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Spatially Adaptive Density Estimation

by Localised Haar Projections

Florian Gach, Richard Nickl, and Vladimir Spokoiny ∗

University of Cambridge † and Weierstrass Institute Berlin ‡

March 2011

Abstract

Given a random sample from some unknown density f0 : R → [0,∞) we devise

Haar wavelet estimators for f0 with variable resolution levels constructed from lo-

calised test procedures (as in Lepski, Mammen, and Spokoiny (1997, Ann. Statist.)).

We show that these estimators adapt to spatially heterogeneous smoothness of f0,

simultaneously for every point x in a fixed interval, in sup-norm loss. The thresh-

olding constants involved in the test procedures can be chosen in practice under the

idealised assumption that the true density is locally constant in a neighborhood of

the point x of estimation, and an information theoretic justification of this practice

is given.

Keywords: spatially inhomogeneous smoothness, bandwidth choice, propagation ap-

proach

JEL-Classification: C14

1 Introduction

One of the most enduring challenges in statistical function estimation is to devise pro-

cedures that adapt to the locally variable complexity of the unknown function. For
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example, if one observes a random sample X1, ..., Xn with density f0 : R → R, then

f0 may exhibit spatially inhomogeneous smoothness: The density could be infinitely-

differentiable on most of its support except for a few points xm where it behaves locally

like |x − xm|αm for some distinct numbers αm. The location of the irregular points

xm will usually not be known, and neither the corresponding degree of smoothness αm.

Moreover f0 could possess a so-called multifractal behavior, changing its Hölder expo-

nents continuously on its domain of definition – in fact, as shown in Jaffard [11], ‘typical’

functions in the Besov spaces usually considered in nonparametric statistics are always

multifractal. Donoho and Johnstone [1] and Donoho, Johnstone, Kerkyacharian, and

Picard [2], [3] have suggested that methods based on wavelet shrinkage can, to a certain

extent, adapt to spatially inhomogeneous complexity of the unknown function f0. More-

over, Lepski, Mammen, and Spokoiny [12] showed that this is not intrinsic to wavelet

methods, and that similar spatial adaptation results can be proved for kernel methods

based on locally variable bandwidth choices.

There are several ways in which one can measure spatial adaptivity of an estimator.

A minimal requirement may be to devise a rule f̂n(x) that estimates f0(x) in an optimal

way at every point x, and the methods suggested in [1] and [12] meet this requirement.

These procedures depend on the point x, and the natural question arises as to how

a given procedure performs globally as an estimator for f0. To address this question,

Donoho et al. [3] and Lepski et al. [12] considered global Lr-loss, r < ∞, and argued

that taking Lr-loss over Besov-bodies B(s, p, q) where smoothness is measured in Lp,

r > p, gives a way to assess the spatial performance of an estimator. A probably more

transparent approach to the spatial adaptation problem is to consider sup-norm loss for

estimators with locally variable bandwidths: one aims to find an estimator f̂n(x) that is

locally optimal for estimating f0(x), and simultaneously so for all x. This approach was

not considered in the literature so far – the results [6], [7], [8], [9] address the spatially

homogeneous setting only.

A first contribution of this article is to show that a dyadic histogram estimator with

variable bin size spatially adapts to possibly inhomogeneous local Hölder smoothness

of f0, in global sup-norm loss. More precisely, for K(x, y) the Haar wavelet projection

kernel, we shall construct

f̂n(x) =
2ĵn(x)

n

n∑
i=1

K(2ĵn(x)x, 2ĵn(x)Xi),

where ĵn(x) is a variable resolution level that depends both on x and the sample, and
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show that the random variable

sup
x

1

r(n, x, f0)

∣∣∣f̂n(x)− f0(x)
∣∣∣

is stochastically bounded, where r(n, x, f0) is the local minimax adaptive rate of esti-

mation of f0 at the point x. In fact we prove an explicit finite-sample oracle inequality

that compares the estimator f̂n to an optimal (oracle-type) estimator that is described

in detail below.

While this result shows that spatial adaptation is indeed possible in a strong theo-

retical way, a drawback shared by most results in the literature on adaptive estimation

remains: The theoretical findings give no indication whatsoever as to how to choose

the numerical constants in the thresholds that feature in shrinkage- or Lepski-test-based

methods. It has become a common practice that thresholding constants are chosen

according to simulation results where simulations are drawn as if the true underlying

signal is very simple (say, uniform or piecewise constant). This practice has not had any

general theoretical corroboration until recently Spokoiny and Vial [14] gave, in a simple

Gaussian regression model, a certain justification based on the idea of ‘propagation’.

The results in [14] are heavily tied to the simplicity of the model used, in particular

to the strong Gaussianity assumption employed, and to the fact that pointwise loss is

considered. In the present paper we show how the ideas of [14] generalise, subject to

some nontrivial modifications, to nonparametric density estimation. A key idea in the

proofs in [14], translated into the density estimation context, is to replace the sampling

distribution by a locally constant product measure. The ’transportation cost’ of this re-

placement is easy to control in the Gaussian setting of [14], but in the density estimation

case the fluctuations of the likelihood ratios between the unknown sampling distribution

and relevant locally constant product measures do not obey a Gaussian regime, but turn

out to be of Poisson type, so that the ’Gaussian intuitions’ of [14] could be entirely

misleading. We show however that the main information theoretic idea of [14] remains

sound in this Poissonian setting as well: We use a Lepski-type procedure to construct

ĵn(x), and we show that if we compute sharp thresholds for this procedure as if the

true density f0 belonged to a family F of locally constant densities, then the resulting

estimator is spatially adaptive in sup-norm loss. In contrast to the results in [14], the

rates of convergence we obtain for the risk of the final estimator are exact rate-adaptive.

While the techniques and results of this paper generalise in principle to more complex

estimation problems that involve in particular adaptation to higher degrees of smooth-

ness, we prefer to stay within the simpler setting of Haar wavelets, which allows for a
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clean exposition of the main ideas.

2 Uniform spatial adaptation using propagation methods

We will use the symbol ‖g‖T to denote the supremum supt∈T |g(t)| of a function g over

some set T , but we will still use the symbol ‖g‖∞ to denote supx∈R |g(x)| if no confusion

can arise.

For any j ∈ N, we define a dyadic partition of (0, 1] into 2j-many disjoint subintervals

by setting Ij,k = (k2−j , (k + 1)2−j ], k = 0, . . . , 2j − 1; and for 0 < x ≤ 1 we denote by

Ij,k(x) the unique interval containing x. For j ∈ N, k = 1, . . . , 2j−1, let Vj,k be the space

of all bounded density functions on R that are constant on Ij,k. Via the local projections

Kj,x(f)(z) : =

2j
∫
Ij,k(x)

f(y)dy if z ∈ Ij,k(x),

f(z) otherwise,

we map any bounded density f onto Vj,k(x). (Note that Kj,x(f) is indeed a density since

Kj,x(f) and f assign the same probability to the interval Ij,k(x).) For f ∈ Vj,k and j′ ≥ j
we clearly have Kj′,x(f) = f .

2.1 Estimation procedure

Let X,X1, ..., Xn be i.i.d. with bounded density f0 : R → [0,∞), n > 1. We wish to

construct a single estimator which estimates f0(x) in an optimal way, uniformly so for

points x in the interval (a, b]. We shall take without loss of generality (a, b] = (0, 1],

and we shall assume throughout that f0 is bounded away from zero on (0, 1]. Let

K(x, y) =
∑

k φ(x − k)φ(y − k) be the projection kernel based on the Haar wavelet

φ = 1(0,1]. We shall write Kj(x, y) = 2jK(2jx, 2jy), and the associated linear density

estimator is the dyadic histogram estimator given by

fn(j, x) :=
1

n

n∑
i=1

Kj(x,Xi).

We make the important observation that Effn(j, x) = 2jPf (Ij,k(x)), which directly fol-

lows from the identity Kj(x, y) = 2j1Ij,k(x)(y). If f is constant on Ij,k(x) this in particular

implies Effn(j, x) = f(x). (In other words: for any locally (at x) constant density f the

bias of fn(j, x) equals zero if the resolution level is chosen fine enough.)

We finally note that the estimator fn(j, x) by construction only depends on data
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points falling into Ij,k(x). This amounts to n2−j being the ‘effective’ sample size for

estimating f0 at x.

2.2 Local choice of the resolution level

We fix jmax := jmax,n ∈ N satisfying 2−jmax ≥ (log n)2/n for some d > 0. For thresholds

ζn to be specified below, and for J ∈ N, J ≤ jmax and 0 < x ≤ 1, we define

ĵn(J, x) = min

{
j ∈ N, J ≤ j ≤ jmax :

√
n2−j′

∣∣fn(j′, x)− fn(j, x)
∣∣ ≤ ζn√fn(j, x) for all j′, j < j′ ≤ jmax

}
(1)

as well as

ĵn(x) = ĵn(0, x). (2)

(If the condition in (1) is not met for any j, J ≤ j ≤ jmax, we set ĵn(J, x) = jmax.) Given

the locally variable resolution level ĵn, we define the family of nonlinear estimators

f̂n(J, x) := fn(ĵn(J, x), x), f̂n(x) := fn(ĵn(x), x), x ∈ [0, 1]. (3)

These are estimators for f0(x) based on a locally variable resolution level depending on

x, and they are density-analogues of the estimators introduced in [12] in the context of

the Gaussian white noise model. Note that by construction ĵn(x) is a step function in

x. Introducing the parameter J will be useful in what follows – effectively, f̂n(J, x) is

a nonlinear estimator based on a search over the resolution levels j ≥ J that stops at

jmax.

2.3 Threshold choice by propagation

One of the main challenges for all adaptive procedures is the choice of the thresholds ζn

used in the tests defined in (1). Define the standardisation

1

sn(j, x)
:=


1√

fn(j,x)
if fn(j, x) > 0;

0 otherwise.

We suggest to choose the thresholds in such a way that the following condition is satisfied:

Condition 1 Let Fj,k be any triangular array of subsets of Vj,k, j ≤ jmax, k = 0, . . . , 2j−
1, and let k(m) be the unique k such that Ijmax,m ⊆ Ij,k. We say that the thresholds ζn
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satisfy the uniform propagation condition UP(α,Fj,k) for some fixed α > 0 if for every

n, every j ≤ jmax, every m = 0, . . . , 2jmax − 1, and every f ∈ Fj,k(m) we have that

Ef

 sup
x∈Ijmax,m

max
j≤j′≤jmax

√
n2−j′

log n

∣∣∣∣∣ f̂n(j′, x)− fn(j′, x)

sn(j′, x)

∣∣∣∣∣
2

≤ α

n22jmax
. (4)

(Note that since ĵn(j′) ≥ j′ we have that fn(j′, x) = 0 implies f̂n(j′, x) = 0 for the

fully data-driven estimator f̂n(j′), and so the error |f̂n(j′, x) − fn(j′, x)| is then 0.)

An interpretation of this condition can be given along the following lines: For 0 <

x ≤ 1 the class Fj,k(x) contains only densities f that can be exactly reconstructed on

Ij,k(x) by
∫
Kj(x, y)f(y)dy, so that the bias of the linear estimator fn(j′, x) equals zero

locally. In particular, any choice of the resolution level finer than j′ will only increase

the variance without reducing the bias, and we would want ĵn(j′, x) to detect that and

equal, with large probability, j′. This property of ĵn will then be mirrored in the fact

that f̂n(j′, x)− fn(j′, x) = 0 for every j′ ≥ j on an event with large probability, in which

case the l.h.s. of (4) is exactly equal to zero. The quantity α/(n22jmax) stands for the a

priori expected tolerance for a probabilistic error of ĵn to detect the ‘correct’ resolution

level on each interval Ijmax,m in this ‘no-bias’ situation.

The following lemma shows that Condition 1 is not empty and that thresholds ζn

satisfying the uniform propagation condition exist. It shows furthermore that the thresh-

olds can be taken to be of order
√

log n and independent of f , which will be crucial in

understanding the adaptive properties of f̂n below.

Lemma 1 Let Fj,k equal Vj,k intersected with the set{
f : 0 < δ ≤ inf

0<x≤1
f(x), ‖f‖∞ ≤M

}
for some fixed 0 < δ,M < ∞. Then for every given α > 0 there exists a numerical

constant κ > 0 that depends only on α such that for any threshold choice

ζn ≥ κ
√

log n

the uniform propagation condition UP(α,Fj,k) is at least satisfied for n larger than some

index that only depends on δ and M .

While Lemma 1 proves the existence of thresholds of the order
√

log n under the

uniform propagation condition – a fact that will be seen to imply adaptivity of f̂n below
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– it does not suggest a practical choice of ζn. Instead, this choice can be made by

direct evaluation of (4), as follows: Condition 1 only concerns the local error bounds

over small intervals Ijmax,m on which the function f is constant, which effectively means

that it suffices to check this condition only for classes of densities which are constant

on the interval of interest. The particular choice of the interval Ijmax,m is unimportant.

Secondly, all quantities in Condition 1 depend on known quantities after f is chosen.

By construction of the estimators fn and f̂n the random variable featuring in (4) – we

call it T – only depends on the number of data points falling into each of the (uniquely

determined) j′-fine intervals containing Ijmax,m. This observation allows for an easy

computation of the l.h.s. of (4) along the following lines: Fix 0 ≤ p ≤ 1. Then, for any

f ∈ Fj,k(m) satisfying 2−jf = p on Ij,k(m), the number Z of observations falling into the

interval Ij,k(m) is binomial B(n, p). Conditionally on Z = k, take k-many independent

random variables that are uniform on Ij,k(m) and count the number of observations Vj′

in each of the j′-fine intervals. Then compute fn, f̂n; and T . This shows that T does

only depend on Vj′ , j ≤ j′ ≤ jmax, and that the l.h.s. of (4) is therefore equal to

E[E[T (Vj , . . . , Vjmax)|Z]].

The practical choice of ζn can then be obtained via a Monte Carlo simulation of

(4) by choosing ζn as the smallest threshold for which (4) is satisfied in the simulation

for one specific interval Ijmax,m uniformly over the class of all densities constant on this

interval. Given jmax and α, this procedure has to be performed only for one fixed interval

Ijmax,m, and then applies for every m simultaneously.

2.4 Local small bias condition

The idea behind Condition 1 is that we take ‘idealised’ classes of densities F for which

we compute sharp thresholds ζn. The danger arises that the true density f0 may be very

different from the elements in F , which may lead to wrong thresholds (and inference).

We have to assess the error that comes from replacing f0 by an element from F , in a

neighborhood of a given point x. This can be fundamentally quantified in terms of the

log-likelihood ratio between f0 and its local (at x) approximand in F . As we shall see,

one of the deeper reasons behind the fact that propagation methods imply adaptation

results is that this error can be related to the usual bias term in linear estimation.

Condition 2 Given real numbers ∆j,x, 0 < x ≤ 1, j ∈ N ∪ {0} satisfying ∆l′,x ≤ ∆l,x

for every l′ > l, we say that f0 satisfies the local small bias condition at x ∈ (0, 1] and
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with ∆j,x ≡ ∆j,x(f0) if

VarKj,x(f0) log
f0

Kj,x(f0)
≤ ∆j,x(f0)

for all j ∈ N.

The local ’cost’ of transporting a product measure
∏n
i=1 f0(xi) to

∏n
i=1Kj,x(f0)(xi)

can be quantified by n times the variance featuring in the above condition, and we shall

have to restrict ourselves to resolution levels j for which this transportation cost is at

most a fixed constant times the logarithm of the sample size n. The smallest resolution

level for which this is still the case will be defined as j∗(x): More precisely, for some

fixed positive constant ∆, define the local resolution level

j∗(x) := j∗(x, n,∆, f0) = min {j ∈ N : j ≤ jmax, n∆j,x(f0) ≤ ∆ log n} . (5)

While this is an information-theoretic definition of j∗, a key observation of this subsection

is that it has the classical ‘bias-variance’ tradeoff generically built into it for suitable

choices of ∆j,x(f0).

Lemma 2 Suppose f0 is bounded by some finite number M > 0 and that

inf
0<x≤1

f0(x) ≥ δ > 0.

Then f0 satisfies Condition 2 with

∆j,x(f0) =
M

δ2
2−j‖f0 −Kj,x(f0)‖2∞.

Proof. First, observe that Kj,x(f0) is bounded by M and bounded below by δ >

0. Then, using that Kj,x(f0) coincides with f0 outside of Ij,k(x) and the inequality

| log x− log y| ≤ max(x−1, y−1)|x− y|, we get

VarKj,x(f0) log
f0

Kj,x(f0)

≤
∫ (

log
f0(y)

Kj,x(f0)(y)

)2

Kj,x(f0)(y)dy

≤
∫

max
(
f0(y)−2,Kj,x(f0)(y)−2

)
(f0(y)−Kj,x(f0)(y))2Kj,x(f0)(y)dy

≤ M

δ2

∫
(f0(y)−Kj,x(f0)(y))2dy ≤ M

δ2
2−j‖Kj,x(f0)− f0‖2∞.
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The lemma shows that the quantity (n/ log n)∆j,x(f0) can be viewed as the square

of the ‘bias divided by the variance’ of linear projection estimators for f0(x). Hence,

to choose the smallest j ≤ jmax such that (n/ log n)∆j,x(f0) is still bounded by a fixed

constant ∆ means to locally balance the ‘variance’ and ‘bias’ term in the nonparametric

setting.

To be more concrete, let us briefly discuss what this means in the classical situation

where the bias is bounded by local regularity properties of the unknown density f0.

Since we are interested in spatial adaptation, we wish to take locally inhomogeneous

smoothness into account by appealing to local Hölder conditions: Let 0 < t ≤ 1 and let

us say that a function g : R→ R is locally t-Hölder at x ∈ R if for some η > 0

sup
0<|m|≤η

|g(x+m)− g(x)|
|m|t

<∞.

Define further a ‘local’ Hölder ball of bounded functions

C(t, x, L, η) :=

{
g : R→ R, max

(
‖g‖∞, sup

0<|m|≤η

|g(x+m)− g(x)|
|m|t

)
≤ L

}
.

Condition 2 then has the following more classical interpretation in terms of local smooth-

ness properties of f0:

Lemma 3 If f0 ∈ C(t, x, L, η) for some 0 < t ≤ 1, then the local bias ‖f0 −Kj,x(f0)‖∞
is bounded by c2−jt for some constant c(t, L, η). Furthermore, if

inf
0<x≤1

f0(x) ≥ δ > 0,

then Condition 2 is satisfied with

∆j,x(f0) = c2 L

δ2
2−j(2t+1). (6)
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Proof. Let y ∈ Ij,k(x) be arbitrary. Then, using the substitution 2jz = 2jy − u,

|f0(y)−Kj,x(f0)(y)| =

∣∣∣∣∣2j
∫
Ij,k(x)

(f0(y)− f0(z))dz

∣∣∣∣∣
≤

∫ 1

−1
|f0(y)− f0(x) + f0(x)− f0(y − 2−ju)|du

≤ 2|f0(y)− f0(x)|+
∫ 1

−1
|f0(x)− f0(y − 2−ju)|du

By definition of x, y, Ij,k(x) we have |y − x| ≤ 2−j , and also |y − 2−ju − x| ≤ 2−j+1 by

the triangle inequality, so that for 2−j+1 ≤ η the last quantity is bounded by c02−jt in

view of f0 ∈ C(t, x, L, η). If 2−j > η/2, then the quantity in the last display can still be

bounded by 6‖f0‖∞ ≤ 6L, so that choosing c1 = 6L(2/η)t establishes the desired bound

for c = max(c0, c1). To prove the second claim, apply Lemma 2.

Using the bound from the last lemma to verify Condition 2, we see that, by definition

of j∗(x) and for f0 ∈ C(t, x, L, η),√
n2−j∗(x)

log n
∼
(

n

log n

) t
2t+1

(7)

is the locally (at x) optimal adaptive rate of convergence, so that the local small bias

condition constructs a minimax optimal resolution level j∗(x) at every x ∈ [0, 1].

2.5 Main results

We now state the main results, starting with the following ‘oracle’ inequality.

Theorem 1 Let f̂n(·) be the density estimator defined in (3) with thresholds ζn that

satisfy the uniform propagation condition UP(α,Fj,k) for some Fj,k. Suppose f0 satisfies

Condition 2 for every 0 < x ≤ 1, and let j∗(x) be as in (5). Then we have

Ef0 sup
0<x≤1

√
n2−j∗(x)

log n

∣∣∣∣∣ f̂n(x)− fn(j∗(x), x)

sn(j∗(x), x)

∣∣∣∣∣
≤ ζn√

log n
+

√
α

n
n∆e4U (8)

for any U satisfying

U ≥ sup
0<x≤1

∥∥∥∥log
f0

Kj∗(x),x(f0)

∥∥∥∥
∞
. (9)
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If ζn = O(
√

log n) – as follows under the conditions of Lemma 1 – and if one chooses

∆ < 1/2, U as in the remark below, then the r.h.s. of (8) is O(1) as n tends to infinity.

Theorem 1 thus implies that the estimator f̂n with resolution levels chosen by the prop-

agation approach is close to the linear ‘oracle’ estimator evaluated at the locally optimal

resolution level j∗(x), and this uniformly so on (0, 1].

Remark 1 If Fj,k is as in Lemma 1 and f0 is bounded by M and bounded below by δ,

we may apply Lemma 2 (using 2−jmax ≥ d(log n)2/n) to get the bound

log
f0

Kj∗(x),x(f0)
= log

(
1 +

f0 −Kj∗(x),x(f0)

Kj∗(x),x(f0)

)
≤ log

(
1 +

∆

dM log n

)
,

which tends to zero as n tends to infinity.

Our results then imply the following uniform spatial adaptation result:

Theorem 2 Assume that f0 is bounded by M and satisfies inf0<x≤1 f0(x) ≥ δ > 0. Let

f̂n(·) be the density estimator from (3) with thresholds ζn = O(
√

log n) that satisfy the

uniform propagation condition UP(α,Fj,k) for Fj,k as in Lemma 1. Let j∗(x) be as in

(5) with ∆ < 1/2 and with ∆j,x as in Lemma 2. Then

sup
0<x≤1

√
n2−j∗(x)

log n

∣∣∣f̂n(x)− f0(x)
∣∣∣ = OPrf0

(1). (10)

If j∗(x) – with ∆ < 1/2 – is based on ∆j,x as in Lemma 3, then (10) holds true and

the rate is the adaptive locally optimal rate of convergence at every 0 < x ≤ 1 where f0

is locally t-Hölder with 0 < t ≤ 1, see the discussion in Section 2.4 surrounding (7). A

more classical way to formulate Theorem 2 is hence as follows.

Theorem 3 Suppose the assumptions of Theorem 2 are satisfied and that the true den-

sity f0 lies in C(t(x), x, L(x), η(x)), 0 < x ≤ 1, and t(·), L(·), η(·) are bounded and

uniformly bounded away from zero on (0, 1]. Let j∗(x) be as in (5) with ∆ < 1/2 and

with ∆j,x as in Lemma 3. Then

sup
0<x≤1

(
n

log n

)t(x)/(2t(x)+1) ∣∣∣f̂n(x)− f0(x)
∣∣∣ = OPrf0

(1).

11



3 Proofs

3.1 Proof of Theorem 1

A first idea is to use a moment bound, localised at any point x of estimation, on the

log-likelihood ratio between f0 and its approximand in Vj,k.

Lemma 4 If, for fixed 0 < x ≤ 1,

VarKj,x(f0) log
f0

Kj,x(f0)
≤ D log n

n
(11)

for some 0 < D <∞ and every n ∈ N, then, for every n ∈ N,

EKj,x(f0)

(
n∏
i=1

f0(Xi)

Kj,x(f0)(Xi)

)2

≤ n2De4U

holds for any U satisfying

U ≥
∥∥∥∥log

f0

Kj,x(f0)

∥∥∥∥
∞
.

Proof. Since the Kullback-Leibler distance

K(f0,Kj,x(f0)) = −EKj,x(f0) log
f0

Kj,x(f0)
≥ 0

is non-negative, we have

EKj,x(f0)

(
n∏
i=1

f0(Xi)

Kj,x(f0)(Xi)

)2

≤

(
EKj,x(f0)e

2

(
log

f0
Kj,x(f0)

−EKj,x(f0) log
f0

Kj,x(f0)

))n

by the i.i.d. assumption. Using the power series expansion of the exponential function

and that the variables in the exponent are centered, one easily bounds the previous

display by (
1 +

2De4U log n

n

)n
≤ e2De4U logn = n2De4U .

Here is the proof of Theorem 1: We first note that Condition 2 allows us to take

∆j,x(f0) to be constant on the intervals Ij,k. Consequently, j∗(·) from (5) is then constant

on every interval Ijmax,m, and we set

j∗m = sup
x∈Ijmax,m

j∗(x).

12



To prove the theorem, we split

Ef0 sup
0<x≤1

√
n2−j∗(x)

log n

∣∣∣∣∣ f̂n(x)− fn(j∗(x), x)

sn(j∗(x), x)

∣∣∣∣∣
≤ Ef0 sup

0<x≤1

√
n2−j∗(x)

log n

∣∣∣∣∣ f̂n(x)− fn(j∗(x), x)

sn(j∗(x), x)

∣∣∣∣∣ 1{ĵn(x)<j∗(x)}

+Ef0 sup
0<x≤1

√
n2−j∗(x)

log n

∣∣∣∣∣ f̂n(x)− fn(j∗(x), x)

sn(j∗(x), x)

∣∣∣∣∣ 1{ĵn(x)≥j∗(x)}

=: I + II

according to whether ĵn(x) comes to lie below the local resolution level j∗(x) or not. By

definition of ĵn(x) in (1) one immediately has

I ≤ ζn√
log n

.

About II: Define

Sm = sup
x∈Ijmax,m

max
j∗m≤j≤jmax

√
n2−j

log n

∣∣∣∣∣ f̂n(j, x)− fn(j, x)

sn(j, x)

∣∣∣∣∣ . (12)

Using that on the event ĵn(x) ≥ j∗(x) we necessarily have f̂n(x) = f̂n(j∗(x), x), we see

that

II ≤ Ef0 sup
0<x≤1

√
n2−j∗(x)

log n

∣∣∣∣∣ f̂n(j∗(x), x)− fn(j∗(x), x)

sn(j∗(x), x)

∣∣∣∣∣
≤ Ef0 max

m
sup

x∈Ijmax,m

max
j∗m≤j≤jmax

√
n2−j

log n

∣∣∣∣∣ f̂n(j, x)− fn(j, x)

sn(j, x)

∣∣∣∣∣
≤ 2jmax max

m
Ef0Sm. (13)

13



We use the Cauchy-Schwarz inequality to bound

Ef0Sm

=

∫
· · ·
∫
Sm(x1, . . . , xn)

n∏
i=1

f0(xi)dx1 · · · dxn

=

∫
· · ·
∫
Sm(x1, . . . , xn)

n∏
i=1

f0(xi)

Kj∗m,x(f0)(xi)

n∏
i=1

Kj∗m,x(f0)(xi)dx1 · · · dxn

≤
√
EKj∗m,x(f0)S2

m

√√√√EKj∗m,x(f0)

(
n∏
i=1

f0(Xi)

Kj∗m,x(f0)(Xi)

)2

by the square-root of the second moment of Sm under the ‘idealised’ density Kj∗m,x(f0)

times the square-root of the second moment of the likelihood ratio. (Here, x is any point

in Ijmax,m.) Using Condition 1 and Lemma 4, we obtain a bound for the last term in

(13) of order

2jmax max
m

Ef0Sm ≤
√
α

n
n∆e4U ,

which concludes the proof of the theorem.

3.2 Proof of Theorems 2 and 3

We first prove Theorem 2: Clearly,

sup
0<x≤1

√
n2−j∗(x)

log n

∣∣∣f̂n(x)− f0(x)
∣∣∣

≤ sup
0<x≤1

√
n2−j∗(x)

log n

∣∣∣∣∣ f̂n(x)− fn(j∗(x), x)

sn(j∗(x), x)

∣∣∣∣∣√fn(j∗(x), x)

+ sup
0<x≤1

√
n2−j∗(x)

log n
|fn(j∗(x), x)− f0(x)| .

The first factor of the first summand is bounded in probability in view of Theorem 1 and

of Lemma 1 and the hypothesis ζn = O(
√

log n). The second factor of the first summand

is also bounded in probability since

sup
0<x≤1

max
j≤jmax

|fn(j, x)− Ef0fn(j, x)| = oPf0 (1)

14



by Proposition 2, using 2−jmax ≥ d(log n)2/n, and since supx,j |Ef0fn(j, x)| ≤ ‖f0‖∞ <

∞. It remains to prove that the second summand is bounded in probability, and we

achieve this by bounding the moment

Ef0 sup
0<x≤1

√
n2−j∗(x)

log n
|fn(j∗(x), x)− Ef0fn(j∗(x), x)|

+ sup
0<x≤1

√
n2−j∗(x)

log n
|Ef0fn(j∗(x), x)− f0(x)|

≤ Ef0 sup
0<x≤1

max
j≤jmax

√
n2−j

log n
|fn(j, x)− Ef0fn(j, x)|

+ max
m

sup
x∈Ijmax,m

√
n2−j∗(x)

log n
|Ef0fn(j∗(x), x)− f0(x)|.

The first term is bounded by a fixed constant using Proposition 2 below. Recalling the

definition of j∗m from the beginning of the proof of Theorem 1 and choosing ∆j,x(f0)

from Lemma 2, the second term is bounded by

max
m

√
n2−j∗m

log n
sup

x∈Ijmax,m

|Ef0fn(j∗m, x)− f0(x)|

≤ max
m

√
n2−j∗m

log n
‖Kj∗m,x(f0)− f0‖∞

≤ δ
√

∆

M
,

where x is any point in Ijmax,m, and this completes the proof.

We next prove Theorem 3: Using the hypotheses on t(·), L(·), η(·), the proof of

Lemma 3 shows that f0 satisfies Condition 2 with

∆j,x(f0) = c′2−j(2t(x)+1), (14)

0 < c′ < ∞, where c′ does not depend on x. Using that t(·) is bounded below by some

positive number implies that

∆jmax,x(f0) = c′2−jmax(2t(x)+1) ≤ ∆ log n

n
.

holds for n large enough (independent of x ∈ (0, 1]), so that j∗(x), when based on

∆j,x(f0) as in (14), is asymptotically equivalent to the minimax optimal locally adaptive

15



rate, uniformly so for all x.

3.3 Proof of Lemma 1

The proof relies on Propositions 1 and 2 which are given below. Recall first from Sec-

tion 2.1 that for f ∈ Vj,k and j′ ≥ j we necessarily have Effn(j′, x)− f(x) = 0 for every

x ∈ Ij,k, so the bias at x ∈ Ij,k is exactly zero, a fact we shall use repeatedly below

without separate mentioning. Write

sup
x∈Ijmax,m

max
j′≥j

√
n2−j′

log n

∣∣∣∣∣ f̂n(j′, x)− fn(j′, x)

sn(j′, x)

∣∣∣∣∣
= sup

x∈Ijmax,m

max
j′≥j

√
n2−j′

log n

∑
l>j′

∣∣∣∣fn(l, x)− fn(j′, x)

sn(j′, x)

∣∣∣∣ 1{ĵn(j′,x)=l}. (15)

To treat the indicator, observe that

{ĵn(j′, x) = l}

⊆
{√

n2−l′ |fn(l′, x)− fn(l − 1, x)| > ζn
√
fn(l − 1, x) for some l′ ≥ l

}
⊆

{
√
n2−l′ |fn(l′, x)− Effn(l′, x) + Effn(l − 1, x)− fn(l − 1, x)|

> ζn

√
f(x)

2
for some l′ ≥ l

}

∪

{
min
`≥j

√
fn(`, x) ≤

√
f(x)

2

}

Observe that the first set is a subset of{
√
n2−l′

∣∣fn(l′, x)− Effn(l′, x)
∣∣ ≥ ζn

√
f(x)

4
for some l′ ≥ l

}

∪

{√
n2−(l−1) |fn(l − 1, x)− Effn(l − 1, x)| >

ζn
√
f(x)

4

}

⊆

max
`≥j

√
n2−`‖fn(`)− Effn(`)‖Ijmax,m

>
ζn
√
‖f‖Ij,k(m)

4

 =: B1
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and that, using y ≥
√
δy for y ≥ δ, the second set is contained in{

max
`≥j
|fn(`, x)− Effn(`, x)| > f(x)

2

}
⊆

{
max
`≥j
|fn(`, x)− Effn(`, x)| >

√
δf(x)

2

}

⊆

 sup
x∈Ijmax,m, `≥j

|fn(`, x)− Effn(`, x)| >

√
δ‖f‖Ij,k(m)

2

 := B2;

so that {ĵn(j′, x) = l} ⊆ B1∪B2 =: B, a set which does not depend on j′, x or l. Hence,

1{ĵn(j′,x)=l} ≤ 1B uniformly in j′, x, l, so that the quantity in (15) is bounded from above

by

1B sup
x∈Ijmax,m

max
j′≥j

√
n2−j′

log n

∑
l>j′

∣∣∣∣fn(l, x)− fn(j′, x)

sn(j′, x)

∣∣∣∣ ,
and therefore the second moment of (15) is bounded, using the Cauchy-Schwarz inequal-

ity, by

Prf (B)1/2

∥∥∥∥∥∥ sup
x∈Ijmax,m

max
j′≥j

√
n2−j′

log n

∑
l>j′

∣∣∣∣fn(l, x)− fn(j′, x)

sn(j′, x)

∣∣∣∣
∥∥∥∥∥∥

2

4,Prf

=: I × II.

We first bound II: By the triangle inequality and since the bias is exactly zero, this

term is less than or equal to

2

∥∥∥∥∥∥ sup
x∈Ijmax,m

max
j′≥j

√
n2−j′

log n

∑
l>j′

∣∣∣∣fn(l, x)− Effn(l, x)

sn(j′, x)

∣∣∣∣
∥∥∥∥∥∥

2

4,Prf

+2

∥∥∥∥∥∥ sup
x∈Ijmax,m

max
j′≥j

√
n2−j′

log n

∑
l>j′

∣∣∣∣fn(j′, x)− Effn(j′, x)

sn(j′, x)

∣∣∣∣
∥∥∥∥∥∥

2

4,Prf

. (16)
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Define now S = {supx∈Ijmax,m
minj′≥j fn(j′, x) ≥ δ/2}. Note that, by definition of fn(j′),

fn(j′, x) > 0 implies fn(j′, x) ≥ 2j
′
/n. Then, for every 1 ≤ p <∞,

Ef

(
sup

x∈Ijmax,m

max
j′≥j

1

sn(j′, x)

)p
= Ef

(
sup

x∈Ijmax,m

max
j′≥j

1

sn(j′, x)
(1S + 1Sc)

)p
≤ 23p/2−1

δp/2

+2p−1np/2Ef1

{
sup

x∈Ijmax,m

min
j′≥j
|fn(j′, x)− Effn(j′, x) + f(x)| < δ

2

}

≤ 23p/2−1

δp/2
+ 2p−1np/2Prf

{
sup

x∈Ijmax,m, j
′≥j
|fn(j′, x)− Effn(j′, x)| > δ

2

}

≤ 23p/2−1

δp/2

+2p−1np/2Prf

{
sup

x∈Ijmax,m, j
′≥j

√
n2−j′ |fn(j′, x)− Effn(j′, x)| > δ

√
d log n

2

}

≤ 23p/2−1

δp/2
+ 2p−1np/2cn−

δ2d
4c

logn

for large n in view of Proposition 1 (using that 2−jmax ≥ d(log n)2/n), so that this

expectation is bounded uniformly in n by some constant c1(p, δ,M). Using this, the

Cauchy-Schwarz inequality and Proposition 2, the square of the first term in (16) is less

than or equal to

c222jmaxj4
max

×Ef

 sup
x∈Ijmax,m

max
l≥j

√
n2−l

log n
|fn(l, x)− Effn(l, x)| sup

x∈Ijmax,m

max
l≥j

1

sn(j′, x)

4

≤ c222jmaxj4
max

Ef
 sup
x∈Ijmax,m

max
l≥j

√
n2−l

log n
|fn(l, x)− Effn(l, x)|

81/2

×

Ef
(

sup
x∈Ijmax,m

max
l≥j

1

sn(l, x)

)8
1/2

≤ c322jmaxj4
max;

and the same reasoning also implies that the second term in (16) is less than or equal to

some constant, so that we can conclude, using the lower bound of 2−jmax , that

II ≤ c4n (17)
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for some fixed constant c4 that depends only on δ and M .

To bound I, we have the following: First, using Proposition 1 below, we see

Prf (B1) = Prf

max
`≥j

√
n2−`‖fn(`)− Effn(`)‖Ijmax,m

>
ζn
√
‖f‖Ij,k(m)

4


≤ Dn−

κ2δ
4D (18)

for large n, with D only depending on M . Furthermore, using 2−jmax ≥ d(log n)2/n and

Proposition 1 below,

Prf (B2)

≤ Prf

 sup
x∈Ijmax,m, `≥j

√
n2−`|fn(`, x)− Effn(`, x)| >

√
dδ‖f‖Ij,k(m)

log n

2


≤ Dn−

dδ2

4D
logn

for large n. Thus, choosing κ large enough but finite depending on the choice of α, we

obtain for n large enough

I × II ≤ c4Dn

(
n−

κ2δ
4D + n−

dδ2

4D
logn

)
≤ α

n22jmax
.

This completes the proof.

3.4 Uniform-in-bandwidth bounds for Haar wavelet density estimators

and some consequences

The following exponential inequality was used repeatedly in the proofs.

Proposition 1 Let jmax ∈ N such that 2−jmax ≥ d(log n)2/n. Let I = (2−jk, 2−j(k+1)]

for some j ≤ jmax and k ∈ Z, and suppose f : R → [0,∞) is a density that satisfies

‖f‖I ≤M and

inf
x∈I

f(x) ≥ δ > 0.

There exist constants C1(d), C2(d) and an index n(δ,M) such that for all n ≥ n(δ,M)

and all C3 ≥ C2(d), if

C1(d)
√
‖f‖I log n ≤ u ≤ C3‖f‖I

√
n2−jmax , (19)
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then

Prf

{
sup
x∈I

max
j≤j′≤jmax

√
n2−j′ |fn(j′, x)− Effn(j′, x)| ≥ u

}
≤ De−

u2

D ,

where D only depends on C3 and M .

Proof. Writing

√
n2−j′

∣∣fn(j′, x)− Effn(j′, x)
∣∣

= 2

√
2jmax

n

√
2j′−jmax

2

∣∣∣∣∣
n∑
i=1

(K(2j
′
x, 2j

′
Xi)− EfK(2j

′
x, 2j

′
Xi))

∣∣∣∣∣ ,
we have to consider the supremum

2

√
2jmax

n
sup
h∈H

∣∣∣∣∣
n∑
i=1

(h(Xi)− Efh(Xi))

∣∣∣∣∣
of the (scaled) empirical processes indexed by the class of functions

H :=

{√
2j′−jmax

2
K(2j

′
x, 2j

′
(·)) : x ∈ I, j′ ≥ j

}
.

This class has constant envelope 1/2 since j′ ≤ jmax and since supx,y |K(x, y)| = 1.

Furthermore, noting that K2(x, y) = K(x, y) for every x, y, we have for h ∈ H that

Efh
2(X) =

2j
′−jmax

4

∫
K2(2j

′
x, 2j

′
y)f(y)dy

=
2j
′−jmax

4

∫ 2−j
′
(k(x)+1)

2−j′k(x)
f(y)dy ≤ 2−jmax

4
‖f‖I .

Note further that H is a VC-type class of functions by using Lemma 2 in [7] and a simple

computation on covering numbers (including an obvious covering of the set [2−jmax , 1] ⊆
[0, 1]). Rewrite

Prf

{
sup
x∈I

max
j≤j′≤jmax

√
n2−j′ |fn(j′, x)− Effn(j′, x)| ≥ u

}
= Prf

{
sup
h∈H

∣∣∣∣∣
n∑
i=1

(h(Xi)− Efh(Xi))

∣∣∣∣∣ ≥ u
√
n2−jmax

2

}
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and apply expression (21) in [8], with

σ2 :=
2−jmax‖f‖I

4
∧ 1

4

and

λ :=


c1(d)

√
logn

‖f‖I log n
‖f‖I

if ‖f‖I ≤ 1,

c2(d) otherwise;

for appropriate constants c1(d), c2(d) that only depend on d.

Proposition 2 Let jmax, I and f be as in Proposition 1. Then there exists a constant

D(d, δ,M) such that for every 1 ≤ p <∞ we have

Ef

sup
x∈I

max
j≤j′≤jmax

√
n2−j′

log n

∣∣fn(j′, x)− Effn(j′, x)
∣∣p

≤ Dp. (20)

Proof. The proof follows from considering the same empirical process as in the proof

of Proposition 1, and using bounds for p-th moments of empirical processes indexed by

uniformly bounded VC-classes of functions, e.g., the bound in the display following (21)

in [8], with σ2 and λ as in the proof of Proposition 1, together with Proposition 3.1 in

[5].

References

[1] Donoho, D. L. and Johnstone, I. M. (1994). Ideal spatial adaptation by wavelet

shrinkage. Biometrika 81 425-455.

[2] Donoho, D. L.; Johnstone, I. M.; Kerkyacharian, G.; and Picard, D.

(1995). Wavelet shrinkage: asymptopia? J. Roy. Statist. Soc. Ser. B 57 301-369.

[3] Donoho, D. L.; Johnstone, I. M.; Kerkyacharian, G.; and Picard, D.

(1996). Density estimation by wavelet thresholding. Ann. Statist. 24 508-539.
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