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An Extension of Good-Deal Asset Price
Bounds*

[.R. Longarela
Department of Finance
Stockholm School of Economics!

Abstract

In a two-period setup we develop a generalization of good-deal
bounds that allows to include in the problem the implications of asset
pricing models. Our basis is the distance behind Hansen and Ja-
gannathan’s measure of model misspecification since a volatility con-
straint on the stochastic discount factor is a particular case of a restric-
tion on this distance. We also present an alternative approach which
mostly retains the economic interpretation underlying the above ex-
tension and it has a very useful property since the resulting bounds
can be computed by simply solving a linear program.

1 Introduction

A new approach in the field of asset pricing theory has recently been devel-
oped by Cochrane and Saé-Requejo (2000) and Bernardo and Ledoit (2000).
These two seminal papers introduce a novel way to deal with the valuation

*I would like to thank Tomas Bjork, Paul Soderlind and Francesca Biagini for their
helpful comments. I am especially grateful to Jessica Wachter for her very valuable sug-
gestions. An earlier version of this paper with the title “A New Approach to the Derivation
of Asset Price Bounds” was presented at the 2001 WFA Conference. All errors are solely
my responsibility.
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http://www.hhs.se/personal /rodriguez.



of uncertain payoffs which lies between the rigidities of model-based pricing
and the looseness of no-arbitrage pricing.

The interest of this new approach can easily be illustrated with a simple
example. Suppose we have a stock and a bond as basis assets and our goal
is to price a European call option on the stock with strike price 100 and
one year to expiration. The one-year interest rate is 5% and the annual
volatility of the compounded rate of return of the stock is 14.8%. Figure 1
plots in the horizontal axis the initial stock price and in the vertical axis the
corresponding call price.

By assuming absence of arbitrage, the information contained in the prices
of this initial set can be used to establish intervals where the price of the call
option must lie. Unfortunately, the available basis payoffs, like in most real-
life situations, only span a small subset of all possible contingent claims.
Thus, the pricing implications of this assumption only give loose bounds.
After all, absence of arbitrage is a very weak assumption. It only implies the
existence of at least one agent whose utility function has no satiation point.
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Figure 1. No-arbitrage bounds and Black-Scholes price of a European call
option. The option has one year to expiration and a strike price of 100.
The one-year risk-free rate of return is 5% and the standard deviation of the
continuously compounded rate of return on the stock is 14.09%.



Alternatively, one could embrace the Black-Scholes model and obtain
exact prices for the call option. However, the pricing implications of the
latter approach are highly sensitive to specification errors and we all know
that asset pricing models are always misspecified when applied to real data.

As we can see these two approaches seem a little too extreme. Thus, it
is of great interest to develop methods to limit the size of the no-arbitrage
intervals without fully assuming a particular asset pricing model. In modern
financial jargon, the goal is to tighten the set of admissible stochastic discount
factors (hereafter ASDF) without postulating a unique one.

Bernardo and Ledoit (2000) define the gain-loss ratio. They look at ex-
cess (zero-price) payoffs and they consider the quotient of the price of their
positive part and negative part under a given benchmark stochastic discount
factor (hereafter SDF). Then the price interval of a new payoff (the call op-
tion in the above example) is set in a way such that the resulting maximum
gain-loss ratio does not exceed a given ceiling. That is, they discard those
ASDF which imply a too high gain-loss ratio thereby, tightening this initial
set and sharpening the no-arbitrage bounds.

Cochrane and Saé-Requejo (2000) concentrate on restricting the volatility
of the set of ADSF and they exploit its connections with the maximum Sharpe
ratio of the economy. Therefore, they rule out those prices for the payoff to
be priced which will be implied by ASDF’s that generate a risk-premium
with respect to volatility which is too high, that is, they rule out too good-
deals. By discarding those ASDF’s whose standard deviation is greater than
an appropriate ceiling, this initial set is tightened and therefore, the no-
arbitrage bounds are also sharpened. This way of tackling the derivation of
asset price bounds has its roots on the distance that underlies Hansen and
Jagannathan’s measure of model misspecification. Good-deal bounds result
by discarding those ASDF which imply a value of the distance that exceeds
a given ceiling when the risk-neutral SDF is chosen as a benchmark.

This paper concentrates on the latter contribution in the context of a
two-period model (no intermediate trading is allowed) and its goal is twofold.
First, we show how to easily extend good-deal bounds to the choice of any
given benchmark SDF. Second, we introduce an alternative method which
mostly retains the economic interpretation associated with Hansen and Ja-
gannathan’s distance and it can also be applied to any benchmark SDF. Its
major advantage is the simplicity of the computation of the bounds, since it
only entails solving a linear program.

The remainder of the paper is organized as follows. Section 2 deals with



notation issues and preliminaries. Sections 3 shows how to generalize good-
deal bounds and 4 introduces an alternative method. Section 5 concludes.

2 Preliminaries

2.1 The setup

Consider a two-period economy where N basis assets are traded today at
a known price given by a vector p and they deliver a continuous random
payoff denoted by a vector x. No frictions are allowed and hence any linear
combination of the basis payoffs constitutes an attainable payoff x whose set
will be denoted by X. Let Z C X be the subset of zero-price payoffs and
L D X the space of payoffs in the span of all contingent claims.! For any
payoff x € L consider its positive and negative part 27 = max (z,0) and
x~ = max (—x,0), respectively.

The LOP is assumed to hold which implies the existence of random vari-
ables m which satisfy

p = E (mx). (2.1)

Denote by M the set of all random variables m (ASDEF’s) satisfying (2.1).
These random variables give the price of any payoff + € L through their
pricing extension defined as

Tm () = E (mx)

which obviously assigns the same price for any m € M if x € X. Define also
the sets

Ry,={z€L:m,(z)=1}
and
Zm ={x €L :mp(x)=0}

for any m € M. Thus, Z,, and R,, are the sets of returns and excess returns
under the pricing function 7, (e), respectively.

IThe space L we consider in each case depends on the particular formulation of the
problem.



We will also assume there exists a riskless asset with risk-free rate of re-
turn R/ and absence of arbitrage opportunities. With this latter assumption
it is well-known that there will be at least one strictly positive m € M.
Denote their set by M.

The pricing implications of a given model are summarized by its implied
SDF. Denote by m* a strictly positive benchmark SDF and for any = € L
consider also its implied pricing function 7* (z) = E (m*z). Let also E* ()
denote the expectation under the risk-neutral probability measure implied
by m* and thus, we have that

™ (x) = E* (x) E(m").

2.2 Asset Price Bounds

One can always view the derivation of asset price bounds as the result of a
four-stage process. First, a particular benchmark SDF is chosen. Second,
a distance? between each ASDF and the benchmark is defined. Third, an
appropriate ceiling on the maximum value of this distance is set and those
ASDF whose distance from the benchmark is above the ceiling are discarded.
Finally, by maximizing (minimizing) the price of the new payoff among those
SDEF’s that belong to this latter set the upper (lower) bound is obtained.

In the first two steps, stronger economic assumptions which go beyond
absence of arbitrage should be introduced by the choice of both the distance
and the benchmark. The value of the ceiling will place the derivation of the
bounds somewhere between no-arbitrage pricing and model-based pricing;
the larger the distance the wider the bounds. Obviously, this ceiling must
be binding, otherwise the set of ASDF will not be tightened and we will
be again where we started, at the no-arbitrage bounds. This value may as
well be determined by a-priori beliefs on how good representation of the real
world the benchmark model is. Also, the problem to be solved in the fourth
stage must be feasible which requires a large enough value of the ceiling so
that we do not discard every ASDF.

Formally, for any m € M™ denote by d (m, m*) a distance between m and
the benchmark model m*. Let d be an appropriate ceiling on the maximum
value of the above distance and discard those m € M* such that d (m,m*) >

2We abuse the term “distance” in our framework since the symmetry property does
not have to hold.



d. Finally, the lower bound on the price of a payoff z¢ ¢ X will be given by

C= min E(mz°) (2.2)
meMtT
d(m,m*)<d
or, equivalently,
C = min E (mz°), (2.3)
m€M+

where M = {me M :d(m,m) < E}. The upper bound C follows from
replacing min with max in the above optimization. Hence, by setting a ceiling
on the maximum value of d (m, m*) we limit further the set of ASDF, thereby

going beyond simple no-arbitrage restrictions. Within this latter set M we
choose those SDF’s which result in the lowest and highest price of the payoff
x¢. This procedure gives the upper and lower asset price bounds.

It should also be noted that the value of the ceiling must satisfy

min d (m,m*) <d < max d(m,m*) (2.4)
meM+ meM+
because if the left-hand inequality does not hold the feasible set in (2.2) is
empty and if the right-hand inequality is violated the original no-arbitrage
bounds are obtained.

Thus, the difference between the alternative methods to derive asset
price bounds we will be discussing only depends on the form of the distance
d (m,m*) . This distance usually has a distinct economic interpretation which
is obtained through a duality result.

Let us illustrate the above formulation with an example. Bernardo and
Ledoit (2000) present a derivation of asset price bounds based on what they
define as the gain-loss ratio. These bounds result from setting

. sup n’}f

m*

and the interpretation of (2.5) goes as follows.

Proposition 2.1 For the distance in (2.5), the following equality holds

* B* (a*)
d(m,m’") = max po -



Proof. A straightforward application of Theorem 1 in Bernardo and Ledoit
(2000) gives the desired result. m

For some m € M™ and a given = € Z,, these authors call E* (%) the
gain, E* (x7) the loss and E* (x1) /E* () the gain-loss ratio. Thus, in this
case d (m, m*) gives the maximum gain-loss ratio for zero-price payoffs in the
span of all contingent claims under the pricing extension 7, (e) implied by
m.

3 Generalized Good-Deal Bounds

3.1 The Definition

Hansen and Jagannathan (1997) introduce a measure of model misspecifica-
tion which is based on the distance

d(m,m*) = [E (m — m*)Q}% (3.1)

and whose economic meaning is formalized in the proposition below.

Proposition 3.1 For the distance given in (3.1), the following equality holds

d(m,m") = max [T () — 7% (2)] . (3.2)
B(2?)=1

Proof. See Hansen and Jagannathan (1997). m

Hence, (3.1) gives the maximum pricing discrepancy between m, and 7*
for payoffs in the span of all contingent claims whose second moment are equal
to one.® An alternative and more intuitive interpretation goes as follows.
Suppose there are two different (complete) financial markets where the whole
set of contingent claims are traded. In one market, prices are set according to
m and in the other one, prices are set according to the benchmark. Arbitrage
opportunities do not exist within each market since both m and m* are
strictly positive. However, there are cross-market strategies that give infinite
riskless benefits as long as there exist pricing discrepancies between 7, and

3Within this formulation L stands for L2.



7* (d(m,m*) > 0). The role of the normalization E (z*) = 1 is simply to
guarantee boundedness thereby giving a measure of the size of the above
benefits in relative terms; it has no economic meaning beyond that. Hence,
a restriction on the value of d(m,m*) is equivalent to a restriction on the
optimal value of cross-market arbitrage strategies for those payoffs in L whose
second moment is equal to one.

In other words, a ceiling on the value of (3.1) rules out investment op-
portunities that are too attractive where the level of attractiveness implied
by a given ASDF is measured in terms of the size of the disintegration that
creates with respect to the benchmark market given by m*.

However, further economic intuition can be derived for (3.1) which we
present once again in the form of a proposition.

Proposition 3.2 For the distance define in (3.1) and any benchmark m*
such that E (m*) = 1/R”, it holds that

forall x € Z,, and

for all x € R,,.

Proof. See Appendix. m

Therefore, a restriction on the above distance (which is equal to the
volatility of the difference between the ASDF and the benchmark if E (m*) =
1/R’) implies a restriction on the generalized Sharpe ratio, that is, a restric-
tion on the Sharpe ratio where the expectation in the numerator is taken
under the risk-adjusted probability measure that the benchmark implies. It
should be noted that for a constant benchmark, Proposition 3.2 gives the
well-known result that imposing a bound on the volatility of the SDF m
implies a bound on the standard Sharpe ratio. Cochrane and Saa-Requejo
(2000) use this restriction to derive good-deal bounds which therefore, can be



considered a particular case of the derivation of asset price bounds based on
the distance in (3.1). Thus, we call the latter generalized good-deal bounds.*

We believe that the inclusion of meaningful economic restrictions that go
beyond mean-variance considerations together with the appealing economic
interpretation of Hansen and Jagannathan’s measure of model misspecifica-
tion largely justify a generalization of good-deal bounds to any given bench-
mark SDF. Furthermore, this extension does not add any major complexities
to the computation of the bounds as we turn to show now.

3.2 Calculating Generalized Good-Deal Bounds
Our exposition will parallel Cochrane and Sa&-Requejo’s (2000). Problem

(2.2) for the above distance can be written as
C = min F (mx°) (3.3)

E(mx)=p
S.t. E(m — m*)2 < 82 .
m >0

where the corresponding maximization gives the upper bound.

The problem has two inequality constraints and the solution can be found
by checking all possible combinations of binding and nonbinding constraints.
When the second constraint is slack, no-arbitrage bounds are obtained so we
will concentrate on the two remaining possibilities.

Assume that the second constraint in (3.3) is binding and that the posi-
tivity constraint is slack. In this case, our problem becomes

C= mninE (max©) (3.4)
E(mx)=p
S.t. { E(m— m*)g < Ez .

where min should be replaced by max to obtain the upper bound. Let p* =
E (m*z) be the price that the benchmark SDF assigns to the vector of basis
payofts and define ¢ = p — p* and y = m — m*. Consider also the orthogonal
decomposition of the focus payoft

=7+ w

*Note that our definition of generalized Sharpe ratio and generalized good-deal bounds
is different from the one in Cerny (2001).



where 2¢ = E (z°2') E (z2')”' 2 and w = 2°—2°. The proposition below gives

the solution to problem (3.4).

Proposition 3.3 The discount factor that generates the lower bound is
m=x"—v+m"

and the bound is

C = E(z*z°) — vE (v*) + E (m*z°)

where
r* =¢FE(z2)x
and
—
|d - E (z+2)
L= E@?)

The upper bound is given by v = —v

Proof. See Appendix. m

Note that the size of the bounds has an expression which is identical to
equation (12) in Cochrane and Sad-Requejo (2000) with the exception that
x* is now the projection of y onto the space of payoffs X. Hence, the bounds
are tighter if the value d is smaller, if the size of the residual \/E (w?) is
smaller or, equivalently, if the approximate hedge is better.

Assume now that both constraints in (3.3) bind. We introduce Lagrange
multipliers and the problem is

—m c / .
€ = minmax I (mz®) + X'[E (yz) — p| +

gpﬁm—wfyﬂﬂ (3.5)

and its first-order conditions give

(3.6)

[ xc+)\'x—5m*]+
m=|— 5 .

10



As in Cochrane and Sda-Requejo we interchange min and max in (3.5)
and use (3.6) to obtain after simplifying

c . %7 +2 _
szaXE{—é[—z +Aw 6m1 }—)\'p+§[E(m*2)—52].

2 0 2

This problem is solved by searching numerically over (), §). Once again, the
upper bound is found by replacing max with min but this time it must hold
that 6 < 0.

4 L'-Generalized Good-Deal Bounds

We turn now to present an alternative derivation which can be regarded as
the L'-norm equivalent of Generalized Good-Deal Bounds. This alternative
approach translates the economic restrictions behind Generalized Good-Deal
Bounds into their corresponding L' formulations. As a by-product the com-
putation of the resulting bounds enormously simplifies since it only requires
solving a linear program. The bounds follow from setting

m
d (m,m*) = sup| == — 1] 41
(m, m") = sup p— (4.1)

Proposition 4.1 For the distance in (4.1), the following equality holds

d(m,m") = max |7t () — 7% ()] .
T
E(m*|z|)=1

Proof. See Appendix. m

Thus, both (3.1) and (4.1) produce an interpretation that can be read
in terms of maximum pricing discrepancies. Also, we can regard them both
as the optimal value of arbitrage strategies across two complete markets
where prices are given by 7, (¢) and 7* (e) in each case. However, they dif-
fer on the target set of payoffs in the space of all contingent claims implied
in the necessary normalization. (3.1) looks at those payoffs whose second
norm equals one. (4.1) normalizes by restricting the maximization to payoffs

11



whose absolute value has unit price under the postulated model or, equiva-
lently, expectation equal to one under the risk-neutral measure implied by
the model.

In other words, the attractiveness of the investment opportunities implied
by a given ASDF is measured in terms of the size of the disintegration that
creates with respect to the benchmark market given by m*.

Moreover, further economic insights can also be obtained for (4.1) through
a result which parallels Proposition 3.2.

Proposition 4.2 For the distance define in (4.1) and any benchmark m*
such that E (m*) = 1/R”, it holds that

for all x € Z,, and

for all x € Ry,.

Proof. See Appendix. m

Thus, in the same way as a restriction on (3.1) implies a restriction on
the generalized Sharpe ratio, a bound on (4.1) imposes a constraint on the
value of the ratio

[E* (o) |E* ()]
Ex(lz])  E*(z*) + E(27)

(4.2)

for excess returns. In particular, for a constant (risk-neutral) benchmark,
the restriction is imposed on

which can be seen as the L'-norm equivalent of the Sharpe ratio. Further-
more, note that (4.2) is also close in spirit to the gain-loss ratio.

12



An important feature of L'-generalized asset price bounds is that their
computation is extraordinarily easy: a linear program does it. To see this,
for the distance in (4.1) rewrite the inequality constraint of problem (2.2) to
obtain

m

—d< —-1<d

*

m

which together with the pricing equation in (2.1) and the objective E (mx°)
give a linear optimization program in m.’

Let us go back to our initial example and consider again the case of two
basis assets: a stock and a bond. Suppose also that we set the benchmark
equal to the SDF implied by the Black-Scholes model. The parameters are
the same as above. The stock’s continuously compounded rate of return
has an annual volatility equal to 14.8% and the one-year risk-free rate is
equal to 5%. We want to compute asset price bounds on a European call
option on the stock with one year to expiration and a strike price equal to
one hundred. For initial prices of the stock between 80 and 110 we compute
the upper and lower bound for values of the ceiling between 0 and .9 which

®One might suggest as the basis of L'-generalized good-deal bounds the exact L' equiv-
alent of the least-squares distance, namely

d(m,m*) = E(Jjm —m™|).
However, it can be proved through the corresponding duality result that in this case

d(m,m") = max |m,, () — 7" ()|
zel
|z|=1
which has a very poor economic interpretation.
Alternatively, one could try to obtain the exact L' equivalent of the expression in (3.2),
that is,

ma | (1) 7 (2)]
E(|z])=1

It can easily be shown that this expression is associated with the distance
d(m,m”) = sup|p — |

where p and p* are the risk-adjusted probability measures implied by m and m*, respec-
tively. This distance is in our opinion totally uninteresting.

In any case, note that the bounds obtained in the above two cases can also be computed
by solving a linear program.

13



are given in Figure 2. The bounds lie between the Black-Scholes price and
the no-arbitrage bounds. As the ceiling increases we move towards the no-
arbitrage bounds. As the ceiling decreases we move towards the Black-Scholes
price. A value of zero on the ceiling gives the Black-Scholes price, that is,
the smaller set of ASDF’s contains only the one implied by the benchmark.
By introducing this economically meaningful restrictions no-arbitrage bounds
are clearly sharpened. Also, as one should expect, larger bounds are obtained
for near-the-money values of the stock price.

Ceiling = 0,1,...,9 €10 %)
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Figure 2. Price bounds on a European call option with Black-Scholes as
a benchmark. The option has one year to expiration and a strike price of
100. The one-year risk-free rate of return is 5% and the standard deviation
of the continuously compounded rate of return on the stock is 14.09%. The
thick line represents the Black-Scholes price (the value of the ceiling is zero)
and the two outer lines give the lower and upper bounds for a value of the
ceiling equal to .9.
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5 Conclusions

This paper introduces an extension of good-deal bounds which allows to
insert in the derivation the restrictions that a particular asset pricing model
implies. By treating a limit on the volatility of the discount factor as a
particular case of a restriction on Hansen and Jagannathan’s distance when
the benchmark is a constant SDF, we manage to formalize a generalization
of good-deal bounds to any benchmark model. A restriction on this distance
is equivalent to a restriction on the volatility of the difference between the
ASDF and the benchmark (when both objects have the same mean). This
restriction is already pointed out by Cochrane and Sad-Requejo as a possible
way to develop the above generalization. We also show that in a context
with no intermediate trading, the computation of the resulting bounds does
not involve any additional complexities.

Furthermore, we also suggest an L' alternative derivation of asset price
bounds which has clear similarities with the above approach. It also has a
clear advantage: its simple calculation. We believe that this latter property
is also important for other reasons. The idea of implementing the valuation
of asset payoffs with an approach that lies in between no-arbitrage pricing
and model-based pricing has also potential applications to other fields like
portfolio theory and performance evaluation. However, this applications may
be difficult to implement both theoretically and practically. Therefore, a
simple method seems like a good idea as a starting point.

The extension of the above arguments to a continuous time setup has not
been addressed and it may be a subject for future research. We consider this
step technically possible but not all trivial.

Appendix
Proof of Proposition 3.2. First, note that since
E(m*)=FE(m)=1/R’ (A.1)
it holds that
d(m,m*) =o(m—m"). (A.2)
We have that if x € Z,,, then
E[(m—m*)z] =—FE (m'x). (A.3)

15



By using (A.1), the definition of covariance and the expectation under the
risk-adjusted measure implied by m*, (A.3) may be rewritten as
E* (x)

R

cov(m—m* x)=—

which implies by (A.2) and well-known arguments that

) |E” (2)]
d(m,m") o (z) > F
An identical derivation gives the desired result for x € R,,.

Proof of Proposition 3.3. The proof uses very similar arguments to the
ones in the proof of Proposition 1 in Cochrane and Saé-Requejo (2000).
By Lemma 1 in Cochrane and Sad-Requejo (2000) y = m — m* can be
orthogonally decomposed as follows

y=2"+vw+e
if and only if
E(yz) =q<= E[(y+m")z] =p <= E(mx)=p

where v is an arbitrary constant, € is a random variable that satisfies E (ex) =
E (ew) = 0. Thus, we have that we can express the inequality constraint in
(3.4) as

E(y?) = E(¢) +*E (W®) + E(&) <d°
and the objective can be rewritten in the following way

E(mzf) = E[(y+m")z° = E(2"2°) +vE (wx) + E (ex) + E (m*z°) =
= E(2*2°) +vE (w°) + E (m*z°).

Thus, solving problem (3.4) is equivalent to solving
min E (¢*2°) + vE (w®) + E (m*z°)

st. B (@) +0°E (W) + E(&) <d

16



which in the optimum must satisfy e = 0 and
E (x*Q) +0v*E (wQ) + F (62> —d
where v denotes the optimal value of v. Therefore,

d — E (272

V= ———"

- E (w?)

and since m = y + m* the optimal value of the stochastic discount factor is
m=y+m"=z"—vw+m.

Replacing min with max in (3.4) and using identical arguments as the ones
above we obtain the corresponding results for the upper bound. m

Proof of Proposition 4.1. Our space of all possible payoffs is now
Ll ={z:E(m*z) < 0o and E (mzx) < co Ym € M}

and let Lt, = {z € L} : « > 0} be the positive orthant of L;.
As usual we will proof the equality in the proposition by showing that
both sides are true. Let us start with <. For a given m € M we have that

—d(m,m"*) < ﬁ*—lgd(m,m*)

m
which gives

m* —d(m,m*)m* <m (A.4)
and

m < m* +d(m,m")m". (A.5)

For any = € L} such that 7* (z7) +7* (z7) = 1, multiply (A.4) and (A.5)
by = and —z™, respectively, and take expectations to obtain

7 (27) < =7 (27) + d(m,m") 7* (27)
and

T (x*) < 7* (x*) +d (m,m") 7" (x*) )

17



By adding up these two inequalities we get
—d(m,m"*) < 7" (x) — 7 (). (A.6)

Now, multiply (A.4) and (A.5) by —z™ and =, respectively. By identical
arguments it follows that

d(m,m*) > 7% (x) — mp () . (A7)
Finally, (A.6) and (A.7) give the desired inequality, that is

[Tt () — 7 ()| < d(m,m").

Let us turn to the > side of the equality and let k,, = sup (;:) and
inf ( ) We have that

k=

d(m,m*) = max {ky,, — 1,1 — k,, } -

Suppose that d (m, m*) = k,, — 1 and define

Am = max |7t () — 7% (2)] -
zcLl
w* (w+)+7r* (w*)zl
Note that
Am > max [Tt () — 7% ()| =
£B€L1+

T* (x+)+7r* (af):l

=  max |m,(z)—7"(2)| =

mELiJr
E(m*z)=1
= max [E(mz)-1> max E(mz)-1 (A.8)
x€L1+ wEL
E(m*z)=1 E(m* a:) 1

Now, define the payoff
Iz >
m*P [

d

Fm —
— >0
> Ky, — €]

Te =




where I and P denote the indicator function and the real probability of the
event in brackets, respectively. It is easy to see that F (m*z.) = 1; hence, it
follows that

max E(mm)ZE(mxe):E[ﬂ ﬁzgm—e]zgm—e.
zell, m* Im*
E(m*z)=1

Since this holds from every € > 0, from (A.8) we have that

)\mZlir%Em—e—lzﬁm—lzd(m,m*).

Now, suppose d (m, m*) =1 — k,,. By reasoning as in (A.8), it should be
clear that

Am > max 1— E(mx)

wGLi7L
E(m*z)=1
which by defining this time
I 2<Ek +e€
Te = e < b+ ] >0
WP 2 <+

and following symmetric arguments as the ones above gives

Am > d(m,m").

Proof of Proposition 4.2. We have that

d(m,m*) = max |7t () — 7% ()| =
xE
E(m*|z|)=1
E* (x)
B 7 b
B ((al) RS
— f _
= max [T () RT — E* ()| .
B (lz)=1

Hence, for any x € L except for the zero payoff, it must hold that

|7 () R — E* ()]
E* (|z))

d(m,m*) >

19



because the payoff x/FE* (|z|) is an element of the feasible set in the maxi-
mization above. Obviously, (A.9) implies

o |E* () — RY|
B
and
B (@)
4 (m.m") 2 Ellal)

for any x € R, and any = € Z,,, respectively. m
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