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Abstract

Observing prices of European put and call options, we calibrate exponential Lévy models
nonparametrically. We discuss the implementation of the spectral estimation procedures for
Lévy models of finite jump activity as well as for self-decomposable Lévy models and improve
these methods. Confidence intervals are constructed for the estimators in the finite activity
case. They allow inference on the behavior of the parameters when the option prices are
observed in a sequence of trading days. We compare the performance of the procedures for
finite and infinite jump activity based on real option data.

Keywords: European option · Jump diffusion · Self-decomposability · Confidence sets · Nonlinear
inverse problem · Spectral cut-off

MSC (2010): 60G51 · 62G15 · 91B25

JEL Classification: C14 · G13

1 Introduction

Exponential Lévy models are frequently used for the purpose of pricing and hedging. They take
jumps of the price process into account and they allow to model heavy tails in the returns appro-
priately. Moreover, they are capable of reproducing not only the volatility smile but also the fact
that it becomes more pronounced for shorter maturities. While recovering these stylized facts, the
structure of exponential Lévy models is at the same time easy enough to allow robust calibration
procedures.

The calibration has mainly focused on parametric models, cf. Barndorff-Nielsen (1998); Eber-
lein, Keller, and Prause (1998); Carr, Geman, Madan, and Yor (2002) and references therein. First
nonparametric calibration procedures for finite activity Lévy models were proposed by Cont and
Tankov (2004b) as well as Belomestny and Reiß (2006a). In these approaches no parametrization
is assumed and thus the model misspecification is reduced. Recently, the spectral calibration
procedure of the latter authors was studied further in two directions. The asymptotic confidence
sets constructed by Söhl (2012) allow a more accurate statistical inference in the exponential Lévy
model while the method of Trabs (2011) extends the spectral calibration to the infinite activity
case, more precisely to self-decomposable Lévy processes.

The aim of this work is to discuss the practical application of the spectral calibration method
to option data. We show how the procedure can be improved by changing some details of the
originally proposed method by Belomestny and Reiß (2006b) and by Trabs (2011). Furthermore,

∗We thank Denis Belomestny and Markus Reiß for helpful comments and discussions. This research was sup-
ported by the Deutsche Forschungsgemeinschaft through the SFB 649 “Economic Risk”.
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we construct from the asymptotic results by Söhl (2012) confidence sets which allow a deep insight
into the behavior of the estimation procedure. These considerations are demonstrated by several
simulations from the model by Merton (1976) and from the variance gamma model, introduced
by Madan and Seneta (1990) and Madan, Carr, and Chang (1998).

Exponential Lévy models are studied in a wide rage of pricing problems, for instance by As-
mussen, Avram, and Pistorius (2004); Cont and Voltchkova (2005); Ivanov (2007) and references
therein. For their application, it is necessary to control the statistical errors in the calibration
procedures, see Cont (2006). In general, there are two types of errors. The misspecification is
the deviation from the model, while the calibration error is the deviation within the model. The
approach of nonparametric calibration has the advantage that it reduces the error due to misspeci-
fication. The remaining calibration error can then be assessed by means of the confidence intervals.
Nonparametric confidence intervals have also been constructed by Figueroa-López (2011). They
are based on high frequency observations of a Lévy process, whereas our confidence intervals are
for the calibration of the risk neutral measure and are based on the observations of option prices
and not on historical data.

We use real data of vanilla options on the German DAX index to compare the finite activity
model to the self-decomposable one. It will turn out that both models achieve a good calibration
in the sense that the residuals between the given data and the calibrated model are rather small.
In view of studies of Carr et al. (2002) and Aı̈t-Sahalia and Jacod (2009), which indicate that a
pure jump model should have a Blumenthal-Getoor index which is positive or even greater than
one, this is surprising since the finite variation self-decomposable model has a Blumenthal-Getoor
index equal to zero. Applying the calibration to a sequence of trading days, we obtain the evolution
of the model parameters in time.

This paper is organized as follows: In Section 2 we state the model and the general estima-
tion method. This is made precise for the finite activity case and the self-decomposable case in
Sections 3 and 4, respectively. Simulations are contained therein. In Section 5 the confidence
intervals are constructed and their performance is assessed in simulations. In Section 6 we apply
the methods to real data and discuss our results. The appendix contains the proof of a corollary
and a detailed documentation of our implementation.

2 Model and estimation principle

Denoting the risk-less interest rate by r ≥ 0 and the initial value by S0 > 0, the price of a stock
is given by

St = S0e
rt+Xt

where Xt is a Lévy process with characteristic triplet (σ2, γ, ν) such that eXt is a martingale.
Furthermore, we assume the jump part of Xt to be of finite variation. Therefore, E[eXt ] = 1, t ≥ 0,
implies the martingale condition

σ2

2
+ γ +

∫ ∞
−∞

(ex − 1)ν( dx) = 0. (1)

So far, nonparametric calibration methods exist in two different setups:

(FA) Xt has a finite activity, that is λ := ‖ν‖L1 <∞, with an absolutely continuous jump measure
(Cont and Tankov, 2004b; Belomestny and Reiß, 2006a; Söhl, 2012).

(SD) Xt is self-decomposable with σ = 0. Especially, ν can be characterized by a k-function
via ν( dx) = k(x)/|x|dx, x ∈ R \ {0}, where k is increasing on R− and decreasing on R+.
Additionally, α := k(0+) + k(0−) <∞ is assumed (Trabs, 2011).

Throughout we measure the time t in years. Typical parametric submodels of (FA) and (SD) are
given by Examples 1 and 2, respectively. We will use them to study the performance of estimation
methods in simulations.
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Example 1 (Merton model). Merton (1976) introduced the first exponential Lévy model. Therein,
the jumps are normally distributed with intensity λ > 0:

ν(x) =
λ√
2πv

exp

(
− (x− η)2

2v2

)
, x ∈ R.

A realistic choice of the parameters is η = −0.1, v = 0.2 and λ = 5. Together with the volatility
σ = 0.1 this determines the drift γ = 0.379 using the martingale condition (1).

Example 2 (Variance gamma model). Let (Wt) be a standard Brownian motion and (Gt) an
independent Gamma process with mean rate one and variance rate ν that is Gt ∼ Γ(t/ν, 1/ν).
Madan and Seneta (1990) defined the variance gamma process with parameters σ, ν and θ as the
time changed Brownian motion with drift Xt = θGt + σWGt , t ≥ 0. The characteristic function
and the k-Function of (Xt) are given by

ϕt(u) = (1 + iθνu+ σ2νu2/2)−t/ν and

kV G(x) =
1

ν
ex/ηm1{x<0}(x) +

1

ν
e−x/ηp1{x≥0}(x), u, x ∈ R

with ηp/m :=
√
θ2σ2/4 + σ2ν/2 ± θν/2, respectively. In our simulations we use the parameters

σ = 1.2, ν = 0.2 and θ = −0.15. The value of γ = 0.141 is again given by the martingale condition.
These choices imply α = kV G(0+) + kV G(0−) = 10.

Let us fix a maturity T > 0, define the negative log-moneyness x := log(K/S0)−rT and denote
call and put prices by C(x, T ) = S0E[(eXT − ex)+] and P(x, T ) = S0E[(ex − eXT )+], respectively.
In terms of the option function

O(x) :=

{
S−1

0 C(x, T ), x ≥ 0,

S−1
0 P(x, T ), x < 0,

our observations are given by

Oj = O(xj) + δjεj , j = 1, . . . , N, (2)

with noise levels δj > 0 and independent, centered errors εj , satisfying Var(εj) = 1 as well as
supj E[ε4

j ] <∞. The observation errors are due to the bid-ask spread and other market frictions.
To estimate the Lévy triplet, we apply the Lévy-Khintchine representation of the characteristic
function ϕT (u) := E[eiuXT ]. The pricing formula of Carr and Madan (1999)

FO(u) :=

∫ ∞
−∞

eiuxO(x) dx =
1− ϕT (u− i)
u(u− i)

, (3)

and the martingale condition (1) yield

ψ(u) :=
1

T
log(1 + iu(1 + iu)FO(u)) = −σ

2

2
u2 + i(σ2 + γ)u+

∫
(eiux − 1)exν(x) dx. (4)

Interpolating (xj , Oj)j=1,...,N , we obtain empirical versions Õ and ψ̃ of the option function and the
characteristic exponent, respectively. While the theoretical results (Belomestny and Reiß, 2006a;
Trabs, 2011) concentrate on a linear interpolation of the observation, an additional smoothing by
using B-splines of degree two might improve the estimators. In Section 3.2 we provide simulations
with both interpolation methods to investigate the practical influence.

Given ψ̃, we can estimate the characteristics of the process from the spectral representation.
Regularization of the procedure is achieved by cutting off frequencies larger than the regularization
parameter U > 0. Since (FA) and (SD) need to be considered separately, the precise estimators
are given in the Sections 3 and 4. Note that in both cases correction steps are necessary to satisfy
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the shape restriction of ν and the martingale condition (1) (see Appendix B.2 for details). If the
latter one would be violated, the right-hand side of the pricing formula (3) could have a singularity
at zero and thus we could not apply the inverse Fourier transform to obtain an option function
from the calibration.

A critical question is the choice of the regularization parameter U . To circumvent the problem
in simulations, we use an oracle cut-off value, that is the risk minimizing U . To calibrate real
data, we employ a simple least squares approach. From theoretical consideration a penalty term,
as used by Belomestny and Reiß (2006b), is necessary to avoid an over-fitting. Nevertheless, our
practical experience with this method shows that the above mentioned correction steps, which
are not included in the theory, lead to an auto-penalization: Owing to the Fourier techniques,
a rigorous fit leads to high fluctuations of the estimator of the nonparametric part and thus the
correction has a significant effect which in turn worsens the fit. Therefore, the least squares choice
of tuning parameter works well at least for small noise levels. Additionally, an upper bound for
the cut-off value excludes estimations with a too high variance (cf. Section 5).

3 The finite activity case

3.1 The estimators

In the (FA) framework we deduce from (4) the identity

ψ(u) =
σ2

2
u2 + i(σ2 + γ)u+ (σ2/2 + γ − λ) + Fµ(u) with µ(x) := exν(x).

The estimators of the parameters are defined by Belomestny and Reiß (2006a) as follows:

σ̂2 :=

∫ U

−U
Re(ψ̃(u))wUσ (u)du, (5)

γ̂ := −σ̂2 +

∫ U

−U
Im(ψ̃(u))wUλ (u)du, (6)

λ̂ :=
σ̂2

2
+ γ̂ −

∫ U

−U
Re(ψ̃(u))wUγ (u)du, (7)

with suitable weight functions wUσ , wUγ and wUλ . We propose to choose the weight functions
differently to the weight functions used by Belomestny and Reiß (2006b). The idea is that the
noise is particularly high in the high frequencies and thus it is desirable to assign less weight to the
high frequencies. A smooth transition of the weight functions to zero at the cut off-value improves
the numerical results significantly. Therefore, we would like the weight function and its first two
derivatives to be zero at the cut-off value. With the side conditions on the weight functions this
leads to the following polynomials:

wUσ (u) :=
cσ
U3

(
(2s+ 1)

( u
U

)2s

− 4(2s+ 3)
( u
U

)2s+2

+ 6(2s+ 5)
( u
U

)2s+4

− 4(2s+ 7)
( u
U

)2s+6

+ (2s+ 9)
( u
U

)2s+8 )
,

wUγ (u) :=
cγ
U2

(( u
U

)2s+1

− 3
( u
U

)2s+3

+ 3
( u
U

)2s+5

−
( u
U

)2s+7
)
,

wUλ (u) :=
cλ
U

(
(2s+ 3)

( u
U

)2s

− 4(2s+ 5)
( u
U

)2s+2

+ 6(2s+ 7)
( u
U

)2s+4

− 4(2s+ 9)
( u
U

)2s+6

+ (2s+ 11)
( u
U

)2s+8 )
,

where all three functions are extended continuously by zero outside [−U,U ], cσ, cγ and cλ are
normalization constants and s reflects the a priori knowledge about the smoothness of ν. The gain
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of the new weight functions is discussed in Section 3.2. Using the shifted ψ

ψν(u) :=
1

T
log (1− u(u+ i)FO(u+ i))

to estimate the jump density, we apply the idea from Belomestny and Reiß (2006b) owing to a
better numerical behavior. Therefore, we define the estimator

ν̂(x) := F−1

[(
ψ̃ν(u) +

σ̂2

2
u2 − iγ̂u+ λ̂

)
wUν (u)

]
(x) (8)

with the empirical version ψ̃ν of ψν and a flat top kernel wUν whose support is [−U,U ]:

wUν (u) := wν

( u
U

)
with wν(u) :=


1, |u| ≤ 0.05,

exp
(
− exp(−(|u|−0.05)−2)

(|u|−1)2

)
, 0.05 < |u| < 1,

0, |u| ≥ 1.

(9)

3.2 Simulations I

Let us first describe the setting of all of our simulations. In view of the higher concentration
of European options at the money, the design points {x1, . . . , xN} are sampled deterministically
from a normal distribution with mean zero and variance 1/2. The observations Oj are computed
from the characteristic function ϕT using the fast Fourier transform. The additive noise consists
of independent, normal and centered random variables with variance |τO(xj)|2 for some relative
noise level τ > 0. By choosing the sample size N and the deviation parameter τ , we determine the
noise level of the observations. According to the existing theoretical results, it is well measured
by the quantity

ε := ∆3/2 + ∆1/2‖δ‖l∞ with ∆ := max
j=2,...,N

(xj − xj−1),

which takes the interpolation error and the stochastic error into account. The interest rate and
time to maturity are set to r = 0.06 and T = 0.25, respectively.

Using the Merton model with the parameters of Example 1, we investigate the practical influ-
ence of two aspects of the procedure, which are mentioned above. The interpolation of the data
(xj , Oj) with linear B-splines is compared to the use of quadratic B-splines. The latter prepro-
cessing is an additional smoothing of the data which achieves significant gains for higher noise
levels. The other point of interest is the choice of the weight functions. Since it is known from the
theory that the noise affects mainly the high frequencies, the polynomial weight functions greatly
reduce the variance of the estimator. These improvements are illustrated in Figure 1: In the case
of σ̂ we calculate the RMSE from 500 Monte-Carlo iterations with and without quadratic splines
and polynomial weight functions, respectively. This is done for different noise levels, whereby τ
decreases from 0.03 to 0.015 and N increases from 50 to 400, simultaneously.

4 The self-decomposable framework

4.1 Construction of the estimators

Recall that σ = 0 is assumed in the (SD) setting. While the Blumenthal-Getoor index is zero
in this case the parameter α describes the degree of activity of the process on a finer scale. The
exponential scaled k-function ke(x) := sgn(x)exk(x), x ∈ R, which is the counterpart of µ in the
(FA) case, will be the natural object to estimate. To calibrate the self-decomposable model, we
need a different representation of ψ than before because of the infinite activity of these processes.
Trabs (2011, Prop. 3.2) showed for u 6= 0

ψ(u) = D(u) + iγu− α log(|u|) +

s−2∑
j=1

ij(j − 1)!αj
uj

+ ρ(u) = iγu+ i

∫ u

0

Fke(v) dv, (10)
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Figure 1: RMSE of σ̂ for different noise levels with 500 Monte-Carlo iterations in each case.
Usage of the linear and quadratic spline interpolation as well as usage of the weight function of
Belomestny and Reiß (2006a) and the polynomial weight.

where s is the smoothness of k away from zero, αj := k(j)(0+)+k(j)(0−), j = 1, . . . , s, the function
D is constant on the real half lines and the remainder ρ satisfies ‖us−1ρ(u)‖∞ <∞. Owing to the
polynomial decay of ρ, estimators of γ and α can be defined analogously to Section 3:

γ̂ :=

∫ U

−U
Im(ψ̃(u))wUγ (u) du,

α̂ :=

∫ U

−U
Re(ψ̃(u))wUα (u) du.

The weight functions are chosen such that they filter the coefficients of interest (cf. Trabs, 2011,
Ass. 3). Choosing wUγ and wUα as polynomials, these integral conditions lead to a system of linear
equations which determines the coefficients in the polynomials. Since the smoothness s is not
known to the practitioner, the weights should satisfy the condition for some upper bound smax.
In practice the choice smax = 6 and

wUγ (u) = U−2w1
γ(
u

U
), w1

γ(u) = 135135
1536

(
− 45u5 + 560u7 − 1890u9 + 2376u11 − 1001u13

)
,

wUα (u) = U−1w1
α(
u

U
), w1

α(u) = 1
1024

(
4729725u6 − 56756700u8 + 187297110u10

− 231891660u12 + 96621525u14
)

works fine. The estimation of the nonparametric object ke relies on the equation ψ′ = iγ + iFke,
which follows from (10). Hence, we need an empirical version of ψ′, too. Instead of the estimator
proposed by Trabs (2011), we define

k̂e(x) :=

{
F−1

[
(−γ̂ − iψ̃′(u))FWk(u/U)

]
(x), x > 0,

F−1
[
(−γ̂ − iψ̃′(u))FWk(−u/U)

]
(x), x < 0

with a one-sided kernel function Wk that satisfies

Assumption 1. We assume

(i) suppWk ⊆ [0,∞),

6



N 50 100 100
τ 0.01 0.01 0.05

RMSE
γ̂(RMSE) 0.0014 0.0004 0.0074
α̂ (RMSE) 0.4196 0.6669 2.0231

RMISE k̂e (RMISE) 0.5930 0.4980 0.4754

Table 1: RMSE and RMISE using 1000 Monte-Carlo simulations of the variance gamma model.

(ii)
∫
Wk = 1,

∫
xlWk(x) dx = 0 for l = 1, . . . , s− 1 and x2s−1Wk(x) ∈ L1(R),

(iii)
∫
|u|2Tᾱ+4|FWk(u)| <∞ for some upper bound ᾱ of the true α.

Since we know the position of the jump of ke, the application of a one-side kernel function
allows to estimate the k-function on the whole real line. The asymptotic analysis of Trabs (2011)
carries over to this estimator as it is shown by the following corollary. Its proof is postponed to
Appendix A. Recall the definitions of the Sobolev-type class Gs(R, ᾱ) and Hs(R, ᾱ) from Def. 4.1
and Def. 4.4 in Trabs (2011).

Corollary 1. Assume s ≥ 1, R, ᾱ > 0 and the conditions on ∆ and δ from Thm. 4.5 in Trabs
(2011). Furthermore, let γ̂ be an estimator of γ satisfying supP EP [|γ̂−γ|2]1/2 . ε(2s+1)/(2s+2Tᾱ+5).
Using the cut-off value U := ε−2/(2s+2Tᾱ+5), we obtain

sup
P∈Hs(R,ᾱ)

EP [‖k̂e − ke‖2L2 ]1/2 . ε2s/(2s+2Tᾱ+5).

Remark. For ᾱ ≤ (5s−1)/(2T ) the above defined estimator γ̂ satisfies the assumed asymptotic risk
bound of Thm. 4.2 in Trabs (2011) and thus the corollary, restricted to P ∈ Gs(R, ᾱ) ∩Hs(R, ᾱ),
is applicable to the proposed procedure.

The condition (iii) in Assumption 1 is a smoothness condition on Wk. To be adaptive in α,
we construct the kernel as Wk(x) = P (x)wν(2x− 1) ∈ C∞(R) with a polynomial P (x) of degree
m + 1. The coefficients of P are given by an (m + 1) dimensional system of linear equations,

defined by Property (ii), which can be solved numerically. Rearrangement of k̂e ensures the
necessary monotonicity of a k-function.

4.2 Simulations II

We simulate the variance gamma model from Example 2 and with the observation setting described
in Section 3.2. The behavior of the proposed method for different noise regimes is shown in Table 1.
As one expects from the theory, γ can be estimated better than α. In the realistic setting of 100
observations with one percent noise, the error of γ and α lay below three and seven percent,
respectively. The one-sided kernel achieves good results for k̂e(x) even for small x ∈ R, indicated
by Figure 2. However, there are still problems at zero. This emphasizes the importance of an
separate estimator of α.

5 Confidence intervals

Söhl (2012) shows asymptotic normality of the estimators in the (FA) setup. These result may be
used to construct confidence intervals. By (2.8) in Söhl (2012) it holds

∆σ̂2 := σ̂2 − σ2 =
2

U2

∫ 1

0

Re(Fµ(Uu))w1
σ(u)du+

2

U2

∫ 1

0

Re(∆ψ̃(Uu))w1
σ(u)du (11)

with ∆ψ̃ = ψ̃−ψ. The first term is the deterministic approximation error and the second term is
the stochastic error. The choice of the cut-off value U allows a trade-off between these two errors.
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Figure 2: Estimated functions ke (left) and k (right) in a simulation of the variance gamma model
with N = 100 and τ = 0.01.

In order to construct confidence intervals, the cut-off value U is chosen such that the approximation
error is asymptotically negligible. The term ∆ψ̃(Uu) is a logarithm, whose linearization at one
we call LN,U (u). We denote by RN,U (u) the remainder of this linearization. The stochastic error
may then be decomposed as

2

U2

∫ 1

0

Re(∆ψ̃(Uu))w1
σ(u)du =

2

U2

∫ 1

0

Re(LN,U (u))w1
σ(u)du+

2

U2

∫ 1

0

Re(RN,U (u))w1
σ(u)du.

With an appropriate choice of the cut-off value the second part of the stochastic error is asymp-
totically negligible. We will call the first part in the decomposition the linearized stochastic error.
Confidence intervals may be constructed in two different ways. One can derive confidence intervals
either from the asymptotic variance or from the finite sample variance of the linearized stochastic
errors. We will follow the second approach. Nevertheless, the confidence intervals are asymptotic
in the sense that the remainder term of the stochastic errors and the approximation error are
considered as negligible.

We assume that the noise levels of the observations (2) are given by the values δj = δ(xj),
j = 1, . . . , N , of some function δ : R → R+. The observation points are assumed to be the
quantiles xj = H−1(j/(n + 1)), j = 1, . . . , N , of a distribution with a c.d.f. H : R → [0, 1] and
p.d.f. h. For the definition of the confidence intervals we need the generalized noise level

%(x) = δ(x)/
√
h(x), (12)

which incorporates the noise of the observations as well as the density of the observations. Instead
of assuming that the observation points are given by the quantiles of h one may also assume that
the observation points are sampled randomly from the density h.

For σ2 we calculate the finite sample variance s2
σ2 of the linearized stochastic errors using

Re(z)2 = Re(|z|2 + z2)/2 and (6.17) from Söhl (2012)

s2
σ2 =

4

U4
E

[(∫ 1

0

Re(LN,U (u))w1
σ(u)du

)2
]

=
2

U4
Re

(
E

[∣∣∣∣∫ 1

0

LN,U (u)w1
σ(u)du

∣∣∣∣2 +

(∫ 1

0

LN,U (u)w1
σ(u)du

)2
])
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=
4π

NT 2e2T (σ2/2+γ−λ)

(
Re

∫ 1

0

∫ 1

0

fU (u)fU (v)F−1(%(y + θ)2)(U(u− v))eTσ
2U2(u2+v2)/2dudv

+ Re

∫ 1

0

∫ 1

0

fU (u)fU (v)F−1(%(y + θ)2)(U(u− v))eTσ
2U2(u2+v2)/2dudv

)
, (13)

where θ = T (σ2 + γ) and fU (u) = w1
σ(u)(−u2 + iu/U) exp(−TFµ(Uu)). The confidence interval

for λ is based on the similar finite sample variance of the corresponding linearized stochastic error.
The only difference in the calculation for γ is that we use Im(z)2 = Re(|z|2 − z2)/2. We observe
that ν̂(x) in (8) involves ψ̃ν instead of ψ̃. Thus the confidence intervals for ν(x) are based on the
linearization LνN,U (u) of ∆ψ̃ν = ψ̃ν − ψν . The variance s2

ν(x) of the linearized stochastic errors is

s2
ν(x) =

U2

π2
E

[(∫ 1

0

Re(LνN,U (u)e−ixUu)w1
ν(u)du

)2
]

=
U2

2π2
Re

(
E

[∣∣∣∣∫ 1

0

LνN,U (u)e−ixUuw1
ν(u)du

∣∣∣∣2 +

(∫ 1

0

LνN,U (u)e−ixUuw1
ν(u)du

)2
])

=
U6

πNT 2e−2Tλ

(
Re

∫ 1

0

∫ 1

0

gU (u)gU (v)F−1(e−2y%(y + Tγ)2)(U(u− v))eTσ
2U2(u2+v2)/2dudv

+ Re

∫ 1

0

∫ 1

0

gU (u)gU (v)F−1(e−2y%(y + Tγ)2)(U(u− v))eTσ
2U2(u2+v2)/2dudv

)
, (14)

with gU (u) := w1
ν(u)(u2 +iu/U) exp(−TFν(Uu)−ixUu). The confidence interval for ν(0) is based

on both the linearization LνN,U multiplied by the weight function w1
ν as well as the linearization

LN,U multiplied by w1
σ

∫ 1

−1
v2w1

µ(v)dv/2−w1
λ

∫ 1

−1
w1
µ(v)dv, cf. the definition of w0 by Söhl (2012).

We denote by ŝσ2 , ŝγ , ŝλ, ŝν(x) and ŝν(0) the estimated standard deviations which are obtained
by substituting σ, γ, λ, µ and ν by their respective estimators in (13), (14) and the analogous
expressions. This yields feasible confidence intervals. For a level α > 0 the (1-α)–confidence
intervals are then given by

Iσ2 := [σ̂2 − ŝσ2qα/2, σ̂
2 + ŝσ2qα/2],

Iγ := [γ̂ − ŝγqα/2, γ̂ + ŝγqα/2]

Iλ := [λ̂− ŝλqα/2, λ̂+ ŝλqα/2],

Iν(x) := [ν̂(x)− ŝν(x)qα/2, ν̂(x) + ŝν(x)qα/2],

Iν(0) := [ν̂(x)− ŝν(0)qα/2, ν̂(x) + ŝν(0)qα/2],

(15)

where qα denotes the (1− α)-quantile of the standard normal distribution.
We examine the performance of the confidence intervals by simulations from the Merton model

with parameters as in Example 1, with interest rate r = 0.06 and with maturity T = 0.25 as in
Section 3.2. We sample N = 100 strike prices deterministically and take the relative noise level to
be τ = 0.01. To coincide with the theory, we interpolate the corresponding European call prices
linearly and use the weight functions by Belomestny and Reiß (2006b) with smoothness parameter
s = 2. In the real data application in Section 6 take advantage of the above improvements. Upon
fixing an upper bound of 28 for the cut-off values, we perform 1000 Monte Carlo iterations.

Figure 3 illustrates the true Lévy density, pointwise 95% confidence intervals and the first one
hundred estimated Lévy densities from the Monte Carlo simulation. The graph shows that the
confidence intervals describe well the deviation of the estimated jump densities. The negative
bias around zero might come from the smoothing which naturally tends to smooth out peaks, cf.
(Härdle, 1990, Chap. 5.3). The confidence interval Iν(0) is larger than indicated in Figure 3. By
the smoothness of the estimated curves the larger variance of ν̂(0) leads to an increased variance
of ν̂(x) in a neighborhood of zero. This is the second reason why deviation of the estimated curves
is larger at zero. Figure 4 shows boxplots of ν̂(0) and ν̂(0.4), the true value, the theoretical 25%
and 75% quantiles as well as the theoretical 2.5% and 97.2% quantiles based on the linearized
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Figure 3: True Lévy density (blue, solid), point-
wise 95% confidence intervals (red, dotted) and
100 estimated Lévy densities (grey) from a
Monte Carlo simulation.

Figure 4: Boxplots of ν̂(0) and ν̂(0.4)
from 1000 Monte Carlo iterations with
true value (blue), theoretical quantiles of
the linearized stochastic error for 25% and
75% (red, solid) as well as for 2.5% and
97.5% (red, dashed).

stochastic errors. We see that ν̂(0) has a negative bias and that the distribution of ν̂(0.4) fits well
to the theoretical quantiles of the linearized stochastic errors.

We asses the performance of the confidence intervals (15) with levels α = 0.5 and α = 0.05
for the parameters σ2, γ, λ, ν(0) and ν(0.4) in a Monte Carlo simulation with 1000 iterations.
We approximate the coverage probabilities of the confidence sets by the percentage of confidence
intervals which contain the true value. Table 2 gives the approximate coverage probabilities from
the Monte Carlo simulation.

6 Empirical study

We apply the calibration methods to a data set from the Deutsche Börse database Eurex1. It
consists of settlement prices of European put and call options on the DAX index from May 2008.
Therefore, the prices are observed before the latest financial crises and thus the market activity is
stable. The interest rate r is chosen for each maturity separately according to the put-call parity
at the respective strike prices. The time to maturity T is measured in years. The number of our
observations is given in Figure 5.

6.1 Comparison of (FA) and (SD)

Let us first focus on one (arbitrarily chosen) day. Hence, we calibrate the option prices of May
29, 2008, with all four different maturities to both, the (FA) and the (SD) setting. The results are
summarized in Table 3 and Figure 6. Using the complete estimation of the models, we generate the
corresponding option functions Ô. They are graphically compared to the given data points and we
calculate the residual sum of squares RSS =

∑
j(Oj − Ô(xj))

2. For all maturities both methods

1provided through the SFB 649 “Economic Risk”
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σ2 γ λ ν(0) ν(0.4)
α = 0.5 54% 47% 50% 49% 47%
α = 0.05 97% 95% 91% 98% 95%

Table 2: Approximate coverage probabilities of 1 − α confidence intervals from a Monte Carlo
simulation with 1000 iterations.

Figure 5: Number of observed prices of put and call options during May ,2008.

yield good fits to the data. However, for longer maturities, especially the calibration of options
with four months to maturity, minor problems occur in the (SD) calibration. The calibration at
other trading days confirms this weakness of the (SD) method for larger T . This coincides with
the asymptotic analysis of Trabs (2011) and Corollary 1 where longer maturities lead to slower
convergence rates of the risk.

Moreover, Figure 6 shows that the estimated option function Ô which results from the (SD)
calibration does not exactly recover the peak of O. In all maturities and in both models the Lévy
density has more weight on the negative half line and thus there are more negative jumps than
positive ones priced into the options. This coincides with the empirical findings in the literature
(see e.g. Cont and Tankov, 2004a).

In Table 3 we see a tendency that higher values of σ̂ in (FA) correspond to higher α̂ in the
(SD) model. The scatter plot in Figure 7 displays the pairs (σ̂, α̂) in the estimations of all trading
days with maturity in July or August. Note that there are no more than 60 observations for each
point and thus the stochastic error is relatively big. Nevertheless, the positive correlation between
σ and α is confirmed weakly and it is in line with the expectation that fluctuations of the stock are
modeled by the diffusion part in the former model and by the infinitely high activity of the jump
part in the latter one. The other way around, this relation shows that α is indeed a meaningful
measure of the jump activity in the (SD) setting.

6.2 (FA) across trading days

The aim of this section is twofold. By considering more than one day we investigate the stability
of the (FA) estimation procedure. Moreover, calibrating the model across the trading days in
May, 2008, shows the development of the model along the time line and with small changes in the
maturities. To profit from the higher observation number, we apply the calibration procedure for
the (FA) case to the options with maturity in September and December.

To apply the confidence intervals (15) of Section 5, we need the noise function % from (12).
By a rule of thumb we assume δ to be 1% of the observed prices O(xj) (cf. Cont and Tankov,
2004a, p. 439), for j = 1, . . . , N . The density h of the strikes is estimated by a triangular kernel
estimator, where the bandwidth is chosen by Silverman’s rule of thumb.

11



Figure 6: Estimated jump density (left), k-function (center) as well as calibrated option functions
in the (FA) (right, solid) and (SD) (right, dashed) setting and given data from May 29, 2008
(right, points).
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N 61 55 101 106
T 0.136 0.233 0.311 0.564

(FA)

σ̂ 0.109 0.111 0.106 0.088
γ̂ 0.224 0.163 0.176 0.202

λ̂ 3.498 1.716 1.862 2.805√
RSS 0.003 0.007 0.005 0.006

(SD)
γ̂ 0.337 0.297 0.378 0.227
α̂ 25.313 30.084 36.123 16.557√
RSS 0.006 0.006 0.021 0.014

Table 3: Results of the estimations from option prices from May 29, 2008.

Figure 7: Pairs (σ̂, α̂) estimated from options from each market day in May, 2008, with Maturity
in July (red diamonds) and August (green circles) and regression line (black).

The estimations of the parameters are displayed in Figure 8. Furthermore, the 95% confidence
intervals for the December options are shown. The estimated volatility σ̂ fluctuates between 0.1 and
0.12. The confidence sets imply that there is no significant difference of the two maturities. Both
γ̂ and λ̂ decrease for higher durations: On the one hand the curves of December lay significantly
below the ones of September, on the other hand the graphs have a slight positive trend with
respect to the time axis, which means with smaller time to maturity.

Figure 9 displays the estimated jump densities. All jump measures have a similar shape
which is in line with real data calibration of Belomestny and Reiß (2006b). In contrast to Cont
and Tankov (2004b) the densities are unimodal or have only minor additional modes in the tails,
which may be artefacts of the spectral calibration method. The tails of ν̂ do not differ significantly,
while the different heights reflect the development of the jump activities λ̂. Showing the point-wise
confidence sets around ν̂(x) on a fine grid, Figure 10 confirms this suggestions. There is an obvious
trend to small negative jumps in all data sets which is in line with the stylized facts of option
pricing models.

7 Conclusions

To reduce the model misspecification it is reasonable to use a nonparametric model for option
pricing. However, the nonlinear inverse problem, which occurs by calibrating the model, is more
difficult to solve than parametric calibration problems and needs non-standard algorithms. We
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Figure 8: At each market day in May, 2008, estimated σ2 (top), γ (center) and λ (bottom) from
options with maturities in September (dashed) and December (solid) and confidence intervals
(dotted) for the latter ones.

Figure 9: Estimation of ν for maturity in September (left) and December (right).
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Figure 10: Empirical confidence sets (dotted) of ν̂(x) (solid) in the estimation from option prices
of May 6, 2008, with maturity in December and estimated jump densities from May 2 to 12 with
the same maturity (grey).

could improve the existing spectral calibration procedures for the finite activity (FA) Lévy model
and the self-decomposable (SD) Lévy model. Owing to the fast Fourier transform, the method
is computationally fast and admits convincing results in simulations and real data applications.
Determining the finite sample variances of the linearized estimators, we obtain confidence sets,
which allow a precise analysis of the noise of the estimators.

Our empirical investigations show that both models can be calibrated well to European option
prices. However, (FA) is more suitable for longer maturities. Using the derived confidence sets,
we can observe significant changes of the (FA) model over time. While the volatility has no
systematic trend, the jump activities decrease for longer maturities and thus the Lévy densities
become flatter.

To avoid misspecification of the model, we are convinced that the nonparametric approach
should be pushed forward theoretically and in practice, in particular, in view the high number
of available observations in highly liquid markets. Of further interest would be extensions of the
method to models whose jump part is not of finite variation as well as the application to hedging
and risk management problems.

A Proof of Corollary 1

W.l.o.g. it suffices to estimate the risk on R+. We decompose the risk to

EP [‖k̂e − ke‖2L2(R+)] = EP
[∥∥∥F−1

(
(−γ̂ − iψ̃′(u))FWk(

u

U
)
)
− ke

∥∥∥2

L2(R+)

]
≤3

∫
R+

∣∣∣(ke ∗ (UWk(U•)
)
(x)− ke(x)

∣∣∣2 dx+ 3EP [|γ − γ̂|2]

∫
R+

|UWk(Ux)|2 dx

+ 3E
[ ∫

R+

∣∣∣F−1
((
ψ̃′(u)− ψ′(u)

)
FWk(

u

U
)
)

(x)
∣∣∣2 dx

]
=:D +G+ S.

The deterministic error term D can be bounded exactly as in the proof of (Trabs, 2011, Thm 4.5)
with τ = 1 and use of the properties of the kernel Wk. The assumption on γ̂ and the choice of U
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yield G . Uε(4s+2)/(2s+2Tᾱ+5) = ε4s/(2s+2Tᾱ+5). It remains to estimate the stochastic error term
S. Applying Plancherel’s equality, the bound of |ψ̃′−ψ′| from (Trabs, 2011, p. 27) and the decay
of FWk, we obtain

S ≤ EP
[∥∥(ψ̃′(u)− ψ′(u)

)
FWk(

u

U
)
∥∥2

L2

]
.
∫
R

u4

|κ(u)|2
(
E
[
|F(Õ − O)(u)|2

]
+ E

[∣∣F(x(Õ − O)(x)
)
(u)
∣∣2])∣∣FWk(

u

U
)
∣∣2 du

. (∆4 + ∆‖δ‖2∞)

∫
R
u2Tᾱ+4

∣∣FWk(
u

U
)
∣∣2 du

. ε2U2Tᾱ+5 = ε4s/(2s+2Tᾱ+5).

B Implementation in R

B.1 Global parameters

We give here a detailed description of our implementation of the calibration method for the fi-
nite activity case. Some global parameters to adjust the code and some auxiliary functions are
necessary. These are namely Zeta needed for simulations, CFHat and ZetaHat to reproduce obser-
vations from the estimated model, the Fourier transform function FT and a continuous logarithm
logc. The calibration itself is done in the function calibration documented in Section B.2. We
use these functions either to calibrate simulations or to estimate real data in Section B.3.

There are a few parameters to control the execution of the program:

• model permits the values “Merton”, “Kou” and “real data”. In the first two cases observa-
tions will be simulated with the corresponding model. Picking the last value, the user has to
supply the necessary data in the workspace of R before running the script (vector of strikes
k, vector of option prices op, interest rate r and maturity T).

• In case of simulations the user has to specify noiseLevel, the sampleSize and the number of
Monte Carlo iterations in monteCarlo. Furthermore, design decides whether the observed
strikes are sampled “deterministic” or “random”.

• The choice of the cut-off parameter U is adjusted by mode. In Belomestny and Reiß (2006b)
are three possibilities proposed which are (in modifications) also available in this implemen-
tation. Possible values for mode are:

– “oracle”: U∗ and U∗ν minimize the discrepancy between the estimators and the given
values, separately for (σ2, γ, λ) and ν.

– ”flat“: The cut-offs correspond to points where the estimators stabilize:

U∗ = argminU

(∣∣∣ d
dU

σ̂U

∣∣∣+ αU

)
, α > 0,

U∗ν = argminUν≤U∗
∥∥∥ d

dU
ν̂Uν

∥∥∥
L2
.

In our simulations and real data estimations we used α = 10−5.

– ”PLS“: The common cut-off U∗ solves

inf
U

[
N∑
i=1

|C(Ki; TU )− Yi|2 + α

∫
R
|ν̂′′U (x)|2 dx

]
, α > 0,

where C(K; TU ) is the price at strikeK computed using Levy-triplet TU = (σ̂U , γ̂U , ν̂U , ).
In our simulations and real data estimations we use α = 0.

16



– ”fix“: The same cut-off values Ufix and UfixNu are used to estimate the parameters
and the jump density, respectively.

• If the variable linear is true then the observation will be interpolated linearly. Otherwise
quadratic B-splines are used.

• The smoothness of the jump density is set in parameter s (in the context of Belomestny and
Reiß (2006a) s implies a smoothness s = 2∗s of ν).

We remark that the library cobs is necessary to use this program. It provides the spline
interpolation.

B.2 The function calibration

Given a vector of log-strikes sk and corresponding call-option prices snop this function performs
the calibration of the model and returns the cut-off values U,Uν , the model parameters σ̂, γ̂, λ̂ and
the estimated jump density ν̂ on a grid x. If a simulation is performed then also the quadratic
L2-error of ν̂ is given back.

c a l i b r a t i o n<−function ( sk , snop ) {
. . .

# return
l i s t (U=U, UNu=UNu, sigmaHat=sigmaHat , gammaHat=gammaHat , lambdaHat=

lambdaHat , x=x , nuHat=nuHat , nuError2=nuError2 )
}

To approximate the O-function from the given discrete points (sk, snop), we switch from the
log-scale to the normal one, because we can use the convexity of the function K 7→ C(K,T ) =
e−rTE[(ST −K)+] for the quadratic spline interpolation. Furthermore, we extrapolate the obser-
vations by adding boundary points whose position is set by extrapolation. To get an option
value for the new strike near zero we use the slope of C(K,T ) in K at 0. In the case of quadratic
spline interpolation the function cobs from package cobs is used to interpolate and evaluate the
result on the logarithmic scale on a fine grid. We get the points (knew, opnew) and use the put-call
parity to have a discrete version of the function k 7→ Õ(k − rT ).

e x t r a p o l a t i o n<−0 .005

extraK<−rep (0 , length (sK) +2)
extraK [ 1 ]<−e x t r a p o l a t i o n∗sK [ 1 ]
extraK [ 2 : ( length (sK) +1) ]<−sK
extraK [ length (sK) +2]<−sK [ length (sK) ] ∗1/ e x t r a p o l a t i o n

extraOp<−rep (0 , length (sK) +2)
extraOp [ 1 ]<−1−exp(−r∗T)∗extraK [ 1 ]
extraOp [ 2 : ( length (sK) +1) ]<−snop
extraOp [ length (sK) +2]<−0

BI<−log ( extraK [ 1 ] )
BE<−log ( extraK [ length ( extraK ) ] )
knew<−seq (BI ,BE, length=2ˆ12)

i f ( l i n e a r ) {
OpofK <− approxfun ( extraK , extraOp , method=” l i n e a r ” , r u l e =2, t i e s=

mean)
opnew <− OpofK(exp(knew) )

} else {
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c s s<−cobs ( extraK , extraOp , c o n s t r a i n t=”convex” , nknots=min(100 , length
(sK)−2) , degree =2)

opnew<−predict ( css , exp(knew) ) [ , 2 ]
}

opnew<−opnew−pmax(0. ,1−exp(knew−r∗T) )
opnew<−pmax(0 , opnew )

We can now apply the Fourier transform to get first the estimate of v 7→ ϕ̃T (v − i) = 1 + iv(1 +
iv)FÕ(v) and calculate then ψ̃(v) = 1/T log(ϕ̃(v − i)) by profiting from symmetry. Now we have
(v, psi) and define L as the index where v has value 0.

z<−FT(knew−r∗T, opnew ,TRUE) #x=k−rT , z=FO( v )

v<−z$u
phi<−z$ fy∗1 i ∗v∗(1+1 i ∗v )+1

p s i<−rep (0 , length ( phi ) )
p s i [ ( length ( v )/2) : length ( v ) ]<−1/T∗ l o g c ( phi [ ( length ( v )/2) : length ( v ) ] )
p s i [ 1 : ( length ( v )/2−1) ]<−Re( p s i [ ( length ( v )−1) : ( length ( v )/2+1) ] )−1 i ∗Im

( p s i [ ( length ( v )−1) : ( length ( v )/2+1) ] )

L<−length ( v )/2

In the following we calculate for numerous cut-off values U the estimators σ̂2, γ̂ and λ̂ and save each
in sigma2HatCur, gammaHatCur and lambdaHatCur, respectively. The cut-off values are multiples
of the mesh of v and their number is given by cutOffIterations. Since the calculation time
in the “PLS”-mode is much longer than in the other modes but the picked cut-off is smaller in
general we choose less iterations in “PLS”. If the mode is “fix”, only one iteration with the fixed
cut-off suffices. Because of a large bias for small U we start with (v[2]-v[1])*11 and therefore
end at (v[2]-v[1])*(10+cutOffIterations). Later we need bestError for the decision in the
oracle-mode. With use of symmetry it is enough to calculate (v cut, psi cut) on the positive
half-axis.

i f (mode==” o r a c l e ” | mode==” f l a t ” )
c u t O f f I t e r a t i o n s<−130

else i f (mode==”PLS” )
c u t O f f I t e r a t i o n s<−90

else i f (mode==” f i x ” )
c u t O f f I t e r a t i o n s<−1

sigma2HatCur<−rep (0 , c u t O f f I t e r a t i o n s )
gammaHatCur<−rep (0 , c u t O f f I t e r a t i o n s )
lambdaHatCur<−rep (0 , c u t O f f I t e r a t i o n s )
bes tError<−−1
for ( i in 1 : c u t O f f I t e r a t i o n s ) {

i f (mode==” f i x ” ) {
UCur<−Ufix
gridU<−round( Uf ix/ ( v [2]−v [ 1 ] ) )

} else {
UCur <− ( v [2]−v [ 1 ] ) ∗ ( i +10)
gridU <− i +10

}
v cut<−v [ L : ( L+gridU ) ]
p s i cut<−p s i [ L : ( L+gridU ) ]
. . .
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}

Within this loop we approximate the integrals in (5) - (7) with a composite trapezoidal rule and
use the polynomial weight functions from above.

w<−rep (1 , length ( p s i cut ) )
w[ length ( p s i cut ) ]<−0 .5

wFkt<−function ( x ) {(2∗s+1)∗x ˆ(2∗s )−4∗(2∗s+3)∗x ˆ(2∗s+2)+6∗(2∗s+5)∗x
ˆ(2∗s+4)−4∗(2∗s+7)∗x ˆ(2∗s+6)+(2∗s+9)∗x ˆ(2∗s+8)}

weight<−wFkt( v cut/UCur)
weight [ length ( weight ) ] <− weight [ length ( weight ) ]−2∗sum(w∗weight )
sigma2HatCur [ i ]<−sum(w∗weight∗Re( p s i cut ) )
sigma2HatCur [ i ]<−−2∗sigma2HatCur [ i ] /sum(w∗abs ( v cut ) ˆ{2}∗weight )

wFkt<−function ( x ) {x ˆ(2∗s+1)−3∗x ˆ(2∗s+3)+3∗x ˆ(2∗s+5)−x ˆ(2∗s+7)}
weight<−wFkt( v cut/UCur)
gammaHatCur [ i ]<−sum(w∗weight∗Im( p s i cut ) )
gammaHatCur [ i ]<−gammaHatCur [ i ] /sum(w∗weight∗v cut )−sigma2HatCur [ i ]

wFkt<−function ( x ) {(2∗s+3)∗x ˆ(2∗s )−4∗(2∗s+5)∗x ˆ(2∗s+2)+6∗(2∗s+7)∗x
ˆ(2∗s+4)−4∗(2∗s+9)∗x ˆ(2∗s+6)+(2∗s +11)∗x ˆ(2∗s+8)}

weight<−wFkt( v cut/UCur)
weight [ length ( weight ) ] <− weight [ length ( weight ) ]−2∗sum(w∗weight∗v

cut ˆ2)/v [ L+gridU ]ˆ2
lambdaHatCur [ i ]<−sum(w∗Re( p s i cut )∗weight )
lambdaHatCur [ i ]<−−lambdaHatCur [ i ] /sum(w∗weight )+gammaHatCur [ i ]+

sigma2HatCur [ i ] /2

The choice of U depends on the mode. In “oracle” in every iteration step we calculate the distance
between the estimators and the true values as an error term and select the minimizing U . In the
case of “fix” the cut-off is unique.

i f (mode==” o r a c l e ” ) {
e r r o r<−1∗abs ( sigma2HatCur [ i ]− sigma ˆ2)+1∗abs (gammaHatCur [ i ]−gamma

)+1∗abs ( lambdaHatCur [ i ]− lambda )
i f ( ( i ==1) | e r ror<bes tError ) {

U<−UCur
sigmaHat<−sqrt (pmax(0 , sigma2HatCur [ i ] ) )
gammaHat<−gammaHatCur [ i ]
lambdaHat<−lambdaHatCur [ i ]
be s tError<−e r r o r

}
}
i f (mode==” f i x ” ) {

U<−UCur
sigmaHat<−sqrt (pmax(0 , sigma2HatCur [ i ] ) )
gammaHat<−gammaHatCur [ i ]
lambdaHat<−lambdaHatCur [ i ]
be s tError<−e r r o r

}

After the loop and in case of the “flat”-mode we calculate a moving average of order two of the
differences in the discrete curve U 7→ σ̂U and select the minimum of these values with respect to
a penalty for big U .

i f (mode==” f l a t ” ) {
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d i f f<−d i f f ( sigma2HatCur [ 1 : length ( sigma2HatCur ) ] )
ma<−rep (0 , length ( d i f f ) )
maOrder<−2
for ( i in ( 1 : length ( d i f f ) ) ) {

ma[ i ]<−sum(abs ( d i f f [max( i−maOrder , 1 ) :min( i+maOrder−1, length ( d i f f
) ) ] ) )/ (min( i+maOrder , length ( d i f f ) )−max( i−maOrder , 1 ) )

}

Us<−( v [2]−v [ 1 ] ) ∗ (10+(1 : ( c u t O f f I t e r a t i o n s −1) ) )
alpha<−1e−5
i<−which .min(ma+alpha∗Us)
U<−Us [ i ]
sigmaHat<−sqrt (pmax(0 , sigma2HatCur [ i ] ) )
gammaHat<−gammaHatCur [ i ]
lambdaHat<−lambdaHatCur [ i ]

}

To estimate ν as in (8) we first have to build ψ̃ν :

z<−FT(knew−r∗T, exp(−knew+r∗T)∗opnew ,TRUE)
phiNu<−1−v∗ ( v+1 i )∗z$ fy
psiNu<−rep (0 , length ( phiNu ) )
psiNu [ ( length ( v )/2) : length ( v ) ]<−1/T∗ l o g c ( phiNu [ ( length ( v )/2) : length (

v ) ] )
psiNu [ 1 : ( length ( v )/2−1) ]<−Re( psiNu [ ( length ( v )−1) : ( length ( v )/2+1) ] )−1

i ∗Im( psiNu [ ( length ( v )−1) : ( length ( v )/2+1) ] )

As before we use a loop to calculate ν̂ for different cut-off values. Since we have a separate cut-off
UNu in the cases of “oracle” and “flat”, the number of iterations is restricted to the selected cut-
off U of the three parameters (in that way we save calculations, because ν̂ needs smaller cut-offs
in general). The resulting ν̂U are stored in a matrix nuHatCur. Furthermore, we initiate some
auxiliary variables and the flatTopKernel, as defined in (9).

i f (mode==” o r a c l e ” | mode==” f l a t ” )
c u t O f f I t e r a t i o n s<−max( cei l ing (U/ ( v [2]−v [ 1 ] ) ) ,20)−10

nuHatCur<−matrix (0 , c u t O f f I t e r a t i o n s , length ( v ) )
nuError2<−−1
i f (mode==” o r a c l e ” )

nuError2Cur<−rep (0 , c u t O f f I t e r a t i o n s )
i f (mode==”PLS” )

o b j e c t i v e<−−1
f latTopKerne l<−function ( x ) {(abs ( x )<=0.05)+(abs ( x )<1 & abs ( x ) >0.05)∗ (

exp(−exp(−(abs ( x ) −0.05) ˆ(−2) )/ (abs ( x )−1)ˆ2) ) }
for ( i in 1 : c u t O f f I t e r a t i o n s ) {

i f (mode==” f i x ” )
UCur<−UfixNu

else
UCur <− ( v [2]−v [ 1 ] ) ∗ ( i +10)

. . .
}

The first step in this loop is to calculate ν̂U with an inverse Fourier transform as in (8). Depending

on the mode we use the final estimators σ̂, γ̂ and λ̂ or the parameters per cut-off (since we have in
the “PLS” mode a common cut-off). xCur denotes the grid on which the jump density is provided.
It will be the same in every iteration step because it only depends on the grid v of psiNu.

i f (mode==” o r a c l e ” | mode==” f l a t ” | mode==” f i x ” ) {
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lam<−lambdaHat
fnuHat<−( psiNu−1 i ∗gammaHat∗v+lam+sigmaHat ˆ2∗vˆ{2}/2)∗

f l a tTopKerne l ( v/UCur)
}
else i f (mode==”PLS” ) {

lam<−lambdaHatCur [ i ]
fnuHat<−( psiNu−1 i ∗gammaHatCur [ i ] ∗v+lam+sigma2HatCur [ i ] ∗vˆ{2}/2)∗

f l a tTopKerne l ( v/UCur)
}
fxy nu <− FT(v , fnuHat , noInverse=FALSE)
xCur <− fxy nu$u
nuHatCur [ i , ] <− Re( fxy nu$ fy )

Up to now the condition ν̂U ≥ 0 is not ensured and needs a correction of ν̂U . Referring to
Belomestny and Reiß (2006b), we seek for a ξ such that the integral

∫
R max{0, ν̂U (x) − ξ}dx

equals λ̂ or λ̂U , respectively. We approximate the difference between the integral and lam as a
function eq of xi, approximate its root, using the secants method, and redefine ν̂U as the corrected
version.

wNu<−rep ( xCur [2]−xCur [ 1 ] , length ( xCur ) )
wNu[ 1 ]<−0 .5∗wNu[ 1 ]
wNu[ length (wNu) ]<−0 .5∗wNu[ length (wNu) ]

i f ( lam>0){
eq<−function ( x i ) {sum(wNu∗ (pmax(0 , nuHatCur [ i , ]− x i ) ) )−lam}
x i0<−0
f x i 0<−eq ( x i0 )
x i1<−1
f x i 1<−eq ( x i1 )
while (abs ( f x i 1 ) >0.001){

x i2<−xi1−(xi1−x i0 )/ ( fx i 1−f x i 0 )∗ f x i 1
x i0<−x i1
x i1<−max(0 , x i2 )
f x i 0<−f x i 1
f x i 1<−eq ( x i1 )

}
} else

x i2<−0
nuHatCur [ i , ]<−pmax(0 , nuHatCur [ i , ]− x i2 )

Now we are in position to do the mode depending choice of ν̂. In the “PLS” mode we also select
the other three parameters. In “oracle” we calculate for every UCur the L2-distance to the true ν
and pick the cut-off UNu with the smallest one. In “fix”-mode there is only one estimation.

i f (mode==” o r a c l e ” ) {
nuTrue<−Nu( xCur )
nuError2Cur [ i ]<−sum(wNu∗ ( nuHatCur [ i , ]−nuTrue ) ˆ2)
i f ( nuError2<0 | nuError2Cur [ i ]<nuError2 ) {

UNu<−UCur
x<−xCur
nuHat<−nuHatCur [ i , ]
nuError2<−nuError2Cur [ i ]

}
}
i f (mode==” f i x ” ) {

UNu<−UCur
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x<−xCur
nuHat<−nuHatCur [ i , ]
i f (model!=” r e a l data ” ) {

nuTrue<−Nu( xCur )
nuError2<−sum(wNu∗ ( nuHatCur [ i , ]−nuTrue ) ˆ2)

}
}

Still within the loop we deal with the “PLS” mode. Since it is driven by a least squares distance
between the observations and the estimated model, we have to compute O from σ̂U , γ̂U , λ̂U and ν̂U .
It is important that the martingale condition (1) holds for each U , otherwise the right-hand site

of equation (3) can have a singularity. Therefore, we correct λ̂U and ν̂U simultaneously. Remark
that this is not done in the other modes (and actually cannot be done before the calculation of ν̂
is finished). The option pricing of (kE, opE) itself is described in detail in section B.3. From all
available strikes kE we chose the ones next to the given observations sk and get (kHat, opHat).

i f (mode==”PLS” ) {
beta<−( 0 . 5∗sigma2HatCur [ i ]+gammaHatCur [ i ] ) / ( lambdaHatCur [ i ]−sum(

wNu∗exp( xCur )∗nuHatCur [ i , ] ) )
lambdaHatCur [ i ]<−beta∗lambdaHatCur [ i ]
nuHatCur [ i , ]<−beta∗nuHatCur [ i , ]

vE<−−2ˆ9/2+(0:(2ˆ9−1) )∗2ˆ9/(2ˆ9−1)
yE<−sapply (vE , function ( v ) {ZetaHat (v , sigma2HatCur [ i ] ,

gammaHatCur [ i ] , lambdaHatCur [ i ] , xCur , nuHatCur [ i , ] ) })
fxy<−FT(vE , yE ,FALSE)
kE<−fxy$u
opE<−Re( fxy$ fy )
kHat<−rep (0 , length ( sk ) )
opHat<−rep (0 , length ( sk ) )
for ( j in ( 1 : length ( sk ) ) ) {

index<−which .min(abs (kE−sk [ j ] ) )
kHat [ j ]<−kE [ index ]
opHat [ j ]<−opE [ index ]

}
. . .

}

To penalize large second derivatives of ν, the second order differences of nuHatCur are provided in
nuDeriv. The term to be minimized is given in objectiveCur. In every iteration step we check
whether the new objective is smaller then the last best.

nuDeriv<−d i f f ( nuHatCur [ i , ] , 2 )
wE<−rep ( xCur [2]−xCur [ 1 ] , length ( nuDeriv ) )
wE[ 1 ]<−0 .5∗wE[ 1 ]
wE[ length (wE) ]<−0 .5∗wE[ length (wE) ]
alpha<−0 #1e−8
ob jec t iveCur<−sum( ( opHat−snop+pmax(0. ,1−exp( sk−r∗T) ) ) ˆ2)+alpha∗

sum(wE∗ ( nuDeriv/ ( xCur [2]−xCur [ 1 ] ) ˆ2) ˆ2)
i f ( ! i s . nan( ob jec t iveCur ) & ( ob j e c t i v e <0 | object iveCur<o b j e c t i v e

) ) {
U<−UCur
UNu<−UCur
sigmaHat<−sqrt (pmax(0 , sigma2HatCur [ i ] ) )
gammaHat<−gammaHatCur [ i ]
lambdaHat<−lambdaHatCur [ i ]
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x<−xCur
nuHat<−nuHatCur [ i , ]
o b j e c t i v e<−ob jec t iveCur
i f (model!=” r e a l data ” ) {

nuTrue<−Nu( xCur )
nuError2<−sum(wNu∗ ( nuHat−nuTrue ) ˆ2)

}
}

In the “flat” mode the choice of Uν is made at the end of the loop. We approximate the L2-norm
of the derivative of the map U 7→ ν̂U and select its minimum.

i f (mode==” f l a t ” ) {
der ivat ivU<−d i f f ( nuHatCur )/ ( v [2]−v [ 1 ] )
de r i va t ivL2<−rep (0 , length ( der ivat ivU [ , 1 ] ) )
for ( i in ( 1 : length ( der ivat ivU [ , 1 ] ) ) )

de r i va t ivL2 [ i ]<−sum(wNu∗der ivat ivU [ i , ] ˆ 2 )
i<−which .min( de r i va t ivL2 )
UNu<−( v [2]−v [ 1 ] ) ∗ ( i +10)
x<−xCur
nuHat<−nuHatCur [ i , ]
i f (model!=” r e a l data ” ) {

nuTrue<−Nu( xCur )
nuError2<−sum(wNu∗ ( nuHat−nuTrue ) ˆ2)

}
}

Now we have all estimators and can return the results.

B.3 Option pricing from Lévy triplet

Given values of σ, γ, λ and ν we want to provide the O-function. This happens in two situations
of the script. On the one hand we simulate observations from a specific model and apply the
calibration to the noised data and on the other hand, we have to calculate option prices from the
estimated parameters in the least squares method. In (Cont and Tankov, 2004b, p. 361 et seq.) a
good description of this option pricing can be found.

We define the function

ζ(v) := eivrT
φT (v − i)− 1

iv(1 + iv)

which is implemented as Zeta(v) and ZetaHat(v, sigma2Hat, gammaHat, lambdaHat, x, nuHat),
respectively. Then O as function of log-strike k is obtained by inverse Fourier transform of ζ.
Hence, we evaluate ζ on a discrete grid x to get pairs of log-strikes and option prices (k, op).
Because of the FFT algorithm a finer grid x leads to a larger limits of k and the other way around
a higher range of x implies a smaller mesh of k.

A<−2ˆ10
M<−12
N<−2ˆM
l<−0 : (N−1)
Delta<−A/ (N−1)
x<−−A/2+l ∗Delta
y<−Zeta ( x )
fxy<−FT(x , y ,FALSE)
k<−fxy$u
op<−Re( fxy$ fy )+pmax(0. ,1−exp(k−r∗T) )
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For simulations we noise and sample all pairs (k,op) and apply the calibration procedure in every
Monte Carlo iteration step. Here the sampling is done according to a normal distribution centered
at at-the-money strikes. Depending on design, the strikes a distributed deterministic or random.

for (mi in 1 : monteCarlo ) {
nop<−op+rnorm( length ( op ) , 0 , ( no i s eLeve l∗abs (Re( fxy$ fy ) ) ) )

M1<−round( length ( op )/2)−which .min(abs ( op [ 1 : round( length ( op )/2)
]−10ˆ(−6) ) )

M2<−which .max( op )+M1
M1<−which .max( op )−M1

i f ( des ign==”random” ) {
prob<−exp(−(k [M2:M1]− r∗T) ˆ2)
prob<−prob/sum( prob )
ind sub<−sort (sample (M2:M1, sampleSize , prob=prob ) )
sk<−k [ ind sub ]
snop<−nop [ ind sub ]

} else i f ( des ign==” d e t e r m i n i s t i c ” ) {
q u a n t i l s<−qnorm( c ( 1 : sampleSize )/ ( sampleSize +1) ,0 ,2ˆ(−0.5) )
ind sub<−sapply ( quant i l s , function ( x ) {which .min(abs (k−r∗T−x ) ) })
sk<−k [ ind sub ]
snop<−nop [ ind sub ]

}
snop<−snop+pmax(0. ,1−exp( sk−r∗T) )
. . .

}
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649 Discussion Paper 2012-012, Sonderforschungsbereich 649, Humboldt Universität zu Berlin,
Germany. Available at http://sfb649.wiwi.hu-berlin.de/papers/pdf/SFB649DP2012-012.pdf.

Trabs, M. (2011). Calibration of self-decomposable Lévy models. SFB 649 Discussion Paper
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