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Abstract

We propose a novel approach to model serially dependent positive-valued vari-
ables which realize a non-trivial proportion of zero outcomes. This is a typical
phenomenon in financial time series observed on high frequencies, such as cumulated
trading volumes or the time between potentially simultaneously occurring market
events. We introduce a flexible point-mass mixture distribution and develop a
semiparametric specification test explicitly tailored for such distributions. More-
over, we propose a new type of multiplicative error model (MEM) based on a
zero-augmented distribution, which incorporates an autoregressive binary choice
component and thus captures the (potentially different) dynamics of both zero
occurrences and of strictly positive realizations. Applying the proposed model to
high-frequency cumulated trading volumes of liquid NYSE stocks, we show that

the model captures both the dynamic and distribution properties of the data very
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well and is able to correctly predict future distributions.

Keywords: high-frequency data, point-mass mixture, multiplicative error model,
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1 Introduction

The availability and increasing importance of high-frequency data in empirical finance
and financial practice has triggered the development of new types of econometric models
capturing the specific properties of these observations. Typical features of financial data
observed on high frequencies are strong serial dependencies, irregular spacing in time,
price discreteness and the non-negativity of various (trading) variables. To account for
these properties, models have been developed which contain features of both time series
approaches and microeconometric specifications, see, e.g., Engle and Russell (1998),
Russell and Engle (2005) or Rydberg and Shephard (2003), among others.

This paper proposes a novel type of model capturing a further important property
of high-frequency data which is present in many situations but not taken into account in
extant approaches: the occurrence of a non-trivial part of zeros in the data — henceforth
referred to as ”excess zeros” — which is a typical phenomenon in both irregularly-spaced
as well as aggregated (regularly spaced) financial time series on high frequencies. For
instance, when modeling trade durations, many transaction data sets reveal a high
proportion of simultaneous occurrences of trades (and thus zero durations). They are
induced either by (large) trades which are simultaneously executed against several
(small) orders, by imprecise recording which assigns identical time stamps to fast
sequences of trades!' or by actual simultaneous occurrences of trading events. As it is
mostly quite difficult or even impossible to exactly identify and to disentangle such
effects, the often employed pragmatic solution of just aggregating all simultaneous
events together — and thus ultimately discarding zero occurrences — is not appropriate.
A further example, which serves as the major motivation for our study, arises in the
context of high-frequency time aggregates (e.g., 15 sec or 30 sec data), as often used in
high-frequency trading. Here, measures of trading activity, such as cumulated trading
volumes, naturally reveal a high proportion of zero observations since even for liquid
stocks there is not necessarily trading in each time interval. As a representative example,

Figure 1 depicts the empirical distribution of cumulated trading volumes per 15 seconds

!For example, the transaction time stamp provided by the widely used Trade and Quote (TAQ) database
is accurate to one second only.



of the Disney stock traded at the New York Stock Exchange (NYSE). Though Disney
is a highly liquid security, no-trade intervals amount to a proportion of about 20%,

leading to a significant spike at the leftmost bin.
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Figure 1: Histogram of 15 Sec Cumulated Volumes of the Disney Stock (NYSE),
January 16 to February 10, 2006

The occurrence of such high proportions of zero observations is obviously not
appropriately captured by any standard distribution for non-negative random variables,
such as the exponential distribution, generalizations thereof as well as various types of
truncated models (c.f. Johnson et al., 1994). This has serious consequences in a dynamic
framework, as, e.g., in the multiplicative error model (MEM) introduced by Engle
(2002) which is commonly used to model positive-valued autocorrelated data. In such
a framework, employing distributions which do not explicitly account for excess zeros
induces severe distributional misspecifications causing inefficiency and in many cases
even inconsistency of parameter estimates. These misspecification effects become even
more evident when zero occurrences — and thus (no) trading probabilities — follow their
own dynamics. Moreover, standard distributions are clearly inappropriate whenever
density forecasts are in the core of interest since they are not able to explicitly predict
zero outcomes.

To our best knowledge, existent literature does not provide any systematic and
self-contained framework to model, test and predict serially-dependent positive-valued
data realizing a non-trivial part of excess zeros. Therefore, our main contributions can
be summarized as follows. First, we introduce a new type of discrete-continuous mixture
distribution capturing a clustering of observations at zero. The idea is to decompose
the distribution into a point-mass at zero and a flexible continuous distribution for

strictly positive values. Second, we propose a novel semiparametric density test, which is



tailored to distributions based on point-mass mixtures. Both the proposed distribution
as well as the specification test might be valuable not only in the context of financial
data but also in engineering or natural sciences, see, e.g., Weglarczyk et al. (2005).
Third, we employ the above mixture distribution to specify a so-called zero-augmented
MEM (ZA-MEM) that allows for maximum likelihood estimation in the presence of zero
observations. Finally, we explicitly account for serial dependencies in zero occurrences by
introducing an augmented MEM structure which captures the probability of zeros based
on a dynamic binary choice component. The resulting so-called Dynamic ZA-MEM
(DZA-MEM) yields a specification which allows to explicitly predict zero outcomes and
thus is able to produce appropriate density forecasts.

A zero augmented model is an important complement to current approaches which
reveal clear deficiencies and weaknesses in the presence of zeros. For instance, the quasi
log-likelihood function of a MEM based on a (standard) gamma distribution (see, e.g.,
Drost and Werker, 2004) cannot be evaluated in the case of zero observations. An
analogous argument holds for the log-normal distribution yielding QML estimates of
a logarithmic MEM (Allen et al., 2008). Consequently, the only feasible distribution
yielding QML estimates is the exponential distribution. The latter, however, is heavily
misspecified in cases as shown in Figure 1 and thus yields clearly inefficient parameter
estimates. This inefficiency can be harmful if a model is applied to time-aggregated data
and is (re-)estimated over comparably short time intervals as, e.g., a day (for instance, to
be not affected by possible structural breaks). Moreover, using exponential QML or the
generalized methods of moments (GMM) as put forward by Brownlees et al. (2010) does
not allow to explicitly estimate (and thus to predict) point masses at zero. This limits
the applicability of such approaches, for instance, in VWAP applications where intraday
trading volumes have to be predicted. Finally, from an economic viewpoint, no-trade
intervals contain own-standing information. E.g., in the asymmetric information-based
market microstructure model by Easley and O’Hara (1992), the absence of a trade
indicates lacking information in the market. Indeed, the question whether to trade
and (if yes) how much to trade are separate decisions which do not necessarily imply
that no-trade intervals can be considered as the extreme case of low trading volumes.
Consequently, the binary process of no-trading might follow its own dynamics others
than that of (non-zero) volumes.

This paper contributes to several strings of literature. Firstly, it adds to the literature
on point-mass mixture distributions. An important distinguishing feature of the existing
specifications is whether the point-mass at zero is held constant (e.g., Weglarczyk et al.,

2005) or explained by a standard (static) binary-choice model (e.g., Duan et al., 1983).



We extend these approaches by allowing for a dynamic model for zero occurrences.
In an MEM context, De Luca and Gallo (2004) or Lanne (2006) employ mixtures of
continuous distributions which are typically motivated by economic arguments, such
as trader heterogeneity. The idea of employing a point-mass mixture distribution to
model zero values is only mentioned, but not applied, by Cipollini et al. (2006).

Secondly, our semiparametric specification test contributes to the class of kernel-
based specification tests, as e.g., proposed by Fan (1994), Fernandes and Grammig (2005)
or Hagmann and Scaillet (2007). None of the existing methods, however, is suitable
for distributions including a point-mass component. If applied to MEM residuals, our
approach also complements the literature on diagnostic tests for MEM specifications.

Third, since the proposed dynamic zero-augmented MEM comprises a MEM and
a dynamic binary-choice part, we also extend the literature on component models
for high-frequency data, as, e.g., Rydberg and Shephard (2003) or Liesenfeld et al.
(2006), among others. While the latter focus on transaction price changes, our model
is applicable to various transaction characteristics, as it decomposes a (nonnegative)
persistent process into the dynamics of zero values and strictly positive realizations. For
instance, the approach can explain the trading probability in a first stage and, given
that a trade has occurred, models the corresponding cumulated volume.

We apply the proposed model to 15 second cumulative volumes of two liquid stocks
traded at the NYSE. Using the developed semiparametric specification test, we show
that the ZA-MEM captures the distributional properties of the data revealing distinct
excess zeros very well. Moreover, a density forecast analysis shows that the novel type of
MEM structure is successful in explaining the dynamics of zero values and appropriately
predicting the entire distribution. The best performance is shown for a DZA-MEM
specification where the zero outcomes are modeled using an autoregressive conditional
multinomial (ACM) model as proposed by Russell and Engle (2005). In fact, we observe
that trading probabilities are quite persistent following their own dynamics. Our results
show that the proposed model can serve as a workhorse for the modeling and prediction
of various high-frequency variables and can be extended in different directions. Moreover,
the introduced class of zero-augmented distributions and semiparametric specification
test might be useful also in other areas where (continuous) data reveal a clustering at
single realizations. Examples might come from genomics and proteomics (e.g., Taylor
and Pollard, 2009) as well as hydrology (e.g., Weglarczyk et al., 2005).

The remainder of this paper is structured as follows. In Section 2, we introduce
a novel point-mass mixture distribution and develop a corresponding semiparametric

specification test which is applied to evaluate the goodness-of-fit based on MEM residuals.



Section 3 presents the dynamic zero-augmented MEM capturing serial dependencies
in zero occurrences. We evaluate the extended model and benchmark its performance
against the basic zero-augmented MEM by density forecast methods. Finally, Section 4

concludes.

2 A Discrete-Continuous Mixture Distribution

2.1 Data and Motivation

We analyze high-frequency trading volume data for the two stocks Disney (DIS) and
Johnson & Johnson (JNJ) traded at the New York Stock Exchange. The transaction
data is extracted from the Trade and Quote (TAQ) database released by the NYSE
and covers one trading week from February 6 to February 10, 2006. We filter the raw
data by deleting transactions that occurred outside regular trading hours from 9:30 am
to 4:00 pm, as well as observations recorded during the first and last 30 minutes of each
trading day to reduce the impact of opening and closure effects. The tick-by-tick data is
aggregated by computing cumulated trading volumes over 15 second intervals, resulting
in 6595 observations for both stocks. Modeling and forecasting cumulated volumes on
high frequencies is, for instance, crucial for trading strategies replicating the (daily)
volume weighted average price (VWAP), see, e.g., Brownlees et al. (2010). To account
for the well-known intraday seasonalities (see, e.g., Hautsch (2004) for an overview),
we divide the cumulated volumes by a seasonality component which is pre-estimated
employing a cubic spline function.

An important feature of the data is the high number of zeros induced by non-trading
intervals. The summary statistics in Table 1 and the histograms depicted in Figure 2
report a non-trivial share of zero observations of about 21% for DIS and roughly 7% for
JNJ.

A further major feature of cumulated volumes is their strong autocorrelation and
high persistence as documented by the Q-statistics in Table 1 and the autocorrelation
functions (ACFs) displayed in Figure 3.

To account for these strong empirical features, we first propose a distribution
capturing the phenomenon of excess zeros and, secondly, implement it in a MEM

setting.



Table 1: Summary Statistics of Cumulated Trading Volumes

All statistics are reported for the raw and seasonally adjusted time series. SD: standard
deviation, SK: skewness, g5 and qo5: 5%- and 95%-quantile, respectively. n,/n: share of zero
observations. Q(1): Ljung-Box statistic associated with [ lags. The 5% critical values associated
with lag lengths 20, 50 and 100 are 31.41, 67.51 and 124.34, respectively.

Johnson &
Disney (DIS) Johnson (JNJ)
Raw Adj. Raw Adj.
Obs 6595 6595 6595 6595
Mean 7071.3 1.02 4250.4 1.01
SD 13588.2 1.99 6293.3 1.48
SK 7.31 8.54 8.92 8.95
qs 0 0.00 0 0.00
q95 30000 4.24 14000 3.29
n./n 20.7% 20.7% 7.1% 7.1%
Q(20) 2710.90 2421.30 554.03 1006.02
Q(50) 6601.78 5916.07 867.30 1801.22
Q(100) 12025.76 10745.00 1173.65 2485.09
Q plelennnnan - [S)
e 05 10 15 20 25 30 35 40 45 50 55 e 0.5 1.0 15 20 25 30 35 4.0 45 50 55
2.1: DIS 2.2: JNJ

Figure 2: Sample Histograms of Deseasonalized Cumulated Volumes
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Figure 3: Sample Autocorrelograms
Sample autocorrelation functions of raw (grey line) and diurnally adjusted (black line) cumulated
trading volumes. Horizontal lines indicate the limits of 95% confidence intervals (£1.96/1/n).

2.2 A Zero-Augmented Distribution for Non-Negative Variables

We consider a non-negative random variable X with independent observations {X;};" ;,
corresponding, e.g., to the residuals of an estimated time series model. In the presence
of zero observations, a natural choice is the exponential distribution as it is also defined
for zero outcomes and, as a member of the standard gamma family, provides consistent
QML estimates of the underlying conditional mean function (e.g., specified as a MEM).
However, in case of high proportions of zero realizations (as documented in Section 2.1),
this distribution is severely misspecified making QML estimation quite inefficient. To
account for excess zeros we assign a discrete probability mass to the exact zero value.

Hence, we define the probabilities
m:=P((X >0), l-m:=P(X=0). (1)

Conditional on X > 0, X follows a continuous distribution with density gx(z) :=
fx(x|X > 0), which is continuous for x € (0,00). Consequently, the unconditional

distribution of X is semicontinuous with a discontinuity at zero, implying the density
fx(@) =1 —m)d(z) +m gx(z) Lzso), (2)

where 0 < 7 < 1, (x) is a point probability mass at x = 0, while I(;~0) denotes an
indicator function taking the value 1 for x > 0 and 0 else. The probability = is treated

as a parameter of the distribution determining how much probability mass is assigned



to the strictly positive part of the support. Note that the above point-mass mixture
assumes zero values to be “true” zeros, i.e., they originate from another source than
the continuous component and do not result from truncation. This assumption is valid,
e.g., in case of cumulative trading volumes, where zero values correspond to non-trade
intervals and originate from the decision whether or whether not to trade.

The log-likelihood function implied by the mixture density (2) is

5(19):nzln(l—7T)+nnzln7r—|—ZlngX(act;29g), (3)

t,nz

where 9 = (7,99), while n, and n,,, denote the number of zero and nonzero observations,
respectively. If no dependencies between 7 and 99 are introduced, componentwise
estimation is possible and the estimate of 7 is given by the empirical frequency of zero
observations.

The conditional density gx (x) can be specified according to any distribution defined
on positive support. We consider the generalized F (GF) distribution, since it nests most
of the distributions frequently used in high-frequency applications (see, e.g., Hautsch,

2003). The corresponding conditional density is given by

azv™ 1 [y + (x/A)a](—ﬁ—m) 0"
Aem B(m,n) ’ (4)

gx(z) =

where a > 0,m > 0,7 > 0 and A > 0. B(:) describes the full Beta function with

B(m,n) = I&%)E%) The conditional noncentral moments implied by the GF distribution

are

(m+s/a)T(n—s/a)
I'(m)T(n) ’

E[X°|X > 0] = \° ns/ar an > s. (5)
Accordingly, the distribution is based on three shape parameters a, m and 7, as well as
a scale parameter A\. The support of the GF distribution includes the exact zero only if
the parameters satisfy the condition am > 1 with the limiting case of an exponential
distribution. A detailed discussion of special cases and density shapes implied by
different parameter values can be found in Lancaster (1997).

The unconditional density of the zero-augmented generalized F (ZAF) distribution
follows from (2) and (4) as

amam—l T aj(-n—-m) p
fxla) = (L= m)o(o) o S g, (0)




which reduces to the GF density for 7 = 1. The unconditional moments can be obtained

by exploiting eq. (5), i.e.

E[X®] =7 E[X°|X > 0]+ (1—7) E[X°|X =0],

— 7\ s/ar(m_‘_s/a)F(U—S/a).
M DT

The log-likelihood function of the ZAF distribution is given by

an > s. (7)

L(W)=nIn(1 —7T)+nnzln7r+2{lna+(am— 1) Inzy+nlnn (8)

t,nz

—(m+m) In{n+ [z A7} = InB(m,n) - amln)\},

/

where ¥ = (7,a,m,n, \)".

2.3 A New Semiparametric Specification Test

We introduce a specification test that is tailored to point-mass mixture distributions
on nonnegative support like (2) and hence, complements the methods for dealing with
excess zero effects as described in Section 2.1. Instead of, e.g., checking a number of
moment conditions, we consider a kernel-based semiparametric approach, which allows
to formally examine whether the entire distribution is correctly specified. Compared
to similar smoothing specification tests for densities with left-bounded support, as,
e.g., proposed by Fernandes and Grammig (2005) and Hagmann and Scaillet (2007),
the assumption of a point-mass mixture under the null and alternative hypothesis is a
novelty. Furthermore, estimation in our procedure is optimized for densities which are
locally concave for small positive values as in Section 2.1.

In this setting, an appropriate semiparametric benchmark estimator for the uncon-
ditional density fx(x) must have the point mass mixture structure as in (2). Since the
support of the discrete and continuous component is disjoint, we can estimate both
parts separately without further functional form assumptions. In particular, we use the
empirical frequency # =n~! Dot U(z,>0) as an estimate for the probability X > 0. The

conditional density gx is estimated using a nonparametric kernel smoother

(@) = 3" K (1) 0
t=1

where K is a kernel function integrating to unity. The estimator is generally consistent

on unbounded support for bandwidth choices b = O(n™") with v < 1. Though, if

10



the support of the density is bounded, in our case from below at zero, standard fixed
kernel estimators assign weight outside the support at points close to zero and therefore
yield inconsistent results at points near the boundary. Thus instead, we consider a
gamma kernel estimator as proposed in Chen (2000) whose flexible form ensures that
it is boundary bias free, while density estimates are always nonnegative in contrast to
some boundary correction methods for fixed kernels such as boundary kernels (Jones,
1993) or local-linear estimation (Cheng et al., 1997). The asymmetric gamma kernel is
defined on the positive real line and is based on the density of the gamma distribution

with shape parameter /b + 1 and scale parameter b

K u®/b exp(—u/b)

o/b1p (W) = b T (w/b+ 1) (10)

For the final standard gamma kernel estimator set K, (X;) = K;/th (X¢) in (9).
Note that if the density is locally concave near zero, it is statistically favorable to
employ the standard gamma kernel (10) and not the modified version as also proposed
in Chen (2000) or other boundary correction techniques such as reflection methods (e.g.
Schuster, 1958) or cut-and-normalized kernels (Gasser and Miiller, 1979). In this case,
signs of first and second derivative of the density in this region are opposed causing
the leading term of the vanishing bias of the standard gamma kernel estimator to be of
smaller absolute value than the pure second derivative in the corresponding term for the
modified estimator and the other estimators (see Zhang (2010) for details). With the
same logic, however, the opposite is true for locally convex densities near zero, as for,
e.g., income distributions (Hagmann and Scaillet, 2007), which we do not consider here.

While for estimation at points further away from the boundary the variance of
gamma Kkernel estimators is smaller compared to symmetric fixed kernels, their finite
sample bias is generally larger. We therefore apply a semiparametric correction factor
technique as in Hjort and Glad (1995) or Hagmann and Scaillet (2007) to enhance the
precision of the gamma kernel estimator in the interior of the support. This approach is
semiparametric in that the unknown density gx (z) is decomposed as the product of the
initial parametric model gx(m, 19) and a factor r(z) which corrects for the potentially
misspecified parametric start. The estimate of the parametric start is given by gX(x, @,
where 9 is the maximum likelihood estimator. The correction factor is estimated
by kernel smoothing, such that 7(z) = % Yot Kopiap () /gX(Xt, Q% Therefore, the

11



bias-corrected gamma kernel estimator is

(o) = = 3k () S (1)
nb £ z/b+1,b ax(X, @ )

which reduces to the uncorrected estimator if the uniform density is chosen as the initial
model. Hjort and Glad (1995) show that a corrected kernel estimator yields a smaller
bias than its uncorrected counterpart, whenever the correction function is less “rough”
then the original density. Their proof is for fixed symmetric kernels, but the argument

also holds true for gamma-type kernels with slightly modified calculations.
The formal test of the parametric model fX(x, 19) against the semiparametric alter-
native fx(x) measures discrepancies in squared distances integrated over the support.

As the discrete parts coincide in both cases, it is based on
o 2
=7 [ {ox(@) - ox(w.9)} d, (12)
0

where g;(z) and gX(x,QS‘) denote the general and parametric conditional densities

respectively. The null and alternative hypothesis are
Hy: P{fx(@) = fx(@.9)} =1 Hi: P{fx(e) = fx(z.9)} <1, (13)

where fx(x) and f X(x, @ are the semiparametric and parametric density estimates with
respective continuous conditional parts gx(, 19) and gx(x) asin (11). The feasible test

statistic is given by
o0 2
Tn:n\/l;fr/ {f]x(x)—gx(x,@} dx. (14)
0

Asymptotic normality of statistic (14) could be shown using the results of Fernandes and
Monteiro (2005). But it is well-documented that non- and semiparametric tests suffer
from size distortions in finite samples (e.g. Fan, 1998). Thus, we employ a bootstrap
procedure as in Fan (1998) to compute size-corrected p-values. This is outlined in detail
in the following subsection for a specific model of serial dependence in the data.

We choose the bandwidth b according to least squares cross-validation, which is fully

data-driven and automatic. Thus, for the bias-corrected gamma kernel estimator (11)

12



the bandwidth b must minimize

nzZZ

i gX xla{’)gX x]a

o 2
1%/0 QX(%@ K;/b+17b (:) K;/b-i-l,b(xj) dx

~

9X(%ﬂ9<>)
—_—, 15
n_ 1 zz:; :rl/b+1b xj ([L'],Q9( )) ( )

where 'g(i) denotes the maximum likelihood estimate computed without observation X;.
The cross-validation objective function is directly derived from requiring the bandwidth
to minimize the integrated squared distance between semiparametric and parametric
estimate. For the uncorrected gamma kernel estimator, the corresponding objective
function is analogous to (15), but does not involve density terms.

Our test differs from related methods not only by being designed for point-mass mix-
tures. Fan (1994) uses fixed kernels with the respective boundary consistency problems.
Fully nonparametric (uncorrected) gamma kernel-based tests as Fernandes and Grammig
(2005) have a larger finite sample bias near the boundary for locally concave densities
and generally also in the interior of the support. The semiparametric test of Hagmann
and Scaillet (2007) suffers from the same problem near zero. Furthermore, weighting
with the inverse of the parametric density in their test statistic yields a particularly
poor fit in regions with sparse probability, which is an issue in our application, as the

distributions are heavily right-skewed.

2.4 Empirical Evidence: Testing a Zero-Augmented MEM

To apply the proposed specification test to our data, we have to appropriately capture
the serial dependence in cumulated volumes. This task is performed by specifying a
multiplicative error model (MEM) based on a zero-augmented distribution. Accordingly,

cumulated volumes, y;, are given by
Yt = Ut Et, Er ~~ ii.d. D(l) s (16)

where p; denotes the conditional mean given the past information set F;_1, while ¢,
is a disturbance following a distribution D(1) with positive support and Ele;] = 1. A
deeper discussion of the properties of MEMs is given by Engle (2002) or Engle and
Gallo (2006). We specify p; in terms of a Log-MEM specification proposed by Bauwens

and Giot (2000) which does not require parameter constraints to ensure the positivity

13



of . Accordingly, py is given by

P P q
Inpu =w+ Z a; Inep; Wiy, 50) + Z a? Uiz, —0) + Z Gi In py—;, (17)
i=1 i=1 i=1

where the additional dummy variables prevent the computation of lne;—; whenever
gt—; = 0. The lag structure is chosen according to the Schwartz information criterion
(SIC). For more details on the properties of the logarithmic MEM, we refer to Bauwens
and Giot (2000) and Bauwens et al. (2003). A comprehensive survey of additional MEM
specifications can be found in Bauwens and Hautsch (2008).

We evaluate whether the ZAF distribution provides an appropriate parametric
specification for the distribution of MEM innovations for cumulated volumes. Define
the zero-augmented MEM (ZA-MEM) as a MEM where ¢; is distributed according to
the ZAF density (6) with scale parameter A = (7 &)~ " and

&:=n"*[L(m+1/a)T(n —1/a)] [L(m) ()] " (18)

Recalling (7), this constraint on A ensures that the unit mean assumption for &, is
fulfilled. The MEM structure (16) implies that, conditionally on the past information
set Fi_1, y¢ follows a ZAF distribution with A\ = s (7 5)_1. Note that the latter
constraint prevents componentwise optimization of the corresponding log-likelihood and
thus requires joint estimation of all parameters.

To generate residuals &; := y;/fi; which are consistent estimates of the errors &,
we estimate the model by exponential QML. Alternatively, we could obtain consistent
error estimates using the semiparametric methods by Drost and Werker (2004) or
employing GMM as in Brownlees et al. (2010). The corresponding estimates are given
by Table 2. The consistency and parametric rate of convergence of the conditional mean
estimates enable us to use the residuals as inputs for the semiparametric specification
test without affecting the asymptotics of the kernel estimators discussed in Section 2.3. A
similar procedure is applied by Fernandes and Grammig (2005) for their nonparametric
specification test.

Figure 4 depicts the error densities implied by the quasi maximum likelihood
estimates and the semiparametric approach based on the uncorrected gamma kernel.
For both stocks, the parametric and semiparametric density are quite close to each other.
However, there is a noticeable discrepancy near the mode, which can be explained by the
increased bias of the gamma kernel as compared to standard fixed kernels in the interior

of the support. To refine the semiparametric density estimate, we employ the bias-
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Table 2: Estimation Results — ZA-MEM
Quasi maximum likelihood estimates and t-statistics of the zero-augmented Log-MEM. Lag
structure is determined using SIC.

DIS JNJ

Coef. T-Stat. P-Val. Coef. T-Stat. P-Val.
w 0.0100 4.866 0.000 0.026 8.192 0.000
oq 0.026 7.432 0.000 0.057 9.218 0.000
51 0.978 299.709 0.000 0.925 98.489 0.000
04[1) 0.000 0.076 0.939 0.002 0.114 0.909
m 2.715 9.685 0.000 1.111 5.989 0.000
7 55.410 5.427 0.000 2.948 4.049 0.000
a 0.487 18.438 0.000 1.151 8.392 0.000
T 0.793 159.235 0.000 0.930 294.951 0.000
L -8796.096 -7870.592
SIC 17662.544 15811.536

corrected gamma kernel estimator (11), choosing the ZAF distribution as parametric
start. The plots in Figure 5 show that, in both cases, the discrepancy near the mode
vanishes, as the parametric density now generally lies within the 95%-confidence region
of the semiparametric estimate.

The estimation results suggest that the ZAF distribution provides a superior way
to model MEM disturbances for cumulated volumes. This graphical intuition can be
formally assessed by the proposed semiparametric specification test (14). In the MEM
setting (16), we obtain applicable finite sample p-values via the following bootstrap
procedure:

Step 1: Draw a random sample {e}}} | from the parametric ZAF distribution with
density fa(g, @, where 9 is the maximum likelihood estimate of the ZAF parameters 1
as in (8) from the original data. From this, generate the bootstrap sample {y;},_; as
yi = fu ey, where [i; is the fitted conditional mean as in (17) based on the maximum
likelihood estimates from the original data.

Step 2: Use {y;};_, to compute the statistic T},, which we denote as 7). This requires
the re-evaluation of both the parametric and semiparametric estimates of f.(e).

Step 3: Steps 1 and 2 are repeated B times and critical values are obtained from the
B
r=1"

empirical distribution of {Tf;r}
Table 3 displays the test results based on B = 500 bootstrap replications for the
critical values. In both cases, the statistic is insignificant at the 5%-level, which implies

that we cannot reject the null hypothesis as given in (13). These results confirm that the
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Figure 4: Estimates of Error Density with Gamma KDE

The black solid line represents the error density implied by the QML estimates of the ZA-MEM.
The black dashed line is the semiparametric estimate based on the gamma kernel estimator. The
grey dashed lines are 95% confidence bounds of the kernel density estimator. LSCV bandwidths:
0.0212 (DIS), 0.0210 (JNJ). Estimates of 1 — 7 based on sample percentage of zeros values:
0.2068 (DIS), 0.0705 (JNJ).

< <
o~ o~
2 2

5.1: DIS 5.2: JNJ

Figure 5: Estimates of Error Density with Corrected Gamma KDE

The black solid line represents the error density implied by the QML-estimates of the ZA-MEM.
The black dashed line is the semiparametric estimate based on the bias-corrected gamma kernel
estimator. The grey dashed lines are 95% confidence bounds of the kernel density estimator.
LSCV bandwidths: 1.3055 (DIS), 1.3067 (JNJ). Estimates of 1 — 7 based on sample percentage
of zeros values: 0.2068 (DIS), 0.0705 (JNJ).
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ZA-MEM is able to capture the distributional properties of high-frequency cumulated

volumes.

3 Dynamic Zero-Augmented Multiplicative Error Models

3.1 Motivation

Assumption (1) implies that, conditional on past information, the trading probability is

constant or, more formally,
mi= P(é‘t > 0|ft_1) = P(yt > 0|ft_1) = P(It = 1|ft_1), (19)

where 7, is a “trade indicator” taking the value 1 for y; > 0 and 0 else. Given that (non-
zero) cumulative volume is clearly time-varying and reveals persistent serial dependencies,
the assumption of constant no-trade probabilities appears to be rather restrictive.
Moreover, it is at odds with the well-known empirical evidence of autocorrelated trading
intensities, see, e.g., Engle and Russell (1998). Table 4 shows the results of a simple
runs test based on the trade indicator Z; suggesting that the null hypothesis of no serial
correlation in no-trade probabilities is clearly rejected. Consequently, we propose an

augmented version of ZA-MEM accounting also for dynamics in zero occurrences.

3.2 A ZA-MEM with Dynamic Zero Probabilities

Assume that, given the past information set F;_1, the conditional probability of the
disturbance e; being zero depends on a restricted information set H;_1 C F;—1. Moreover,

7 is assumed to depend on H;_; by a function 7(;1) with parameter vector 9,
Ty 1= P(Et > O’]:t—l) = P(Et > O’Ht_l) = W(Ht_l;lb). (20)

Table 3: Semiparametric Test for Specification of Error Density

Results of the semiparametric specification test from Section 2.3 applied to the MEM errors &;.
The reported p-values are based on the empirical distribution of the test statistic resulting from
500 simulated bootstrap samples.

DIS JNJ

0.049 0.337 0.160 0.066
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Table 4: Runs Test for Trade Indicator

Results of the two-sided runs test for serial dependence of the indicator for nonzero aggregated
R—E(R)

volumes. Under the null of no serial dependence, the statistic Z = R

(R: number of runs)
is asymptotically standard normal.

DIS JNJ

Z P-Val. Z P-Val
-6.523 0.000 -6.432 0.000

As a consequence of this assumption, the disturbances lose the i.i.d. property and,
conditionally on H;_;, are independently but not identically distributed. Thus, the
dynamics of the endogenous variable, 3, are not fully captured by the conditional mean
e, as past information contained in H;_; affects the innovation distribution. Similar
generalizations of the MEM error structure have been considered, e.g., by Zhang et al.
(2001) or Drost and Werker (2004). The resulting dynamic zero-augmented MEM
(DZA-MEM) can be formally written as

Yt = prey;  €¢|He1 ~inid. PMD(1), (21)

where PMD(1) denotes a point-mass mixture as in (2) with assumption (1) replaced

by (20) and E[et|H¢—1] = E[e¢] = 1. Hence, the conditional density of e; given H;_1 is
f5(5t|Ht—1) = (1 - 7Tt) 5(5t) + e ga(&t\Ht—l) H(st>0)7 (22)

where the conditional density for e; > 0, g-(e¢|H;—1), depends on H;_; through the

probability 7, as the unit mean assumption in (21) requires
Kt = Elegler > 0y Hy 1] = 7, L, (23)
such that
Ele)] = E{E[et|Hi-1]} = E[m ki) = 1. (24)

Since the function 7(+;1)) is equivalent to a binary-choice specification for the trade

indicator Z; defined in (19), the log-likelihood of the DZA-MEM consists of a MEM
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and a binary-choice part,

n

L(VY) = Z {Ztnm+(1-Z) n(1 —m) } + Z {In fe(ye/pe|He—1;99) — In e}, (25)

t=1 t,nz

where 9 = (1,99, 9*)" with 9* denoting the parameter vector of the conditional mean
. As in the previous section, a separate optimization of the two parts is infeasible,
since the constraint (23) implies that both components depend on the parameters of
the binary-choice specification, .

If we use the ZAF distribution as point-mass mixture PMD(1), we obtain the

conditional density of ¢; given H;_1 as

a gl ™ I+ (e m €)™ g
(ﬂ-t é)iam B(ma 77)

fe(et|Hi—1) = (1 — ) 0(er) + 7 Tep>0)  (26)

where we set Ay = (m; €)', with & defined as in (18), to meet the constraint (23). The

corresponding log-likelihood function is

L£(9) = zn: {Zilnm + (1-Z) In(1—m)}+ ) { loga + (am — 1) Inz, (27)
t=1 t,nz
e i o (ae) i ani s €) s}

where 9 = (¥, a,m,n, 9*)'.

3.3 Dynamic Models for the Trade Indicator

To allow the trade indicator Z; to follow a dynamic process, we propose two alternative
specifications: a parsimonious autologistic specification and a more flexible parameteri-
zation using autoregressive conditional multinomial (ACM) dynamics as proposed by

Russell and Engle (2005). By considering the general logistic link function

e = m(Hy_139) = %, (28)

the autologistic specification for hy = In[m;/ (1 — m;)] is given by
l

d
hi = 6o + Z 0; A—i + g, and g = Z i Li—i, (29)
i=1 i=1
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where A; denotes an indicator for large values of the endogenous variable of y; and is
defined as

Ay = max(y; — Z;,0) . (30)

This type of transformation was suggested in a similar setting by Rydberg and Shephard
(2003) and accounts for the multicollinearity between the lags of y; and Z;. The
autologistic model has advantages in terms of tractability, such as the concavity of the
log-likelihood function, making numerical maximization straightforward. However, since
this process does not include a moving average component, it is not able to capture
persistent dynamics in the binary sequence. Therefore, as an alternative specification,

we propose an ACM specification given by

v w
hi=w+Y pisig+ Y, Ghij, (31)
j=1 j=1
where
Loy — Ty
S1-j = ——d (32)

mi—j (1 —m—j)

denotes the standardized trade indicator. The process {s;} is a martingale difference
sequence with zero mean and unit conditional variance, which implies that {h;} follows
an ARMA process driven by a weak white noise term. Consequently, {h;} is stationary
if all values of z satisfying 1 — (12 — ... — (2% = 0 lie outside the unit circle. For more
details, see Russell and Engle (2005).

An appealing feature of the ACM specification in the given framework is its sim-
ilarity to a MEM. Actually, analogously to a MEM specification, it imposes a linear
autoregressive structure for the logistic transformation of the probability 7, which,
in turn, equals the conditional mean of the trade indicator Z; given the restricted
information set H;_1, i.e., £ [Z;|H;—1].

The DZA-MEM dynamics can be straightforwardly extended by covariates which
allow to test specific market microstructure hypotheses. Moreover, a further natural
extension of the DZA-MEM is to allow for dynamic interaction effects between the
conditional mean of y;, us, and the probability of zero values, ;. For instance, by

allowing for spillovers between both dynamic equations, the DZA-MEM can be modified
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as

v w m
ht:w+zpj3t—j+ZCj ht—j"’ZTth—ja (33)
j=1 j=1 j=1
p p q n
Inpy =w+ Z a; Inep; Uiy, 50y + Z af Oip, ;=0) + Z Bi Inpe—i + Z 0i Tt—i-
i=1 i=1 =1 i=1

In the resulting model, the intercepts w and w are not identified without additional
restrictions. Hence, identification requires, for instance, w = 0. Alternatively, or
additionally, dynamic spillover effects might be also modeled by the inclusion of the

lagged endogenous variables of the two equations, see, e.g., Russell and Engle (2005) in
an ACD-ACM context.

3.4 Diagnostics

The evaluation of the DZA-MEM is complicated by the fact that the disturbances
are not i.i.d. In particular, the non-identical distribution makes an application of the
semiparametric specification test from Section 2.3 impossible. Moreover, since the
disturbances are not i.i.d. even given the restricted information set H;_1, we cannot
employ a transformation that provides standardized i.i.d. innovations as in De Luca
and Zuccolotto (2006). As an alternative, we suggest evaluating the model based on
density forecasts as developed by Diebold et al. (1998) and firstly applied to MEM-type
models by Bauwens et al. (2004). One difficulty is that this method is designed for
continuous random variables, while we have to deal with a discrete probability mass at
zero. Therefore, following Liesenfeld et al. (2006) and Brockwell (2007), we employ a
modified version of the test. The idea is to add random noise to the discrete component,
making sure that the c.d.f. is invertible. Thus, we compute randomized probability

integral transforms

Uy By (y|Fio1) ify =0,
5= { t Y(yt| t 1) 1T Yt (34)

Fy (ye| Fi-1) if y, > 0,

where Fy (y¢|Fi—1) denotes the conditional c.d.f. of y; implied by the DZA-MEM, while
Uy are random variables with {U;};; being i.i.d. U(0,1). Using equation (22), we

obtain

B {Ut (1—m) if i = 0, (35)

2t = .
(1 —7p) + m Ge(ye /| He—1)  if ye > 0,
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where G¢(y:/ | Hi—1) is the conditional c.d.f. of the disturbances &, for ; > 0 evaluated
at y/ue. For a DZA-MEM based on the ZAF distribution, it follows that
U, (1 if 4, = 0,
we { G0 L (36)
(L —m) +m [Blesm,m) /B(m,n)] ify: > 0,

where B(c;m,n) = [5t" 1 (1 - t)7 1 dt is the incomplete beta function evaluated at

c:= (p T f)a [77 + (ye T 5)61_1- (37)

If the conditional distribution of y; is correct, the z; sequence is i.i.d. U(0,1), see
Brockwell (2007) for a proof. While Diebold et al. (1998) recommend a visual inspection

of the properties of the z’s, we also check for uniformity using Pearson’s y?-test.

3.5 Empirical Evidence on DZA-MEM Processes

We apply a DZA-MEM by parameterizing the conditional mean function p; based on
the Log-MEM specification (17). The lag orders in both dynamic components are
chosen according to the Schwarz information criterion. Table 5 shows the estimation
results for the DZA-MEM with autologistic binary-choice component. No consistent
effects for the large volume indicator my; across the two stocks are found. Large volumes
increase the trading probability in the case of DIS, while reducing it for JNJ. However,
the lagged trade indicators are significantly positive in almost every case. Thus, trade
occurrences are positively autocorrelated, which is in line with empirical studies on
market microstructure (see, e.g., Engle, 2000).

For both stocks, all Q-statistics of the autologistic residuals

up = & (38)
e (1 — )
are significant at the 5% level, showing that an autologistic specification does not
completely capture the dynamics and is too parsimonious.

As shown by Table 6, dynamically modeling trade occurrences by an ACM specifi-
cation yields significantly lower Q-statistics. Hence, the ACM specification seems to
fully capture the persistence in the trade indicator series, with the parameter estimates
underlining the strong persistence in the process. Actually, the coefficient (; is close to
unity for both stocks suggesting that the underlying process is very persistent.

We evaluate the model using the density forecast approach discussed in Section 3.4.

Table 7 shows the results of the y2-test for uniformity of the randomized probability
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Table 5: Estimation Results — DZA-MEM with Autologistic Component

Maximum likelihood estimates of the DZA-MEM based on the ZAF distribution with autologistic
specification for the binary choice component. The Q-statistics refer to the residuals of the
autologistic component. 5% critical values of the Q-statistics with 20, 50 and 100 lags are 31.410,
67.505 and 124.342, respectively. The autologistic residuals are defined as:

Ty—1

Y= ()

DIS JNJ

Coef. T-Stat. P-Val. Coef. T-Stat. P-Val.
w 0.012 5.132 0.000 0.026 8.184 0.000
o1 0.026 7.652 0.000 0.054 9.08 0.000
061 0.978 305.292 0.000 0.929 104.145 0.000
04(1) -0.009 -1.253 0.210 -0.020 -1.187 0.235
m 2.612 9.839 0.000 1.100 6.010 0.000
n 55.464 5.301 0.000 2.917 4.053 0.000
a 0.500 8.446 0.000 1.161 8.397 0.000
0o 0.285 2.412 0.016 0.953 4.352 0.000
01 0.059 2.529 0.011 -0.083 -3.331 0.001
Y1 0.511 7.584 0.000 1.089 7.981 0.000
Y2 0.355 5.245 0.000 0.151 0.947 0.344
3 0.107 1.580 0.114 0.591 3.957 0.000
Y4 -0.093 -1.365 0.172 - - -
5 0.203 2.980 0.003 - - -
Y6 0.241 3.541 0.000 - - -
L -8729.730 -7833.532
SIC 17591.371 15772.592
Q(20) 42.387 35.483
Q(50) 86.260 85.031
Q(100) 173.606 174.753

integral transforms (PITs) implied by the ZA-MEM and the DZA-ACM-MEM. For
the former specification, the y2-statistics are significant at the 5% level. In the case of
the DZA-ACM-MEM, the null hypothesis of a uniform distribution cannot be rejected
at any conventional significance level for both stocks. For DIS, the y2-statistic nearly
halves indicating an impressive performance improvement. These findings are underlined
by the histograms of the PITs depicted in Figure 6. For both stocks, the PIT histogram
implied by the DZA-ACM-MEM is close to a uniform distribution, while almost none

of the bars is outside the 95% confidence region.
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Table 6: Estimation Results — DZA-MEM with ACM Component

Maximum likelihood estimates of the DZA-MEM based on the ZAF distribution with ACM
specification for the binary choice component. The Q-statistics refer to the residuals of the
ACM component. 5% critical values of the Q-statistics with 20, 50 and 100 lags are 31.410,

67.505 and 124.342, respectively. The ACM residuals are defined as:

Ly—¢

U= e )

DIS JNJ

Coef. T-Stat. P-Val. Coef. T-Stat. P-Val.
w 0.013 5.721 0.000 0.026 8.374 0.000
o1 0.025 7.780 0.000 0.054 8.987 0.000
061 0.979 327.030 0.000 0.930 104.084 0.000
a(l) -0.018 -2.588 0.010 -0.031 -1.825 0.068
m 2.652 9.493 0.000 1.109 6.555 0.000
n 55.332 4.121 0.000 2.949 4.398 0.000
a 0.495 17.256 0.000 1.152 9.176 0.000
w 0.023 1.970 0.049 0.112 2.056 0.040
o1 0.202 7.820 0.000 0.237 6.940 0.000
P2 -0.138 -4.870 0.000 -0.146 -3.815 0.000
G 0.983 116.111 0.000 0.957 45.964 0.000
L -8726.831 -7838.810
SIC 17550.398 15774.355
Q(20) 30.672 20.425
Q(50) 52.548 51.552
Q(100) 109.633 124.276

Table 7: x2-Test for Uniformity of the PITs
Results of the y2-test for uniformity of the randomized probability integral transforms of the

estimated ZA-MEM and DZA-ACM-MEM specifications.

DIS INJ
x> P-Val. X2 P-Val
ZA-MEM 38.883 0.005 30.719 0.043
DZA-ACM-MEM 15.035 0.720 22.386 0.265
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Figure 6: Histograms of Computed PIT-Sequences
Histograms of the randomized probability integral transforms of the estimated ZA-MEM and
DZA-ACM-MEM specifications. The dashed lines represent 95% confidence bounds.

4 Conclusions

We introduce a new approach for modeling autoregressive positive-valued variables
with excess zero outcomes. These properties are typical for both irregularly-spaced and
time-aggregated financial high-frequency data and cannot be appropriately handled in
extant approaches.

To capture the clustering of observations at zero, we propose a new point-mass
mixture distribution, which consists of a discrete component at zero and a flexible
continuous distribution for the strictly positive part of the support. To evaluate such a
distribution, a novel semiparametric specification test tailored for point-mass mixture
distributions is introduced. Finally, to accommodate serial dependencies in the data we
incorporate the proposed point-mass mixture into a new type of multiplicative error
model (MEM) capturing the dynamics of both zero occurrences and strictly positive

values.

25



The empirical evidence based on cumulated trading volumes of two NYSE stocks
shows that a zero-augmented MEM relying on the proposed point-mass mixture is
able to capture the occurrence of excess zeros very well. The best fit is shown for a
specification incorporating a two-state ACM component for the trade indicator. Besides
MEM dynamics in the volumes, the model also explains the (own-standing) dynamics
in trade occurrences and produces good density forecasts.

The model is sufficiently flexible to be extended in various ways, e.g., to allow for
dynamic spillovers between the two types of dynamics or to incorporate regressors.
Moreover, the model is straightforwardly extended to a multivariate framework, in the
spirit of, e.g. Manganelli (2005), Cipollini et al. (2006) or Hautsch (2008).

Finally, the proposed ZAF distribution, its dynamic inclusion and the new semi-
parametric test for point-mass mixtures could be relevant also in other areas, such as

hydrology or genetics (see, e.g., Weglarczyk et al., 2005; Taylor and Pollard, 2009).
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