubbles and crashes on financial markets, see e.g. Morris and Shin (1999) and Persaud

(2000). Yet, several economic theories including models of information cascades (Avery

and Zemsky (1998)) and reputation (Scharfstein and Stein (1990)) show that even

intentional herding can be rational from the trader’s perspective.

Models of intentional herding typically assume that there is only little reliable infor-

mation in the market and that traders are uncertain about their decisions and thus

follow the crowd. In contrast, in the case of unintentional herding, traders acknowledge

public information as reliable, interpret it similarly and thus they all end up on the

same side of the market. For both types of herding, the degree of herding is linked to

the uncertainty or availability of information.

1For a comprehensive survey of the theoretical and empirical herding literature, see e.g. Hirshleifer
and Teoh (2003).
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2.2 Determinants of Herding

2.2.1 Size Effects and the Development of the Market

The empirical literature explores the determinants of herding via the link between

herding and information availability. Lakonishok et al. (1992) segregate stocks by

size because market capitalization of firms usually reflects the quantity and quality of

information available. Thus, one would expect higher levels of herding in trading small

stocks as evidence of intentional herding. In line with theoretical predictions, they

find evidence of herding being more intense among small companies compared to large

stocks. Further empirical evidence on the link between herding and size is provided by

Wermers (1999) and Sias (2004).2

Based on semi-annual data, Walter and Weber (2006) and Oehler and Wendt (2009)

report significant positive and higher levels of herding for German mutual funds com-

pared to those found in U.S.-based research. Walter and Weber (2006) link the finding

of herding to the stage of development of the financial market. They argue that the

German market is not as highly developed as the U.S. and U.K. capital markets. There

is also evidence for higher herding levels in emerging markets compared to developed

ones.3 High herding in emerging markets may be attributed to incomplete regulatory

frameworks, especially in the area of market transparency. Deficiencies in corporate

disclosure and information quality create uncertainty in the market, throw doubt on

the reliability of public information, and thus impede fundamental analysis, see An-

toniou, Ergul, Holmes and Priestley (1997) and Gelos and Wei (2002). Kallinterakis

and Kratunova (2007) argue that in such an environment it is reasonable to assume

that investors will prefer to base their trading on their peers’ observed actions. Thus,

2An alternative, less direct approach to analyze herding behavior is proposed by Christie and Huang
(1995), where herding is measured for the whole market and not for a specific group of market par-
ticipants. Assuming that herding occurs when individual investors neglect their own information and
simply follow the crowd, herding implies that the dispersion of cross-sectional returns decreases in times
of higher uncertainty, i.e., when the volatility of returns is large, see Chiang and Zheng (2010).

3For example, Lobao and Serra (2007) document strong evidence of herding behavior for Por-
tuguese mutual funds. Significant herding is reported for Indonesia (Bowe and Domuta (2004)), Poland
(Voronkova and Bohl (2005)), Korea (Choe, Kho and Stulz (1999), Kim and Wei (2002)) and South
Africa (Gilmour and Smit (2002)).
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intentional herding through information cascades is more likely to occur in less devel-

oped markets. In the current paper, we assume that the degree of market transparency

increases with the size of the traded stocks. As a result, less herding in larger stocks

may also appear because the corresponding markets are higher developed and, thus,

more transparent.

2.2.2 State of the Market

The extent of herding may depend on the state of the overall market. Choe et al.

(1999) find higher herding levels before the Asian crisis of 1997 than during the crises

for the Korean stock market. Using data from the Jakarta Stock Exchange, Bowe and

Domuta (2004) show that herding by foreigners increased following the outbreak of the

crisis. Analyzing the relationship between the cross-sectional dispersion of returns and

their volatility, Chiang and Zheng (2010) conclude that herding behavior appears to

be more apparent during the period in which the financial crisis occurs. In contrast,

using data from U.S. and South Korean stock markets, Hwang and Salmon (2004) find

higher herding measures during relatively quiet periods than during periods when the

market is under stress. In order to account for the state of the market, the following

empirical analysis allows for different herding intensities before and during the recent

financial crisis.

3 Data

3.1 Data Issues

3.1.1 Low Frequency

Most empirical studies on herding in financial markets identify institutional transactions

as changes in reported positions in a stock. However, positions are reported very

infrequently. For example, the bulk of the literature considers the trading behavior

of U.S. mutual funds who generally report only on a quarterly basis. For German
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mutual funds, even half-year reports are required.4 Semi-annual and even quarterly

data provide only a crude basis for inferring trades and this frequency might be too

low in a rapidly changing stock market environment. Interestingly, the overall effect of

the data-frequency on the resulting herding measure is not obvious. On the one hand,

herding might be understated, since trades that are completed within the period are not

captured. In markets with frequent public information flows and high turnover that lead

to the timely incorporation of information, herding behavior caused by informational

cascades is likely to occur only in the short-term, that is, before public information

becomes available. On the other hand, however, herding might also be overstated

when looking at a long time interval, since buys at the beginning of the period that are

not completed within the period and buys of others at the end are regarded as herding.

In order to explore the impact of data frequency on the herding measure, we calculated

herding measures based on daily, monthly and quarterly data.

3.1.2 Identification of Traders

In view of these problems, the recent empirical literature, including Barber et al. (2009),

attempts to overcome the lack of high-frequency data by using anonymous transaction

data.5 In these contributions, institutional trades are identified by use of a cutoff

approach. Transactions above a specific cutoff size are considered as a proxy for in-

stitutional trades, since large trades are typically the province of institutions. For

example, Lee and Radhakrishna (2000) suggest a cutoff of $50,000 for larger stocks.

However, this approach can be misleading if institutions split their trades to hide a

superior information advantage. In this case, the most informative institutional trades

are probably not the largest ones. Our data confirms that although institutions trade

often during a day, those trades are not necessarily large. Herding measures based on

4There are also studies that rely on yearly ownership data, see, e.g., Kim and Nofsinger (2005) who
investigate herding of financial institutions in Japan. Puckett and Yan (2008) used weekly data to
overcome the low frequency problem.

5Because the dynamic Sias herding measure additionally requires the identification of the trader over
time, empirical work relying on anonymous transactions employs the static herding measure introduced
by Lakonishok et al. (1992).
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anonymous transactions may tend to over- or to understate the true extent of herding.

In order to shed more light on the total effect of anonymous transaction data on the

herding measure, we ignore the information about the investor contained in our data

and calculate the herding measures for various cut-off levels.

3.2 The BaFin Datasource

Our dataset includes all real-time transactions carried out on German stock exchanges.

The data are provided by the German Federal Financial Supervisory Authority (BaFin).

Under Section 9 of the German Securities Trading Act, all credit institutions and finan-

cial services institutions are required to report to BaFin any transaction in securities

or derivatives which are admitted to trading on an organized market.

These records enable the identification of all relevant trade characteristics, including

the trader (the institution), the particular stock, time, number of traded shares, price,

and the volume of the transaction. Moreover, the records identify on whose behalf

the trade was executed, i.e., whether the institution traded for its own account or on

behalf of a client that is not a financial institution. Since the aim of our study is the

investigation of institutional trades, particularly those of financial institutions, we focus

on the trading of own accounts, i.e., those cases when a bank or a financial services

institution is clearly the originator of the trade.6 Using data from July 2006 until

March 2009 (a total of 698 trading days), we cover market upturns as well as the recent

market downturn.

The analysis focuses on shares listed on the three major German stock indices: the

DAX 30 (the index of the 30 largest and most liquid stocks), the MDAX (a mid-cap

index of 50 stocks that rank behind the DAX 30 in terms of size and liquidity), and

the SDAX (a small-cap index of 50 stocks that rank behind the MDAX components).7

6Therefore, we exclude institutions trading exclusively for the purpose of market making. We also
exclude institutions that are formally mandated as designated sponsors, i.e., liquidity providers, for a
specific stock.

7 The stocks were selected according to the index compositions at the end of the observation period
on March 31, 2009. The time series of five stocks on the MDAX and five stocks on the SDAX are not
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Calculating herding measures for these different stock market segments, we explore

whether there are differences in the trading behavior in small and large stocks.

Overall, we have 167,422,502 records of proprietary transactions by 1,120 institutions

in those stocks on German stock exchanges. For each institution, we compute the daily

trade imbalance. Among these 1,120 traders, 1,044 institutions trade on the DAX 30

stocks, 742 on the MDAX stocks and 512 on the SDAX stocks. On average, about 25

of these institutions trade every day in those stocks, justifying the use of daily data.

The institutions have an average daily market share of DAX 30 stocks of about 46%.

Interestingly, the market share declined after the start of the financial crises, implying

a retraction from trading business. In the period from July 1, 2006 until August 8,

2007, the proportion constituted 66%, shrinking to 32% after August 9, 2007. Table 4

in the Appendix provides further information on the institutions under investigation.

4 Herding Measures

In this section, we briefly review the two herding measures predominantly applied in

the literature.

4.1 The LSV Measure

The first herding measure had been introduced by Lakonishok et al. (1992) (LSV mea-

sure). According to the LSV measure, herding is defined as the tendency of traders to

accumulate on the same side of the market in a specific stock and at the same time,

relative to what would be expected if they traded independently.

The LSV herding statistic is given by

HMit = |brit − b̄rt| − Et[|brit − b̄rt|] (1)

where brit is the the number of institutions buying stock i at time t as proportion of

all institutions trading in i at t. b̄rt is the period average of the buyer ratios over all

complete for the whole period. We have therefore an unbalanced panel of stocks and days, totaling
88,435 observations.
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stocks, which is a proxy for the expected value of the buyer ratio at t, Et[brit], and thus

accounts for an overall signal in the market at time t. Hence, the first term of Equation

1 captures the deviation of the buyers ratio in i at t from the overall buy probability

at time t, i.e. captures herding as excess dispersion of what would be expected for that

time. The second term, Et[|brit− b̄rt|], ensures that the herding measure HMit will be

zero if the trades are independent.

Following Lakonishok et al. (1992), the empirical literature calculates the mean herding

measure HM as the mean of HMit across all stocks and all periods. A positive and

significant value of HM indicates the average tendency of the investigated group to

accumulate in their trading decisions. The higher the HM , the stronger the herding.

For example, HM = 2% indicates that out of every 100 transaction, two more traders

trade on the same side of the market than would be expected if each trader had decided

randomly and independently. However, it should be noted that the maximum value of

HM is not equal to one, even if all traders buy stock i at time t, since HMit is defined

as excess or additional herding over the overall trend b̄rt. Thus, only stock-picking

herding and similar trading patterns beyond market trends are analyzed.

4.2 The Sias Measure

The LSV herding measure is a static measure that detects contemporaneous buying or

selling within the same time period. In contrast, the dynamic approach proposed by Sias

(2004) explores whether the buying tendency of traders persists over time. The focus

of the Sias herding measure is on whether institutional investors follow each others’

trades by examining the correlation between institutional trades over time. Similar to

the LSV measure, the starting point of the Sias measure is the number of buyers as a

fraction of all traders. According to Sias (2004), the ratio is standardized to have zero

mean and unit variance:

∆it =
brit − b̄rt
σ(brit)

(2)
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σ(brit) is the cross sectional standard deviation of buyer ratios across i stocks at time t.

The Sias herding measure is defined as the correlation between the standardized buyer

ratios in consecutive periods:

∆it = βt∆i,t−1 + εit. (3)

The cross-sectional regression is estimated for each day t and then the time-series

average of the coefficients is calculated: β =
∑T

t=2 βt

T−1 . A high buyer ratio would usually

result in a higher LSV measure (if higher than on average) but not necessarily to a

higher Sias measure as this depends on the ratio at the next trading day.

The Sias methodology further differentiates between investors who follow the trades

of others (i.e., true herding according to Sias (2004)) and those who follow their own

trades. For this purpose, the correlation is decomposed into two components:

β = ρ(∆it,∆i,t−1) =
[

1
(I − 1)σ(brit)σ(bri,t−1)

] I∑
i=1

[
Nit∑
n=1

(Dnit − b̄rt)(Dni,t−1 − b̄rt−1)
NitNi,t−1

]

+
[

1
(I − 1)σ(brit)σ(bri,t−1)

] I∑
i=1

Nit∑
n=1

Ni,t−1∑
m=1,m 6=n

(Dnit − b̄rt)(Dmi,t−1 − b̄rt−1)
NitNi,t−1

 , (4)

where Nit is the number of institutions trading stock i at time t and I is the number of

stocks traded. Dnit is a dummy variable that equals one if institution n is a buyer in i

at time t and zero otherwise. Dmi,t−1 is a dummy variable that equals one if trader m

(who is different from trader n) is a buyer at day t− 1. Therefore, the first part of the

measure represents the component of the cross-sectional inter-temporal correlation that

results from institutions following their own strategies when buying or selling the same

stocks over adjacent days. The second part indicates the portion of correlation resulting

from institutions following the trades of others over adjacent days. According to Sias

(2004), a positive correlation that results from institutions following other institutions,

i.e., the latter part of the decomposed correlation, can be regarded as first evidence for

informational cascades.
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The analysis on size effects on herding is complicated by large differences in the number

of traders. There are typically more institutions trading in large capitalization stocks

than in a small stocks and this will affect both the decomposition of the correlation

coefficient and the cross-sectional correlation between the buyers ratios. Therefore,

Sias (2004) introduces a modified decomposition of the correlation coefficient β that

accounts for the number of traders in a market segment, see Appendix. We will employ

these modified measures to assess to what extent correlated trading in different market

segments is actually due to traders following the trades of others.

5 Do Institutions Herd?

5.1 LSV Herding

5.1.1 Evidence from Daily Herding Measures

Our results obtained for the static LSV herding are summarized in Table 1. Following

the empirical literature, HMit is computed only if at least five traders are active in

stock i at time t.8 Let us first discuss the results obtained for daily investor-level data

shown in the first row of each panel. For daily data, the mean value of the herding

measure HM over the complete sample period and over all stocks is 1.40%. The value

is statistically significant but small and slightly lower than found in previous studies

using low-frequency data, including Lakonishok et al. (1992) and Walter and Weber

(2006) who both found herding to be about 2.70%.

Theories on herding behavior typically predict that herding will be more pronounced

in smaller and less liquid stocks, where informational problems should be particularly

severe. Our results based on daily data do not confirm this prediction. In contrast, we

8Table 5 in the Appendix shows that results are robust with respect to different assumptions on
minimum numbers of traders. In our application, the resulting loss of observations is not an issue.
Table 4 in the Appendix shows that even on the SDAX on average 10.78 institutions are active each
day in each stock. Out of the overall panel of stocks and days (88,435 observations), we calculated
87,839 herding measures, i.e., for 542 observations there were no trade imbalances by any institution.
Due to the constraint to a minimum of five traders, we lose 3,997 observations for the sample of all
institutional traders, i.e., 83,842 observations remain.
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find that herding for stocks in the DAX30 is 3.65%, i.e., about 2.5 times larger than

the herding measure obtained for all stocks. In fact, the daily herding measure for the

small stocks defining the SDAX is actually insignificant (t-statistic= -0.57).9

If private information gets less reliable in times of market stress, herding measures

should be higher during a financial crisis. For each group of stocks, the two lower

panels of Table 1 display the average herding measure for the crisis and the non-crisis

period, i.e., before and after August 9, 2007 when tensions in the European money

market lead to rapid increases in interest rates. For daily data, the evidence found on

increased herding during the financial crisis is not very convincing. Short-term herding

actually slightly increased in small and medium stocks over the crisis period. For large

stocks, however, herding seemed to be more pronounced in the pre-crisis period.

5.1.2 Effects of Data Frequency and the Use of Anonymous Transaction
Data

The bulk of the literature on herding had to rely either on lower frequency data or

anonymous transaction data. In order to investigate the impact these data limitations

have on the herding measure, we re-calculate the measures constraining our sample to

quarterly data and to trades above a specific size.

Data Frequency

In a first step, we calculate herding measures for each institution based on quarterly

trade imbalances. In each panel of Table 1, quarterly herding measures are displayed in

the second row. With only a few exceptions, herding measures are higher on a quarterly

horizon and in a range similar to that found in previous studies using quarterly data.

9In accordance with Lakonishok et al. (1992), empirical LSV herding measures below zero should
be interpreted as evidence against herding. According to e.g. Bellando (2010), negatively signed LSV
herding measures occur because the adjustment factor in Equation 1 can bias the LSV herding measure
downwards if the trading intensity is low. This explains why negatively signed herding measures can be
observed in case of small stocks. In our application, however, using only observations with a minimum
number of 5 traders should ensure that the bias is only small. Notice further that our conclusions hold
for different minimum numbers of traders, see Table 5 in the Appendix.

12



Table 1: LSV Herding Measures
This table reports mean values of HM in percentage terms, calculated at daily frequency, quarterly
frequency and with anonymous transaction data (i.e., all transactions below e34,000 for DAX
stocks, e14,000 for MDAX stocks and e7,000 for SDAX stocks are dropped) for all stocks and
various market segments. Standard errors are given in parentheses.

All Stocks DAX 30 MDAX SDAX

Sample period: July 2006 – March 2009

Daily data 1.40
(0.02)

3.65
(0.04)

1.24
(0.04)

−0.03
(0.05)

Observations 83,842 20,901 33,616 29,325

Quarterly data 2.29
(0.15)

3.59
(0.26)

2.14
(0.23)

1.63
(0.27)

Observations 1,395 331 534 530

Anonymous transactions 4.58
(0.02)

4.39
(0.04)

5.27
(0.04)

3.90
(0.06)

Observations 80,012 20,865 32,438 26,709

Pre-crisis period (<08/09/07)

Daily data 1.32
(0.04)

4.35
(0.06)

0.99
(0.05)

−0.59
(0.07)

Observations 33,257 8,427 13,005 11,825

Quarterly data 1.63
(0.20)

2.98
(0.41)

1.62
(0.32)

0.82
(0.35)

Observations 523 123 200 200

Anonymous transactions 2.54
(0.03)

2.47
(0.03)

2.54
(0.03)

2.47
(0.07)

Observations 32,751 8,426 12,857 11,468

Crisis period (≥08/09/07)

Daily data 1.60
(0.03)

3.17
(0.06)

1.41
(0.05)

0.34
(0.07)

Observations 50,585 12,474 20,611 17,500

Quarterly data 2.69
(0.20)

3.95
(0.35)

2.46
(0.31)

2.12
(0.38)

Observations 872 208 334 330

Anonymous transactions 5.99
(0.04)

5.68
(0.05)

5.99
(0.04)

4.97
(0.08)

Observations 47,261 12,439 19,581 15,241
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With quarterly data, the degree of herding increases particulary for small-capitalized

(SDAX) stocks. Yet, irrespective of the period under consideration and in line with

the results obtained for daily data, the results do not suggest that herding is more

pronounced in small stocks. Interestingly, in contrast to the daily measures, the quar-

terly herding measures have significantly increased in the crisis period for all market

segments. For brevity, we only present results for quarterly data. Results obtained for

monthly data are fully in line with the conclusions on quarterly data and are reported

in Table 7 in the Appendix.

Anonymous Transaction Data

Following the empirical literature using cutoff approaches to identify institutional in-

vestors from anonymous transactions, we calculate herding measures for data where

all institutional trades below a specific size have been dropped. Lee and Radhakrishna

(2000) suggests cutoffs of $50,000, $20,000, and $10,000 for large, medium, and small

stocks. Assuming the current level of exchange rates, we adopt that idea and con-

sider only trades in DAX, MDAX, and SDAX stocks that have a volume of more than

e34,000, e14,000, and e7,000, respectively. Out of our overall 167,422,502 records we

lose 118,307,150 due to this constraint. Ignoring trader identification, we treat every re-

maining transaction as independent. Consequently, if the same institution trades more

than once during a day, its transactions are regarded as trades by different institutions.

For each panel, the resulting herding measures are displayed in the third line of Ta-

ble 1. With some exceptions during the pre-crisis period, herding measures based on

anonymous transactions are significantly higher than those obtained for investor-level

data. This suggests that restricting the attention to large trades tends to exagger-

ate the actual degree of herding. More importantly, however, herding measures based

on anonymous transaction data particularly overstate the extend of herding during the

crises period. In fact, in contrast to the results obtained for investor-level data, herding

measures based on anonymous transactions seemingly indicate that the degree of herd-

ing has more than doubled in the crisis period for each market segment. Apparently,
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the identification of institutional traders through a cut-off approach is particulary dif-

ficult in the crisis period. In our application, evidence on herding based on anonymous

transaction data leads to misleading conclusions about the role of market stress for the

degree of herding.

5.2 Results on Sias Herding

Table 2 displays the results obtained from the Sias herding measure. The upper part

of the Table reports the average correlation in percentage terms.10 The estimated

correlation at daily frequency over the complete period and over all stocks is 18.01%,

which is slightly higher than the value obtained by Sias (2004) but lower than the result

of Puckett and Yan (2008) for weekly frequency. Similar to our results on LSV herding,

Sias herding measures obtained from quarterly and anonymous transaction data tend

to be higher than those obtained for daily investor-specific data.11

Correlated trading can only be attributed to herding behavior when the correlation in

trades has occurred because traders actually followed other traders. The lower parts

of Table 2 show the results for the partitioned correlation according to the decomposi-

tion proposed by Sias (2004), compare Equation 4. Since this decomposition requires

the identification of the trader, it cannot be applied to anonymous transaction data.

The results shown in the two lower panels of Table 2 reveal that institutions follow

their own trades as well as those of others. However, in contrast to the static LSV

measure, results obtained from the dynamic Sias measure crucially depend on the fre-

quency of the data. While at a daily frequency, the main part of the correlation,

about 56.19% (=0.1012/0.1801), results from institutions that follow their own trades,

herding is much more pronounced for quarterly data. In line with Sias (2004) and

Choi and Sias (2009), our quarterly estimates imply that nearly the whole correlation

10Following Sias (2004) and in line with the calculation of the LSV measure, only observations with at
least five traders active in i at time t are considered in the estimation. Table 6 in the Appendix display
results with different minimum numbers of traders and reveal that results are robust with respect to
the assumptions on minimum numbers of traders.

11Again results for monthly data are in line with our conclusions and are reported in Table 8 in the
Appendix.
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Table 2: Sias Herding Measures for the Whole Sample Period
The upper part of the table reports results for the average correlation in percentage terms of
the coefficient β calculated at daily and quarterly frequency and for anonymous transaction data.
Below, the table reports the partitioned correlations that result from institutions following their
own trades (panel 2) and institutions follow the trades of others (panel 3), see equation 4. Columns
2-4 of the table show the results from the computation of the cross-sectional average contribution
from following their own trades (equation 5) and following others trades (equation 6) for DAX 30,
MDAX and SDAX stocks. Standard errors are given in parentheses.

All Stocks DAX 30 MDAX SDAX

Average Correlation

Daily data 18.01
(0.53)

20.01
(0.68)

18.60
(0.53)

16.84
(0.53)

Observations 83,585 20,715 33,342 29,528

Quarterly data 20.32
(2.77)

20.46
(0.56)

14.06
(3.38)

23.02
(4.57)

Observations 1,260 300 483 477

Anonymous transactions 27.32
(0.35)

22.43
(0.67)

24.96
(0.54)

29.88
(0.60)

Observations 77,295 20,575 31,745 24,975

Follow Own Trades

Daily data 10.12
(0.19)

2.02
(0.03)

3.46
(0.04)

5.47
(0.06)

Quarterly data 1.52
(0.70)

0.50
(0.17)

0.26
(0.43)

0.33
(0.56)

Follow Trades of Others

Daily data 7.89
(0.23)

0.32
(0.03)

0.26
(0.04)

0.14
(0.06)

Quarterly data 18.80
(1.54)

2.50
(0.17)

2.67
(0.43)

3.13
(0.56)

(92%=18.8/20.32) results from following other traders, i.e., herding.

Moreover, in sharp contrast to daily herding measures but very much in line with the

empirical literature, quarterly herding measures tend to be higher for smaller stocks.

This may indicate that the size-effects predicted by herding theory are more relevant
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Table 3: Sias Herding Measures for the Crisis period (≥08/09/07)
This table reports correlations and decomposed correlations in percentage terms considering only
the period from August 8, 2007 until March 30, 2009. See notes in Table 2 for further explanations.

All Stocks DAX 30 MDAX SDAX

Average Correlation

Daily data 18.49
(0.43)

22.21
(0.87)

18.92
(0.68)

16.50
(0.74)

Observations 50,524 12,349 20,430 17,745

Quarterly data 25.64
(3.47)

28.95
(6.96)

18.04
(5.06)

26.80
(4.73)

Observations 773 90 297 296

Anonymous transactions 27.15
(0.45)

21.98
(0.88)

24.58
(0.70)

30.97
(0.80)

Observations 45,541 12,301 19,179 14,061

Follow Own Trades

Daily data 8.99
(0.22)

1.90
(0.04)

3.16
(0.05)

5.05
(0.08)

Quarterly data 1.98
(0.47)

0.69
(0.20)

0.35
(0.60)

0.09
(0.90)

Follow Trades of Others

Daily data 9.50
(0.22)

0.39
(0.04)

0.32
(0.05)

0.21
(0.08)

Quarterly data 23.66
(2.43)

2.51
(0.20)

2.43
(0.50)

3.46
(0.90)

for longer-term herding.

Finally, we investigated whether the evidence on Sias herding depends on the state of

the market. Table 3 presents results for the average correlation and the decomposed

correlation during the crisis-period. In particular for quarterly data, the Sias herding

measures indicate a higher degree of herding during the crisis-period.
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6 Conclusions

This paper contributes to the empirical literature on the short-term herding behavior of

financial institutions by analyzing high-frequency investor-level data that directly iden-

tifies institutional transactions. Applying Lakonishok et al.’s (1992) herding measure

to a broad cross-section of German stocks over the period from August 2006 to April

2009, we find an overall level of herding of 1.44% for all investigated financial institu-

tions, which is statistically significant but quite low. In the same vein, the dynamic

herding measure of Sias (2004) shows that trades of institutions are correlated over

time. However, the main part of this correlation stems from institutions that follow

their own trades and is not a consequence of herding.

If herding behavior is amplified by insufficient information availability or information

asymmetry, herding should be more pronounced in small stocks and in times of market

stress. Using daily data, both theoretical predictions are not supported by herding

measures obtained from investor-level data. In fact, we find that short-term herding is

even more pronounced in large stocks and highly developed market segments. Moreover,

daily herding measures have not increased since the beginning of the financial crisis.

Our data set allows us to explore the role of data availability for the evidence on herding.

First, we calculate the herding measures for quarterly data. Interestingly, the resulting

longer-term herding term measures partly lead to different conclusions. In line with

the empirical literature using low-frequent data, quarterly herding measures are larger

for smaller stocks. Moreover, the degree of quarterly herding has increased during the

financial crisis. In a second exercise, we transform our data in anonymous transactions

by ignoring all information about the investor. Following the empirical literature, we

assume that institutional traders can be identified by large trades. According to our

empirical results, herding measures based on anonymous transactions should be viewed

with caution. The resulting herding measures not only exaggerate the degree of herding,

they also provide spurious evidence in favor of increased short-term herding during the

financial crisis.
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A The modified Sias measure capturing size-effects

With increasing number of investors, the ”following other trades” term in the standard

decomposition of the Sias herding measure will increase much faster than the following

their own trades term. Moreover, the cross-sectional standard deviation of the buyers

ratio tends to fall. Simply dividing the sample into larger and smaller stocks could

therefore automatically result in a larger relative contribution of herding (following

others) in large capitalization stocks. In order to capture the distorting effect of the

average number of traders on the herding measure calculated for a specific market

segment, Sias (2004) introduces a modified decomposition of the correlation coefficient.

The size-adjusted contribution of traders ”following own trades” is

(Dnit − b̄rt)(Dni,t−1 − b̄rt−1)
N∗it

, (5)

where N∗it is the number of institutions trading stock i in both time periods t− 1 and

t. The average herding contribution for each stock i and time t only refers to traders

who follow the trades of others:

Nit∑
n=1

N∗
i,t−1∑

m=1,m 6=n

(Dnit − b̄rt)(Dmi,t−1 − b̄rt−1)
NitN∗i,t−1

, (6)

where Nit is the number of institutions trading stock i in t and N∗it is the number of

other institutions trading stock i in time t − 1. Note that the modified measures do

not add to the overall correlation coefficient.
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B Tables

Table 4: Statistics on Trading of Institutions
The first part of the table reports the average of investigated institutions active in a specific stock on
a specific day. The numbers are computed according to the daily trade imbalance of the institutions.
The second part of the table reports the share that the investigated institutions have in the trading
volume of a specific stock on a specific day averaged over all stocks and days in percentage terms.

All DAX 30 MDAX SDAX

Average daily number of traders active

Whole sample 25.14 50.79 23.41 10.78
<08/09/07 31.96 65.26 28.80 13.10
≥08/09/07 20.80 41.01 20.00 9.34

Average daily market share in percent

Whole sample 51.00 45.97 51.00 54.30
<08/09/07 70.34 65.91 75.33 68.71
≥08/09/07 39.45 32.46 37.43 45.82
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Table 5: Daily LSV Measures - Different Minimum Numbers of Trader Active
This table reports mean values of daily HM in percentage terms for the whole sample of stocks,
for the sub-sample of DAX 30, MDAX and SDAX stocks considering different minimum numbers
of traders active (0, 5, 10 or 20) for each stock on each trading day. The herding measures are first
computed over the whole sample stocks and over all trading days (but only for that cases were the
respective minimum trader amount is given) and than averaged across the different sub-sample of
stocks. Standard errors are given in parentheses.

AllStocks DAX30 MDAX SDAX

>0 trader 1.55
(0.02)

3.65
(0.04)

1.25
(0.04)

0.54
(0.05)

Observations 87,839 20,904 33,673 33,262

>5 trader 1.40
(0.02)

3.65
(0.04)

1.24
(0.04)

−0.03
(0.05)

Observations 83,842 20,901 33,616 29,325

>10 trader 1.71
(0.02)

3.63
(0.04)

1.30
(0.04)

0.06
(0.06)

Observations 69,474 20,900 31,864 16,710

>20 trader 2.57
(0.03)

3.62
(0.04)

1.74
(0.04)

0.77
(0.10)

Observations 42,385 20,201 19,116 3,068
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Table 6: Daily Sias Measures - Different Minimum Numbers of Trader Active
This table reports values of the average correlation coefficient β according to Sias (2004) considering
different minimum numbers of traders active (0, 5, 10 or 20) for each stock on each trading day. The
correlations where first estimated with a cross-sectional regression for each day t and stocks i. The
reported coefficients display the time-series average of the regression coefficients. The coefficients
are estimated considering the whole sample of stocks as well as only DAX 30, MDAX, and SDAX
stocks severalty.

AllStocks DAX30 MDAX SDAX

>0 trader 17.61
(0.26)

20.13
(0.67)

19.02
(0.54)

16.20
(0.54)

Observations 87,839 20,904 33,673 33,262

>5 trader 18.01
(0.53)

20.01
(0.68)

18.60
(0.53)

16.84
(0.53)

Observations 83,842 20,901 33,616 29,325

>10 trader 19.64
(0.14)

20.12
(0.67)

19.84
(0.52)

18.10
(0.83)

Observations 69,474 20,900 31,864 16,710

>20 trader 18.72
(0.17)

20.02
(0.69)

19.29
(0.75)

14.04
(1.70)

Observations 42,385 20,201 19,116 3,068
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Table 7: LSV Herding Measures - Monthly Data
This table reports mean values of HM in percentage terms, calculated at monthly frequency, see
Table 1 for further explanations.

All Stocks DAX 30 MDAX SDAX

Sample period: July 2006 – March 2009

Monthly data 1.97
(0.07)

3.03
(0.16)

1.98
(0.14)

1.29
(0.17)

Observations 4,171 990 1,597 1,584

Pre-crisis period (<08/09/07)

Monthly data 1.36
(0.12)

3.00
(0.22)

1.05
(0.18)

0.65
(0.22)

Observations 1,710 410 650 650

Crisis period (≥08/09/07)

Monthly data 2.39
(0.13)

3.06
(0.23)

2.62
(0.20)

1.73
(0.24)

Observations 2,461 580 947 934
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Table 8: Sias Herding Measures - Monthly Data
This table reports results for the Sias measure calculated at monthly frequency, see Table 2 and
Table 3 for further explanations.

All Stocks DAX 30 MDAX SDAX

Sample period: July 2006 – March 2009

Average Correlation

Monthly data 22.00
(1.50)

23.09
(2.48)

19.90
(2.43)

21.90
(2.47)

Observations 4,005 928 1,546 1,531

Follow Own Trades

Monthly data 4.60
(0.45)

1.31
(0.10)

0.98
(0.23)

1.19
(0.53)

Follow Trades of Others

Monthly data 17.40
(1.23)

1.95
(0.15)

2.22
(0.33)

2.98
(0.53)

Crisis period (≥08/09/07)

Average Correlation

Monthly data 24.96
(1.95)

30.91
(4.06)

22.27
(3.12)

23.38
(3.16)

Observations 2,433 551 942 940

Follow Own Trades

Monthly data 4.51
(0.47)

1.35
(0.32)

1.12
(0.40)

1.20
(0.50)

Follow Trades of Others

Monthly data 20.45
(2.43)

2.45
(0.30)

2.13
(0.28)

3.16
(0.48)
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